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Abstract 

It is estimated that around 230 people die each year due to radon (222Rn) exposure in Switzerland. 222Rn occurs mainly in 

closed environments like buildings and originates primarily from the subjacent ground. Therefore it depends strongly on 

geology and shows substantial regional variations. Correct identification of these regional variations would lead to substantial 

reduction of 222Rn exposure of the population based on appropriate construction of new and mitigation of already existing 

buildings. Prediction of indoor 222Rn concentrations (IRC) and identification of 222Rn prone areas is however difficult since IRC 

depend on a variety of different variables like building characteristics, meteorology, geology and anthropogenic factors. 

The present work aims at the development of predictive models and the understanding of IRC in Switzerland, taking into 

account a maximum of information in order to minimize the prediction uncertainty. The predictive maps will be used as a 

decision-support tool for 222Rn risk management. The construction of these models is based on different data-driven 

statistical methods, in combination with geographical information systems (GIS).  

In a first phase we performed univariate analysis of IRC for different variables, namely the detector type, building category, 

foundation, year of construction, the average outdoor temperature during measurement, altitude and lithology. All variables 

showed significant associations to IRC. Buildings constructed after 1900 showed significantly lower IRC compared to earlier 

constructions. We observed a further drop of IRC after 1970. In addition to that, we found an association of IRC with altitude. 

With regard to lithology, we observed the lowest IRC in sedimentary rocks (excluding carbonates) and sediments and the 

highest IRC in the Jura carbonates and igneous rock. The IRC data was systematically analyzed for potential bias due to 

spatially unbalanced sampling of measurements. In order to facilitate the modeling and the interpretation of the influence of 

geology on IRC, we developed an algorithm based on k-medoids clustering which permits to define coherent geological 

classes in terms of IRC. We performed a soil gas 222Rn concentration (SRC) measurement campaign in order to determine the 

predictive power of SRC with respect to IRC. We found that the use of SRC is limited for IRC prediction. 

The second part of the project was dedicated to predictive mapping of IRC using models which take into account the 

multidimensionality of the process of 222Rn entry into buildings. We used kernel regression and ensemble regression tree for 

this purpose. We could explain up to 33% of the variance of the log-transformed IRC all over Switzerland. This is a good 

performance compared to former attempts of IRC modeling in Switzerland. As predictor variables we considered 

geographical coordinates, altitude, outdoor temperature, building type, foundation, year of construction and detector type. 

Ensemble regression trees like random forests allow to determine the role of each IRC predictor in a multidimensional 

setting. We found spatial information like geology, altitude and coordinates to have stronger influences on IRC than building 

related variables like foundation type, building type and year of construction. Based on kernel estimation we developed an 

approach to determine the local probability of IRC to exceed 300 Bq/m3. In addition to that we developed a confidence index 

in order to provide an estimate of uncertainty of the map. All methods allow an easy creation of tailor-made maps for 

different building characteristics. 

Our work is an essential step towards a 222Rn risk assessment which accounts at the same time for different architectural 

situations as well as geological and geographical conditions. For the communication of 222Rn hazard to the population we 

recommend to make use of the probability map based on kernel estimation. The communication of 222Rn hazard could for 

example be implemented via a web interface where the users specify the characteristics and coordinates of their home in 

order to obtain the probability to be above a given IRC with a corresponding index of confidence. Taking into account the 

health effects of 222Rn, our results have the potential to substantially improve the estimation of the effective dose from 222Rn 

delivered to the Swiss population. 

  



3 

 

1. Introduction 

1.1. Radon risk 

222Rn is a radioactive gas which is a decay product of uranium (238U) and radium (226Ra). 238U occurs everywhere in 

nature in form of traces and consequently 222Rn can be found everywhere as well. Different types of rocks bear 

different amounts of 222Rn depending on their amounts of 238U and 226Ra. In soil gas 222Rn can easily reach activity 

concentrations above 100 kBq/m3 (Dubois 2005; Neznal 2005; Kemski et al. 2006). In the outdoor air 222Rn is 

strongly diluted and occurs hence only in negligible amounts (4-41 Bq/m3 (Vaupotič et al. 2010)). However, in 

closed environments like buildings 222Rn can occur in substantial concentrations above 1000 Bq/m3 (Dubois 2005). 

Thoron ( 220Rn) is an isotope of radon that is presumed to have similar health effects than 222Rn. Due to lack of 
220Rn measurements in Switzerland, this study only addresses the 222Rn problematic. Hence, with the term radon 

we refer exclusively to 222Rn throughout this study. 

Most of the 222Rn which a human inhales is immediately exhaled again. However, the short-lived decay products 

of 222Rn, in particular the -emitting radionuclides 218Po and 214Po, can be deposited in the lungs and interact with 

biological tissue (Figure 1). The impact of one  particle can already lead to DNA damage of cell. Thus, a threshold 

indoor 222Rn concentration (IRC) for cancer risk is commonly not hypothesized. 

 

Figure 1 Decay products of 
222

Rn in the human respiratory tract. 
222

Rn itself is exhaled directly after inhalation and is thus not considered 

to be the direct cause of lung cancer 

The association between 222Rn and lung cancer has been studied the first time in ore miners from the region of 

Schneeberg in the Ore Mountains in eastern Germany. Lung cancer occurring in miners caused by 222Rn was 

therefore known as “Schneeberg disease”. Since then several studies have been carried out in uranium miners 

and showed significant association between lung cancer and 222Rn concentrations. It was therefore necessary to 

investigate the health effect of IRC on the general population. The results of initial attempts to study this effect 

showed however too much variation in between studies. For this purpose pooled studies have been carried out in 
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order to combine the results of the former studies. These studies have been performed in North America, China 

and Europe. The American study was a combined analysis of 7 north American case-control studies (Krewski et al. 

2005). They found an increase of lung cancer risk of 11% (95% confidence interval 0-28%) per 100 Bq/m3 of IRC 

based on a total of around 3700 cases and around 5000 controls. In China (Lubin et al. 2004) a pooled analysis of 

two studies with a total of around 1000 cases and around 2000 controls showed an increase of lung cancer risk of 

13% (95% confidence interval 1-36%) per 100 Bq/m3. The European study was a pooling of 13 former case-control 

studies with a total of around 7000 cases and 14000 controls (Darby et al. 2005). The increase of risk in lung 

cancer was 8% (95% confidence interval 3-16%) per 100 Bq/m3 measured IRC. However after correction for 

regression dilution due to IRC measurement uncertainty, the increase of risk resulted to 16% (95% confidence 

interval 5-31%) per 100 Bq/m3. 

The three studies showed similar risk estimates and provide overwhelming evidence for an association between 

lung cancer and IRC in the general population. (Zeeb and Shannoun 2009) estimate that after correction for 

random errors in IRC measurements in the Chinese and the North American study, a weighted average of the 

three studies could yield an increase in risk of 20% per 100 Bq/m3. This result is however only given informally in 

(Zeeb and Shannoun 2009). A pooled combination of all three studies will give a more precise estimate of the 

association between lung cancer and IRC after considering the random error in IRC measurements. 

(Menzler et al. 2008) estimated the population attributable fraction (PAF) in Switzerland for lung cancer due to 

IRC to 8.3%. The PAF is the percentage reduction of cases of a disease after the elimination of a given risk factor 

(Rockhill et al. 1998). (Menzler et al. 2008) assumed an average IRC in Switzerland of 78 Bq/m3 and based their 

analysis on the increase in lung cancer risk of 16% per 100 Bq/m3 determined by (Darby et al. 2005). This results 

to around 230 deaths each year in Switzerland due to lung cancer caused by IRC. The PAF varied substantially 

among cantons. The highest PAFs were obtained in the cantons Jura (15.5%), Ticino (15.1%) and Neuchatel 

(14.4%). However, due to larger populations, the highest numbers of deaths due to lung cancer caused by IRC 

were estimated in Zürich (36), Bern (29) and Vaud (24). 

The creation of maps with a higher spatial resolution that can be used for different buildings types can 

substantially improve such calculations. 

1.1.1. Machine learning 

The entry and propagation of 222Rn concentrations in buildings are complex processes which are difficult to 

describe by parametric models. IRC data are usually not collected by trained professionals but by the home 

owners. Furthermore IRC are influenced by a variety of different variables like building characteristics that are in 

themselves qualitative information that cannot be included into a model that is derived from first principles. In 

order to model IRC it is thus inevitable to make use of empirical simplifications to represent the IRC data 

generating process. Traditional parametric models make usually strong assumptions on the interaction among the 

involved variables and their distributions, like the postulation of linear relation between IRC and predictor 

variables and their normal distribution. These assumptions are however not met in the case of IRC. 

Machine learning is a field of research that proposed a huge variety of different methods in the last 30 years in 

order to overcome these limitations. Machine learning algorithms aim at extracting information and learning from 

data without making too strong assumptions about the data generating process and the involved variables. 
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Two major paradigms exist among machine learning methods: Supervised and unsupervised learning. Supervised 

learning consists of learning rules to assign labels or values to an outcome variable based on previous 

observations. Consider for example, an algorithm that is supposed to detect faces of members of the Swiss 

Federal Council among many other random portrait photos. In order to correctly classify a photo, the algorithm 

has to get information about the faces of the councilors prior to the classification task. In order to teach the 

algorithm the rules of how to assign an image to a councilor, the algorithm is trained with existing photos of Swiss 

Federal Council members. Training the algorithm based on existing photos is analogous to having a supervisor 

who tells the algorithm how faces of the councilors look like. 

