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Abstract

This paper applies the cognitive hierarchy model of Camerer, Ho and Chong (2004)

to the action commitment game of Hamilton and Slutsky (1990). The model generates

the heterogeneity of behavior reported in Huck, Müeller and Normann (2002). The model

predicts the spike in the leadership quantity in the first period as well as the spike in the

Cournot quantity in the second period. The model predicts delay, a feature that cannot

be explained by social preferences. The also model predicts very well the percentage of

Stackelberg outcomes, double leadership outcomes, and Stackelberg leaders punished by

followers. Notwithstanding, the model produces low first period movement and is unable

to generate sufficient percentages of sequential play of Cournot quantities and collusive

market outcomes.

JEL Classification Numbers: C72, D43, L13.

Keywords: Endogenous Timing Games; Thinking Steps; Cognitive Hierarchy.

⋆We are thankful to Vince Crawford, Joel Sobel, Miguel Costa-Gomes, and Nagore Irriberi for many

helpful comments. We are also thankful to conference and seminar participants of the Informal

Research Workshop at Universidade Nova de Lisboa, Microeconomics Workshop at University of

Lausanne, 24th Annual Congress of the European Economic Association in Barcelona, and the 36th

EARIE Conference in Ljubljana.

†Daniel Carvalho is a graduate student at Universidade Nova de Lisboa. Luís Santos-Pinto is Assis-

tant Professor of Economics at University of Lausanne. Corresponding author: Luís Santos-Pinto,

Faculty of Business and Economics, University of Lausanne, Internef 535, CH-1015, Lausanne,

Switzerland. Ph: +41-216923658. E-mail address: LuisPedro.SantosPinto@unil.ch.

1



1 Introduction

The theoretical literature on endogenous timing tries to identify factors that might lead to

the endogenous emergence of sequential or simultaneous play in oligopolistic markets.1 In

Hamilton and Slutsky (1990)’s action commitment game, two firms must decide a quantity

to be produced in one of two periods before the market clears. If a firm commits to a

quantity in the first period, it acts as the leader, but it does not know whether the other

firm has chosen to commit early or not. If a firm commits to a quantity in the second

period, then it observes the first period production of the rival (or its decision to wait).

Hamilton and Slutsky show that this game has three subgame perfect Nash equilibria:

both firms committing in the first period to the simultaneous-move Cournot-Nash equilib-

rium quantities, and each waiting and the other playing its Stackelberg leader quantity in

the first period. They also show that only the Stackelberg equilibria survive elimination of

weakly dominated strategies.

Observed behavior in experiments on this canonical model of endogenous timing is at

odds with the theory. For example, Huck, Müeller and Normann (2002) test experimentally

the predictions of the action commitment game. They find that: (i) Stackelberg outcomes

are rare, (ii) simultaneous-move Cournot outcomes are modal, (iii) simultaneous-move

outcomes are often played in the second production period (delay), and (iv) behavior is

quite heterogeneous–followers punish leaders, collusive outcomes are played, and double

Stackelberg leadership is observed.

The questions that the endogenous timing literature tries to address are particularly

relevant in terms of new markets, where two or more firms will enter. The experimental

evidence suggests that simultaneous-move play may be a better predictor of behavior in

markets for new goods than sequential play.2 It also suggests that there may be substantial

heterogeneity in behavior in these markets.

Why do we observe this huge gap between the theoretical predictions and the empirical

evidence? One explanation might be that subjects have trouble coordinating their play in

1The seminal papers are Saloner (1987), Hamilton and Slutsky (1990), and Robson (1990)
2As we have seen the prediction of Stackelberg equilibria rests on equilibrium selection arguments.

Simultaneous-move Cournot-Nash equilibria typically exist, however, they do not survive the application
of equilibrium refinements.
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one of the two Stackelberg equilibria: if both equilibria are exactly the same then it is far

from clear which of the two firms is going to assume the leading role in the first period—see

Matsumura (2001) on the instability of leader-follower relationships. This implies that

playing the Stackelberg leader’s quantity is risky by comparison with playing the Cournot-

Nash quantity.

It is possible to think of explanations for some aspects of the empirical evidence.

However, it is much harder to explain most of the experimental findings. For example,

Harsanyi and Selten’s (1988) risk-payoff equilibrium selection argument may explain why

simultaneous-move outcomes are more frequently played than Stackelberg outcomes. How-

ever, it cannot explain the emergence of collusive outcomes or Stackelberg warfare. It is

also not clear how this explanation can account for delay in the action commitment game.

Another explanation might be inequity aversion. Santos-Pinto (2008) generalizes Hamil-

ton and Slutsky’s (1990) action commitment game by assuming that players are averse to

inequality in payoffs. He shows that relatively high levels of inequity aversion rule out

asymmetric equilibria, and inequity aversion gives rise to a continuum of simultaneous-

move equilibria which include the Cournot-Nash outcome, collusive outcomes as well as

Stackelberg warfare. However, inequity aversion is not able to explain delay. Although in-

equity aversion can cast some light into the heterogeneity in behavior observed, we believe

that the discussion can be further enriched with a different focus.

Recent experiments suggest that in strategic settings without clear precedents, people’s

initial responses often deviate systematically from equilibrium. Moreover, different players

seem to employ different levels of reasoning in games. Nagel (1995) was one of the first to

provide evidence for this using the p-beauty contest, a dominance solvable game. She found

that most people do not follow the Nash equilibrium prediction of behavior; rather, their

degree of strategic thinking is limited to a finite number of iterations when eliminating

weakly dominated strategies. Other important references on non-equilibrium models of

behavior in games are Stahl and Wilson (1995), Costa-Gomes, Crawford and Broseta

(2003), and Camerer, Ho and Chong (2004). In these models, a level-k player computes

his best response assuming that his rivals employ less thinking steps; the sole exception is

that of the level zero players, who do not behave strategically and choose randomly across
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the decision set.3

This paper applies Camerer, Ho and Chong’s (2004) cognitive hierarchy model to

Hamilton and Slutsky’s (1990) action commitment game. We assume that a level zero

plays any quantity with equal probability and plays in the first period with 50% proba-

bility. Since the action commitment game is a dynamic game and non-equilibrium models

of behavior in games are usually applied to static games, we assume that players of levels

k > 1 use Bayes’ rule to update their beliefs about their rivals’ level of strategic sophis-

tication. Additionally, given that the cognitive hierarchy model typically delivers small

sets of predicted behavior we introduce noise into players’ behavior (see Camerer, Palfrey

and Rodgers (2007) and Östling, Wang, Chou and Camerer (2008)). Because the set of

possible quantity choices is large we assign noise to the quantity choices and assume that

players make no mistakes regarding the period of entry. We estimate the model that best

fits the data and compare its predictions to observed behavior.

We find that the cognitive hierarchy model is able to explain the heterogeneity in

behavior in Huck, Müeller and Normann (2002). The model predicts delay which, as we

have seen, cannot be explained by risk-dominance or inequity aversion. The model predicts

very well (i) Stackelberg outcomes, (ii) double leadership outcomes, and (iii) Stackelberg

leaders punished by followers. The model also predicts the spike in the leadership quantity

in the first period as well as the spike in the Cournot quantity in the second period.

Notwithstanding, the model does not predict the spike in the Cournot quantity in the first

period, overestimates (underestimates) simultaneous play in the second (first) period and

underestimates collusive outcomes.

In non-equilibrium models of behavior in games different level zero specifications can

sometimes lead to different predictions of behavior. To address this issue we study alter-

native forms of level zero behavior. First, we consider different probabilities of first period

movement. We find that the predictions of the model are essentially the same no mat-

ter if the level zero plays in the first period with 50%, 75%, or 99% probability. Second,

we consider that a level zero chooses the Cournot quantity in the first period with y per

3 Ivanov, Levin and Peck (forthcoming) apply a non-equilibrium model of behavior in games to a model
of endogenous timing in investment where players decide if they want to invest in a market and, if yes,
when they want to carry that action out.
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cent probability and sticks to the random behavior with 1− y per cent probability, where

y ∈ {50, 75, 99}. This alternative specification of level zero behavior fits the data better

than the benchmark model and can explain the spike in the Cournot quantity in the first

period.

The remainder of this paper is organized as follows. Section 2 describes the empiri-

cal evidence in Huck, Müeller and Normann (2002). Section 3 shows how the cognitive

hierarchy model can be applied to the action commitment game. Section 4 reports the

maximum likelihood estimates and discusses the results. Section 5 concludes the paper.

The appendix contains the classification of market outcomes, the details of the maximum

likelihood estimation, and sensitivity analysis of different level zero specifications.

2 Empirical Evidence

Huck, Müeller and Normann (2002) use a laboratory experiment to test the action com-

mitment model in Hamilton and Slutsky (1990).4 They assume a linear inverse demand

function p(Q) = max{30 − Q, 0}, where Q = q1 + q2, and a cost function Ci(qi) = 6qi,

with i = 1, 2. Table 1, taken from Huck, Müeller and Normann (2001), summarizes the

quantities, profits, consumer surplus and total welfare for the Cournot and Stackelberg

equilibria and for the fully collusive market outcome.5

Table 1: Theoretical Predictions for Equilibria and Fully Collusive Outcome

Cournot Stackelberg Collusion

Individual quantities qCi = 8 qL= 12; qF= 6 (qJi = 6)sym
Total quantities QC= 16 QS= 18 QJ= 12

Profits ΠCi = 64 ΠL= 72;ΠF= 36 (ΠJi = 72)sym
Consumers’ surplus CSC= 128 CSS= 162 CSJ= 72
Total welfare TWC= 256 TWS= 270 TWJ= 216

4Participants in the experiment were students of various backgrounds that were paid according to their
results in the game and a participation fee to cover eventual negative profits. Subjects were randomly
matched in pairs and were not informed of who their rival was. Every subject had to choose when to enter
the market and which quantity to produce.

5 In this earlier paper, an experiment was performed with the same design except that the timing of the
decisions was previously stipulated, either for sequential and simultaneous move. The purpose was to study
Stackelberg and Cournot frameworks when subjects where randomnly matched or fixed paired.
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Subjects were handed a payoff matrix with discrete quantity values and the respective

payoffs their choices would yield considering the quantities that their rival might play and

its own profit. The experiment was done with two payoff matrices, one large and one small.

The large payoff matrix had quantities ranging from the integers 3 to 15 and the small

payoff matrix had only 6, 8 and 12 as possible choices. The play lasted 30 rounds and the

subjects were informed, at the end of each round, of the quantity and time of entry their

rival had chosen and the respective payoffs.

We focus on the results of the game with the large payoff matrix. In that game the

quantities 6, 7, 8, and 9 are weakly dominated by the strategy “enter the market in the

second period.” The quantities 3, 4, 5, 13, 14, and 15 are strictly dominated. Ruling out

weakly dominated strategies the game with the large payoff matrix has three equilibria in

pure strategies and one in mixed strategies where one player chooses quantity 10 in the

first period with probability 2/5 and decides to wait with probability 3/5.6

Table 2 displays the choices made, broken down by quantity and period of play, by

subjects who played the game with the large payoff matrix. There are three points worth

stressing from the analysis of table 2. The first is that the distribution is highly concen-

trated in the quantity subset {6, 7, 8, 9, 10, 11, 12}, that is, very few players choose strictly

dominated quantities. In fact, 96.0% of the quantities chosen in the first period and 96.3%

of those chosen in the second period lie in that subset. The second is that most players

preferred to move in the first period, some 61% of the total, and only 39% decided to wait

for the second. The last point is the existence of two spikes in the first period, in quantities

8 and 10, and a third spike in the second period in quantity 8.7

6 In Hamilton and Slutsky (1990), the linearity of the demand and cost functions combined with the
continuous action space guarantee that there are no equilibria where players mix a first period choice with
the strategy “enter in the second period.” With a discrete strategy space there exist various mixed strategy
equilibria. Nevertheless, only one of those equilibria is not attained in weakly dominated strategies.

7Behavior becomes more cooperative as the number of rounds of play increases. By spliting the sample
into two parts, the first encompassing the first fifteen rounds and the second the remaining rounds, we
observe that: quantities 6 and 7 were chosen less often in the first part of the sample than in the second
part; quantities 9 and 11 were chosen more often in the first part and less often in the second. Throughout,
quantities 8, 10 and 12 remain approximatelly constant in both subsets as well as the stricktly dominated
quantities.
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Table 2: Observed Quantities per Period of Play

Quantity Period 1 Period 2 Total

3 1 3 4
4 1 2 3
5 3 2 5
6 35 23 58
7 59 61 120
8 142 125 267
9 47 56 103
10 139 40 179
11 53 17 70
12 46 12 58
13 7 2 9
14 4 1 5
15 6 3 9

Total 543 347 890

% 61 39 100

Table 3 , taken from Huck, Müeller and Normann (2002), displays aggregate results for

the experiment with the large matrix. First of all, we can see that the players who decided

to move in the first period chose a quantity that was, on average, significantly less than the

Stackelberg leader’s; moreover, those who decided to wait for the second period chose, on

average, a quantity much higher than the Stackelberg follower’s. Finally, when both firms

chose simultaneously in the second period, the average quantity played was very close to

the Cournot level.

