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ABSTRACT Bacterial growth can be studied at the single cell level through time-lapse
microscopy imaging. Technical advances in microscopy lead to increasing image quality,
which in turn allows to visualize larger areas of growth, containing more and more cells.
In this context, the use of automated computational tools becomes essential. In this
paper, we present STrack, a tool that allows to track cells in time-lapse images in a fast
and efficient way. We compared it to 3 recently published tracking tools on images
ranging over 6 different bacterial strains with various morphologies. STrack showed to be
the most consistent tracking tool, returning more than 80% of correct cell lineages on
average, in comparison to manually annotated ground-truth. The python implementation
of STrack, a docker structure, and a tutorial on how to download and use the tool can be
found on the following github page: https://github.com/Helena-todd/STrack.

IMPORTANCE Automated image analysis of growing prokaryotic cell populations
becomes indispensable with larger data sets, such as derived by time-lapse microscopy.
The tracking of the same individual cells and their daughter lineages is cumbersome and
prone to errors in image alignment or poor resolution. Here, we present a simplified but
highly effective tool for non-specialists to engage in cell tracking. The tool can be down-
loaded and run as a contained script-structure requiring minimal user input. Run times
are fast, in comparison to other equivalent tools, and outputs consist of cell tables that
can be subsequently used for lineage analysis, for which we offer examples. By providing
open code, training data sets, as well as simplified script execution, we aimed to facilitate
wide usage and further tool development for image analysis.
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Despite major advances in methodologies describing microbial systems’ states (e.g.,
the typical ‘o-mics’ tools), there is a fundamental aspect of microbial behavior that is

escaping much of our attention. This concerns in situ cell division, phenotypic heterogeneity,
cell movement, and consequently, local population growth. For most microbiome systems,
individual taxa cannot be easily studied in their natural biotic context, nor followed in real-
time. Most information, therefore, comes from experiments of reduced complexity, where
cell growth can be followed directly by microscopy time-lapse imaging (1). Time-lapse imag-
ing provides direct information on bacterial cell shapes, sizes, and division rates, as well as
more complex phenotypes, such as cell movement or stabbing, at the single cell level. It
also allows us to visualize the organization of cells into colonies or spatial structures that
result from food intake or from interspecific interactions. Relevant information on cell divi-
sion rates (2), spatial processes (3), or interactions between bacteria (4) can be derived from
the images resulting from time-lapse experiments. This requires us to identify single cells in
the images, resulting in what is called “segmented masks,” and to track these masks across
all time steps correctly.

Several recent methods have been published to facilitate the complex task of track-
ing cells across time-lapse images (5, 6). Some of these tools integrate both cell seg-
mentation and tracking in a single pipeline (7–9). Since cell segmentation often leads
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to errors that might have a big impact on the subsequent tracking steps, the tools typically
provide a graphical user interface (GUI) that allows users to manually curate results before
applying cell tracking. Identified cells are then linked in successive frames based on cell-to-
cell distances and similarities. The tracking algorithms are error-prone, and the GUI also
offers the possibility to correct tracks manually. Highly interactive methods can, thus, help to
perfect tracking results through extensive curation, but they present the drawback of requir-
ing a lot of investment from the users.

Automated tracking tools that can take segmented masks as input have also been
recently introduced. For example, Trackmate (10) has been used to track particles (11,
12), and can take object shapes into account when assigning tracks (13). A newer track-
ing method, TracX (14), additionally considers the environment of a cell to decide
which cells should be linked in successive frames. A third method, DeLTA 2.0 (15), relies
on 2 neural networks to identify and track cells in an automated way. These 3 methods
are automized, but they require extensive fine-tuning from the user (in the case of
TracX), specific Python scripting (e.g., DeLTA), or need to be embedded in commercial
software, such as MATLAB (e.g., TracX and SuperSegger (8)).

The goal of the work presented here was to simplify automated bacterial cell track-
ing from time-lapse imaging. The tool we developed and tested (called STrack, for
Simplified cell Tracking) is implemented in the free Python programming language
and runs using one single line of code. We intentionally reduced the parameters that
the user needs to define to a minimum of 2 intuitive parameters. The first one defines
a restricted search space around a cell, by which the tracking algorithm finds corresponding
cells in subsequent images, which drastically reduces the computational running time of
STrack. The second parameter defines the division axis, which allows to improve tracking of
rod-shaped bacteria specifically, by allowing them to divide only along their cell elongation
axis. To facilitate the use of STrack on any operating system, we wrapped it in a docker struc-
ture (16). The Docker system prevents conflicts with previously installed packages on one’s
computer, and makes STrack’s results more reproducible, as it will return exactly the same
results, regardless of any updates of the libraries it relies on.

We first introduce and describe the underlying concept of the STrack algorithm.
Then, we present the time-lapse data sets on which we applied STrack, as well as the
methods that we used to assess the accuracy of different cell tracking tools. Finally, we
compared STrack to 3 of the most recent automated tracking tools: TrackMate, TrackX,
and DeLTA 2.0 (see above), on the same image sets. To compare the tracking perform-
ance of these tools, we used expert-generated manual tracking results as ground-truth.
We found that STrack on average consistently outperformed the other 3 automated
methods on the 22 data sets that we used. Furthermore, we also assessed the tools’
accessibility from a user’s point of view by comparing practical features, such as their
running time, free availability, and number of parameters. In the last part, we discuss
STrack’s advantages and limitations.