Unsupervised learning describes the process of creating variable assignment rules based on patterns in the data. 

An unsupervised algorithm could for example analyze a huge amount of portrait photos of members of the Swiss 

Federal Council without having information about which photo belongs to which councilor. However, defining a 

similarity measure for the faces on the photos, the algorithm can group the photos according to the councilor 

who is shown on it. Hence, the algorithm is grouping the photos without having prior information about which 

councilor belongs to which photo. This is in analogy to the situation where no supervisor is present who is telling 

the algorithm how to assign the images. 

Unsupervised learning creates new rules and can be used to find structure in data. Supervised learning learns and 

generalizes rules which have been observed previously and is typically used for prediction tasks (Figure 2). 

 

Figure 2 Scheme of supervised and unsupervised machine learning. The corresponding methods we used in this study are listed on the 

right of the figure 

In order to model and understand the data generating process of IRC in Switzerland we used different supervised 

and unsupervised learning methods in this work. 

1.1.2. Predictive analysis via supervised learning algorithms 

In the following section several supervised learning methods are presented that were used throughout this PhD 

project.  
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1.1.2.1. Kernel regression 

The prediction of an dependent variable y  based on a set of independent variables x  can be formulated in the 

following equation (Racine and Li 2004):  

    y g x   (1) 

     |g E y x  is the expected value of y  conditional on x  and   a random error.  |E y x  can be estimated by 

the approximation of the conditional probability density function  |f y x of y  given x  via the use of kernel 

functions. This results to the following weighted average 
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     (Racine and Li 2004) (2) 

Each observation iY  is weighted by a kernel function   , , , iK x X . The choice of   , , , iK x X  in this study is 

described in (Kropat et al. 2015b).   and   are vectors of smoothing parameters for continuous and categorical 

variables respectively and iX  is the i th observations of the predictor variables x . x  indicates the point in the 

predictor space at which y  is estimated. A derivation of formula (2) can be found in Annex A1. 

Kernel density estimation has the benefit that many conditional statistical indicators, like conditional mean 

values, probabilities and quantiles, can be easily estimated. However, the bandwidth estimation can be 

computationally more intensive compared to the other methods used in this study. 

1.1.2.2. Random forests and Bayesian additive regression trees (BART) 

Ensemble regression trees are methods that perform averaging over several regression tree models. The 

regression trees that are the basis of the models used in this PhD thesis are binary trees that aim at partitioning 

the predictor space in rectangular regions. For each region a simple model for the outcome variable y  is 

calculated. In the case of random forests the model consists of the arithmetic mean of all observations in the 

rectangular predictor region. In BART, the estimate of y  in a given predictor space region consists of drawing a 

random number from a Gaussian distribution. The regional model is accepted or not based on a posterior ratio 

criterion. A more comprehensive explanation of BART can be found in Annex A2. 

The generation of regression tree ensembles is based on stochastic approaches. In random forests the regression 

tree ensemble is produced by a special form of bootstrap aggregation. In BART the tree ensemble is generated 

based on a Metropolis Hastings algorithm. 

We found random forests to have the best predictive performance of all supervised learning methods of this 

work. Random forests are computationally fast and in addition to that a powerful tool in order to analyze the 

importance of the involved predictor variables. BART provides good predictability as well and has the advantage 

that it yields directly an estimate of the prediction uncertainty. 
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1.1.2.3. Support vector regression (SVR) 

SVR is a supervised learning method that is based on the principle of regularization. Regularization is the principle 

of keeping the complexity of a model possibly small. This means in practice that large effect sizes are penalized 

during the model selection process (Cherkassky and Mulier 2007). Roughly speaking the principle of SVR can be 

divided into two parts: The statement of a linear model which is chosen based on regularization constraints. In 

order to cope with non-linearity, the predictor variables are transformed into a higher dimensional space by 

means of kernel functions. 

The penalization of complexity keeps the risk of overfitting small in SVR. This makes SVR particularly suitable for 

problems with few observations but many variables. However compared to kernel regression and ensemble 

regression trees SVR has the drawback that categorical variables have to be taken into account as dummy 

variables. This can substantially increase the dimensionality of the model which is at the cost of prediction 

performance. 

1.1.2.4. Revealing structure in data via unsupervised learning 

In order to find a classification of lithological units in terms of their IRC characteristics, we performed k-medoids 

clustering of lithological units based on partitioning around medoids (PAM). A medoid of a point ensemble is a 

point which has the minimum average distance to all the other ensemble points (Xu and Wunsch 2008). 

PAM is an iterative two step procedure. Prior to the initiation of the algorithm, a number k  of clusters is defined. 

The algorithm is initiated by random assignment of k  points as cluster medoids. Then each point of the dataset is 

assigned to its nearest medoid. In this manner k  clusters are created. In the following step for each cluster the 

medoid points are recalculated. The two steps of reassigning points to its nearest medoid and the re-estimation 

of the new cluster medoids is repeated until convergence. 

k -medoids has the advantage that it only needs information on the distance between points. No absolute 

position in a vector space is needed. This is very useful for the clustering of lithological units in this study, since we 

defined the pair wise distance between lithological units via Kolmogorov distances of the corresponding IRC 

distributions. Furthermore, k -medoids is very robust to outliers since the position of a medoid is given by a data-

point. The variation of the position of a medoid is hence limited by the position of the points in the data set. 

1.2. The goal of the study 

The present work aims at the development of models for the prediction and the understanding of IRC in 

Switzerland, taking into account a maximum of information in order to minimize the prediction uncertainty. The 

predictive maps will be used as a decision-support tool for radon risk management. The construction of these 

models is based on different data-driven statistical methods, in combination with geographical information 

systems (GIS). 
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2. Brief summary of principle results 

We calibrated and characterized a solid state nuclear track detector (SSNTD) reader system (Kropat et al. 2015a) 

to understand the comparability of different IRC measurement systems, the uncertainty influence on IRC from the 

measurement system and the role of 222Rn concentrations during the transport of an SSNTD between 

measurement laboratory and measured buildings. (Kropat et al. 2014) gives an insight into the univariate influences 

of several potential radon determinants. The analyses were carried out by visualizing simultaneously the possible 

bias due to spatially inhomogenous distributions of IRC sampling. (Kropat et al. 2015b) reports on modeling IRC 

based on kernel estimation. The approach permits to develop predictive as well as probability maps. In addition to 

that we developed a confidence index map in order to provide an uncertainty indication for a local IRC probability 

estimation. Moreover, (Kropat et al. 2015c) describes predictive IRC mapping using ensemble regression tree in 

order to improve predictability of kernel regression and other former approaches (Hauri et al. 2012). Ensemble 

regression trees provide powerful tools to analyze the influence of a predictor variable in a multidimensional setting. 

Furthermore, based on unsupervised learning, we found an approach to group lithological units according to their 

IRC characteristics. Finally, we carried out a field study in order to assess the potential of SRC as an IRC predictor. A 

short description of this study can be found in Annex A3. 

2.1. Calibration of the Politrack® system based on CR39 solid state nuclear track detectors for passive 

indoor radon concentration measurements (Kropat et al. 2015a) 

The biggest part the Swiss IRC data base consists of measurements carried out with SSNTD. We calibrated a SSNTD 

reader system and developed tools to monitor the stability of the system in collaboration with the Paul-Scherrer 

Institute (PSI), Switzerland. The reference exposures for the calibration were performed in the radon chamber of the 

Secondary Calibration Laboratory at the PSI. In order to calculate the calibration curve and the corresponding 

uncertainty we used a Monte Carlo fitting procedure (Figure 3a). To monitor the long term stability of the system, 

we developed a device to produce reference SSNTDs which are accompanied to the SSNTD development and 

reading procedure of each read out series (Figure 3b). We determined the characteristic limits for the detection of a 

potential drift of the system based on ISO Standard 11929. The overall uncertainty of the system was determined to 

8%. To compare the performance of the system and our calibration, we performed a comparison measurement in 

30 Swiss schools with commercially available SSNTDs from the manufacturer Landauer Nordic. Both systems showed 

good accordance.  Finally we explored the potential influence of IRC concentrations during transport. For this 

purpose we exposed 40 SSNTDs welded in plastic bags to an exposure of about 15000 kBq h m-3 in the PSI. Our 

results indicate sufficient air tightness of the detector packaging. 
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Figure 3a) Calibration curve of the Politrack SSNTD reader system. b) Device to produce reference SSNTDs in order to 
monitor long term changes of the Politrack system (1 Shutter to screen Am-241 source; the reference SSNTD is placed here 
for irradiation, 2 button to start exposure, 3 compressed air to open shutter, 4 body housing with shutter mechanics) 

2.2. Major influencing factors of indoor radon concentrations in Switzerland (Kropat et al. 2014) 

Before being able to model and to map IRC we determined the main factors that influence this quantity through 

univariate analysis (Kropat et al. 2014). We had about 212 000 IRC in about 136 000 buildings at our disposal. We 

took into account the variables foundation type, year of construction and building type, altitude, average outdoor 

temperature during the measurement and the lithology. The principle approach was to graphically compare the 