Table 3: Aggregate Results for the Large Payoff Matrix

Both firms Explicit Both firms
in period 1 followers in period 2

Average quantity 9.15 8.93 8.40
Standard deviation 1.91 1.75 1.67
Number of observations 543 207 140

% 61% 23% 16%

Table 4 organizes results into market outcomes and displays the percentage of each

in terms of the total. Quantity 9, together with 8, is considered admissible as Cournot

quantity and quantities 10 and 11, together with 12, as Stackelberg leader’s quantities.

7



Table 4: Observed Market Outcomes

Market outcomes % cases

Cournot:
1st period 4.5
Sequential 14.8
2nd period 4.5
Stackelberg:
Leader 12, follower 6 0.9
Leader 11, follower 7 2.0
Leader 10, follower 7 4.5
First mover punished or rewarded:
Stackelberg leader punished 11.9
Stackelberg leader rewarded 0.2
Cournot punished 0.9
Cournot rewarded 0.0
Stackelberg and Cournot in 1st period 12.6
Double Stackelberg leadership 6.3
Collusion:
Collusion successful 6.1
Collusion failed 10.6
Collusion exploited 4.3
Other 16.0

We will briefly go through some of the market outcomes in Table 4. The outcome

“Cournot sequential” happens when the first and second movers both choose a Cournot

quantity (8 or 9). The outcome “Stackelberg leader punished” happens when the first

mover chooses a Stackelberg leader’s quantity (12, 11 or 10) and the second mover chooses

a quantity greater than his best response to the first mover’s. The outcome “Cournot

punished” happens when the first mover chooses a Cournot quantity and the second mover

chooses a quantity greater than his best response to the first mover’s. The outcome “Stack-

elberg and Cournot in 1st period” happens when both players move in the first period and

one of them chooses a Stackelberg leader’s quantity while the other chooses a Cournot

quantity. The outcome “double Stackelberg leadership” happens when both players play a

Stackelberg leader’s quantity in the first period. The outcome “collusion successful” hap-

pens when both players play a collusive quantity (6 or 7) in either period. The outcome

“collusion failed” happens when both players move in the first period, one player chooses a
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collusive quantity and the other player plays either Stackelberg or Cournot. The outcome

“collusion exploited” happens when the first mover chooses a collusive quantity and the

second mover chooses a quantity greater than 7. Finally, the market outcome “others”

refers to those situations that do not fit into any of the previous cases.8

3 A Cognitive Hierarchy in the Action Commitment Model

To explain behavior in games Camerer, Ho and Chong (2004) propose a cognitive hierarchy

theory where different players employ different levels of reasoning. Level zero players do

not think strategically at all; they randomize equally across all strategies. Players of level

k > 0 anticipate the decisions of lower-level players and best respond to the mixture of

their decisions using normalized frequencies.9

Formally, players of level k > 0 know the true proportions of lower-level players f(0),

f(1),. . . , f(k − 1). Since these proportions do not add to one, they normalize them by

dividing by their sum. That is, players with k levels of reasoning have the following beliefs

about players with h levels of reasoning:

gLk (h) =






f(h)/
∑k−1
l=0 f(l), ∀h < k

0, ∀h ≥ k
.

This setup leads to an “increasing rational expectations” characteristic, meaning that

the deviation between the actual frequencies and the player’s beliefs is diminishing in k,

the thinking step level.

Camerer, Ho and Chong (2004) discuss the properties that the appropriate distribution

of levels should possess: it should be discrete because the thinking steps are integers; it

should reflect the fact that, as thinking steps increase, so do the computations that the

players carry out. Working memory constraints should make it likely that, the higher is k,

the fewer are the players doing one further reasoning level. In other words f(k)/f(k − 1)

8See Appendix A for a complete description of the quantities and periods of play that characterize each
market outcome.

9Thus, players of level k > 0 are assumed to not realize that some players might be thinking at least as
‘hard’ as they are about the game. This could be due to overconfidence: players believe that their rivals
have less insight regarding the game they are playing. It could also be due to the limited capacity that
people have to continuously eliminate dominated strategies. However, players of level k > 0 are assumed
to make an accurate guess about the relative proportions of players using fewer steps than they do.
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is decreasing in k. Moreover, the authors assume that the ratio is proportional to 1/k and,

consequently, the distribution must be the Poisson:

f(k|τ) =
τke−τ

k!
,

with k = 0, 1, 2, ... and τ > 0. An advantage of this approach is that one only needs

to estimate a single parameter, τ , to find out the distribution of players’ types in the

population as well as quantity and timing predictions.

We now illustrate how a truncated version of the cognitive hierarchy model can be

applied to predict behavior in the action commitment game. Let k ∈ {0, 1, 2} and let the

best response function of a level-k player, with k > 0, to quantity q produced by his rival

be given by

BRLk(q) = argmax
qLk

[
P
(
qLk + q

)
− c
]
qLk.

The first step is to determine the best strategy of a level 1 player—L1 from now on. The

L1 player believes that he can only play against a level zero player—L0 from now on—and

that a L0 player picks a random quantity and produces in the first period with probability

x ∈ (0, 1). If the L1 player decides to produce in the first period his optimal quantity

choice is to produce BRL1(q̄L0), where q̄L0 denotes the expected output of a L0 player.

This generates a perceived expected profit of

ΠL11 = πL1
(
BRL1

(
q̄L0
)
, q̄L0

)
.

If, on the contrary, the L1 player decides to wait until the second period, one of the following

two situations will occur: with probability x the L0 player will choose its quantity in the

first period and the L1 player will be able to best respond to it; with probability 1 − x

the L0 player will only play in the second period and the L1 player will have to play

BRL1(q̄L0). Thus, the perceived expected profit of a L1 player who moves in the second

period is given by

ΠL12 = x

∫
πL1

(
BRL1

(
qL0
)
, qL0

)
dF (qL0) + (1− x)πL1

(
BRL1

(
q̄L0
)
, q̄L0

)
.
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By definition of the best response function, we know that

∫
πL1

(
BRL1

(
qL0
)
, qL0

)
dF (qL0) ≥ πL1

(
BRL1

(
q̄L0
)
, q̄L0

)

and so ΠL12 ≥ ΠL11 . Therefore, the L1 player is better off by waiting until the second

period to choose his quantity whatever the probability the L0 player has of moving in the

first period. The intuition behind this result is that since L0 players have no strategic

interaction with the other types of players, the L1 player has nothing to gain if it plays in

the first period because it cannot condition the L0 players’ response. Therefore, waiting

for the second period is the optimal choice of a L1 player.

The level 2 player—L2 from now on—thinks that the population is composed exclusively

of L0 and L1 players. The L2 player also knows that a L0 player will play a random

quantity and will do it in period one with probability x > 0 as well as that the best

decision of a L1 player is to wait for the second period. Therefore, the L2 player is faced

with a trade-off. If she knew her rival was a L0, then she would prefer to move in the

second period to be able to best respond to the rival when the rival moves in the first

period. If she knew the rival was a L1, then she would prefer to move in the first period

and reap the benefits of a leadership position. Since the L2 only knows the percentage of

L0’s and L1’s, his optimal choice will depend on tau.

If the L2 player decides to move in the first period, then his optimal quantity choice,

denote it by qL21 , is the solution to

max
qL2

gL2(0)πL2
(
qL2, q̄L0

)
+ gL2(1)πL2

(
qL2, BRL1(qL2)

)
, (1)

where gL2 (0) is the relative proportion of L0 players in the population according to L2’s

beliefs and, likewise, gL2 (1) is that of L1 players. These two proportions will be normalized

by the L2 to sum up to one. We can thus write the L2’s perceived expected profit of

producing qL21 in the first period as

ΠL21 = gL2 (0)πL2
(
qL21 , q̄L0

)
+ [1− gL2 (0)]πL2

(
qL21 , BRL1

(
qL21
))
.
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If the L2 player decides to postpone his quantity decision to the second period, one

of the following two situations will arise. If the L2 observes a quantity commitment by

the rival, then he believes that he is playing against a L0 player and chooses his best

response in the second period. In this case the perceived expected profit of the L2 is
∫
πL2

(
BRL2

(
qL0
)
, qL0

)
dF (qL0). If the L2 does not observe any quantity commitment in

the first period he believes that he is either playing against a L0 who moves in the second

period or against a L1. In this case the optimal quantity choice of the L2, denote it by

qL22 , is the solution to

max
qL2

µL2πL2
(
qL2, q̄L0

)
+ (1− µL2)πL2(qL2, BRL1

(
q̄L0
)
), (2)

where µL2 is the (posterior) belief of the L2 that the rival is a L0 given that there was no

movement in the first period. From Bayes’ rule we have

µL2 =
(1− x)gL2(0)

(1− x)gL2(0) + gL2(1)
=
(1− x)gL2(0)

1− xgL2(0)
.

Therefore, the L2’s perceived expected profit of producing qL22 in the second period is

ΠL22 = xgL2 (0)

∫
πL2

(
BRL2

(
qL0
)
, qL0

)
dF (qL0) + (1− x)gL2(0)πL2

(
qL22 , q̄L0

)

+ [1− gL2 (0)]πL2(qL22 , BRL1
(
q̄L0
)
).

A L2 will choose to produce in the first period if and only if ΠL21 > ΠL22 . This inequality

will be satisfied for sufficiently high values of τ , that is, when there are relatively few L0

players in the population. If we assume additionally that the L0’s behavior is drawn from

a uniform distribution over the periods of play and the quantity levels in HMN we have

the following predictions in the truncated model (the analysis is approximately correct for

τ ∈ (0, 1)):

L1: Chooses to wait and (i) if there is commitment by the rival the L1 chooses a best

response, (ii) if there is no commitment by the rival the L1 chooses the Cournot quantity,

qC = 8 (the best response to quantity 9, the average quantity produced by the L0).

L2: If tau is sufficiently high, the L2 moves in the first period and produces a Stackelberg
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leader’s quantity q∗ where 8 ≤ q∗ ≤ 12 (q∗ = 10 in HMN’s data). If tau is sufficiently

low, the L2 chooses to wait and (i) if there is commitment by the rival the L2 chooses a

best response, (ii) if there is no commitment by the rival the L2 updates beliefs about the

rival’s type and chooses a best response.

We see that the truncated cognitive hierarchy model generates delay and a spike in the

Cournot quantity in the second period mostly due to the behavior of L1s. The model also

generates a spike in a moderate Stackelberg leader’s quantity in the first period as long as

tau is sufficiently high due to the behavior of L2s. However, the model does not generate

the spike in the Cournot quantity in the first period.

Further thinking steps are easily added to the model by following the same logic as

above. The main predictions will be similar to those of the truncated model with k ∈

{0, 1, 2}. The behavior of higher levels will be similar to that of the L2. In appendix B

behavior is depicted as a function of tau up to τ = 4 and from L2 to L10.

The assumption that a L0 moves in the second period with positive probability, x < 1,

is critical to the analysis. To see this suppose that a L0 never moves in the second period.

We know that the optimal choice of a L1 is to wait for the second period because he wants

to best respond to the L0. Now if, for example, a L1 is paired against another L1, then

both players would observe no movement in the first period from the rival. This would be

inconsistent with their belief that the population is only composed of L0s.

The main difference between Camerer, Ho and Chong (2004) and other non-equilibrium

models of behavior in games such as the “n-depth of reasoning” in Nagel (1995) or the

“level-k” model in Costa-Gomes and Crawford (2006), is the assumption that a player

of level k > 1 considers that he is playing against all inferior levels of reasoning instead

of the one just immediately below. It turns out that the dynamic nature of the action

commitment game rules out the application of a “n-depth of reasoning” or a “level-k”

model.

To see this suppose that players think that the whole population is composed of players

that are just one thinking step below (L2s only acknowledge the existence of L1s, L3s the

existence of L2s, and so on). Moreover, suppose that L1s and L3s wait for the second

period and the L2s move in the first period. In this case a L3 expects to observe a move in
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the first period because he believes everyone else is an L2. However, if the L3’s rival turns

out to be a L1, then the L3 does not observe a quantity commitment which is inconsistent

with his view of the world. Furthermore, since all other higher level players depend on the

actions of the L3 player, they cannot be correctly specified within the scope of a “n-depth

of reasoning” or a “level-k model.” Thus, the cognitive hierarchy model and the assumption

that players update beliefs about their rivals’ level of strategic sophistication using Bayes’

rule are better suited to explain behavior in dynamic games than other non-equilibrium

models of behavior in games.

4 Estimation

This section explains how we introduce errors in players’ decisions, describes the likelihood

function, and reports the estimation results. Technical details of the maximum likelihood

estimation can be found in Appendix B.