RESULTS

To compare the performance of STrack to existing tracking tools, we grew 4 bacte-
rial species in pure culture on agarose patches and imaged them using time-lapse mi-
croscopy. We limited nutrients in those patches to have a short exponential growth
phase, so as to prevent cells from growing in multiple layers. In the resulting phase
contrast images, cells were then manually segmented by experts (Fig. 1).

The different species displayed differences in their growth and cell shapes, with round-
shaped densely packed microcolonies (i.e., Pseudomonas putida and Rahnella) (Fig. 2A and
C), or elongated thinner microcolonies (i.e., Lysobacter and Pseudomonas veronii) (Fig. 2B and
D). Two additional data sets from the literature were included in this study, with further dif-
ferences in growth patterns that we believed could represent a challenge for cell tracking.
The first data set consisted of dividing Streptococcus pneumoniae (17), a coccoid bacterium
that grows into long chains (Fig. 2E). The second data set showcased Pseudomonas prote-
gens cell division (18). The induction of R-tailocin formation in Pseudomonas protegens
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cells results in cell elongation, occasionally followed by the formation of a spheroblast
shortly before cell death (Fig. 2F).

Manually segmented cells were tracked by experts across successive images (Fig. 3A)
to build the reference tracks and cell lineage trees for automated tool comparison
(Fig. 3B). The automated tracking tools were then compared using the Jaccard index,
which represents the proportion of matching and discordant tracks between the results
of automated tracking tools and reference tracks (Fig. 3C and D).

The results of the comparison of STrack and the 3 other tracking tools on the expert-
annotated time-lapse series are shown in Fig. 4. STrack and TracX significantly outperformed
TrackMate and DeLTA 2.0 on the P. putida and P. veronii series (Fig. 4B and D), but DeLTA
2.0 had a higher average Jaccard index on the Rahnella images (Fig. 4C), where STrack was
the second-best performing tool. Finally, STrack outperformed the 3 other tools in the
images with Lysobacter (Fig. 4A).

We then proceeded to a similar comparison of STrack and the 3 other tracking tools
on 2 imaging data sets from the literature, consisting of a set with P. protegens images,
and another one with S. pneumoniae (Fig. 4E). All tools returned excellent automated track-
ing results on these 2 data sets, which can be explained by the fact that the P. protegens cells

FIG 2 Representative images of 6 bacterial strains included in the tracking analysis and comparison.
(A to D) Images of P. putida, Lysobacter sp., Rahnella sp., and P. veronii, respectively. Note the different
individual cell morphologies, as well as resulting microcolony shapes. Image in (E) S. pneumoniae (17). (F)
P. protegens. The round object in (F) is a spheroblast formed by the activation of tailocins in P. protegens (18).

FIG 1 Manual expert segmentation as ground-truth for STrack. (A) Data consisted of phase contrast
images capturing growth of bacteria into microcolonies. This figure shows an example of 3 time
points (time points 10 to 12, each 10 min apart) of a P. putida microcolony. (B) Identified manually
segmented cells (light on dark background).
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almost did not move or divide, and by the fact that the S. pneumoniae cells were imaged at
very short time intervals, which greatly facilitated their tracking. STrack, DeLTA 2.0 and
TrackMate had an average Jaccard index between 0.98 and 0.99 on the 2 literature data
sets, while the Jaccard indices of TracX were slightly lower (JI = 0.931 and 0.947).

Across all data sets, the median STrack-JI was higher than that of the 3 others. STrack
returned over 83% of correct tracks on average (JI = 0.838), while the second-best tool in

FIG 3 Comparison of tracking results using the Jaccard index. (A) Manually tracked P. putida cells across time points (tp). The tracks are
represented as gray arrows and the cells were colored and numbered to be easily compared to (B) the lineage tree corresponding to the
tracks from (A). (C) The results of an automated resolved tracking lineage tree over the same images, by TrackMate. Red circles and arrows highlight
discordant lineages in comparison to the reference tree. (D) Example of Jaccard index computation. TrackMate returned 13 similar and 2 discordant
tracks, resulting in an index equal to the sum of common tracks (=13) divided by the total number of tracks in both methods (=17).

FIG 4 Comparison of 4 cell tracking tools, TrackMate, DeLTA 2.0, TracX, and STrack, on microcolony growth of 6 different bacterial
strains. (A to D) Jaccard indices from time-lapse image analysis of Lysobacter, P. putida, Rahnella, and P. veronii, respectively. (E) Tracking
results on 2 data sets taken from the literature (corresponding to the images of P. protegens and S. pneumoniae). Boxplots show median
(horizontal line) and outlier Jaccard indices (n = 4 sets of 22 time-lapse images), overlaid with the individual data points. For each strain,
the best performing tools (i.e., with the highest average Jaccard index) are highlighted in orange.
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this comparative study, TracX, had an average Jaccard index of 0.803, and DeLTA 2.0 and
TrackMate, had very similar scores of 0.699 and 0.696, respectively. We also noticed that the
variance in individual JI’s of STrack was small, especially compared to TrackMate and DeLTA
2.0 which returned less than 50% of correct tracks on at least 1 data set, while STrack consis-
tently returned over 63% of correct tracks.