95% confidence intervals of the classes of each variable. In order to assess bias due to spatially inhomogeneous 

distributions of sampling, we created a map of the spatial distribution of IRC sampling for each class of each 

variable. The amount of spatial clustering in the IRC data was measured via fractal dimension. We found 

significant associations between IRC and all covariables taken into consideration. Electret detectors revealed 35% 

higher IRC measurements than track detectors. Concerning building type, we found IRC of apartments to be 

considerably lower than detached buildings. In addition to that, concrete foundation showed the lowest IRC 

among all foundation types. Buildings constructed after 1900 revealed remarkably reduced IRC compared to older 

buildings. We observed a further decrease after 1970. Moreover, the univariate analyses showed a significant 

association between IRC and outdoor temperature estimates. The lowest IRC occurred at the highest 

temperatures. Furthermore, IRC are associated with altitude. With respect to lithology, IRC in carbonate rock in 

the Jura Mountains are by a factor 2 higher than in carbonate rock in the Alps. The lowest IRC we observed in 

sedimentary rock and sediment and the highest IRC in igneous rock and in carbonate rock from the Jura 

Mountains. A map of the lithological units can be found in Figure 4a and the mean IRC for each lithological unit in 

Figure 4b. In order to study IRC differences within buildings we compared IRC between different floor levels. 

Finally, we produced a probability map to assess the risk of exceeding an IRC of 300 Bq/m3 using basic 

geostatistical techniques 

a) b) 
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Figure 4 a) Spatial distribution of generalized lithological classes in Switzerland b) Mean IRC and 95% confidence intervals versus 

generalized lithological classes 

2.3. Predictive analysis and mapping of indoor radon concentrations in a complex environment using 

kernel estimation: an application to Switzerland (Kropat et al. 2015b) 

In this article we used kernel estimation in order to create maps indicating the local mean IRC as well as the 

probability to exceed an IRC of 300 Bq/m3 (Figure 5a) for specific building characteristics. Furthermore we 

developed a confidence index in order to indicate the confidence on a local probability value (Figure 5b). After an 

update of the IRC data, we had about 240 000 IRC measurements available in around 150 000 buildings. Based on 

the results of the univariate analysis we took into account the predictor variables: building type, foundation type, 

year of construction, detector type, geographical coordinates, altitude, temperature and lithology. Categorical 

and continuous variables were accounted for by the choice of appropriate kernels. 

The kernel regression yielded an R2 of 28%. We evaluated the importance of each variable in the model based on 

the corresponding bandwidth value and explored the mapping properties of the method on different spatial 

scales. In addition to that, the method allows obtaining different maps for different architectural characteristics. 

Maps produced for detached buildings with concrete foundation revealed substantially smaller IRC than maps for 

farms with earth foundation. 

  

Figure 5a) Map of the local probability to exceed 300 Bq/m
3
 b) Confidence index for the probability to exceed 300 

Bq/m
3
. Both maps correspond to detached houses, with concrete foundation, built between 1900-1970, Gammadata 

SSNTDs and an outdoor temperature of 3.5° 

a) b) 

a) b) 
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2.4. Improved predictive mapping of IRC using ensemble regression trees based on automatic 

clustering of geological units (Kropat et al. 2015c) 

In this study we took advantage of ensemble regression trees in order to improve the predictability of modeling 

compared to kernel regression (Kropat et al. 2015b) and other approaches that were used in Switzerland (Hauri et 

al. 2012). For this purpose we used the same data set as in the kernel regression part (Kropat et al. 2015b) and 

performed data driven modeling based on random forests and BART. Random forests were able to explain 33% of 

the variation in IRC data and BART 29%. Since BART is based on posterior sampling of regression tree ensembles, 

the prediction uncertainty can directly be obtained by calculating the standard deviation of the posterior sample. 

Random forests provide a convenient way to evaluate the importance of a predictor variable in a 

multidimensional setting. We found that building related variables have a less important influence on IRC than 

location/ geology related variables. 

It is common to group lithological classes into subgroups in order to obtain models which are easier to interpret. 

Many of these approaches group lithological classes based on major rock types like igneous rock, sedimentary 

rock, metamorphic rock etc. However the IRC characteristics can be very different for lithological classes within 

major rock types. Our approach directly groups lithological classes according to their IRC characteristics. We 

calculated the Kolmogorov distance between IRC distributions of all pairs of lithological classes. The Kolmogorov 

distance served as similarity metric in order to perform k-medoids clustering (Figure 6a). The explained variance 

of the original classes was 6.5% whereas the explained variance of the regrouped lithological units resulted to 

6.3%. Mapping the regrouped lithological units yields a detailed representation of lithological areas in terms of 

their IRC characteristics (Figure 6b). 

 

 

 

Figure 6a) Multidimensional scaling representation of Kolmogorov distances between IRC distributions of lithological 

classes. The different groups resulting from k-medoid clustering are indicated by different colors b) Map of clustered 

lithological units. Areas of lakes, glaciers or of lithological units for which not enough IRC measurements were available 

are indicated in grey 

  

a) 
b) 
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3. Discussion 

Taking into account a maximum of information, we developed a variety of approaches in order to improve the 

current Swiss IRC mapping (Figure 7). 

3.1. IRC data 

IRC measurements in Switzerland are highly clustered. The 63 950 buildings we examined in (Kropat et al. 2014) 

have a fractal dimension of 1.15 whereas a dimension of 2 is expected for a perfectly random spatial distribution. 

After declustering, the fractal dimension of the IRC measurements resulted to 1.42 with 32 151 buildings. This 

implies that there is still some clustering present. However stronger declustering would reduce the number of 

observations, such that not enough measurements would be available for the analyses. The IRC measurements 

have a mean value of 198 Bq/m3 for the unclustered and 189 Bq/m3 for the declustered case.  In both situations 

the arithmetic means are higher than 78 Bq/m3 which is the value obtained by (Menzler et al. 2008). This is due to 

the fact that this study used a population weighted approach. Urban areas that usually have lower IRC are hence 

given a stronger weight. Since the aim of this work is mapping, prediction and analysis of IRC over the whole of 

Switzerland we favor a mean that takes all geographical regions equally into account. 

The log-normal hypothesis for the IRC distribution in Switzerland is rejected by a Kolmogorov-Smirnoff test. 

Fitting a gamma distribution to the log-transformed IRC yields a slightly better Kolmogorov distance (0.04) than 

the normal distribution (0.055). Clustering and inhomogeneous spatial distributions may be the cause of the 

departure from log-normality. The Kolmogorov distance is however indicating that the empirical cumulative 

distribution of the log-transformed IRC does not have a larger deviation than 6% of the fitted normal distribution. 

With regard to statistical methods assuming normal distributions, we considered the log IRC distribution to be 

sufficiently close to normality. 

We found electrets to overestimate IRC substantially compared to solid state nuclear track detectors (SSNTD). 

Electret detectors consist of an electrostatically charged teflon disk enclosed in a permeable plastic housing. The 

α-particles originating from 222Rn ionize the air within the plastic housing. The ionized air causes a discharge of the 

Teflon disk. After the measurement, the IRC can be estimated by the voltage difference of the electret between 

the beginning and the end of the measurement. Dust and humidity can lead to an unforeseen discharge of the 

electret which results in overestimation of IRC. Taking into account the IRC of the whole country shows an 

overestimation of SSNTD. This can be explained by the observation that regions with a tendency of higher IRC like 

the canton Ticino and the Jura Mountains have been more strongly sampled with SSNTD compared to electrets. 

Restricting the study area to the Swiss Plateau shows that electrets actually overestimate IRC compared to SSNTD. 

This finding is in accordance with earlier observations (FOPH 2011). 

3.2. Building characteristics 

Architectural characteristics of measured buildings substantially influence IRC. We found earth foundation to be 

associated with higher IRC than concrete foundations. This can be explained by the fact that earth foundations 

are more permeable and hence more prone to let radon enter into the building. Surprisingly we found concrete 

foundation built into buildings after construction to have higher IRC than the earth foundation or built-in concrete 

foundations. It may be that buildings with high IRC are more likely to have a concrete foundation that was built 

after construction as mitigation measure. However our results implicate that this method does not sufficiently 



13 

 

reduce IRC. As (Hauri et al. 2012) we found that IRC decrease with the year of a buildings construction. Buildings 

constructed before 1900 revealed the highest IRC. We suppose that the 222Rn emanation of natural stones is the 

cause of this observation, since this type of building material was more often involved in construction before 

1900 (Gunby et al. 1993). We observed furthermore a drop in IRC after 1970, which we attribute to a change in 

building regulation after the oil crisis in the 1970ties (Burkart et al. 1984). Since 1970 we could not conclude a 

change of IRC. We also observed differences in IRC means associated with building type. Apartment buildings had 

the lowest IRC followed by detached buildings and farms. We found the building type to be related to building age 

as well as foundation type. 