4.1 Maximum Likelihood Estimation

Cognitive hierarchy models typically produce a rather short set of best responses. In the

action commitment game, predicted behavior alternates between moving in the first period

with quantity 10 or waiting for the second period and, either best responding to observed

quantities in the case of sequential movement, or playing quantity 8 if no movement has

been observed.

Following El-Gamal and Grether (1995), Costa-Gomes, Crawford and Broseta (2001),

Camerer, Palfrey and Rodgers (2007) and Östling, Wang, Chou and Camerer (2008) we

assume that players’ best responses are stochastic. More precisely, we assume that players

make mistakes when choosing their quantity levels but make correct decisions regarding

the period of entry. We think this is a reasonable assumption given the large set of

quantity choices (13 possible quantities) and the small set of timing decisions (2 possible

periods). Allowing both types of errors would substantially increase the computational

burden involved in the estimation procedure.

Additionally, we assume that the probability of playing a quantity close to the pre-

dicted quantity by mistake is higher than the probability of playing a distant quantity. To

incorporate this behavior, we assume that the mistakes of a level k player, with k ≥ 1,
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follow a power function. This function assigns a high probability to quantities adjacent

to the predicted one and a small probability to distant quantities.10 We also assume that

errors are independent across types of players.

The estimation goes through all the pairs of decisions. By pair, we mean every possible

period and quantity decision: for example, both players moving in the first period, one

playing quantity 8 and the other playing quantity 12; or both players moving in the second

period and playing quantity 8. This approach captures the interaction of players taking

decisions that are conditioned by their rivals’ decisions. The information is thus broken

down into three possible cases: both players move in the first period; both players move

in the second; and one player moves in the first and the other in the second.11

The estimation method is maximum likelihood and it is done according to a standard

grid search approach. The likelihood function is given by

L(τ , ε) =
2∏

t1=1

15∏

q1=3

2∏

t2=1

15∏

q2=3
[f (t1, q1, t2, q2|τ , ε)]

n(t1,q1,t2,q2) ,

where ti and qi are the timing and quantity predictions for player i in a given pair, t is

the index of timing predictions and q for quantity predictions, n(t1,q1,t2,q2) is the number of

cases that each pair is observed in the data, τ is the parameter of the Poisson distribution,

and ε is the error term. Since cognitive hierarchy models are better suited to explain initial

responses to games we perform an estimation for the entire sample and another one for

the first half of the sample, i.e., for the first fifteen rounds of play.

4.2 Results

In this subsection, we present the most significant results of the maximum likelihood es-

timation. Interval by interval estimates are displayed in Appendix C. A complete list of

all pairs, their percentage in the data and the estimated probability in the model can be

found in Appendix D.

10The power function was tested against other alternative error specifications, such as the uniform,
assigning errors only to the two and four immediate quantities or assuming no errors at all. It performed
better than these alternatives.

11Crawford and Iriberri (2007) and Harless and Camerer (1995) use a similar estimation procedure.
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4.2.1 The Benchmark Model

In our benchmark model we assume that a L0 enters in the first period with 50% probability

and chooses each quantity with equal probability. Parameter estimates of τ and ε for both

the entire sample and the first fifteen rounds, as well as the respective maximum likelihood

values, are displayed in Table 5.

Table 5: Maximum likelihood estimates

τ ε ML

Entire set
Benchmark 2.86 0.65 −2257.49
Alternative 1.74 0.59 −2176.01
First 15 rounds
Benchmark 3.56 0.65 −1102.71
Alternative 1.74 0.58 −1060.90

The benchmark model’s estimate of the average number of thinking steps is 2.86 for

the entire set and 3.56 for the first fifteen rounds. These estimates are relatively high

by comparison with those in Nagel (1995), specially the one for the first fifteen rounds.

Nevertheless, it should be pointed out that higher average values of thinking steps are not

uncommon in the literature.12

Camerer, Ho an Chong (2004) show that, even though the average estimate for the

average thinking steps across a wide range of games is 1.5, there is a relationship between

the expected payoff of winning a game and that average value. Subjects tend to think

harder when there is the possibility for them to reap a higher reward. The data we use

is based on an experiment which yielded, on average, a higher payoff than the one in the

typical p-beauty games.13

12The lowest estimated τ in the seven weeks of the LUPI game in Östling, Wang, Chou and Camerer
(2008) is 2.98, the remaining six are above 5 thinking steps and the highest are over 10; in Camerer, Palfrey
and Rodgers (2007) there are games for which the predicted τ is also rather high.

13Camerer, Ho and Chong (2004) argue that subjects tend do employ a cost-benefit analysis concerning
the amount of thinking they do in games. They present evidence that the higher the stakes of a given game,
the higher will τ be: they show that subjects tend to think harder in games that yield $4 than games that
yield $1. Since the LUPI game is based on data from an actual lotto game that existed in Sweden with a
prize money of at least €10 000, it makes sense that the game’s estimates should be relatively high (even
though, of course, the probability of winning the prize is much smaller). In the large matrix experiment we
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Table 6: Quality adjustment measures

Entire set First half

Upper bound −1825.90 −896.57
Lower bound
Benchmark −2624.53 −1328.21
Alternative −2773.42 −1402.82

Log-likelihood
Benchmark 734.07 450.99

(0.000) (0.000)
Alternative 1194.82 683.85

(0.000) (0.000)

The benchmark model’s estimate for the error term is 0.65 for both the entire set

and the first fifteen rounds. This estimate indicates that only 35% of the subjects played

according to their predicted quantity.14 The power function assigns roughly a probability

of 32% to errors in those quantities immediately adjacent to their predicted quantity and

16% to quantities that were two integers away from the predicted one. Thus, the majority

of players’ mistakes are, in fact, very close to their predicted behavior.15

We now turn towards the quality of the adjustment. Table 6 displays upper and lower

bounds to the maximum likelihood value. The upper bound is attained by running the

likelihood function with the empirical frequencies of the pairs of play. By definition, this

procedure yields the maximum value attainable for the estimation. The lower bound is

the maximum likelihood value of a totally random model. This is equivalent to assuming

the restriction τ = 0, i.e., all players are L0s and therefore the model is totally random.

Furthermore, we also present log-likelihood ratios (p-values are in parenthesis). Since we

are testing for the significance of τ , we have, under the null hypothesis, that it is not

statistically different than 0. This means that what we are testing is whether our model is

statistically different from a model where all players are L0s. As is evident from the log-

likelihood p-values and the comparison with the adjustment’s lower bound, the benchmark

used, subjects received the equivalent to $11.44, on average, which, given the reward, places our model’s
estimates somewhere in the middle of this range.

14Error rate estimates of this magnitude are not uncommon in this literature. See, Costa-Gomes, Craw-
ford and Broseta (2003).

15The main characteristic of the action commitment game is the wide range of possible actions. When
there are more options available and there is noise in players’ behavior, the probability of not choosing the
optimal option usually increases. The unfamiliar strategic component of an endogenous timing decision
also increases the probability of mistakes.
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model performs considerably better than a totally random one.

Table 7: Models’ aggregate results

Both players Explicit Both players
in period 1 followers in period 2

Entire set
Data
Average quantity 9.15 8.93 8.40
% of observations 61.0% 23.3% 15,7%

Benchmark model
Average quantity 9.89 7.25 8.10
% of observations 42.2% 24.4% 33.3%

Alternative
Average quantity 9.45 7.49 8.12
% of observations 42.1% 24.4% 33.6%

First half
Data
Average quantity 9.36 8.88 8.32
% of observations 58,9% 22.0% 19,1%

Benchmark
Average quantity 9.92 7.18 8.07
% of observations 42.5% 24.4% 32.7%

Alternative
Average quantity 9.44 7.49 8.12
% of observations 42.1% 24.4% 33.6%

The aggregate results of the model are displayed in Table 7. In general, the benchmark

model approximates well the average quantity when both players move in the second period.

On the contrary, the average quantity predicted when both players move in the first period

is higher than in the data whereas the average quantity predicted for explicit followers is

lower. The model also predicts a lower percentage of simultaneous play in the first period

and a higher percentage of simultaneous play in the second period than those found in the

data. The predicted percentage of explicit followers is very close to the data.

Table 8 compares the market outcomes predicted by the cognitive hierarchy model to

those observed in the data for the entire sample. Table 9 does the same for the first fifteen

rounds of play.

We see from Table 8 that the benchmark cognitive hierarchy model can generate the

heterogeneity in behavior observed in the data. The model predicts delay (simultaneous

play of Cournot quantities in the second period), a feature that cannot be explained by
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Table 8: Market outcomes - entire set

Market outcomes HMN CH Model
Benchmark Alternative

Cournot:
1st period 4.5 1.0 2.5
Sequential 14.8 5.9 9.8
2nd period 4.5 8.2 9.4
Stackelberg:
Leader 12, follower 6 0.9 1.4 1.1
Leader 11, follower 7 2.0 2.6 2.1
Leader 10, follower 7 4.5 5.4 5.4
First mover punished or rewarded:
Stackelberg leader punished 11.9 9.3 6.9
Stackelberg leader rewarded 0.2 3.9 2.9
Cournot punished 0.9 1.8 2.6
Cournot rewarded 0.0 2.9 4.1
Stackelberg and Cournot 1st period 12.6 5.0 6.2
Double Stackelberg leadership 6.3 5.9 3.8
Collusion:
Collusion successful 6.1 2.7 2.2
Collusion failed 10.6 2.0 1.6
Collusion exploited 4.3 2.3 1.9
Other 16.0 39.7 37.6√∑

(oi − ôi)2 29.1 26.9

19



equilibrium selection arguments or inequity aversion. As expected, the model underesti-

mates the percentage of first period Cournot quantities. The model predicts very accurately

the percentages of Stackelberg outcomes.

Regarding the outcomes where the first mover is either punished or rewarded the model

predicts very well the percentage of Stackelberg leaders who get punished by followers but

overestimates the percentage of Stackelberg leaders who get rewarded by followers as well

as the percentage of first movers who play Cournot and get punished or rewarded by second

movers.

The model approximates very well the percentage of double leadership market out-

comes but underestimates the percentage of “Stackelberg and Cournot in 1st period” and

collusive outcomes, specially “failed collusion.” The latter and the difference in the Cournot

percentages account for the high percentage of cases under the category “other.”

Table 9: Market outcomes - first half

Market outcomes HMN CH Model
Benchmark Alternative

Cournot:
1st period 5.3 1.1 2.5
Sequential 14.2 6.1 9.9
2nd period 6.2 8.3 9.7
Stackelberg:
Leader 12, follower 6 1.8 1.4 1.1
Leader 11, follower 7 3.6 2.7 2.1
Leader 10, follower 7 5.8 5.6 5.7
First mover punished or rewarded:
Stackelberg leader punished 10.7 9.4 6.8
Stackelberg leader rewarded 0.0 4.1 2.9
Cournot punished 0.9 1.8 2.5
Cournot rewarded 0.0 2.9 4.0
Stackelberg and Cournot in 1st period 14.7 5.2 6.2
Double Stackelberg leadership 7.1 6.2 3.8
Collusion:
Collusion successful 4.0 2.7 2.1
Collusion failed 7.6 2.0 1.6
Collusion exploited 2.2 2.2 1.9
Other 16.0 38.2 37.2√∑

(oi − ôi)2 27.1 25.6
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Inspection of Tables 8 and 9 shows us that the cognitive hierarchy model fits the data

better in the first fifteen rounds of play than in the entire set. This happens because

the model underestimates collusive outcomes and the percentage of collusive outcomes

observed in the data for the first fifteen rounds is much smaller than for the entire set.

This finding is consistent with the fact that non-equilibrium models of behavior in games

are particularly good at predicting initial responses.

Appendix E shows that the predictions of the benchmark model are robust to different

probabilities of first period entry by the L0.

4.2.2 The Alternative Model

As we have seen the benchmark model is able to account for the spikes in quantity 10 in

the first period and in quantity 8 in the second period, but not the spike in quantity 8 in

the first period. For this reason, we explore an alternative version of the model where the

L0 player plays quantity 8 in the first period y% of the time and sticks to random behavior

in the remaining (1− y)% of the time. The reason we choose this particular specification

is to see how far the cognitive hierarchy model can go in explaining the spike in quantity

8 in the first period. Here we report the results for y = 50%.

We see from Table 5 that the alternative model’s estimated τ is 1.74 for both the entire

set and the first fifteen rounds. The reason for the smaller average number of thinking

steps by comparison with the benchmark model is due to the fact that a higher percentage

of L0 players is needed to account for the spike in the first period Cournot quantity.

The alternative model’s estimated ε is 0.59 for the entire set and 0.58 for the first fifteen

rounds. This lower estimate for ε is consistent with a higher percentage of L0 players in

the alternative model than in the benchmark model. The alternative model bears a higher

likelihood value than the benchmark model. The alternative model, like the benchmark

model, also does better than a totally random model (see Table 6).