As an example of STrack’s stability compared to the other tracking tools, we show
tracking results on 2 imaged areas of the same time-lapse of P. putida (Fig. 5 and 6).
Although these 2 imaged areas come from the same time-lapse experiment, the perform-
ance of DeLTA 2.0 drastically changed between the 2 areas. In the first one (Fig. 5A), DeLTA
2.0 returned only 43% of matched tracks, with mismatches spanning all over the lineage
tree. However, on the second data set (Fig. 6A), DeLTA 2.0 almost perfectly matched all
ground-truth tracks. One obvious difference between the 2 data sets is that one microcolony
grew very close to the image border, with some cells exiting the frame (Fig. 5B), while the
other microcolony grew at the very center of the images (Fig. 6B). We investigated possible
links between the distance of microcolonies to image borders and tracking results, and
found a positive correlation for DeLTA 2.0, whose accuracy clearly increased when microcol-
onies grew further away from borders (Fig. S1). TracX and TrackMate were quite consistent
between the 2 imaged areas, returning tracking mismatches that spanned over the whole
lineage tree, irrespective of the microcolony position relative to the image borders. STrack
also returned relatively consistent results on these 2 data sets, although it performed slightly
worse on the data set presented in Fig. 6 (JI = 0.77) compared to the data set in Fig. 5
(JI = 0.84). In both cases, the tracking errors of STrack were mostly localized at later time
points down the lineage trees, when cells typically become more difficult to track as the
images become crowded. TrackMate systematically performed poorer compared to the

FIG 5 Example of P. putida cell tracking on time-lapse images. (A) Lineage trees obtained with the 4 tracking tools,
colored by matches (gray) and mismatches (red) in comparison to manual expert tracking. The calculated Jaccard index (JI)
for each comparison is indicated above the corresponding lineage tree. (B) Corresponding cell images of the first and last
image of the time-lapse, with manual expert-annotated cell masks represented as white cells. Cell tracks are shown in a
red line network overlay on the images.
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other tools, perhaps because it was optimized to track objects with complex shapes (13),
whereas the objects here are all very similar in shape and size.

Finally, we assessed the time requirement for tracking as a function of the number of
cells per time-lapse. We applied the four tracking tools on data sets containing between
1156 cells and over 6000 cells (Fig. 7 and Table S1). TrackMate was the most efficient tool
from a computational point of view, steadily completing the tracking task in a few seconds,
regardless of the data size (Fig. 7). The time necessary for TracX and STrack to complete
tracking increased with the number of cells to track, but remained within 4 min for 6000
cells. DeLTA 2.0 was the least efficient of the tools we tested in terms of timing, taking
between 5 min in the smallest data set to 33 min in the largest data set.

Different aspects of STrack, TrackMate, TracX, and DeLTA 2.0 that we consider valua-
ble from a user’s point of view are summarized in Table 1. These concern, notably, the
tool’s availability in terms of open access, user-friendliness in terms of the number of
parameters to be set and necessity to rename files following a specific syntax, compu-
tation speed, and accuracy of results. All tools compared in this paper are free, except
for TracX that requires a MATLAB license. TracX also requires specific file naming (as
does DeLTA 2.0), and has 50 parameters that can be tuned, which makes it less user-
friendly compared to STrack or DeLTA 2.0. TrackMate was the fastest tool we tested,
and the highest overall accuracy in the tracking results was obtained with STrack.

DISCUSSION

Cell tracking in time-lapse images is important because it allows to gain insight in
the real-time behavior of bacteria, on how cells divide, move, or express specific other
characteristics (e.g., activation of mobile elements [19] and induction of tailocins [18]).
Identifying segmented cells and arranging them into lineages by hand or semi man-
ually quickly becomes untractable. Furthermore, high cell numbers are needed for

FIG 6 Visual comparison of DeLTA 2.0, TrackMate, TracX, and STrack on a second area of the P. putida time-lapse. (A) Compared
to Fig. 5, the global performance of all tools, except DeLTA 2.0, remained relatively similar. (B) Corresponding cell images of the
first and last time point of the time-lapse, with manual expert-annotated cell masks represented as white cells. Cell tracks are
shown in a red line network overlay on the images.
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appropriate statistical comparison of cellular behaviors. There is, thus, a clear need for
automated tools that can segment cells correctly, and rapidly group those in relevant
tracks with high accuracy. In the tasks we posed ourselves here, namely, deriving cell
lineages from dividing cells on surfaces into microcolonies, we found that our tool
STrack outperformed 3 other recently published tracking tools. This was tested on
time-lapse image series with 6 different bacterial strains, 5 of which had rod-shaped
morphologies, and the 6th displaying coccoid cells in elongated chains. STrack consis-
tently returned highly accurate results even in suboptimal images, where microcolo-
nies grew close to image borders and eventually out of frame.

STrack was meant to track segmented objects in time-lapses. The quality of segmenta-
tion, thus, plays a crucial role, as mis-segmentations, such as missed cells or merged cells,
will inevitably have a deleterious impact on the tool that tries to link these cells between
frames. To avoid such segmentation errors, and to generate inputs that would least influ-
ence tracking results for optimal comparison of tracking tools, we decided to segment cell
contours manually in all the data sets presented in this paper. The tedious task of seg-
menting cells manually can, however, be replaced by automated segmentation tools (3, 20).
As a general rule, we would advise that segmented images are always visually inspected, to
make sure that cells are roughly identifiable along a time-lapse series. If many cells remain
unassigned, or if they were merged in large aggregates, one should consider improving the
segmentation process before proceeding with cell tracking, as tracking poorly segmented
cells can only lead to poor tracking results.