The differences in bandwidths of the kernel regression for the variables building type, foundation and year of 

construction compared to the maximum bandwidths show that the kernel regression accounted for these 

variables. This is also visible in the mapping results for different architectural situations. For detached buildings 

with concrete foundation built between 1970 and 1990 we found considerably different mapping results 

compared to farms with earth foundation built between 1900 and 1970. The kernel bandwidth provides a useful 

tool in order to interpret the influence of a variable on the model. A drawback is however, that bandwidths 

depend on whether the corresponding variable is continuous or categorical as well as on the number of classes in 

a categorical variable. 

In order to analyze the effect of floor levels on IRC we compared the IRC of a given floor level to the IRC of the 

basement individually for each building. We found a nearly linear relationship between the mean IRC ratio and 

the floor level. In order to analyze the similarity of IRC within buildings, we compared pair-wise IRC between 

basement and ground floor as well as first floor and second floor. We found that IRC between basement and 

ground floor are less correlated than IRC between first floor and second floor. One reason for this may be that IRC 

in higher floor levels are due to 222Rn emanation from building materials, which would result in similar IRC, 

independent of the floor level. However one has to bear in mind that in 37% the measurements in the second 

floor were above 100 Bq/m3. An IRC of more than 100 Bq/m3 is however not likely to be caused by building 

materials (Schuler et al. 1991). Furthermore, transfer via electrical conduits may cause IRC in upper floor levels. 

This would explain a similarity in IRC for different upper floors. 
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Figure 7 Scheme of the mapping improvement by accounting for coordinates and building characteristics in order to obtain more 

adapted and detailed maps 
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3.3. Lithology 

Like many other studies, we found IRC to be related to geological information (Gunby et al. 1993; Bossew et al. 

2008; Smethurst et al. 2008; Appleton and Miles 2010). Igneous rock showed the highest concentration. This can 

be explained by the fact, that igneous rock like granites is rich in uranium (Schön 2004). The second largest 

lithological class is carbonate in the Jura Mountains which consists mainly of limestone. Limestone is known to be 

subject to weathering, which is also called karstification. Karstification can result in large cave systems that 

facilitate the propagation of 222Rn (Sajó-Bohus et al. 1997). Limestone is however not known to be particularly rich 

in 238U or 226Ra (2-4 ppm (von Gunten et al. 1996)). A common hypothesis for higher IRC in the Jura Mountains is 

that 222Rn originates from the crystalline basement subjacent to the limestone layer (see Figure 8) Due to the high 

permeability of the karstified limestone 222Rn can easily move to the surface. This would explain our observation 

that IRC are less elevated in carbonates in the Alps than in carbonates in the Jura Mountains since the 

sedimentary rock layers are thinner in the Jura Mountains than in the Alps. 

Nevertheless, the hypothesis that IRC in the Jura Mountains originate from the crystalline basement is 

controversial since the migration time through the limestone layer is assumed to be considerably longer than the 
222Rn half life of 3.8 days (Parriaux et al. 2010). 

 

 

Figure 8 Geological cut of Switzerland from north to south (adopted from (Wepf 1934)). The Jura layer is thinner than the autochtone 

sedimentary rock layer. 

Another hypothesis that could explain the high IRC in limestone may be 238U enrichment of the limestone in 

consequence of weathering (von Gunten et al. 1996; Parriaux et al. 2010). (von Gunten et al. 1996) observed 

remarkable disequilibria between uranium and its daughter products 230Th and 226Ra in limestone rich areas of the 

Jura Mountains. In a soil that is rich in carbonate, uranium is soluble when it is complexed by carbonate and is 

therefore washed out of the soil. On the other hand, the uranium daughter products 230Th and 226Ra do not form 

such soluble carbonate complexes and are hence immobile. This leads to the fact that only uranium is washed out 

in the karstic system, leaving a disequilibrium between 234U and 230Th in the upper soil layer as shown in Figure 9. 

However uranium is only soluble in the oxidation state (VI). In an anoxic aqueous environment, as it can occur in 

greater depth in the karstic system, U(VI) can be reduced to a U(IV) compound (uraninite). U(IV) compounds are 

not soluble and precipitate. This leads consequently to uranium enrichments in areas of the karst were reducing 

conditions can be found. The 222Rn originating from this uranium enrichment can easily propagate in the porous 
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karst system and hence increases the probability of high IRC in buildings built on the top of limestone (Parriaux et 

al. 2010). 

 

Figure 9 Uranium enrichment in karst due to weathering: Uranium is washed out during erosion into the karstic system. 
230

Th and 
226

Ra 

accumulate in the upper soil layer since they don’t form soluble carbonate complexes 

Carbonate rock is a sedimentary rock. However, in this work we separated carbonate rock from other 

sedimentary rocks due to its particular IRC characteristic. The lowest lithological classes in terms of IRC were 

sediments and sedimentary Rocks. This was also found in other studies (Bossew et al. 2008; Hunter et al. 2009). It 

has however to be noted that sediments can originate from a variety of different rock types. Therefore local areas 

with higher IRC in sediments and sedimentary Rocks are not unusual (Bossew et al. 2008). Finally, metamorphic 

rock shows intermediate IRC. This is well in line with the fact that metamorphic rock can be derived from many 

different geological formations, igneous rock and sediments alike. 

The automatic classification of lithological units in (Kropat et al. 2015c) has the ability to create meaningful groups 

of lithological units only based on their similarities in IRC distribution. Cluster 1 is primarily found in the Alps and 

contains mainly two-mica gneisses, granites and porphyrites. Cluster 2 and 3 can be found in the Jura Mountains 

as well as in the Alps. Both classes contain carbonates. However, for the most part the Jura Mountains are 

covered by cluster 2 and cluster 3 appears rather in the Alps. The clustering algorithm distinguishes hence 

automatically between carbonates in the Alps and carbonates in the Jura Mountains. In cluster 3 also 

metamorphic and sedimentary rocks can be found. Consequently, cluster 3 groups lithological classes with 

moderate IRC. Finally, cluster 4 and 5 represent essentially lithological units in the Swiss Plateau containing 

sedimentary rock and sediment. The clustering method is particularly useful to distinguish between metamorphic 

rocks with different IRC characteristics. As described above, metamorphic rocks can originate from a variety of 

different rock types. This leads to a high variation of IRC within this rock class. Our clustering method puts the 

metamorphic rocks in the appropriate classes and can especially point out the IRC characteristics of different 

metamorphic rock types in the Alps. 

The kernel regression yielded a bandwidth of   0.7  with a maximum bandwidth of  max 0.86  for lithology. 

This indicates that the kernel regression accounts for this variable, which is also visible in the IRC mapping where 

the lithological units are clearly observable on a local scale. In the kernel estimation we took lithology as an 

unordered categorical variable into account. However some countries defined a geogenic 222Rn potential for their 
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geological units. In future work this information could be taken into account by using kernels for ordered 

categorical units. 

3.4. Altitude 

Finally we found IRC to be related to altitude. We do not expect a causal relationship between altitude and IRC, 

but we consider altitude rather to serve as a proxy variable for geological information as well as for meteorology. 

Igneous rock in the Alps and carbonate in the Jura Mountains show high IRC and are at the same time located at 

higher altitudes. On the other hand, sediment and sedimentary rock are attributed to lower IRC and occur 

predominantly at lower altitudes in the Swiss Plateau. 

3.5. Mapping 

We performed mapping based on several methods: spatial aggregation, kernel estimation, regression tree 

ensembles and clustering of lithological units. 

Based on spatial aggregation we mapped the probability to exceed an IRC of 300 Bq/m3 (Kropat et al. 2014). This 

map represents well the regional differences of IRC in Switzerland. Compared to the existing radon risk map of 

Switzerland (FOPH 2013) this map has the advantage that it is not bound to municipality boundaries. We consider 

it hence being more neutral with respect to political questions. However this map does not differentiate between 

different building characteristics.  

Based on kernel estimation, we modeled and mapped IRC by taking into account all together the spatial 

relationships between IRC observations, building characteristics, measurement conditions and geological 

information. Also with this method the well known tendencies between the major geological areas Alps, Swiss 

Plateau and Jura Mountains have been well represented. At the municipal level, we could show that kernel 

estimation improves the spatial detail compared to former mapping approaches. In addition to that, the 

lithological units are clearly visible in the mapping results on a local scale. This indicates directly that kernel 

estimation takes into account the relation between IRC measurements as well as lithological information. For the 

coordinates we chose kernels that consider bandwidths that are constant over the whole range of the SN and EW 

direction. For future work we suggest however to consider methods which can adapt bandwidths to different 

regions, in order to account for locally different IRC trends. 

The mapping of the probability to exceed an IRC of 300 Bq/m3 based on kernel estimation revealed similar spatial 

trends as the predictive map based on kernel regression. In the areas where few measurements have been 

carried out, for example the Alps, the mapping results have however to be interpreted carefully. For this purpose 

we developed a confidence index map that can be accompanied with the probability map. This map has a strong 

relation to the topography of Switzerland, which is not surprising since at higher altitudes the density of IRC 

sampling is lower than at lower altitudes. The estimation uncertainty is consequently higher. However, 

uncertainty differences are well represented between areas at similar altitude and different densities of IRC 

sampling. We also developed a method to validate probability estimations. For this purpose we created a grid of 5 

km x 5 km and compared the mean estimated probability to exceed 300 Bq/m3 with the actual proportion of 

measurements above 300 Bq/m3 of an independent test set. This validation yielded an R2=78%. The kernel 

estimation shows hence a good agreement with the actual observed proportion. However, the reader has to bear 

in mind that this is based on a comparison of spatially aggregated statistics. We expect a pointwise comparison to 
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be more prone to unexplained variance. Obtaining the observation of a proportion is however difficult for a 

spatial point because it is not very common to have several buildings at the same location. 