The alternative model performs better than the benchmark model in predicting aggre-

gate results (see Table 7). The predicted average quantity in the first period is lower and

closer to the average quantity in the data, specially when we look at the first fifteen rounds.

The predicted average quantity in the explicit followers case is also closer to the data. The

alternative model, like the benchmark one, underestimates (overestimates) simultaneous
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play in the first (second) period.

As far as market outcomes are concerned (see Tables 8 and 9), the alternative model

also predicts high heterogeneity in behavior. However, it makes several different predic-

tions by comparison with the benchmark model. The first is that the predicted percentage

of sequential play of Cournot quantities is much closer to the data. The alternative model

also predicts a higher percentage of “Stackelberg and Cournot in 1st period” outcomes.

However, the alternative model does worse in terms of predicting the percentage of first

mover punished outcome, second period play of Cournot quantities, and double Stackel-

berg leadership. Differences between the predictions of the two models in the remaining

outcomes are small.

5 Conclusion

This paper shows that a cognitive hierarchy model can explain the heterogeneity of behavior

in endogenous timing decisions observed in Huck, Müeller and Normann (2002).16 The

model predicts the first period spike in quantity 10 and the second period spike in quantity

8. The latter is rather important in the sense that it generates the delay in simultaneous

move games, one feature of the data that cannot be explained by equilibrium selection

arguments or inequity aversion.

The main shortcoming of the benchmark cognitive hierarchy model is that it does not

explain the spike in quantity 8 in the first period. We consider an alternative specification

of level zero behavior to explain the spike in quantity 8 that the benchmark model does not

yield. The alternative model’s results reveal a substantial improvement in the percentage

of sequential play of Cournot quantities.

Both models, the benchmark and the alternative, are also tested for the entire sample

and for the first fifteen rounds of play since cognitive hierarchy models are more suited

for initial responses. Focusing on the first fifteen rounds reduces the amount of collusive

outcomes in the data and this improves the model’s predictions.

16An alternative explanation for the heterogeneity in behavior observed in experimental endogenous
timing games is the quantal response approach—see McKelvey and Palfrey 1995—where players’ beliefs are
correctly formed but players do not always choose best responses.
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A Classification of Market Outcomes

Table 10 provides the classification of market outcomes employed. Specifically, the table

is composed of four different matrices. The upper left refers to simultaneous move in

the first period, the lower right refers to simultaneous move in the second period and the

remaining two tables refer to sequential play, for both the cases where each subject is leader

or follower. The notation employed is as follows:

Cournot outcomes:

C1 - Cournot 1st period

C12 - Sequential play of Cournot quantities

C2 - Cournot 2nd period

Stackelberg outcomes:

S12- Stackelberg leader 12, follower 6

S11 - Stackelberg leader 11, follower 7

S10 - Stackelberg leader 10, follower 7

First mover punished or rewarded:

SP - Stackelberg leader punished

SR - Stackelberg leader rewarded

CP - Cournot punished

CR - Cournot rewarded

SC - Stackelberg and Cournot in 1st period

DL - Double Stackelberg leadership

Collusive outcomes:

CS - Collusion successful

CF - Collusion failed

CE - Collusion exploited

O - Other market outcomes

25



Table 10: Market Outcomes Classification

t=1 t=2

6 7 8 9 10 11 12 6 7 8 9 10 11 12
t=1 6 CS CS CF CF CF CF CF CS CS CE CE CE CE CE

7 CS CS CF CF CF CF CF CS CS CE CE CE CE CE
8 CF CF C1 C1 SC SC SC CR CR C12 C12 CP CP CP
9 CF CF C1 C1 SC SC SC CR CR C12 C12 CP CP CP
10 CF CF SC SC DL DL DL SR S10 SP SP SP SP SP
11 CF CF SC SC DL DL DL SR S11 SP SP SP SP SP
12 CF CF SC SC DL DL DL S12 SP SP SP SP SP SP

t=2 6 CS CS CR CR SR SR S12 CS CS O O O O O
7 CS CS CR CR S10 S11 SP CS CS O O O O O
8 CE CE C12 C12 SP SP SP O O C2 C2 O O O
9 CE CE C12 C12 SP SP SP O O C2 C2 O O O
10 CE CE CP CP SP SP SP O O O O O O O
11 CE CE CP CP SP SP SP O O O O O O O
12 CE CE CP CP SP SP SP O O O O O O O

B Maximum Likelihood Estimation

In this appendix we describe in detail the procedures behind the maximum likelihood

estimation. Let fLk(t) denote the probability that a player of level k moves in period t,

where t ∈ {1, 2}. In the benchmark model fL0(1) = 1/2. We assume that players of level

k > 0 do not make mistakes when choosing their period of entry but that they might make

mistakes when choosing their quantity level. Let fLk(q|qLk) denote the probability that

a player of level k plays quantity q where q ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} given

that his predicted quantity is qLk. We use a power function to model the probability of

making mistakes in quantity choices. Let i be the distance of a given quantity level from

the predicted one, let Nl be the maximum distance between the predicted quantity and

the lower bound of the interval of available quantities, i.e., quantity 3, and let Nu be the

maximum distance between the predicted quantity and the upper bound of the interval of

available quantities, i.e., quantity 15. We have that

Nl∑

i=1
x−2

i−1

qLk
+
Nu∑

i=1
x−2

i−1

qLk
= 1.

where xqLk will be different for different predicted quantities, depending on their position

within the interval of quantities. For example, if a L3 player’s predicted behavior is to
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move in the first period and choose quantity 8, then fL3(1) = 1 and

fL3(q|8) =

(
ε

16x8
,
ε

8x8
,
ε

4x8
,
ε

2x8
,
ε

x8
, 1− ε,

ε

x8
,
ε

2x8
,
ε

4x8
,
ε

8x8
,

ε

16x8
,

ε

32x8
,

ε

64x8

)
,

where x8 = 3.921876.

Table 11: Probability of a Playing a Particular Quantity

H Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

{} ε
64x10

ε
32x10

ε
16x10

ε
8x10

ε
4x10

ε
2x10

ε
x10

1− ε ε
x10

ε
2x10

ε
4x10

ε
8x10

ε
16x10

{0} ε
16x8

ε
8x8

ε
4x8

ε
2x8

ε
x8

1− ε ε
x8

ε
2x8

ε
4x8

ε
8x8

ε
16x8

ε
32x8

ε
64x8

{1,3} ε
128x11

ε
64x11

ε
32x11

ε
16x11

ε
8xq11

ε
4x11

ε
2x11

ε
x11

1− ε ε
x11

ε
2x11

ε
4x11

ε
8x11

{1,4} ε
64x10

ε
32x10

ε
16x10

ε
8x10

ε
4xq10

ε
2x10

ε
x10

1− ε ε
x10

ε
2x10

ε
4x10

ε
8x10

ε
16x10

{1,5} ε
64x10

ε
32x10

ε
16x10

ε
8x10

ε
4xq10

ε
2x10

ε
x10

1− ε ε
x10

ε
2x10

ε
4x10

ε
8x10

ε
16x10

{1,6} ε
32x9

ε
16x9

ε
8x9

ε
4x9

ε
2xq9

ε
x9

1− ε ε
x9

ε
2x9

ε
4x9

ε
8x9

ε
16x9

ε
32x9

{1,7} ε
16x8

ε
8x8

ε
4x8

ε
2x8

ε
xq8

1− ε ε
x8

ε
2x8

ε
4x8

ε
8x8

ε
16x8

ε
32x8

ε
64x8

{1,8} ε
16x8

ε
8x8

ε
4x8

ε
2x8

ε
xq8

1− ε ε
x8

ε
2x8

ε
4x8

ε
8x8

ε
16x8

ε
32x8

ε
64x8

{1,9} ε
16x8

ε
8x8

ε
4x8

ε
2x8

ε
xq8

1− ε ε
x8

ε
2x8

ε
4x8

ε
8x8

ε
16x8

ε
32x8

ε
64x8

{1,10} ε
8x7

ε
4x7

ε
2x7

ε
x7

1− ε ε
x7

ε
2x7

ε
4x7

ε
8x7

ε
16x7

ε
32x7

ε
64x7

ε
128x7

{1,11} ε
8x7

ε
4x7

ε
2x7

ε
x7

1− ε ε
x7

ε
2x7

ε
4x7

ε
8x7

ε
16x7

ε
32x7

ε
64x7

ε
128x7

{1,12} ε
4x6

ε
2x6

ε
x6

1− ε ε
xq6

ε
2x6

ε
4x6

ε
8x6

ε
16x6

ε
32x6

ε
64x6

ε
128x6

ε
256x6

{1,13} ε
4x6

ε
2x6

ε
x6

1− ε ε
xq6

ε
2x6

ε
4x6

ε
8x6

ε
16x6

ε
32x6

ε
64x6

ε
128x6

ε
256x6

{1,14} ε
2x5

ε
x5

1− ε ε
x5

ε
2xq5

ε
4x5

ε
8x5

ε
16x5

ε
32x5

ε
64x5

ε
128x5

ε
256x5

ε
512x5

{1,15} ε
2x5

ε
x5

1− ε ε
x5

ε
2xq5

ε
4x5

ε
8x5

ε
16x5

ε
32x5

ε
64x5

ε
128x5

ε
256x5

ε
512x5

The first row in Table 11 displays the probability of playing each quantity level of

a Stackelberg leader with a theoretical predicted quantity of 10. History {} means that

we are at the beginning of the game, nothing as occurred yet. Only leaders play with

this history. With probability 1 − ε the leader plays quantity 10 and makes no mistake;

with probability ε
x10

he play either quantity 9 or 11; with probability ε
2x10

he plays either

quantity 8 or 12, and so on. The second row in the table displays the probability of

playing each quantity level for a player who decides to wait for the second period, has a

theoretical predicted quantity of 8, and the first period as elapsed and none of the players

has moved—the history is {0}. Therefore, this player plays 8 with probability 1 − ε, 7 or

9 with probability ε
x8
each, 6 or 10 with probability ε

2x8
each, and so on. The remaining

rows in the table display the probability of playing each quantity for a player who decides

to wait for the second period, and who has observed the rival moving in the first period.
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For example, if the history is {1, 10} then the first period mover has played 10 and the

follower will play his best response of 7 with probability 1− ε, 6 or 8 with probability ε
x7

each, 5 or 9 with probability ε
2x7

each, and so on.

The probability of a given pair of timing and quantity choices (t1, q1, t2, q2) occurring

is given by:

f (t1, q1, t2, q2|τ , ε) =
K∑

k1=0

K∑

k2=0

fLk1(t1)f
Lk1(q1|q

LK1)f (k1|τ) f
Lk2(t2)f

Lk2(q2|q
LK2)f (k2|τ) .

Therefore, the likelihood function is

L(τ , ε) =
2∏

t1=1

15∏

q1=3

2∏

t2=1

15∏

q2=3
[f (t1, q1, t2, q2|τ , ε)]

n(t1,q1,t2,q2) ,

where n(t1,q1,t2,q2) is the number of cases that the particular pair is observed in the data.

The first step in the estimation procedure is the determination of intervals where predicted

behavior is constant. These intervals were computed up to τ = 4. There are two reasons

for this. The first is that higher levels of τ are unlikely according to the cognitive hierarchy

literature. The second reason is that by increasing the interval for τ , it would be necessary

to include progressively more thinking steps and this bears a high computational burden

since there are no routines or packages for this particular type of estimation. With τ = 4,

ten thinking steps are required, which seems reasonable to cover this problem.

Table 12 presents, for the benchmark model and Table 13, for the alternative model,

the upper and lower bounds of each interval, as well as the behavior of each type of player.