The process of cell tracking is rarely isolated. Cell tracking can be performed to gain
insight into how cells grow and divide. When coupled with fluorescence cell reporters
or stains, cell tracking also allows us to derive information on how gene expression or
protein aggregates are transmitted across generations, or appear in sublineages. To
derive this type of information, morphological and/or fluorescence information should

TABLE 1 Global comparison of the different cell tracking tools

Tool
Open
access

File
renaming

No. of set
parameters

Computational
speed

Accuracy (mean
jaccard index)

STrack Yes No 2 Moderate 0.838
TrackMate Yes No 11 Fast 0.696
TracX No Yes 50 Moderate 0.803
DeLTA 2.0 Yes Yes 0 Slow 0.699

FIG 7 Comparison of the running times of TrackMate, TracX, DeLTA 2.0, and STrack, on 5 time-lapses
containing between 1156 and 6172 cells. All tools but one completed cell tracking in less than 1 min
on the smallest data sets, and in less than 4 min on the largest data set. DeLTA 2.0, on the other
hand, was significantly slower. It took 4 more minutes to run on the smallest data sets, and it needed
over 30 min to track cells in the largest data set.
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be computed for every single cell. The morphological/fluorescence profile of single
cells can then be merged with the single cell lineage information provided by tools,
such as STrack. This type of combined data could then be used to plot morphological
or fluorescence information on top of cell lineages, which would allow us to identify bi-
ological relevant trends reported by the fluorescence marker.

Many different tools can be used to perform cell tracking, and it can be difficult for
a user to decide on tool preference. In this context, STrack can offer a reliable first solution,
as it is fast and simple to use, and consistently returns accurate tracking results. For our com-
parison, we chose not to include interactive tools, such as FAST or Ilastik’s “Tracking with
Learning” module (21, 22), which help to achieve excellent tracking results but only after
thorough training and curation with high demand of user interference. The main reason for
their exclusion was the long, manual handling to achieve tracking. On the other hand,
TrackMate, TracX, and DeLTA 2.0 can be applied on segmented masks directly, and only
require several parameters to be set (which is not even necessary in the case of DeLTA 2.0).
To have a fair comparison, we applied all 4 methods (STrack, TrackMate, TracX, and DeLTA
2.0) on the same data sets, with expert-annotated tracks as reference for the evaluation.
Across all data sets, we found that STrack’s results were consistently closest to the manual
expert annotation, but we acknowledge that some of the other tracking tools were more
precise in certain cases, for example in the case of Rahnella microcolony growth. It might,
thus, be good practice to test different tracking tools, as their performance might be data
set dependent. As an example, we noticed that the effectiveness of DeLTA 2.0 was corre-
lated with the distance of cells to image borders. Making sure to frame cells so that they
grow at the center of time-lapse images, or re-training DeLTA 2.0 specifically with microcol-
onies that grow on image borders, might be solutions to improve its accuracy.

So far, authors of tracking tools have mainly focused on tracking non-motile or low-
motile bacteria, assuming that their close cell-neighbor environment is not changing
drastically from one frame to the next. This is also the case of STrack, as one of its limitations
is that it will link bacteria that are in close vicinity, thus making it inappropriate when
bacteria start to move around. In order to tackle the much more complex challenge of
tracking motile bacteria in time-lapse images, such as bacteria with a predatory behavior
(i.e., Myxococcus xanthus or Lysobacter [23]), a new generation of tracking tools will be
required. These tools will need to evaluate all possible cell-to-cell combinations to select the
most plausible tracking scenarios at the image scale, as opposed to currently looking in the
close vicinity of each cell. Alternatively, or additionally, a new generation of tracking tools
will also have to consider each bacteria’s movement vector to predict plausible cell move-
ment trajectories. This idea has recently been developed at the image scale (4), but move-
ment vectors will need to be extracted at the single cell level if we want to reach correct
tracking, even when bacteria change direction during time-lapse imaging. This will make
the task of cell tracking highly computationally challenging.

Analyzing images in an automated way has the advantage to improve reproducibility
compared to manual data extraction. Unfortunately, even the same piece of code can still
lead to variable results on different computers due to varying package versions and oper-
ating systems. STrack overcomes this issue as it is wrapped in a docker structure, in which
the versions of all necessary packages are hard-coded. STrack will, thus, more easily oper-
ate across different systems, facilitating the generation of consistent results, regardless of
the date or the computer on which it is launched. With reliably accurate and stable tools,
such as STrack, we aim to contribute to better detection and quantification of interesting
biological cell behaviors from imaging, thus facilitating our acquisition of real-time knowl-
edge on bacterial interactions.

MATERIALS ANDMETHODS
Algorithm. We designed STrack to track segmented objects, that result from manual or automated

single cell segmentation, between successive time point images. We adapted the tool to optimize track-
ing of rod-shaped and coccoid bacterial cells growing in planar conditions with single cell layers, such as
produced in microfluidic devices (4) or surface growth chambers (24). Bacterial cells typically divide by
elongation, with an elongated mother cell (Time point 0) (Fig. 8A and C) giving birth to 2 smaller daughter
cells (Time point 1) (Fig. 8B and D). STrack requires only 2 parameters, which relate directly to the images, to
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be set by the user: (i) the maximum distance (max_dist) used to look for the progeny of a mother cell (Fig. 8A
and B). Setting a maximum distance drastically reduces the time and memory STrack takes to run, rendering it
applicable to images containing hundreds of cells. (ii) The maximum angle (max_angle) formed by a mother
cell and its 2 daughter cells (Fig. 8C and D). This prevents STrack from allowing a mother cell to divide along
an axis that is less plausible from a biological point of view. The max_angle parameter is adjustable to the spe-
cies under scrutiny, and can be increased to allow the tracking of cells in which division leads to an almost per-
pendicular angle between the 2 daughter cells.