IRC mapping based on ensemble regression trees yields similar global patterns than kernel estimation. Like kernel 

estimation, ensemble regression trees provide the possibility to create maps specific to particular building 

characteristics. However BART has the specific advantage that prediction uncertainties can easily be mapped. 

Similarly to the confidence index map based on kernel estimation the prediction uncertainty map form BART 

shows a strong association to topography. 

Finally, the results from lithology clustering can be used to distinguish regions according to their radon 

characteristics (Figure 6b). This map has the advantage that the geometry of the lithological units determines the 

spatial structure of the map. (Kemski et al. 2009) consider lithological units as spatial support for mapping the 

geogenic radon potential (GRP) as being the optimal choice since the GRP is primarily determined by geological 

conditions. 

3.6. Predictive models  

Kernel regression could explain 28% of variation in IRC data all over Switzerland (in terms of variance). Restricting 

the data only to farms resulted in a considerably higher explained variance of 38%. In the univariate analyses, we 

observed farms to have higher IRC than other building types. At the same time we assume that many 

uncontrollable error influences, for example IRC during transport, get less important with higher IRC. 

Consequently, the data is less prone to unexplainable variance and can better be modeled. BART yielded an 

R2=29% and random forests an R2=33% for IRC measurements from all over Switzerland. In Table 1 a comparison 

of the different methods used in this work can be found. Only taking into account the municipality as predictor 

already yields an R2 of 20%. It can be expected that houses are generally not homogeneously distributed within a 

municipality but rather closely clustered. Calculating the mean value per municipality is hence similar to k nearest 

neighbor estimation and explains therefore a substantial part of the spatial IRC variation. We found random 

forests to perform best in terms of predictability. For different prediction tasks an R2 of 33% may appear to be 

small. However, referring to (Hauri et al. 2012), an R2 of 33% can be considered as a good performs in comparison 

to IRC modeling studies from other countries. The sources of unexplained variance in IRC data are discussed in the 

following section. 

Table 1 Comparison of different IRC mapping and prediction methods that were used formerly and throughout this work. This table 

considers IRC measurements from all over Switzerland 

 

Prediction Predictability 

(R2) 

Probability 

estimation 

Uncertainty 

mapping 

Municipality mapping  X 20% - - 

Linear modelling (Hauri 2012) X 20% - - 

Kernel estimation X 28% x x 

Bayesian additive regression 

trees 

X 29% - x 

Random forest X 33% - - 
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3.7. Uncertainty 

The calibration procedure of the SSNTD resulted in a combined expanded uncertainty of 8% (k=2). We also found 

that the plastic transport bags are sufficiently air tight to avoid error influences during the mailing to the home 

owners. However when the detectors are sent back, the plastics bags are usually not welded. That means that 
222Rn concentrations during transport from the buildings to the measuring laboratory can influence the final 222Rn 

measurement. This leads to variance which can practically not be explained by statistical modeling although the 

travelling time is usually much smaller than the actual measuring time. Therefore, we consider the IRC 

distribution within buildings to be the strongest source of unexplained IRC variation. Within a room, the 

positioning of the IRC detector can have crucial consequences on the measurement. We experienced in field 

observations, that the IRC nearby electrical sockets or wall cracks are substantially higher than elsewhere in the 

room. Further studies to quantify this influence are necessary in order to understand the limitations of IRC 

modeling and prediction. We expect it however to be substantially higher than the uncertainty due to etching and 

readout of SSNTD detectors. 

3.8. Influence of thoron during long term IRC measurements 

Another isotope of radon, coming from building material and commonly called thoron (220Rn), was not considered 

in the present study although it is known to have potentially two effects: it can bias the estimation of IRC and it 

can contribute to the annual effective dose delivered to the Swiss population. However, estimating 

retrospectively the influences of 220Rn on long term IRC measurements is difficult, but its presence should be 

more thoroughly considered in future IRC measurement campaigns. 

4. Conclusion and perspectives 

Two main questions arise when it comes to national radon risk communication: What effects does radon have on 

human’s health and how can local radon hazard be estimated. This work addresses the estimation of local radon 

hazard. We had a large dataset of Swiss IRC measurement available. Since IRC are driven from a multitude of 

determinants, in-depth understanding of the multidimensional nature of the IRC generating process is necessary 

in order to localize radon hazard appropriately. In our work we addressed this issue via both univariate and 

multidimensional analysis and modeling of Swiss IRC. 

As depicted in Figure 7 we are now able to improve the existing radon communication by taking into account a 

variety of IRC influencing variables in order to produce tailor-made IRC maps for Switzerland. Our results are the 

first element for the development of a risk map. Taking into account the health effects of radon, the radiation 

dose to the population due to 222Rn can be more accurately estimated by considering for example the local 

population densities and the stratification for different building types. 

Finally, for the risk communication to the public in Switzerland, we suggest to use the probability map proposed 

in (Kropat et al. 2015b). We consider probabilities to be easier to communicate than mean values due to a much 

more intuitive concept of contingency. Mean values are often interpreted as a deterministic value and lay persons 

may disregard the fact that a mean value is only an indicator for a statistical distribution which itself is subject to 

randomness. On the other hand a probability could be communicated as being the fraction among several 

buildings that exceed a certain IRC. In order to provide an assessment of uncertainty of the probability maps we 

developed a confidence index which can be communicated additionally to the probability estimates. Local 
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probabilities to exceed a certain IRC and the corresponding confidence index could be communicated to the 

public via a web interface where users can specify the properties and coordinates of their homes (Figure 10). 

 

Figure 10 Mockup of a possible website to communicate the probability to exceed a certain IRC for given building characteristics. The 

probabilities could be accompanied by a confidence estimate. 
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Annex 

A1. Kernel density estimation 

The following section aims at giving more detail for the interested reader on the theoretical principle of the 

estimation of the conditional expectation  |E y x  via kernel density estimation.  |E y x  was introduced in 

equation (2) in the introduction section. 

In order to derive equation (2), the conditional expectation  |E y x  can be written as 

    




 | |E y x yf y x dy      (Racine 2008) (3) 

 |f y x  is the conditional probability density function of y  given x . The estimation of  |f y x  is the core 

problem of kernel regression and can be carried out via kernel density estimation. The conditional probability 

density  |f y x  can be expressed via the following equation: 

  
 

 

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|

f y x
f y x

f x
  (4) 

Where  ,f y x  is the joint probability function of x  and y  and  f x  is the marginal probability density of x . 

The joint probability density  ,f y x  can be estimated by: 
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     (Racine and Li 2004) (5) 

Where K  is a kernel function, N  is the number of observations, h  a smoothing parameter (bandwidth), and iX  

and iY  are the i th observation of x  and y  respectively. 

The choice of K  depends on the types of variables taken into account. IRC are influenced by a variety of variables. 

These variables can either be continuous or categorical. For both cases different kernels have to be taken into 

account. 

A1.1. Kernel for continuous variables 

For continuous variables we assumed a Gaussian kernel w  in this work 
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In the case of several continuous variables, the kernels of each variable can be combined in a product kernel 
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Where c
iX  is the vector of the i th observation of the vector 

cx  of all independent continuous variables. p  stands 

for the number of continuous variables and   for the ensemble of bandwidths of 
cx . We illustrated the 

univariate case of a probability density function  f x  by means of Gaussian kernels in Figure 11. The small 

orange lines on the x -axis represent 6 observations of the variable x . A kernel is placed at each observation 

point (orange dashed lines). The sum over all kernels (see equation (5)) results in the blue line which is the 

estimation of  f x . In order to facilitate the illustration we scaled the kernels by the number of observations. 

 

Figure 11 Probability density estimation based on Gaussian kernels. The blue line represents the sum at each x over all single kernels 

(orange dashed line). The observations of x are indicated as orange bars on the x-axis. 

A1.2. Kernel for categorical variables 

In the case of categorical variables we assumed a product  , ,d d
iL x X  as described in (Kropat et al. 2015b).   

represents the vector of bandwidths for the different categorical variables and d
iX  is the i th observation of the 

vector of categorical variables 
dx . 

In order to obtain   , , , iK x X , the kernel for continuous and categorical variables can simply be combined as 

         , , , , , , ,c c d d
i i iK x X W x X L x X   (8) 
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The final probability density estimate for continuous and categorical variables is given by 

     


 
1

1ˆ , , , ,
N

i
i

f y x K z Z
N

  (9) 
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i i i p i iZ Y X X X X . 

Given the estimate  ˆ ,f y x ,  |f y x  can be estimated by 
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A1.3. Conditional expectation as a weighted average 

(10) yields an estimate for  |f y x  in equation (3) and  ,f y x  can be estimated by equation (5). Integrating 

over equation (3) leads to 
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     (Racine and Li 2004) (11) 

 |E y x  is hence a weighted sum over all observations iY  with weights   , , , iK x X . The regression 

parameters in this case are the bandwidths   and   which can be found via leave-one-out cross validation. 