The inclusion of higher thinking steps is done progressively as τ increases. It should be

noted that the second period behavior depicted is the one when the history is null. In other

words, second period movers best respond to observed first period movements; only when

there is no observed movement will they play the quantity indicated in these intervals.
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Table 12: Intervals where Predicted Behavior is Constant - Benchmark Model

Interval for τ L2 L3 L4 L5 L6 L7 L8 L9 L10

[0.0001,0.8351] I2Q8 I2Q8 I2Q8 I2Q8 − − − − −
[0.8352,0.8444] I2Q8 I2Q8 I2Q8 I1Q10 − − − − −
[0.8445,0.8580] I2Q8 I2Q8 I1Q10 I2Q8 − − − − −
[0.8581,0.8980] I2Q8 I2Q8 I1Q10 I1Q10 − − − − −
[0.8981,0.9878] I2Q8 I1Q10 I2Q8 I2Q8 − − − − −
[0.9879,1.0176] I2Q8 I1Q10 I2Q8 I1Q10 − − − − −
[1.0177,1.0737] I2Q8 I1Q10 I1Q10 I2Q8 − − − − −
[1.0738,1.0905] I2Q8 I1Q10 I1Q10 I1Q10 I2Q8 − − − −
[1.0906,1.3012] I2Q8 I1Q10 I1Q10 I1Q10 I1Q10 − − − −
[1.3013,1.8257] I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I2Q8 − − −
[1.8258,1.8550] I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I1Q10 − − −
[1.8551,1.9015] I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I2Q8 − − −
[1.9016,1.9804] I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I1Q10 − − −
[1.9805,2.1944] I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I2Q8 − − −
[2.1945,2.2481] I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I1Q10 I2Q8 − −
[2.2482,2.3459] I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I1Q10 I1Q10 − −
[2.3460,2.8563] I1Q10 I2Q8 I2Q8 I1Q10 I1Q10 I2Q8 I2Q8 I2Q8 −
[2.8564,3.1886] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I2Q8 I2Q8
[3.1887,3.2126] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I2Q8 I1Q10
[3.2127,3.2478] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I1Q10 I2Q8
[3.2479,3.2899] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I1Q10 I1Q10
[3.2900,3.3826] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I2Q8 I2Q8
[3.3827,3.4263] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I2Q8 I1Q10
[3.4264,3.4963] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I1Q10 I2Q8
[3.4964,3.5604] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I1Q10 I1Q10
[3.5605,3.8640] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8
[3.8641,4.0000] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I2Q8 I1Q10
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Table 13: Intervals where Predicted Behavior is Constant - Alternative Model

Interval for τ L2 L3 L4 L5 L6 L7 L8 L9 L10

[0.0001,0.6859] I2Q8 I2Q8 I2Q8 I2Q8 − − − − −
[0.6860,0.6906] I2Q8 I2Q8 I2Q8 I1Q10 − − − − −
[0.6907,0.6974] I2Q8 I2Q8 I1Q10 I2Q8 − − − − −
[0.6975,0.7227] I2Q8 I2Q8 I1Q10 I1Q10 − − − − −
[0.7228,0.7729] I2Q8 I1Q10 I2Q8 I2Q8 − − − − −
[0.7730,0.7838] I2Q8 I1Q10 I2Q8 I1Q10 − − − − −
[0.7839,0.8004] I2Q8 I1Q10 I1Q10 I2Q8 − − − − −
[0.8005,0.9839] I2Q8 I1Q10 I1Q10 I1Q10 − − − − −
[0.9840,1.6199] I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I2Q8 − − −
[1.6200,1.6413] I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I1Q10 − − −
[1.6414,1.6742] I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I2Q8 − − −
[1.6743,1.7422] I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I1Q10 − − −
[1.7423,1.9156] I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I2Q8 − − −
[1.9157,2.0079] I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I1Q10 − − −
[2.0080,2.1871] I1Q10 I2Q8 I2Q8 I1Q10 I1Q10 I2Q8 I2Q8 − −
[2.1872,2.3184] I1Q10 I2Q8 I2Q8 I1Q10 I1Q10 I2Q8 I1Q10 − −
[2.3185,2.5563] I1Q10 I2Q8 I2Q8 I1Q10 I1Q10 I1Q10 I2Q8 − −
[2.5564,3.1253] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I2Q8 −
[3.1254,3.1592] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I1Q10 I2Q8
[3.1593,3.2016] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I2Q8 I1Q10 I1Q10
[3.2017,3.2937] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I2Q8 I2Q8
[3.2938,3.3352] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I2Q8 I1Q10
[3.3353,3.4012] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I1Q10 I2Q8
[3.4013,3.4745] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8 I1Q10 I1Q10 I1Q10
[3.4746,3.7894] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I2Q8 I2Q8
[3.7895,3.9237] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I2Q8 I1Q10
[3.9238,4.0000] I1Q10 I2Q8 I1Q10 I2Q8 I2Q8 I1Q10 I2Q8 I1Q10 I2Q8

30



The estimation was then carried out for each of the mentioned intervals and the max-

imum was extracted from the set of 27 maxima, one per each interval. The procedure

used was a standard grid search: the maximum likelihood expression was calculated for all

possible values of tau within each interval and for possible values that ε assumes, i.e., from

0 to 100. The software used was GAUSS. We present the results with two decimal places

but we used four decimal places for the parameter τ . The reason for this is the fact that

some intervals are rather small and the use of more decimal places is needed for them to

be considered.

One question that is frequently posed in the context of cognitive hierarchy models is

how would a general distribution of players’ types, with each f(k) independent, perform

compared to the Poisson distribution. Camerer, Ho and Chong (2004) show that the use

of general distributions (they use a seven parameter model) does not introduce significant

improvements compared to the Poisson distribution, specially given the simplicity the latter

has.

In our case, using a general distribution of players’ types would make it impossible to

use the interval approach. We would have to have a computer routine that would calculate,

for each step, the predictions of the model, then it would have to generate the functions

that calculate the probability of each timing and quantity pair and, only then, would be

able to calculate the probability and the maximum likelihood. Additionally, the benefits

of using a general distribution of players’ types would have to be considerable for it to be

worthwhile since the model would become much less parsimonious.

C Maximum Likelihood Estimates for Tau

Tables 14 and 15 display the maximum likelihood estimates for tau for each of the intervals

for the benchmark and the alternative models, respectively.
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Table 14: Maximum Likelihood Estimates per Interval - Benchmark Model

Interval for tau Entire set First half
tau epsilon ML tau epsilon ML

[0.0001,0.8351] 0.1564 0.04 -2505.48 0.1948 0.15 -1259.50
[0.8352,0.8444] 0.8352 0.45 -2689.38 0.8352 0.45 -1337.70
[0.8445,0.8580] 0.8445 0.42 -2655.10 0.8445 0.43 -1320.17
[0.8581,0.8980] 0.8581 0.42 -2650.71 0.8581 0.43 -1317.70
[0.8981,0.9878] 0.9878 0.46 -2536.01 0.9878 0.47 -1256.52
[0.9879,1.0176] 1.0176 0.47 -2526.94 1.0176 0.48 -1251.28
[1.0177,1.0737] 1.0737 0.50 -2490.39 1.0737 0.51 -1231.53
[1.0738,1.0905] 1.0905 0.51 -2479.31 1.0905 0.51 -1225.56
[1.0906,1.3012] 1.3012 0.55 -2434.58 1.3012 0.56 -1199.39
[1.3013,1.8257] 1.5291 0.60 -2317.04 1.6700 0.61 -1137.95
[1.8258,1.8550] 1.8258 0.62 -2321.09 1.8258 0.62 -1137.82
[1.8551,1.9015] 1.8551 0.62 -2315.49 1.8551 0.62 -1134.91
[1.9016,1.9804] 1.9016 0.62 -2314.02 1.9016 0.62 -1133.83
[1.9805,2.1944] 1.9805 0.63 -2296.43 2.1682 0.63 -1124.45
[2.1945,2.2481] 2.1945 0.64 -2293.26 2.2481 0.63 -1121.96
[2.2482,2.3459] 2.2482 0.64 -2291.88 2.2637 0.63 -1123.62
[2.3460,2.8563] 2.8563 0.65 -2275.88 2.8563 0.65 -1111.60
[2.8564,3.1886] 2.8564 0.65 -2257.49 2.8564 0.65 -1103.24
[3.1887,3.2126] 3.1887 0.66 -2268.42 3.1887 0.65 -1107.51
[3.2127,3.2478] 3.2127 0.66 -2267.43 3.2127 0.65 -1107.02
[3.2479,3.2899] 3.2479 0.66 -2267.74 3.2479 0.65 -1107.11
[3.2900,3.3826] 3.2900 0.66 -2264.78 3.2900 0.65 -1105.71
[3.3827,3.4263] 3.3827 0.66 -2266.59 3.3827 0.65 -1106.41
[3.4264,3.4963] 3.4264 0.66 -2265.36 3.4264 0.65 -1105.80
[3.4964,3.5604] 3.4964 0.66 -2265.71 3.4964 0.65 -1105.89
[3.5605,3.8640] 3.5605 0.66 -2258.75 3.5605 0.65 -1102.71
[3.8641,4.0000] 3.8641 0.66 -2264.30 3.8641 0.66 -1104.98
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Table 15: Maximum Likelihood Estimates per Interval - Alternative Model

Interval for tau Entire set First half
tau epsilon ML tau epsilon ML

[0.0001,0.6859] 0.2999 0.39 -2525.27 0.3425 0.42 -1259.14
[0.6860,0.6906] 0.6860 0.47 -2594.47 0.6860 0.48 -1284.91
[0.6907,0.6974] 0.6907 0.44 -2536.14 0.6907 0.45 -1268.91
[0.6975,0.7227] 0.6975 0.44 -2558.92 0.6975 0.45 -1266.62
[0.7228,0.7729] 0.7729 0.43 -2429.38 0.7729 0.44 -1198.74
[0.7730,0.7838] 0.7838 0.43 -2423.74 0.7838 0.45 -1195.58
[0.7839,0.8004] 0.8004 0.44 -2400.26 0.8004 0.45 -1183.16
[0.8005,0.9839] 0.9839 0.48 -2352.00 0.9839 0.49 -1154.53
[0.9840,1.6199] 1.3571 0.56 -2179.55 1.4327 0.56 -1064.38
[1.6200,1.6413] 1.6200 0.58 -2185.48 1.6200 0.57 -1065.69
[1.6414,1.6742] 1.6414 0.58 -2183.37 1.6414 0.57 -1064.63
[1.6743,1.7422] 1.6743 0.58 -2183.77 1.6743 0.58 -1064.67
[1.7423,1.9156] 1.7423 0.59 -2176.01 1.7423 0.58 -1060.90
[1.9157,2.0079] 1.9157 0.60 -2176.41 1.9157 0.59 -1062.91
[2.0080,2.1871] 2.0080 0.60 -2179.73 2.0080 0.59 -1062.12
[2.1872,2.3184] 2.1872 0.61 -2185.99 2.1872 0.6 -1064.88
[2.3185,2.5563] 2.3185 0.62 -2188.13 2.3185 0.61 -1065.93
[2.5564,3.1253] 2.5564 0.63 -2181.30 2.5564 0.62 -1063.42
[3.1254,3.1592] 3.1254 0.64 -2215.97 3.1254 0.63 -1079.72
[3.1593,3.2016] 3.1593 0.64 -2217.55 3.1593 0.63 -1080.49
[3.2017,3.2937] 3.2017 0.64 -2216.98 3.2017 0.63 -1080.34
[3.2938,3.3352] 3.2938 0.65 -2221.81 3.2938 0.64 -1082.66
[3.3353,3.4012] 3.3353 0.65 -2222.33 3.3353 0.64 -1082.98
[3.4013,3.4745] 3.4013 0.65 -2217.77 3.4013 0.64 -1084.23
[3.4746,3.7894] 3.4746 0.65 -2221.52 3.4746 0.64 -1082.93
[3.7895,3.9237] 3.7895 0.65 -2235.22 3.7895 0.64 -1089.56
[3.9238,4.0000] 3.9238 0.66 -2237.21 3.9238 0.65 -1090.70
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D Estimated Market Outcomes

Here we present disaggregated results for the maximum likelihood estimation for the entire

data set and the initial fifteen rounds. These are broken down into types of movement, i.e.,

first and second period simultaneous movement and sequential movement. The notation is

the same employed in the paper. For example, in tables referring to first period movement,

8,8 refers to each subject playing quantity 8 in that period (Cournot equilibrium); in tables

referring to sequential movement, 12,6 refers to the leader playing quantity 12 in the first

period and the follower playing quantity 6 in the second period (Stackelberg equilibrium).
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Table 16: Estimation results for first period movement (entire set)