The algorithm’s pseudocode is provided in Text S1. It iterates over all images of a time-lapse. For every
set of 2 successive time points, the algorithm will compute distances and pixel overlap between objects in
the first image (we call them mother cells) and objects in the second image (daughter cells) that are in a pe-
rimeter delimited by the max_dist parameter. Based on the pixel overlap, the algorithm will then assign
mother-daughter links (starting with the maximum pixel overlap and then decreasingly looking for cells with
less overlap). For a second daughter cell to be assigned to a mother cell, the angle between the mother cell’s
main axis and the division axis needs to be smaller than the user-provided max_angle parameter. Once all
mother-daughter links have been assigned based on pixel overlap, there may remain cells with no mother
cells. At this point, the algorithm will switch from pixel overlap to distances between cells to identify any
potential missing tracks. It will assign mother-daughter links for increasingly larger mother-daughter cell dis-
tances (while still respecting the constraints on the maximum division angle defined above). If the distances
become larger than the user-defined max_dist parameter, the remaining cells will be assigned to new tracks.
This allows to start tracking cells that enter the image in the middle of a time-lapse.

The output of STrack is a single CSV-formatted table for every time point. These tables contain tracks
from mother cells to daughter cells, including their respective X and Y coordinates, thus allowing to man-
ually verify whether tracks were correctly assigned. Two additional excel-formatted tables are exported,
which contain the tracks and the cells from all combined time points, respectively. STrack also returns 1
image per time point, in which the links from the previous to the current image are shown. This facilitates
visual checking of the results, as one can directly see whether tracks were correctly assigned between cells
or not (Fig. 9). Wrongly assigned tracks can be corrected manually in 2 ways: (i) after visual inspection of
the images exported by STrack for every time point, one can manually edit edges in the corresponding csv
files. This solution doesn’t require any computational skills, but might be time-consuming. (ii) STrack’s
results can be imported into Cytoscape (25), an open-source software for visualizing and editing networks.
We provide instructions on how to edit STrack’s results in Cytoscape on the STrack github page: https://
github.com/Helena-todd/STrack.

Time-lapse imaging. Bacterial cells were grown on miniaturized nutrient agarose surfaces that
allow single cells to grow into monolayer microcolonies. Such miniaturized surfaces are enclosed in
a black anodized POC (Perfusion Open and Closed) chamber (H. Saur Laborbedarf), which is then
mounted on a Nikon ECLIPSE Ti Series inverted microscope coupled with a Hamamatsu C11440
22CU camera and a Nikon CFI Plan Apo Lambda 100X Oil objective, at 22°C. Time-lapse imaging was
controlled by a script in MicroManager Studio (v1.4.23). Phase contrast images were taken every 10
to 20 min, depending on the strains, with an exposure time of 30 ms. Cells were imaged on 8 to 10
randomly selected positions per surface, for a duration of 12 to 20 h, resulting in .tif files. We focused

FIG 8 STrack requires 2 user-defined parameters. The first parameter max_dist restricts the search
space around a mother cell (A) to look for daughter cells (B). The second parameter max_angle limits
the angle between the mother cell’s main orientation axis (C), and the division axis passing through
the centers of its 2 putative daughter cells (D). If the angle between these 2 axes is smaller than the
user-defined threshold, then STrack will assign tracks (represented as blue arrows) between the mother cell
and its 2 daughter cells.
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on 4 bacterial species isolated from soil: Pseudomonas putida F1 (26), Pseudomonas veronii
1YdBTEX2 (27), Lysobacter sp., and Rahnella sp. (the 2 latter species coming from Causevic et al.
[28]). Cultures were recovered from 280°C stocks, and grown individually on nutrient agar, from
which a single colony was transferred and grown in liquid media before being washed, diluted, and
inoculated on the microscale-surfaces for imaging. Both pseudomonads were grown with 1 mM suc-
cinate as sole carbon substrate in type 21C minimal medium added to the agarose (29). The other 2
strains were cultured with 10-fold diluted PTYG-medium (peptone, tryptone, yeast extract, and glu-
cose), as described by Bakken and Olsen (30).

Manual image processing. All time-lapses presented in this paper (including the 2 data sets derived
from the literature) were manually analyzed to generate ground-truth segmentation and tracking results.
Experts in the field of microbiology manually defined cell masks in these images using the QuPath open-
source software for bioimage analysis (31). This resulted in more than a thousand segmented cells over 22
time-lapse data series. The resulting segmented cells were then manually tracked in successive images by the
same experts, using the MaMut tracking Fiji plugin (32). This produced the set of manually extracted tracks
that we used as ground-truth to compare to the results of automated tracking tools.