A2. BART 

In the following we describe the principle of BART in more detail than it was done in (Kropat et al. 2015c). For 

further detail we refer the interested reader to the publications (Chipman et al. 1998) and (Chipman et al. 2010). 

BART is an ensemble method which approximates  |E y x  by averaging over several regression trees. The 

corresponding regression model can be formulated as 
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Where  j ijM  represents the set of the terminal node parameters ij  and jT  the structure of the j th tree. 

 g  is the functional implementation of a single tree and   a normally distributed random error (    2~ N 0, ). 

BART differs from random forests in the manner in which each tree and the ensemble of trees is constructed. 

BART finds the best trees and the ensemble of trees by defining a prior for each important parameter of the tree 
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ensemble. Using a Metropolis-Hasting algorithm, a posterior distribution for the tree ensembles is generated. 

Resulting statistics like the mean or the mode of the posterior sample can finally be used to perform the 

prediction. The standard deviation of the posterior sample gives an estimate of the uncertainty of the prediction. 

The prior specification problem is simplified by the statement of independency of the priors 
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p M T T pp

  (13) 

And 

      | |j
i

j ij jp M T p T   (14) 

This means that the trees  ,  j jT M  within one tree ensemble are independent of each other and of   (Chipman 

et al. 1998). 

The construction of  jp T  consists of 3 parts: The first is the definition of the probability of a node at depth 

  0,1,2,d  to be non-terminal 

      


     1 , 0,1 , 0,d   (15) 

The second and the third are the distributions of the splitting variable assignments and the splitting rules at each 

non-terminal node. Both distributions are uniform. That means that each variable has equal probability to be 

chosen for the split at one node, and that each value of the chosen variable is equally probable to be chosen for 

the splitting rule. 

The prior   |ij jp T  of the end node parameters consists of the conjugate normal distribution     2,N .   

and   are the hyperparameters of the prior. For the sake of computational simplicity the data Y  is shifted and 

rescaled such that the prior   |ij jp T  is centered around zero    0  and   0.5k m . 

    2 ~ 0,ij N   (16) 

Where   0.5 / ( )k m  and k  is the variable for the scaling of Y  and m  the number of trees. A default choice 

of 2k  is recommended. It can also be determined by cross-validation. For the number of trees m  a default 

value of 200m  is recommended (Chipman et al. 2010). 

For the prior  p  the inverse chi-square distribution   2 2~ /  is used.   and   are also estimated on the 

data (see (Chipman et al. 2010)). 
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To avoid exhaustive calculations, the posterior distribution 

     1 1, , , , , |m mp T M T M y   (17) 

can be sampled from a Markov Chain Monte Carlo (MCMC) algorithm. 

Assuming that 
 j
T  is the ensemble of all trees except jT  and 

 j
M  the set of corresponding end node parameters, 

the MCMC algorithm can be implemented as a Gibbs sampler. Often the direct sampling from a joint probability 

distribution  ,f x y  is difficult in practice. To obtain a sample of  ,f x y  one can also perform successive draws 

from the conditional distribution  |f x y  and  |f y x  when these distributions are known. This principle is 

called Gibbs sampling (Casella and George 1992). 

A draw from the posterior distribution in equation (17) can hence be obtained by performing successive draws of 

 ,  j jT M  from 

       , | , , ,j j j j
T M T M y   (18) 

with 1, ,j m  and a following draw of   from 

   1 1| , , , ,, ,m mT M MT y   (19) 

The draw of   is just a draw from an inverse gamma distribution. 

 ,  j jT M  can be obtained by assuming that the       , | , , ,j j j j
p T M T M y  is dependent on 

    , , ,
j j

T M y  via 

the residuals of the fit excluding the j th tree 

  


  ; ,j k k
k j

R y g x T M   (20) 

This simplifies (18) to 

   , | ,j j jT M R   (21) 

The posterior 

          | , ~ | , , | ,j j j j j j j j jp T R p T p R M T p M T dM   (22) 

can be achieved in closed form, since the prior for jM  was chosen to be a conjugate prior. 

The Gibbs sampler samples  ,  j jT M  in two steps 
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 | ,j jT R   (23) 

 | , ,j j jM T R   (24) 

The draw of jT  is realized by a Metropolis Hastings algorithm described in (Chipman et al. 1998) and jM  is drawn 

from a normal distribution. Having obtained a sample of several ensembles of  ,  j jT M  from the posterior 

distribution, predictions of y  can simply be obtained by calculating the mean over the sample. 

 

A3. SRC measurements 

In the frame work of a master thesis in collaboration with the University of Fribourg we performed a local soil gas 

measurement campaign in the town of La-Chaux-de-Fonds to evaluate SRC as a possible predictor for IRC (Wa 

MBengi and Collet 2013). For this purpose we measured the SRC in the vicinity of 53 buildings were long term IRC 

measurements had been carried out previously. In order to obtain a possibly even distribution of SRC 

measurements we chose around 150 buildings via random declustering from around 1700 existing IRC 

measurements in La-Chaux-de-Fonds. Due to time limitations we only completed SRC measurements at 53 of the 

150 buildings. In Figure 12 the spatial distribution of the SRC measurements is shown with the corresponding 

lithological classes. 

 

Figure 12 SRC measurements in La Chaux-de-Fonds with the corresponding lithological units 
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Figure 13 Distributions of the SRC for different lithological classes. The description of the GEOTECH Id is given in the legend 

The average of the 53 SRC measurements resulted to around 90 kBq/m3. The SRC distributions for different 

lithological classes are shown in Figure 13. The class “Marl with weakly consolidated sedimentary layers” appears 

to have slightly higher SRC. In particular in this class we observed an extreme value of more than 1000 kBq/m3. 

However a Kruskal-Wallis analysis of variance resulted to a p-value of 13% and a = 5.63. This finding does not 

support the hypothesis of different SRC medians for different lithological classes. Nevertheless, we performed 8 

SRC measurements in the Swiss Plateau resulting to an average of around 35 kBq/m3, which is considerably lower 

than the SRC average obtained in La-Chaux-de-Fonds. We expect therefore regional SRC trends within 

Switzerland. In order to make final conclusions on this issue more SRC measurements are necessary. This was 

however not in the scope of this work. 
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Figure 14 IRC versus SRC. Each SRC was measured in the vicinity of the building of the corresponding IRC measurement 

Figure 14 shows the IRC measurements versus the SRC measurements for each building. Table 2 presents the 

mean and median IRC for SRC measurements below and above 100 kBq/m3. The difference in mean IRC appears 

to be substantial. For the difference in median IRC an inverse relationship can be observed. This is a typical 

observation for log-normal distributions were the mean value can be strongly influenced by extreme values. 

 

Mean IRC (Bq/m
3
) Median IRC (Bq/m

3
) 

<= 100 kBq/m
3
 594 176 

> 100 kBq/m
3
 1583 130 

Table 2 Mean and median IRC for SRC below and above 100 kBq/m
3
 measurements 

A linear regression analysis between the log transformed IRC and the log transformed SRC yielded a p-Value of 

64%. We considered the SRC measurements above 1000 kBq/m3 as outlier and did not include it in this analysis. 

The regression analysis does reveal a significant relationship between IRC and SRC. In order to study the SRC as 

potential IRC predictor further measurements SRC have to be carried out in different regions of Switzerland. This 

part of our work aimed at a first insight and understanding of possible relationships between SRC and IRC. 
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Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m-3, 

representing the Swiss concentration average of 70 Bq m-3 over a one-month period. A solid state nuclear track detector 

(SSNTD) system (Politrack, Miam, Italy) has been acquired to fulfill these requirements. This work is aimed at the 

calibration of the Politrack system with traceability to international standards and the development of a procedure to 

check the stability of the system. 275 SSNTDs were exposed to 11 different radon exposures in the radon chamber of the 

Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 kBq h m-3 

to 15000 kBq h m-3. For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures 

during transport and storage. The response curve and the calibration factor of the whole system were determined using a 

Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using an Am-241 

source was developed for checking the long term stability of the Politrack system. The characteristic limits for the 

detection of a possible system drift were determined following ISO Standard 11929. 

INTRODUCTION 

Radon is a radioactive gas that is known to be the most 
important cause of lung cancer after smoking. Most of 
the radon exposure of the public takes place in closed 
environments at home or at work (Effects of Ionizing 
Radiation, 2009). To effectively manage radon risk, 
radon concentrations have to be estimated via reliable 
measurements. The most reliable radon measurements 
are long term measurements that integrate between 3 to 
12 months of exposure (WHO, 2009). There is a 
variety of different devices to measure radon 
concentrations. SSNTD have proven to be cost 
effective and therefore particularly suitable for large 
scale national radon surveys. However practical 
questions arise when putting into place a SSNTD 
device: How to keep track of possible drifts of the 
system in order to warrant a stable quality of results 
and how do radon concentrations during transport and 
storage influence the result of SSNTD readings? 