Pairs Data Bench Alt Pairs Data Bench Alt

3,3 0.00% 0.00% 0.00% 7,7 0.67% 0.03% 0.02%
3,4 0.00% 0.00% 0.00% 7,8 0.90% 0.13% 0.32%
3,5 0.00% 0.00% 0.00% 7,9 0.67% 0.25% 0.13%
3,6 0.00% 0.01% 0.01% 7,10 2.70% 0.52% 0.35%
3,7 0.00% 0.01% 0.01% 7,11 0.45% 0.25% 0.13%
3,8 0.00% 0.02% 0.09% 7,12 0.67% 0.13% 0.07%
3,9 0.00% 0.04% 0.04% 7,13 0.45% 0.07% 0.04%
3,10 0.00% 0.09% 0.10% 7,14 0.00% 0.04% 0.03%
3,11 0.00% 0.04% 0.04% 7,15 0.22% 0.02% 0.02%
3,12 0.00% 0.02% 0.02% 8,8 2.47% 0.12% 1.27%
3,13 0.00% 0.01% 0.01% 8,9 1.57% 0.47% 1.06%
3,14 0.00% 0.01% 0.01% 8,10 5.39% 0.98% 2.75%
3,15 0.00% 0.00% 0.00% 8,11 3.37% 0.47% 1.06%
4,4 0.00% 0.00% 0.00% 8,12 0.67% 0.24% 0.57%
4,5 0.00% 0.01% 0.01% 8,13 0.00% 0.13% 0.32%
4,6 0.00% 0.01% 0.01% 8,14 0.22% 0.07% 0.20%
4,7 0.00% 0.02% 0.01% 8,15 0.22% 0.04% 0.14%
4,8 0.00% 0.03% 0.11% 9,9 0.45% 0.46% 0.22%
4,9 0.00% 0.06% 0.04% 9,10 2.02% 1.89% 1.14%
4,10 0.22% 0.12% 0.12% 9,11 0.67% 0.91% 0.44%
4,11 0.00% 0.06% 0.04% 9,12 0.45% 0.47% 0.24%
4,12 0.00% 0.03% 0.02% 9,13 0.00% 0.25% 0.13%
4,13 0.00% 0.02% 0.01% 9,14 0.00% 0.14% 0.08%
4,14 0.00% 0.01% 0.01% 9,15 0.00% 0.08% 0.06%
4,15 0.00% 0.01% 0.01% 10,10 2.92% 1.96% 1.49%
5,5 0.00% 0.00% 0.00% 10,11 0.67% 1.89% 1.14%
5,6 0.00% 0.01% 0.01% 10,12 1.12% 0.98% 0.61%
5,7 0.00% 0.02% 0.02% 10,13 0.45% 0.52% 0.35%
5,8 0.00% 0.04% 0.14% 10,14 0.22% 0.29% 0.21%
5,9 0.00% 0.08% 0.06% 10,15 0.22% 0.18% 0.15%
5,10 0.00% 0.18% 0.15% 11,11 0.22% 0.46% 0.22%
5,11 0.00% 0.08% 0.06% 11,12 0.67% 0.47% 0.24%
5,12 0.00% 0.04% 0.03% 11,13 0.00% 0.25% 0.13%
5,13 0.00% 0.02% 0.02% 11,14 0.00% 0.14% 0.08%
5,14 0.00% 0.01% 0.01% 11,15 0.22% 0.08% 0.06%
5,15 0.00% 0.01% 0.01% 12,12 0.67% 0.12% 0.06%
6,6 0.22% 0.01% 0.01% 12,13 0.00% 0.13% 0.07%
6,7 0.00% 0.04% 0.03% 12,14 0.00% 0.07% 0.04%
6,8 2.25% 0.07% 0.20% 12,15 0.00% 0.04% 0.03%
6,9 0.90% 0.14% 0.08% 13,13 0.00% 0.03% 0.02%
6,10 0.90% 0.29% 0.21% 13,14 0.22% 0.04% 0.03%
6,11 0.45% 0.14% 0.08% 13,15 0.00% 0.02% 0.02%
6,12 0.67% 0.07% 0.04% 14,14 0.00% 0.01% 0.01%
6,13 0.00% 0.04% 0.03% 14,15 0.00% 0.01% 0.01%
6,14 0.22% 0.02% 0.02% 15,15 0.00% 0.00% 0.00%
6,15 0.00% 0.01% 0.01% Total 37.75% 17.86% 17.69%
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Table 17: Estimation results for second period movement (entire set)

Pairs Data Bench Alt Pairs Data Bench Alt

3,3 0.00% 0.01% 0.01% 7,7 0.45% 0.87% 0.70%
3,4 0.00% 0.02% 0.02% 7,8 1.35% 3.62% 3.74%
3,5 0.00% 0.04% 0.04% 7,9 0.67% 1.73% 1.41%
3,6 0.00% 0.08% 0.07% 7,10 0.67% 0.89% 0.73%
3,7 0.00% 0.15% 0.14% 7,11 0.00% 0.46% 0.39%
3,8 0.00% 0.31% 0.37% 7,12 0.00% 0.25% 0.23%
3,9 0.00% 0.15% 0.14% 7,13 0.00% 0.15% 0.14%
3,10 0.00% 0.08% 0.07% 7,14 0.00% 0.09% 0.10%
3,11 0.00% 0.04% 0.04% 7,15 0.00% 0.07% 0.08%
3,12 0.00% 0.02% 0.02% 8,8 2.02% 3.74% 4.97%
3,13 0.00% 0.01% 0.01% 8,9 2.02% 3.62% 3.74%
3,14 0.00% 0.01% 0.01% 8,10 1.80% 1.85% 1.95%
3,15 0.00% 0.01% 0.01% 8,11 0.67% 0.97% 1.05%
4,4 0.00% 0.02% 0.02% 8,12 0.22% 0.53% 0.60%
4,5 0.00% 0.07% 0.06% 8,13 0.00% 0.31% 0.37%
4,6 0.00% 0.13% 0.12% 8,14 0.00% 0.20% 0.26%
4,7 0.00% 0.25% 0.23% 8,15 0.00% 0.14% 0.21%
4,8 0.00% 0.53% 0.60% 9,9 0.45% 0.87% 0.70%
4,9 0.22% 0.25% 0.23% 9,10 0.90% 0.89% 0.73%
4,10 0.00% 0.13% 0.12% 9,11 0.45% 0.46% 0.39%
4,11 0.00% 0.07% 0.06% 9,12 0.00% 0.25% 0.23%
4,12 0.00% 0.04% 0.04% 9,13 0.00% 0.15% 0.14%
4,13 0.00% 0.02% 0.02% 9,14 0.00% 0.09% 0.10%
4,14 0.00% 0.01% 0.02% 9,15 0.22% 0.07% 0.08%
4,15 0.00% 0.01% 0.01% 10,10 0.00% 0.23% 0.19%
5,5 0.00% 0.06% 0.06% 10,11 0.22% 0.24% 0.21%
5,6 0.00% 0.24% 0.21% 10,12 0.00% 0.13% 0.12%
5,7 0.00% 0.46% 0.39% 10,13 0.00% 0.08% 0.07%
5,8 0.22% 0.97% 1.05% 10,14 0.00% 0.05% 0.05%
5,9 0.00% 0.46% 0.39% 10,15 0.00% 0.03% 0.04%
5,10 0.00% 0.24% 0.21% 11,11 0.00% 0.06% 0.06%
5,11 0.00% 0.12% 0.11% 11,12 0.00% 0.07% 0.06%
5,12 0.00% 0.07% 0.06% 11,13 0.00% 0.04% 0.04%
5,13 0.00% 0.04% 0.04% 11,14 0.22% 0.03% 0.03%
5,14 0.00% 0.03% 0.03% 11,15 0.00% 0.02% 0.02%
5,15 0.00% 0.02% 0.02% 12,12 0.00% 0.02% 0.02%
6,6 0.22% 0.23% 0.19% 12,13 0.00% 0.02% 0.02%
6,7 0.90% 0.89% 0.73% 12,14 0.00% 0.01% 0.02%
6,8 0.45% 1.85% 1.95% 12,15 0.00% 0.01% 0.01%
6,9 0.22% 0.89% 0.73% 13,13 0.00% 0.01% 0.01%
6,10 0.22% 0.45% 0.38% 13,14 0.00% 0.01% 0.01%
6,11 0.45% 0.24% 0.21% 13,15 0.00% 0.01% 0.01%
6,12 0.45% 0.13% 0.12% 14,14 0.00% 0.00% 0.00%
6,13 0.00% 0.08% 0.07% 14,15 0.00% 0.00% 0.01%
6,14 0.00% 0.05% 0.05% 15,15 0.00% 0.00% 0.00%
6,15 0.00% 0.03% 0.04% Total 15.73% 33.28% 33.57%
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Table 18: Estimation results for sequential movement (entire set)

Pairs Data Bench Alt Pairs Data Bench Alt

3,3 0.00% 0.00% 0.00% 5,6 0.00% 0.02% 0.02%
3,4 0.00% 0.00% 0.00% 5,7 0.00% 0.03% 0.03%
3,5 0.00% 0.00% 0.00% 5,8 0.00% 0.06% 0.05%
3,6 0.00% 0.01% 0.01% 5,9 0.00% 0.12% 0.10%
3,7 0.00% 0.01% 0.01% 5,10 0.45% 0.24% 0.27%
3,8 0.00% 0.02% 0.02% 5,11 0.00% 0.12% 0.10%
3,9 0.00% 0.03% 0.04% 5,12 0.00% 0.06% 0.05%
3,10 0.00% 0.06% 0.07% 5,13 0.00% 0.03% 0.03%
3,11 0.22% 0.13% 0.18% 5,14 0.00% 0.02% 0.02%
3,12 0.00% 0.06% 0.07% 5,15 0.00% 0.01% 0.01%
3,13 0.00% 0.03% 0.04% 6,3 0.00% 0.01% 0.01%
3,14 0.00% 0.02% 0.02% 6,4 0.00% 0.02% 0.01%
3,15 0.00% 0.01% 0.01% 6,5 0.00% 0.03% 0.02%
4,3 0.00% 0.00% 0.00% 6,6 0.90% 0.05% 0.04%
4,4 0.00% 0.00% 0.01% 6,7 0.00% 0.10% 0.08%
4,5 0.00% 0.01% 0.01% 6,8 0.00% 0.19% 0.15%
4,6 0.00% 0.01% 0.01% 6,9 1.12% 0.40% 0.39%
4,7 0.00% 0.02% 0.02% 6,10 0.00% 0.19% 0.15%
4,8 0.00% 0.04% 0.04% 6,11 0.00% 0.10% 0.08%
4,9 0.00% 0.08% 0.08% 6,12 0.00% 0.05% 0.04%
4,10 0.00% 0.17% 0.21% 6,13 0.00% 0.03% 0.02%
4,11 0.00% 0.08% 0.08% 6,14 0.00% 0.02% 0.01%
4,12 0.00% 0.04% 0.04% 6,15 0.00% 0.01% 0.01%
4,13 0.00% 0.02% 0.02% 7,3 0.00% 0.03% 0.02%
4,14 0.00% 0.01% 0.01% 7,4 0.00% 0.05% 0.04%
4,15 0.00% 0.01% 0.01% 7,5 0.00% 0.09% 0.07%
5,3 0.00% 0.00% 0.01% 7,6 0.00% 0.18% 0.12%
5,4 0.22% 0.01% 0.01% 7,7 2.70% 0.35% 0.24%
5,5 0.00% 0.01% 0.01%
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Table 19: Estimation results for sequential movement (entire set) - cont.

Pairs Data Bench Alt

7,8 2.47% 0.72% 0.64%
7,9 0.67% 0.35% 0.24%
7,10 0.00% 0.18% 0.12%
7,11 0.00% 0.09% 0.07%
7,12 0.00% 0.05% 0.04%
7,13 0.00% 0.03% 0.02%
7,14 0.00% 0.02% 0.02%
7,15 0.00% 0.01% 0.01%
8,3 0.00% 0.06% 0.19%
8,4 0.00% 0.09% 0.30%
8,5 0.00% 0.17% 0.53%
8,6 0.00% 0.33% 0.98%
8,7 0.00% 0.65% 1.89%
8,8 9.89% 1.35% 5.03%
8,9 2.25% 0.65% 1.89%
8,10 0.22% 0.33% 0.98%
8,11 0.00% 0.17% 0.53%
8,12 0.00% 0.09% 0.30%
8,13 0.00% 0.06% 0.19%
8,14 0.00% 0.04% 0.13%
8,15 0.00% 0.03% 0.10%
9,3 0.00% 0.11% 0.08%
9,4 0.00% 0.18% 0.13%
9,5 0.00% 0.34% 0.22%
9,6 0.00% 0.64% 0.41%
9,7 0.00% 1.26% 0.79%
9,8 1.80% 2.62% 2.09%
9,9 0.90% 1.26% 0.79%
9,10 0.67% 0.64% 0.41%

Pairs Data Bench Alt

9,11 0.00% 0.34% 0.22%
9,12 0.00% 0.18% 0.13%
9,13 0.00% 0.11% 0.08%
9,14 0.00% 0.07% 0.06%
9,15 0.00% 0.05% 0.04%
10,3 0.22% 0.38% 0.33%
10,4 0.00% 0.71% 0.58%
10,5 0.00% 1.35% 1.08%
10,6 0.00% 2.64% 2.08%
10,7 4.49% 5.41% 5.44%
10,8 1.35% 2.64% 2.08%
10,9 1.12% 1.35% 1.08%
10,10 3.15% 0.71% 0.58%
10,11 0.90% 0.38% 0.33%
10,12 0.00% 0.22% 0.21%
10,13 0.00% 0.14% 0.14%
10,14 0.00% 0.10% 0.11%
10,15 0.22% 0.08% 0.10%
11,3 0.00% 0.19% 0.13%
11,4 0.00% 0.34% 0.22%
11,5 0.00% 0.65% 0.41%
11,6 0.22% 1.27% 0.80%
11,7 2.02% 2.62% 2.09%
11,8 1.12% 1.27% 0.80%
11,9 0.45% 0.65% 0.41%
11,10 0.00% 0.34% 0.22%
11,11 0.22% 0.19% 0.13%
11,12 0.45% 0.11% 0.08%
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Table 20: Estimation results for sequential movement (entire set) - cont.