Automated image processing. In order to assess the computation time necessary for completion
of the tracking task by the different tools presented in this paper, we re-used 5 positions of the P.
putida and Rahnella strains, while taking into account more time points than the ones that had been
manually annotated. We purposely selected time-lapses with high cell numbers in crowded images
(Table S1). These data sets were used to assess the running times only, not the tracking quality itself.
We segmented the cells in these images using the automated cell segmentation tool Omnipose (20).
The resulting segmented masks were given as input to STrack, TraxX, TrackMate, and DeLTA 2.0, and
their computation time was measured on a mac with a i7-9750H processor, 32Go RAM DDR4 running
Catalina operating system version 10.15.7.

Comparison of automated tracking tools. The cell masks resulting from manual cell segmentation
(as described above) were used as input for STrack and the 3 other automated tracking tools that we com-
pared it to. In addition, we included 2 publicly available image data sets from growing Streptococcus pneumo-
niae (17) and Pseudomonas protegens (18). To track cell objects using TrackMate, we used a procedure from
2021 described by J. W. Pylvanainen on the ImageJ plugins website (33). We did not set any filters on the spots
or the tracks, and used the following parameter values: frame-to-frame linking was set to 100 pixels, no gap
closing was allowed, and track segment splitting was allowed with a corresponding maximum distance of 50
pixels. In the case of TracX, we contacted the authors who generously shared a script with us (Text S2). For
DeLTA 2.0, the authors shared a script on gitlab that we used to inject our manual segmentation results, and
only used the tracking feature of DeLTA 2.0 (https://gitlab.com/dunloplab/delta/-/issues/44).

The results of STrack, TrackMate, DeLTA 2.0, and TracX were compared to the manually generated ground-
truth cell lineages by quantifying matching and discordant tracks, using the Jaccard index (34). This index
reflects the proportion of lineages that were correctly identified by a tool, among the total number of tracks
present in the tool’s results and the ground-truth tracks. A Jaccard index equal to 1 would correspond to a per-
fect match between the tracks returned by a tool and the ground-truth. To visually compare the tracks identi-
fied by the 4 tracking tools, they were plotted as a lineage tree or as a red-line network overlaid on cell images
using an in-house R script (see Text S3).

Data availability. The data underlying this article are available on Zenodo: https://doi.org/10.5281/
zenodo.7670637.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, TIF file, 13 MB.

FIG 9 Visual cell tracking validation. For each time point, STrack exports the original cell-mask-image
with an overlay of the identified cell tracks. These tracks (represented as red lines) start in the center
of mother cells in the image corresponding to the previous time point, and end in the center of their
daughter cells in the current image. In this example, STrack identified 5 cells at time point 10, the majority
of which divided between time points 10 and 11. These divisions can be seen in the image corresponding
to time point 11 as red lines that originate from the centers of their mother cells in time point 10, and lead
to their respective daughter cells in time point 11. In this example, STrack even managed to accurately
identify the progeny of the 2 cells that were very close to the left image border in time point 11.
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TABLE S1, TIF file, 4.4 MB.

ACKNOWLEDGMENTS
This work was supported by the Swiss National Science Foundation Sinergia program

[grant number CRSII5_189919/1] and by the National Center of Competence in Research
NCCR Microbiomes.

We kindly thank Andreas Cuny for providing the MATLAB script for TracX and helping to
troubleshoot with the package. We also acknowledge the work of Elvire Sarton-Lohéac,
Isaline Guex, Senka Causevic, and Maxime Batsch, who helped with manual expert cell
segmentation and cell tracking in countless images.

REFERENCES
1. Kron SJ. 2002. Digital time-lapse microscopy of yeast cell growth. Methods

Enzymol 351:3–15. https://doi.org/10.1016/S0076-6879(02)51838-3.
2. Delavat F, Moritz R, van der Meer JR. 2019. Transient replication in special-

ized cells favors transfer of an integrative and conjugative element. mBio
10:e01133-19. https://doi.org/10.1128/mBio.01133-19.

3. Panigrahi S, Murat D, Le Gall A, Martineau E, Goldlust K, Fiche JB, Rombouts S,
Nollmann M, Espinosa L, Mignot T. 2021. Misic, a general deep learning-based
method for the high-throughput cell segmentation of complex bacterial com-
munities. Elife 10:e65151. https://doi.org/10.7554/eLife.65151.

4. Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. 2020. Short-range
interactions govern the dynamics and functions of microbial communities.
Nat Ecol Evol 4:366–375. https://doi.org/10.1038/s41559-019-1080-2.

5. Jeckel H, Drescher K. 2021. Advances and opportunities in image analysis of
bacterial cells and communities. FEMS Microbiol Rev 45:fuaa062. https://doi
.org/10.1093/femsre/fuaa062.

6. Ulman V, Maska M, Magnusson KEG, Ronneberger O, Haubold C, Harder
N, Matula P, Matula P, Svoboda D, Radojevic M, Smal I, Rohr K, Jalden J, Blau
HM, Dzyubachyk O, Lelieveldt B, Xiao P, Li Y, Cho SY, Dufour AC, Olivo-Marin
JC, Reyes-Aldasoro CC, Solis-Lemus JA, Bensch R, Brox T, Stegmaier J, Mikut R,
Wolf S, Hamprecht FA, Esteves T, Quelhas P, Demirel O, Malmstrom L, Jug F,
Tomancak P, Meijering E, Munoz-Barrutia A, Kozubek M, Ortiz-de-Solorzano C.
2017. An objective comparison of cell-tracking algorithms. Nat Methods 14:
1141–1152. https://doi.org/10.1038/nmeth.4473.