INSTRUMENTATION AND METHODS 

Solid state nuclear track detectors (SSNTD) 

Heavily ionizing particles leave trails of damage on 

most insulating materials (Fleischer et al., 1965). These 
trails can be made visible with a microscope by etching 
the material with a chemical reagent which attacks 
preferentially the damaged trails. Detectors that work 
on this principle are called “Solid State Nuclear Track 
Detectors (SSNTD)”. A SSNTD for -particles can be 
build with the polymer CR39 as detector material. We 
used CR39 films of a thickness of 1mm and a size of 
25 mm x 25 mm and etched them, according to the 
manufacturer recommendation, in a 6.25M NaOH bath 
for 1 hour at 98°C after exposure. 

SSNTD reader system 

After etching, the tracks of the -particles can be 
counted with a light microscope. The Politrack reader 
system consists of a microscope equipped with a CCD 
camera and a 4x magnifying objective that can be 
moved in z direction and a SSNTD stage that can be 
moved in xy direction. The images are sent to a 
computer via firewire and analyzed by a program 
written in LabView by the manufacturer. The LabView 
software returns the number of counted tracks per cm2 
and the sum of the area of all detected tracks. Each 
track is detected separately by a pattern recognition 
algorithm. At higher exposures the probability 
increases that two or more tracks overlap. This leads 
to a saturation effect. The algorithm is not capable to 
distinguish between two overlapping tracks. Since the 

*Corresponding author: georg.kropat@chuv.ch 
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probability to obtain overlapping tracks is difficult to 
model, track overlapping was corrected by the 
empirical formula 

      
     

       
 (1) 

where m is an empirical factor to be determined by a fit 
procedure and Trnet is the difference between the 
counted tracks and the background. ATr is the area of all 
detected tracks. The area was corrected by the mean 
area measured on the background SSNTDs. 

CALIBRATION 

We exposed 275 SSNTDs at 11 different exposures in 
the radon chamber at the Paul Scherrer Institute in 
Villigen, Switzerland (Schuler, 1998). The exposures 
took place consecutively at 3 different concentration 
levels: 1000 Bq m-3, 5000 Bq m-3 and 20000 Bq m-3. 
The different exposures within each concentration level 
were realized by different exposure times resulting in 
the exposures: 46, 96, 289, 502, 987, 1046, 2077, 3112, 
5230, 10506 and 15520 kBq h m-3, with an expanded 
uncertainty (k=2) ranging between 1.4% and 2.3%. 
After exposure, the SSNTDs were shipped back to the 
Institute of Radiation Physics, Lausanne and stored 
until the exposure of the last SSNTDs finished. The 
SSNTDs were etched at 3 batches. In order to keep 
track of background exposure during transport and 
storage each exposure level was accompanied by 5 
transport SSNTDs. 

 
Figure 1.  Calibration curve of reference exposures versus 
corrected tracks. 

Taking into account the correction of equation (1), the 
following model can be fitted to the background 
corrected track counts Trnet, ATr and the reference 

exposure E to obtain the empirical factors c and m, 
where c is the calibration factor. 

   
     

       
 (2) 

To take into account the uncertainty due to random 
errors of the exposure and the track reading, we used a 
Monte Carlo fit procedure according to (JCGM, 2008). 
For this purpose we repeated least squares fitting 10000 
times by adding each time a random error εExp to each 
exposure value with 

               (3) 

uExp is the standard uncertainty estimated for the 
reference exposure of each SSNTD. 
Furthermore, for each of the 10000 repeated fittings we 
added a random error ɛTr to the track counts Trnet in 
order to account for the reading uncertainty with 

             (4) 

uTr depends on the number of tracks of each readout 
and was given by the manufacturer.  
We took the arithmetic mean and the standard 
deviation of c and m over the 10000 fitting results as 
best estimates for the expected values and the 
corresponding standard uncertainties of c and m. 
Figure 1 shows the calibration curve that we fitted by 
the Monte Carlo fit procedure. For simplicity, we 
plotted the exposure E versus Trcor. The uncertainty uTr 
due to read out of the system was given by the vendor 
for each SSNTD read out, and ranged from 0.7% to 
13%. The expanded uncertainties (k=2) of the 
reference exposures, corresponding to uExp, ranged 
between 1.4% and 2.3%. 
The Monte Carlo fit procedure yielded a calibration 
factor c = 420.0 10-3 kBq h m-3 cm2 with an uncertainty 
of uc = 2.3∙10-3 kBq h m-3 cm2 (0.6%) and a track 
correction factor m = 5.55 cm-2 with a standard 
uncertainty of um = 0.07 cm-2 (2.7%). Hence the overall 
uncertainty of c an m results in 0.93%. The uncertainty 
um contributes only to a small amount, since ATr is 
generally very small. 0.93% indicates a small overall 
uncertainty for the calibration factor and is due to the 
fact that the uncertainty is attributed to random errors, 
which have a very small influence on the final fit 
result, since we used a relatively large number of 
SSNTDs for the calibration. For simplicity we did not 
assume an intercept in equation (1). The Monte Carlo 
fit procedure would however allow to calculate a 
covariance between the intercept and the slope of the 
calibration curve which could be used to further 
improve the uncertainty estimation. 
We assumed a maximum uExp of 1.15% as systematic 
standard uncertainty contribution from the calibration 
of the radon chamber. 

LONG TERM STABILITY MONITORING 

To monitor possible drifts of the system we developed 
and built a device to produce reference CR39 films at a 
reproducible exposure level. For this purpose we used 
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an Am-241 source with an activity of 320 Bq. To 
control the exposure time of the Am-241 source we 
shielded the source with an automatic shutter. 
The distributions of track counts for several reference 
exposure series are presented as boxplot in Figure 2. 
The boxplot represents the median, first and third 
quartile. The whiskers represent 1.5 times the 
interquartile range of the distribution. For further 
readings on boxplots we refer to (Diez et al., 2012). 
Each batch has been etched separately. We annotated 
the basic statistical indicators for each batch on the 
boxplot. The uncertainty of the track counts is 
attributable to the randomness of the Am-241 decay, to 
variation in the etching procedure as well as to read out 
uncertainties. 
 

Figure 2.  Track count distributions of separately etched 

SSNTD batches used for reference exposure series. 

We determined the decision threshold for potential 
drifts according to ISO 11929 on international 
standards (ISO, 2010). The decision threshold      

  
can be determined by the equation 
     

           (5) 

Where    is the standard uncertainty of the average 
number of tracks of the irradiated reference SSNTDs 
and q1-= 2.33 the (1-quantile of the standardized 
normal distribution. We chose = 1% and assumed the 
relative decision threshold      

  as uncertainty 
contribution resulting from long term stability 
monitoring of the system. For the irradiation of 10 
reference SSNTDs with the Am-241 source for 20 s, 
we observed a mean of ~780 cm-2 with a standard 
uncertainty of 14 cm-2. This results in a decision 
threshold for a possible drift of 32 cm-2 and hence gives 
an uncertainty contribution on Trnet of 4% due to long 
term stability monitoring. 

OVERALL UNCERTAINTY OF THE SYSTEM 

Table 1 shows the uncertainty budget of the estimated 
exposure E. The summation in quadrature leads to an 
expanded combined uncertainty (k=2) of around 9%  

Uncertainty component Relative standard 

uncertainty 

Long term stability monitoring 4% 

Reference exposure values 1.15% 

Monte Carlo fit procedure 0.93% 

Table 1.  Uncertainty budget of estimated exposure E 

By far the largest uncertainty contribution results from 
the long term stability monitoring with 4%. This is 
reasonable, since the etching procedure is a process 
that is difficult to control. 

LEAKAGE OF SSNTD WRAPPINGS 

To control the air tightness of the SSNTD packaging, 
we exposed 40 SSNTD welded up in plastic bags to the 
highest exposure of 15520 kBq h m-3. Some of the weld 
seams showed small defects. To keep control of a 
possible background contribution we used 10 SSNTDs 
welded up in plastic bags that were exposed 
simultaneously to ambient air. After exposure we 
distinguished between SSNTDs packed in plastic bags 
with defects (Weld defect), with no defects (No weld 
defect) and background SSNTDs (Transport SSNTD) 
and compared their distributions via boxplots. 
The results are shown in Figure 3. A Kruskal-Wallis 
analysis of variance comparing the medians of the 3 
groups yielded a 2 = 1.93 and a p-value of 38%.This 
result does not support the hypothesis of leakage of 
detector wrappings. This holds for regular weld seams 
as well as for weld seams exhibiting little defects. 
Since we observed 41 cm-2 on the 10 transport SSNTDs 
that were exposed to ambient air in plastic bags, we 
assumed a general background correction of all 
readings of 40 cm-2 for the comparison measurements 
described in the next section. 

COMPARISON MEASUREMENT 

In order to compare our calibration with commercially 
available SSNTDs we carried out a comparison study 
with our SSNTDs and SSNTDs well established on the 
market (Landauer Nordic, former Gammadata). For 
this purpose we distributed 30 SSNTDs of each type 
pairwise in Swiss schools and measured the radon 
concentration for about 3 months. 
The comparison of measurements with Politrack 
SSNTDs with our calibration factor and Gammadata 
SSNTDs shows a mean difference of 14.1 kBq h m-3 
(Figure 4). That corresponds to a concentration of 6.5 
Bq m-3 for a measurement over 90 days. This is 
indicating a good accordance of both systems. 
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Figure 3.  Boxplot of track count distributions of SSNTDs 
that were packed in plastic bags with and without weld seam 
defects. The boxes represent the median, first and third 
quartile. The whiskers represent 1.5 times the interquartile 
range of the distribution. Data points that lie outside of the 
whiskers are drawn on the plot as extreme values. The plastic 
bags with the SSNTDs were exposed to 15520 kBq h m-3. The 
track count distribution of the SSNTDs that were only 
exposed to background radon concentrations is indicated as 
“Transport SSNTD”. 