Pairs Data Bench Alt Pairs Data Bench Alt

11,13 0.22% 0.07% 0.06% 13,15 0.00% 0.01% 0.01%
11,14 0.00% 0.05% 0.04% 14,3 0.00% 0.11% 0.09%
11,15 0.22% 0.04% 0.04% 14,4 0.00% 0.22% 0.17%
12,3 0.45% 0.18% 0.12% 14,5 0.00% 0.40% 0.39%
12,4 0.00% 0.35% 0.23% 14,6 0.00% 0.22% 0.17%
12,5 0.00% 0.68% 0.44% 14,7 0.00% 0.11% 0.09%
12,6 0.90% 1.35% 1.12% 14,8 0.00% 0.06% 0.05%
12,7 0.00% 0.68% 0.44% 14,9 0.00% 0.03% 0.03%
12,8 0.45% 0.35% 0.23% 14,10 0.00% 0.02% 0.02%
12,9 0.22% 0.18% 0.12% 14,11 0.00% 0.01% 0.01%
12,10 0.45% 0.10% 0.07% 14,12 0.00% 0.01% 0.01%
12,11 0.45% 0.06% 0.04% 14,13 0.00% 0.01% 0.01%
12,12 1.57% 0.04% 0.03% 14,14 0.00% 0.01% 0.01%
12,13 0.22% 0.03% 0.02% 14,15 0.00% 0.00% 0.01%
12,14 0.00% 0.02% 0.02% 15,3 0.00% 0.07% 0.06%
12,15 0.00% 0.02% 0.02% 15,4 0.00% 0.13% 0.11%
13,3 0.00% 0.10% 0.07% 15,5 0.22% 0.24% 0.27%
13,4 0.00% 0.18% 0.13% 15,6 0.00% 0.13% 0.11%
13,5 0.00% 0.36% 0.25% 15,7 0.00% 0.07% 0.06%
13,6 0.00% 0.72% 0.64% 15,8 0.00% 0.03% 0.03%
13,7 0.00% 0.36% 0.25% 15,9 0.22% 0.02% 0.02%
13,8 0.22% 0.18% 0.13% 15,10 0.00% 0.01% 0.01%
13,9 0.00% 0.10% 0.07% 15,11 0.00% 0.01% 0.01%
13,10 0.22% 0.05% 0.04% 15,12 0.00% 0.00% 0.01%
13,11 0.00% 0.03% 0.02% 15,13 0.00% 0.00% 0.00%
13,12 0.00% 0.02% 0.02% 15,14 0.00% 0.00% 0.00%
13,13 0.00% 0.01% 0.01% 15,15 0.00% 0.00% 0.00%
13,14 0.00% 0.01% 0.01% Total 46.52% 48.76% 48.74%
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Table 21: Estimation results for first period movement (first half)

Pairs Data Bench Alt Pairs Data Bench Alt

3,3 0.00% 0.00% 0.00% 7,7 0.00% 0.03% 0.02%
3,4 0.00% 0.00% 0.00% 7,8 0.89% 0.13% 0.32%
3,5 0.00% 0.00% 0.00% 7,9 0.44% 0.25% 0.13%
3,6 0.00% 0.00% 0.01% 7,10 2.22% 0.53% 0.35%
3,7 0.00% 0.01% 0.01% 7,11 0.44% 0.25% 0.13%
3,8 0.00% 0.02% 0.09% 7,12 0.00% 0.13% 0.07%
3,9 0.00% 0.03% 0.04% 7,13 0.00% 0.07% 0.04%
3,10 0.00% 0.06% 0.10% 7,14 0.00% 0.03% 0.02%
3,11 0.00% 0.03% 0.04% 7,15 0.44% 0.02% 0.02%
3,12 0.00% 0.02% 0.02% 8,8 3.11% 0.12% 1.26%
3,13 0.00% 0.01% 0.01% 8,9 1.78% 0.49% 1.04%
3,14 0.00% 0.00% 0.01% 8,10 5.78% 1.02% 2.80%
3,15 0.00% 0.00% 0.00% 8,11 3.11% 0.49% 1.04%
4,4 0.00% 0.00% 0.00% 8,12 0.89% 0.25% 0.56%
4,5 0.00% 0.00% 0.01% 8,13 0.00% 0.13% 0.32%
4,6 0.00% 0.01% 0.01% 8,14 0.00% 0.07% 0.20%
4,7 0.00% 0.01% 0.01% 8,15 0.44% 0.04% 0.14%
4,8 0.00% 0.02% 0.11% 9,9 0.44% 0.48% 0.21%
4,9 0.00% 0.04% 0.04% 9,10 2.67% 2.01% 1.15%
4,10 0.00% 0.09% 0.12% 9,11 1.33% 0.96% 0.43%
4,11 0.00% 0.04% 0.04% 9,12 0.89% 0.49% 0.23%
4,12 0.00% 0.02% 0.02% 9,13 0.00% 0.25% 0.13%
4,13 0.00% 0.01% 0.01% 9,14 0.00% 0.13% 0.08%
4,14 0.00% 0.01% 0.01% 9,15 0.00% 0.07% 0.06%
4,15 0.00% 0.00% 0.01% 10,10 2.22% 2.11% 1.56%
5,5 0.00% 0.00% 0.00% 10,11 1.33% 2.01% 1.15%
5,6 0.00% 0.01% 0.01% 10,12 1.33% 1.02% 0.62%
5,7 0.00% 0.02% 0.02% 10,13 0.00% 0.53% 0.35%
5,8 0.00% 0.04% 0.14% 10,14 0.44% 0.28% 0.22%
5,9 0.00% 0.07% 0.06% 10,15 0.00% 0.16% 0.15%
5,10 0.00% 0.16% 0.15% 11,11 0.44% 0.48% 0.21%
5,11 0.00% 0.07% 0.06% 11,12 0.89% 0.49% 0.23%
5,12 0.00% 0.04% 0.03% 11,13 0.00% 0.25% 0.13%
5,13 0.00% 0.02% 0.02% 11,14 0.00% 0.13% 0.08%
5,14 0.00% 0.01% 0.01% 11,15 0.44% 0.07% 0.06%
5,15 0.00% 0.01% 0.01% 12,12 0.89% 0.12% 0.06%
6,6 0.00% 0.01% 0.01% 12,13 0.00% 0.13% 0.07%
6,7 0.00% 0.03% 0.02% 12,14 0.00% 0.07% 0.04%
6,8 1.78% 0.07% 0.20% 12,15 0.00% 0.04% 0.03%
6,9 0.44% 0.13% 0.08% 13,13 0.00% 0.03% 0.02%
6,10 0.44% 0.28% 0.22% 13,14 0.44% 0.03% 0.02%
6,11 0.00% 0.13% 0.08% 13,15 0.00% 0.02% 0.02%
6,12 0.89% 0.07% 0.04% 14,14 0.00% 0.01% 0.01%
6,13 0.00% 0.03% 0.02% 14,15 0.00% 0.01% 0.01%
6,14 0.00% 0.02% 0.02% 15,15 0.00% 0.00% 0.00%
6,15 0.00% 0.01% 0.01% Total 36.89% 18.12% 17.69%
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Table 22: Estimation results for second period movement (first half)

Pairs Data Bench Alt Pairs Data Bench Alt

3,3 0.00% 0.00% 0.01% 7,7 0.89% 0.88% 0.68%
3,4 0.00% 0.02% 0.02% 7,8 0.00% 3.69% 3.77%
3,5 0.00% 0.03% 0.04% 7,9 0.89% 1.76% 1.36%
3,6 0.00% 0.07% 0.07% 7,10 0.89% 0.89% 0.71%
3,7 0.00% 0.13% 0.14% 7,11 0.00% 0.45% 0.38%
3,8 0.00% 0.27% 0.38% 7,12 0.00% 0.24% 0.22%
3,9 0.00% 0.13% 0.14% 7,13 0.00% 0.13% 0.14%
3,10 0.00% 0.07% 0.07% 7,14 0.00% 0.07% 0.10%
3,11 0.00% 0.03% 0.04% 7,15 0.00% 0.05% 0.08%
3,12 0.00% 0.02% 0.02% 8,8 2.22% 3.74% 5.21%
3,13 0.00% 0.01% 0.01% 8,9 3.11% 3.69% 3.77%
3,14 0.00% 0.01% 0.01% 8,10 1.33% 1.87% 1.96%
3,15 0.00% 0.00% 0.01% 8,11 0.44% 0.95% 1.06%
4,4 0.00% 0.02% 0.02% 8,12 0.44% 0.50% 0.61%
4,5 0.00% 0.06% 0.06% 8,13 0.00% 0.27% 0.38%
4,6 0.00% 0.12% 0.11% 814 0.00% 0.16% 0.27%
4,7 0.00% 0.24% 0.22% 8,15 0.00% 0.10% 0.21%
4,8 0.00% 0.50% 0.61% 9,9 0.89% 0.88% 0.68%
4,9 0.44% 0.24% 0.22% 9,10 0.44% 0.89% 0.71%
4,10 0.00% 0.12% 0.11% 9,11 0.89% 0.45% 0.38%
4,11 0.00% 0.06% 0.06% 9,12 0.00% 0.24% 0.22%
4,12 0.00% 0.03% 0.04% 9,13 0.00% 0.13% 0.14%
4,13 0.00% 0.02% 0.02% 9,14 0.00% 0.07% 0.10%
4,14 0.00% 0.01% 0.02% 9,15 0.44% 0.05% 0.08%
4,15 0.00% 0.01% 0.01% 10,10 0.00% 0.22% 0.18%
5,5 0.00% 0.06% 0.05% 10,11 0.44% 0.23% 0.20%
5,6 0.00% 0.23% 0.20% 10,12 0.00% 0.12% 0.11%
5,7 0.00% 0.45% 0.38% 10,13 0.00% 0.07% 0.07%
5,8 0.44% 0.95% 1.06% 10,14 0.00% 0.04% 0.05%
5,9 0.00% 0.45% 0.38% 10,15 0.00% 0.02% 0.04%
5,10 0.00% 0.23% 0.20% 11,11 0.00% 0.06% 0.05%
5,11 0.00% 0.12% 0.11% 11,12 0.00% 0.06% 0.06%
5,12 0.00% 0.06% 0.06% 11,13 0.00% 0.03% 0.04%
5,13 0.00% 0.03% 0.04% 11,14 0.00% 0.02% 0.03%
5,14 0.00% 0.02% 0.03% 11,15 0.00% 0.01% 0.02%
5,15 0.00% 0.01% 0.02% 12,12 0.00% 0.02% 0.02%
6,6 0.44% 0.22% 0.18% 12,13 0.00% 0.02% 0.02%
6,7 1.33% 0.89% 0.71% 12,14 0.00% 0.01% 0.02%
6,8 0.89% 1.87% 1.96% 12,15 0.00% 0.01% 0.01%
6,9 0.44% 0.89% 0.71% 13,13 0.00% 0.00% 0.01%
6,10 0.44% 0.45% 0.37% 13,14 0.00% 0.01% 0.01%
6,11 0.89% 0.23% 0.20% 13,15 0.00% 0.00% 0.01%
6,12 0.44% 0.12% 0.11% 14,14 0.00% 0.00% 0.00%
6,13 0.00% 0.07% 0.07% 14,15 0.00% 0.00% 0.01%
6,14 0.00% 0.04% 0.05% 15,15 0.00% 0.00% 0.00%
6,15 0.00% 0.02% 0.04% Total 19.11% 32.73% 33.57%
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Table 23: Estimation results for sequential movement (first half)

Pairs Data Bench Alt Pairs Data Bench Alt

3,3 0.00% 0.00% 0.00% 5,6 0.00% 0.01% 0.02%
3,4 0.00% 0.00% 0.00% 5,7 0.00% 0.03% 0.03%
3,5 0.00% 0.00% 0.00% 5,8 0.00% 0.05% 0.05%
3,6 0.00% 0.00% 0.01% 5,9 0.00% 0.10% 0.10%
3,7 0.00% 0.01% 0.01% 5,10 0.89% 0.21% 0.28%
3,8 0.00% 0.01% 0.02% 5,11 0.00% 0.10% 0.10%
3,9 0.00% 0.02% 0.04% 5,12 0.00% 0.05% 0.05%
3,10 0.00% 0.04% 0.07% 5,13 0.00% 0.03% 0.03%
3,11 0.44% 0.08% 0.18% 5,14 0.00% 0.01% 0.02%
3,12 0.00% 0.04% 0.07% 5,15 0.00% 0.01% 0.01%
3,13 0.00% 0.02% 0.04% 6,3 0.00% 0.01% 0.01%
3,14 0.00% 0.01% 0.02% 6,4 0.00% 0.01% 0.01%
3,15 0.00% 0.01% 0.01% 6,5 0.00% 0.02% 0.02%
4,3 0.00% 0.00% 0.00% 6,6 0.44% 0.05% 0.04%
4,4 0.00% 0.00% 0.01% 6,7 0.00% 0.09% 0.07%
4,5 0.00% 0.00% 0.01% 6,8 0.00% 0.18% 0.14%
4,6 0.00% 0.01% 0.01% 6,9 0.89% 0.38% 0.40%
4,7 0.00% 0.02% 0.02% 6,10 0.00% 0.18% 0.14%
4,8 0.00% 0.03% 0.04% 6,11 0.00% 0.09% 0.07%
4,9 0.00% 0.06% 0.08% 6,12 0.00% 0.05% 0.04%
4,10 0.00% 0.13% 0.21% 6,13 0.00% 0.02% 0.02%
4,11 0.00% 0.06% 0.08% 6,14 0.00% 0.01% 0.01%
4,12 0.00% 0.03% 0.04% 6,15 0.00% 0.01% 0.01%
4,13 0.00% 0.02% 0.02% 7,3 0.00% 0.02% 0.02%
4,14 0.00% 0.01% 0.01% 7,4 0.00% 0.05% 0.04%
4,15 0.00% 0.00% 0.01% 7,5 0.00% 0.09% 0.07%
5,3 0.00% 0.00% 0.01% 7,6 0.00% 0.17% 0.12%
5,4 0.44% 0.00% 0.01% 7,7 0.89% 0.34% 0.23%
5,5 0.00% 0.01% 0.01%
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Table 24: Estimation results for sequential movement (first half) - cont.