7. Meacock OJ, Doostmohammadi A, Foster KR, Yeomans JM, Durham WM.
2021. Bacteria solve the problem of crowding by moving slowly. Nat Phys
17:205–210. https://doi.org/10.1038/s41567-020-01070-6.

8. Stylianidou S, Brennan C, Nissen SB, Kuwada NJ, Wiggins PA. 2016. Super-
Segger: robust image segmentation, analysis and lineage tracking of bacterial
cells. Mol Microbiol 102:690–700. https://doi.org/10.1111/mmi.13486.

9. Versari C, Stoma S, Batmanov K, Llamosi A, Mroz F, Kaczmarek A, Deyell M,
Lhoussaine C, Hersen P, Batt G. 2017. Long-term tracking of budding
yeast cells in brightfield microscopy: CellStar and the evaluation platform.
J R Soc Interface 14. https://doi.org/10.1098/rsif.2016.0705.

10. Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E,
Bednarek SY, Shorte SL, Eliceiri KW. 2017. TrackMate: an open and exten-
sible platform for single-particle tracking. Methods 115:80–90. https://doi
.org/10.1016/j.ymeth.2016.09.016.

11. Fazeli E, Roy NH, Follain G, Laine RF, von Chamier L, Hanninen PE, Eriksson JE,
Tinevez JY, Jacquemet G. 2020. Automated cell tracking using StarDist and
TrackMate. F1000Res 9:1279. https://doi.org/10.12688/f1000research.27019.1.

12. Omelchenko AA, Huda A, Castaneda AN, Vaden TJ, Ni L. 2021. Using
TrackMate to analyze Drosophila larval and adult locomotion. bioRxiv.
https://doi.org/10.1101/2021.09.28.462241.

13. Ershov D, Phan M-S, Pylvänäinen JW, Rigaud SU, Le Blanc L, Charles-Orszag A,
Conway JRW, Laine RF, Roy NH, Bonazzi D, Duménil G, Jacquemet G, Tinevez
J-Y. 2021. Bringing TrackMate in the era of machine-learning and deep-learn-
ing. bioRxiv. https://doi.org/10.1101/2021.09.03.458852.

14. Cuny AP, Ponti A, Kundig T, Rudolf F, Stelling J. 2022. Cell region fingerprints
enable highly precise single-cell tracking and lineage reconstruction. Nat
Methods 19:1276–1285. https://doi.org/10.1038/s41592-022-01603-2.

15. O'Connor OM, Alnahhas RN, Lugagne JB, Dunlop MJ. 2022. DeLTA 2.0: A deep
learning pipeline for quantifying single-cell spatial and temporal dynamics.
PLoS Comput Biol 18:e1009797. https://doi.org/10.1371/journal.pcbi.1009797.

16. Boettiger C. 2015. An introduction to Docker for reproducible research.
SIGOPS Oper Syst Rev 49:71–79. https://doi.org/10.1145/2723872.2723882.

17. Gallay C, Sanselicio S, Anderson ME, Soh YM, Liu X, Stamsas GA, Pelliciari
S, van Raaphorst R, Denereaz J, Kjos M, Murray H, Gruber S, Grossman AD,
Veening JW. 2021. CcrZ is a pneumococcal spatiotemporal cell cycle regu-
lator that interacts with FtsZ and controls DNA replication by modulating
the activity of DnaA. Nat Microbiol 6:1175–1187. https://doi.org/10.1038/
s41564-021-00949-1.

18. Vacheron J, Heiman CM, Keel C. 2021. Live cell dynamics of production, explo-
sive release and killing activity of phage tail-like weapons for Pseudomonas kin
exclusion. Commun Biol 4:87. https://doi.org/10.1038/s42003-020-01581-1.

19. Sulser S, Vucicevic A, Bellini V, Moritz R, Delavat F, Sentchilo V, Carraro N,
van der Meer JR. 2022. A bistable prokaryotic differentiation system under-
lying development of conjugative transfer competence. PLoS Genet 18:
e1010286. https://doi.org/10.1371/journal.pgen.1010286.

20. Cutler KJ, Stringer C, Lo TW, Rappez L, Stroustrup N, Brook Peterson S,
Wiggins PA, Mougous JD. 2022. Omnipose: a high-precision morphology-
independent solution for bacterial cell segmentation. Nat Methods 19:
1438–1448. https://doi.org/10.1038/s41592-022-01639-4.

21. Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M,
Ales J, Beier T, Rudy M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny
A, Zhang C, Koethe U, Hamprecht FA, Kreshuk A. 2019. ilastik: interactive
machine learning for (bio)image analysis. Nat Methods 16:1226–1232.
https://doi.org/10.1038/s41592-019-0582-9.

22. Haubold C, Schiegg M, Kreshuk A, Berg S, Koethe U, Hamprecht FA. 2016.
Segmenting and tracking multiple dividing targets using ilastik, p 199–229.
In De Vos WH, Munck S, Timmermans J-P (ed), Focus on bio-image infor-
matics. Springer Cham, Manhattan, NY.

23. Seef S, Herrou J, de Boissier P, My L, Brasseur G, Robert D, Jain R, Mercier
R, Cascales E, Habermann BH, Mignot T. 2021. A Tad-like apparatus is
required for contact-dependent prey killing in predatory social bacteria.
Elife 10:e72409. https://doi.org/10.7554/eLife.72409.