Pairs Data Bench Alt

7,8 1.33% 0.71% 0.64%
7,9 0.00% 0.34% 0.23%
7,10 0.00% 0.17% 0.12%
7,11 0.00% 0.09% 0.07%
7,12 0.00% 0.05% 0.04%
7,13 0.00% 0.02% 0.02%
7,14 0.00% 0.01% 0.02%
7,15 0.00% 0.01% 0.01%
8,3 0.00% 0.05% 0.19%
8,4 0.00% 0.09% 0.30%
8,5 0.00% 0.17% 0.52%
8,6 0.00% 0.33% 0.97%
8,7 0.00% 0.66% 1.86%
8,8 8.00% 1.38% 5.13%
8,9 2.67% 0.66% 1.86%
8,10 0.44% 0.33% 0.97%
8,11 0.00% 0.17% 0.52%
8,12 0.00% 0.09% 0.30%
8,13 0.00% 0.05% 0.19%
8,14 0.00% 0.03% 0.13%
8,15 0.00% 0.02% 0.10%
9,3 0.00% 0.10% 0.08%
9,4 0.00% 0.18% 0.12%
9,5 0.00% 0.34% 0.21%
9,6 0.00% 0.66% 0.40%
9,7 0.00% 1.30% 0.76%
9,8 2.22% 2.73% 2.11%
9,9 1.33% 1.30% 0.76%
9,10 0.44% 0.66% 0.40%

Pairs Data Bench Alt

9,11 0.00% 0.34% 0.21%
9,12 0.00% 0.18% 0.12%
9,13 0.00% 0.10% 0.08%
9,14 0.00% 0.06% 0.05%
9,15 0.00% 0.04% 0.04%
10,3 0.00% 0.37% 0.33%
10,4 0.00% 0.71% 0.59%
10,5 0.00% 1.39% 1.09%
10,6 0.00% 2.76% 2.09%
10,7 5.78% 5.61% 5.70%
10,8 0.89% 2.76% 2.09%
10,9 0.89% 1.39% 1.09%
10,10 3.11% 0.71% 0.59%
10,11 1.78% 0.37% 0.33%
10,12 0.00% 0.20% 0.21%
10,13 0.00% 0.12% 0.15%
10,14 0.00% 0.07% 0.12%
10,15 0.00% 0.05% 0.10%
11,3 0.00% 0.18% 0.12%
11,4 0.00% 0.34% 0.22%
11,5 0.00% 0.67% 0.40%
11,6 0.00% 1.32% 0.77%
11,7 3.56% 2.73% 2.11%
11,8 1.78% 1.32% 0.77%
11,9 0.44% 0.67% 0.40%
11,10 0.00% 0.34% 0.22%
11,11 0.00% 0.18% 0.12%
11,12 0.44% 0.10% 0.08%
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Table 25: Estimation results for sequential movement (first half) - cont.

Pairs Data Bench Alt Pairs Data Bench Alt

11,13 0.00% 0.06% 0.05% 13,15 0.00% 0.01% 0.01%
11,14 0.00% 0.04% 0.04% 14,3 0.00% 0.10% 0.08%
11,15 0.44% 0.03% 0.04% 14,4 0.00% 0.20% 0.16%
12,3 0.89% 0.18% 0.12% 14,5 0.00% 0.38% 0.40%
12,4 0.00% 0.35% 0.22% 14,6 0.00% 0.20% 0.16%
12,5 0.00% 0.69% 0.43% 14,7 0.00% 0.10% 0.08%
12,6 1.78% 1.38% 1.13% 14,8 0.00% 0.05% 0.04%
12,7 0.00% 0.69% 0.43% 14,9 0.00% 0.03% 0.03%
12,8 0.44% 0.35% 0.22% 14,10 0.00% 0.01% 0.02%
12,9 0.00% 0.18% 0.12% 14,11 0.00% 0.01% 0.01%
12,10 0.00% 0.09% 0.07% 14,12 0.00% 0.01% 0.01%
12,11 0.00% 0.05% 0.04% 14,13 0.00% 0.00% 0.01%
12,12 0.89% 0.03% 0.03% 14,14 0.00% 0.00% 0.01%
12,13 0.00% 0.02% 0.02% 14,15 0.00% 0.00% 0.01%
12,14 0.00% 0.01% 0.02% 15,3 0.00% 0.06% 0.06%
12,15 0.00% 0.01% 0.02% 15,4 0.00% 0.11% 0.11%
13,3 0.00% 0.09% 0.07% 15,5 0.44% 0.21% 0.28%
13,4 0.00% 0.18% 0.13% 15,6 0.00% 0.11% 0.11%
13,5 0.00% 0.36% 0.24% 15,7 0.00% 0.06% 0.06%
13,6 0.00% 0.71% 0.64% 15,8 0.00% 0.03% 0.03%
13,7 0.00% 0.36% 0.24% 15,9 0.00% 0.02% 0.02%
13,8 0.00% 0.18% 0.13% 15,10 0.00% 0.01% 0.01%
13,9 0.00% 0.09% 0.07% 15,11 0.00% 0.00% 0.01%
13,10 0.00% 0.05% 0.04% 15,12 0.00% 0.00% 0.01%
13,11 0.00% 0.03% 0.02% 15,13 0.00% 0.00% 0.00%
13,12 0.00% 0.01% 0.02% 15,14 0.00% 0.00% 0.00%
13,13 0.00% 0.01% 0.01% 15,15 0.00% 0.00% 0.00%
13,14 0.00% 0.01% 0.01% Total 44.00% 48.70% 48.74%
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E Different Specifications for L0 Behavior

This appendix studies the impact of different specifications for L0 behavior. In our bench-

mark model a L0 player chooses a random quantity and plays in the first period with 50%

probability. We start by analyzing the implications of different probabilities of first period

play for the L0 player. After that we analyze the implications of different probabilities of

playing quantity 8 in the first period.

Tables 26, 27, and 28, respectively, display the maximum likelihood estimates, the

aggregate results, and the predicted market outcomes for 50%, 75% and 99% probability

that a L0 player plays in the first period. As we can see from the tables, different levels

of first period play by the L0 players bear a small impact on the estimates for tau and

epsilon, the maximum likelihood values, aggregate results and predicted market outcomes.

This happens because (i) the percentage of L0 players is quite small for the estimated

taus and (ii) the maximum likelihood taus are obtained in intervals for which the players’

behavior is exactly the same—all players move in the second period (and play quantity 8 if

no move is observed) except for the L2s and the L4s who move in the first with quantity 10.

Therefore, the only impact on results is the slightly higher levels of τ which are insufficient

to generate appreciable differences.

Table 26: ML estimates for different probabilites of first period play of a L0 player

x τ ε ML

50% 2.86 0.65 −2257.49
75% 2.97 0.65 −2254.03
99% 3.06 0.65 −2254.19

Tables 29, 30, and 31, respectively, display the estimates, the aggregate results, and

the predicted market outcomes for 50%, 75%, and 99% probability that a L0 player who

moves in the first period chooses quantity 8.
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Table 27: Aggregate results for different probabilites of first period play of a L0 player

Both players Explicit Both players
in period 1 followers in period 2

Entire set
x = 50% (benchmark model)
Average quantity 9.89 7.25 8.10
% of observations 42.2% 24.4% 33.3%
x = 75%
Average quantity 9.87 7.29 8.11
% of observations 43.1% 24.5% 32.3%
x = 99%
Average quantity 9.85 7.32 8.12
% of observations 43.7% 24.6% 31.6%

Table 28: Market outcomes for different probabilites of first period play of a L0 player

Market outcomes HMN x = 50% x = 75% x = 99%

Cournot:
1st period 4.5 1.0 1.1 1.1
Sequential 14.8 5.9 6.0 6.1
2nd period 4.5 8.2 8.5 8.8
Stackelberg:
Leader 12, follower 6 0.9 1.4 1.4 1.4
Leader 11, follower 7 2.0 2.6 2.7 2.7
Leader 10, follower 7 4.5 5.4 5.5 5.6
First mover punished or rewarded:
Stackelberg leader punished 11.9 9.3 9.1 9.0
Stackelberg leader rewarded 0.2 3.9 3.9 3.9
Cournot punished 0.9 1.8 1.7 1.7
Cournot rewarded 0.0 2.9 2.9 2.9
Stackelberg and Cournot in 1st period 12.6 5.0 5.1 5.1
Double Stackelberg leadership 6.3 5.9 6.0 6.0
Collusion:
Collusion successful 6.1 2.7 2.9 3.0
Collusion failed 10.6 2.0 2.1 2.2
Collusion exploited 4.3 2.3 2.4 2.5
Other 16.0 39.7 38.7 37.9√∑

(oi − ôi)2 29.1 28.2 27.5
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Table 29 shows that an increase in y raises the estimates for τ (particularly for y =

75%) and the estimates for ε. The maximum likelihood value increases with y. Thus, a

specification of L0 that places the highest probability on playing quantity 8 in the first

period offers the best explanation for observed behavior.

Table 29: ML estimates for different probabilites of a L0 playing 8 in the first period

y τ ε ML

50% 1.74 0.59 -2176.01
75% 2.34 0.62 -2157.14
99% 2.13 0.62 -2152.69

Table 30 shows that when both players move in the 1st period, an increase in y raises the

predicted average quantity, moving away from the data (9.15), and raises the percentage of

simultaneous play in the 1st period, moving closer to the data (61%). When both players

move in the 2nd period, an increase in y reduces predicted average quantity, moving away

from the data (8.40), and reduces the percentage of simultaneous play in the 2nd period,

moving closer to the data (16%).

Table 31 shows that an increase in y improves market outcomes predictions since it

increases predicted play of market outcomes “Cournot 1st period,” “Cournot sequential,”

and “Stackelberg and Cournot in 1st period,” and reduces predicted play of market out-

comes “Cournot 2nd period,” and “others.”
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Table 30: Aggregate results for different probabilites of a L0 playing 8 in the first period

Both players Explicit Both players
in period 1 followers in period 2

Entire set
y = 50% (alternative model)
Average quantity 9.45 7.49 8.12
% of observations 42.1% 24.4% 33.6%
y = 75%
Average quantity 9.63 7.31 8.07
% of observations 46.8% 25.0% 28.3%
y = 99%
Average quantity 9.48 7.34 8.05
% of observations 49.0% 25.0% 26.0%

Table 31: Market outcomes for different probabilities of a L0 playing 8 in the first period

Market outcomes HMN y = 50% y = 75% y = 99%

Cournot:
1st period 4.5 2.5 2.7 4.2
Sequential 14.8 9.8 9.3 11.3
2nd period 4.5 9.4 7.9 7.5
Stackelberg:
Leader 12, follower 6 0.9 1.1 1.2 1.1
Leader 11, follower 7 2.0 2.1 2.4 2.3
Leader 10, follower 7 4.5 5.4 5.8 5.5
First mover punished or rewarded:
Stackelberg leader punished 11.9 6.9 8.0 7.3
Stackelberg leader rewarded 0.2 2.9 3.5 3.3
Cournot punished 0.9 2.6 2.5 2.9
Cournot rewarded 0.0 4.1 4.1 5.0
Stackelberg and Cournot in 1st period 12.6 6.2 7.4 9.4
Double Stackelberg leadership 6.3 3.8 5.8 5.3
Collusion:
Collusion successful 6.1 2.2 2.1 2.0
Collusion failed 10.6 1.6 2.0 1.9
Collusion exploited 4.3 1.9 1.9 1.6
Other 16.0 37.6 32.8 29.4√∑

(oi − ôi)2 26.9 22.3 19.3
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