24. Reinhard F, van der Meer JR. 2010. Microcolony growth assays, p 3562–3570.
In Timmis KN, de Lorenzo V, McGenity T, van der Meer JR (ed), Handbook of
hydrocarbon and lipid microbiology, vol 5. Springer Verlag, Berlin Heidelberg,
Germany.

25. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. 2011. Cytoscape 2.8:
new features for data integration and network visualization. Bioinfor-
matics 27:431–432. https://doi.org/10.1093/bioinformatics/btq675.

26. Zylstra GJ, McCombie WR, Gibson DT, Finette BA. 1988. Toluene degrada-
tion by Pseudomonas putida F1: genetic organization of the tod operon.
Appl Environ Microbiol 54:1498–1503. https://doi.org/10.1128/aem.54.6
.1498-1503.1988.

27. Junca H, Pieper DH. 2004. Functional gene diversity analysis in BTEX con-
taminated soils bymeans of PCR-SSCP DNA fingerprinting: comparative diver-
sity assessment against bacterial isolates and PCR-DNA clone libraries. Environ
Microbiol 6:95–110. https://doi.org/10.1046/j.1462-2920.2003.00541.x.

28. Causevic S, Tackmann J, Sentchilo V, von Mering C, van der Meer JR. 2022.
Reproducible propagation of species-rich soil bacterial communities sug-
gests robust underlying deterministic principles of community formation.
mSystems 7:e0016022. https://doi.org/10.1128/msystems.00160-22.

STrack: A Tool to Track Cells in Time-Lapse Images mSphere

March/April 2023 Volume 8 Issue 2 10.1128/msphere.00658-22 11

https://doi.org/10.1016/S0076-6879(02)51838-3
https://doi.org/10.1128/mBio.01133-19
https://doi.org/10.7554/eLife.65151
https://doi.org/10.1038/s41559-019-1080-2
https://doi.org/10.1093/femsre/fuaa062
https://doi.org/10.1093/femsre/fuaa062
https://doi.org/10.1038/nmeth.4473
https://doi.org/10.1038/s41567-020-01070-6
https://doi.org/10.1111/mmi.13486
https://doi.org/10.1098/rsif.2016.0705
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.12688/f1000research.27019.1
https://doi.org/10.1101/2021.09.28.462241
https://doi.org/10.1101/2021.09.03.458852
https://doi.org/10.1038/s41592-022-01603-2
https://doi.org/10.1371/journal.pcbi.1009797
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1038/s41564-021-00949-1
https://doi.org/10.1038/s41564-021-00949-1
https://doi.org/10.1038/s42003-020-01581-1
https://doi.org/10.1371/journal.pgen.1010286
https://doi.org/10.1038/s41592-022-01639-4
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.7554/eLife.72409
https://doi.org/10.1093/bioinformatics/btq675
https://doi.org/10.1128/aem.54.6.1498-1503.1988
https://doi.org/10.1128/aem.54.6.1498-1503.1988
https://doi.org/10.1046/j.1462-2920.2003.00541.x
https://doi.org/10.1128/msystems.00160-22
https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00658-22


29. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Briggs
Phillips G. 1981. Manual of methods for general bacteriology. American Soci-
ety for Microbiology, Washington, DC.

30. Bakken LR, Olsen RA. 1987. The relationship between cell size and viability of
soil bacteria. Microb Ecol 13:103–114. https://doi.org/10.1007/BF02011247.

31. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG,
Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA,
Salto-Tellez M, Hamilton PW. 2017. QuPath: Open source software for
digital pathology image analysis. Sci Rep 7:16878. https://doi.org/10.1038/
s41598-017-17204-5.

32. Wolff C, Tinevez JY, Pietzsch T, Stamataki E, Harich B, Guignard L,
Preibisch S, Shorte S, Keller PJ, Tomancak P, Pavlopoulos A. 2018.
Multi-view light-sheet imaging and tracking with the MaMuT software

reveals the cell lineage of a direct developing arthropod limb. Elife 7:
e34410. https://doi.org/10.7554/eLife.34410.

33. Pylvänäinen JW. 2021. TrackMate-Label-Image-Detector, on ImageJ.net.
Accessed 12 March 2023. https://imagej.net/plugins/trackmate/trackmate
-label-image-detector.

34. Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF, Gong Y,
Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ,
Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KE,
Jalden J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F,
Tinevez JY, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan HW, Tsai
YS, Ortiz de Solorzano C, Olivo-Marin JC, Meijering E. 2014. Objective compari-
son of particle tracking methods. Nat Methods 11:281–289. https://doi.org/10
.1038/nmeth.2808.

STrack: A Tool to Track Cells in Time-Lapse Images mSphere

March/April 2023 Volume 8 Issue 2 10.1128/msphere.00658-22 12

https://doi.org/10.1007/BF02011247
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.7554/eLife.34410
https://imagej.net/plugins/trackmate/trackmate-label-image-detector
https://imagej.net/plugins/trackmate/trackmate-label-image-detector
https://doi.org/10.1038/nmeth.2808
https://doi.org/10.1038/nmeth.2808
https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00658-22

	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	Algorithm.
	Time-lapse imaging.
	Manual image processing.
	Automated image processing.
	Comparison of automated tracking tools.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