Figure 4.  Comparison of Politrack with Gammadata 

SSNTDs. 

CONCLUSION 

We calibrated and characterized a SSNTD reader 

system for the measurement of indoor radon 

concentrations. In addition to that, we developed a 

procedure to keep track of long term stability of the 

system. The system is ready for routine use. 

We achieved an overall uncertainty of around 9% for 

the system. A comparison in school buildings with 

SSNTDs of the manufacturer Landauer Nordic yielded 

consistent results with our calibration. 
Our results indicate that the weld of the SSNTD 
transport plastic bags is sufficiently air tight for 
shipping. After an exposure of packaged detectors to 
about 15000 kBq h m-3 during 31 days we did not find 
significantly higher mean track counts than for 
detectors that were only exposed to background 
irradiation. This also holds for plastic bags having 
defects in the weld seam. 
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a b s t r a c t

Purpose: In Switzerland, nationwide large-scale radon surveys have been conducted since the early
1980s to establish the distribution of indoor radon concentrations (IRC). The aim of this work was to
study the factors influencing IRC in Switzerland using univariate analyses that take into account biases
caused by spatial irregularities of sampling.
Methods: About 212,000 IRC measurements carried out in more than 136,000 dwellings were available
for this study. A probability map to assess risk of exceeding an IRC of 300 Bq/m3 was produced using
basic geostatistical techniques. Univariate analyses of IRC for different variables, namely the type of radon
detector, various building characteristics such as foundation type, year of construction and building type,
as well as the altitude, the average outdoor temperature during measurement and the lithology, were
performed comparing 95% confidence intervals among classes of each variable. Furthermore, a map
showing the spatial aggregation of the number of measurements was generated for each class of variable
in order to assess biases due to spatially irregular sampling.
Results: IRC measurements carried out with electret detectors were 35% higher than measurements
performed with track detectors. Regarding building characteristics, the IRC of apartments are signifi-
cantly lower than individual houses. Furthermore, buildings with concrete foundations have the lowest
IRC. A significant decrease in IRC was found in buildings constructed after 1900 and again after 1970.
Moreover, IRC decreases at higher outdoor temperatures. There is also a tendency to have higher IRC with
altitude. Regarding lithology, carbonate rock in the Jura Mountains produces significantly higher IRC,
almost by a factor of 2, than carbonate rock in the Alps. Sedimentary rock and sediment produce the
lowest IRC while carbonate rock from the Jura Mountains and igneous rock produce the highest IRC.
Potential biases due to spatially unbalanced sampling of measurements were identified for several
influencing factors.
Conclusions: Significant associations were found between IRC and all variables under study. However, we
showed that the spatial distribution of samples strongly affected the relevance of those associations.
Therefore, future methods to estimate local radon hazards should take the multidimensionality of the
process of IRC into account.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Radon is a naturally occurring radioactive noble gas that is a
decay product of uranium. The decay products of radon are known
to cause lung cancer through their accumulation in the lungs. In
outdoor air, radon is strongly diluted (Vaupotic et al., 2010).

However, in environments with low air exchange, such as build-
ings, radon concentrations are generally higher and can lead to a
considerable health threat. In Switzerland, about 230 cancer deaths
per year are attributable to radon (Menzler et al., 2008).

Radon concentrations in houses originate from the underlying
geology, building materials and domestic water supplies. The
geological parameters controlling IRC are mainly the uranium
content of the ground and its permeability (Johner and Surbeck,
2001). In Switzerland, three main different geological areas are
generally considered. The Alps in the south of Switzerland are
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dominated by granites and gneisses. Some of the variants of these
rocks are known to be rich in uranium (Schön, 2004). In northwest
Switzerland, the landscape is formed by the Jura Mountains, which
are characterized by a high abundance of carbonate rock. Carbonate
rock is subject to strong weathering, also called karstification. The
karstification of carbonate rock results in a highly permeable cave
system, which facilitates the transport of radon gas. Karstic regions
are therefore known to be radon prone areas (Vaupotic et al., 2001).
The Swiss Plateau is the lower part of the country. This area is
located between the JuraMountains and the Alps, is coveredmainly
by quaternary sediments containing partially glacial deposits
originating from the Alps and is not considered an area with high
radon potential. Those quaternary deposits overlay the molasse
sedimentary rock (mainly detrital sediments, sandstones, shales,
etc.) (Trümpy, 1980). Most of Switzerland’s population resides
along the Swiss Plateau.

Apart from geology, IRC are subject to several other variables, a
reality which has made it difficult to develop reliable predictive
models up to now. These variables can be grouped into 3 categories:
spatial variability (geology, lithology, pedology) (Bossew et al.,
2008; Cinelli et al., 2011; Friedmann and Bossew, 2010; Ielsch
et al., 2010; Kemski et al., 2009; Miles and Appleton, 2005; Tapia
et al., 2006), temporal variability (meteorology, anthropogenic in-
fluences) (Bossew and Lettner, 2007; Burke et al., 2010; Denman
et al., 2007; Groves-Kirkby et al., 2006; Miles, 2001) and architec-
tural characteristics of the structures concerned (building age, floor
level, foundation, building material, building type, room type of
measurement) (Friedmann, 2005; Friedmann and Groeller, 2010;
Girault and Perrier, 2012; Kemski et al., 2009).

The aim of this work was to identify the relevant factors influ-
encing IRC in Switzerland. For this purpose, univariate analyses of
IRC were performed for each variable under study and maps
showing the density of IRC measurement were computed for each
class of variable in order to account for potential spatial biases.
Using univariate analyses, we explore separately the effect of each
variable on IRC while it is known that many variables may
contribute to determine IRC. However, univariate analyses aremore
easily interpretable and may help to understand the major controls
of IRC.

2. Data and methods

2.1. Data

The IRC data used in this study originates from the radon
database of the Swiss Federal Office of Public Health (FOPH). The
database consists of 211,714 measurements carried out in 136,401
Swiss dwellings.

The sampling strategy of the IRC data used in this study changed
over the last 30 years. Initially the criterionwas to obtain a minimal
number of randomly measured buildings in each municipality. This
strategy changed towards sampling of houses with potentially high
IRC values. However, cantons with radon-prone areas tended to be
more active with respect to IRC sampling.

2.1.1. Measurement characteristics
The measurements were taken with passive electret or alpha

track detectors (Kotrappa et al., 1990; Nikolaev and Ili�c, 1999). The
detectors were sent to homeowners, who then set them out to
expose them over a time period of about 3 months. Homeowners
were asked to fill in a questionnaire containing details about the
concerned building and the measurement conditions. We chose
only those measurements which were taken in the basement, the
ground-, the first- and the second floor. It was further recorded
whether the room where the measurement was taken was

inhabited during the measurement period. Finally, starting and
ending date of the radon detector exposition were indicated. All
measurements were taken between 1981 and 2012.

2.1.2. Building characteristics
The questionnaire also asked for information about the building

characteristics. The relevant variables are the geographical co-
ordinates in the Swiss geographical coordinate system (CH1903)
and the building type. The database contains 9 different types of
building. For convenience, we grouped them into four major types:
“Apartment”, “Detached House”, “Farm” and “School”. Further-
more, the database contains information about the type of foun-
dation of the corresponding building. We limited our analysis to
cases in which the type of foundation was uniquely indicated,
which results in the three following types: “Concreted”, “Concreted
afterwards” and “Earth foundation”. Finally, we analyzed IRC with
respect to the year of the building’s construction.

2.1.3. Outdoor temperature data
The Federal Office of Meteorology and Climatology “MeteoS-

wiss” provides access to the daily mean outdoor temperatures at
125 stations evenly distributed over Switzerland for the last de-
cades. We downloaded the daily mean outdoor temperatures for
the last 30 years (MeteoSwiss, 2013).

2.1.4. Lithological data
The lithological data we used in this study originate from the

map “Lithologisch-petrografische Karte der Schweiz-Lithologie-
Hauptgruppen 1:500,000“ (SGTK, 2000). The map is vectorized,
on a scale of 1:500,000 and consists of 70 lithological classes.

2.2. Data preprocessing

2.2.1. Coordinate corrections
The geographical coordinates of each building in the radon data-

base of the FOPH were often not reliably indicated by the building-
owners. Most of the buildings are registered in the central database
of the Swiss Federal Statistical Office (FSO). This building registry
provides a uniquebuilding IDwithwhich the exact coordinate of each
building can be determined. For those analyses for which the spatial
distributions of the measurements were relevant we included all
buildings for which this building ID was available. The altitude above
sea level of each building was sampled from the digital elevation
model “DHM25” which is provided by the Federal Office of Topog-
raphy Swisstopo. This digital elevationmodel has a resolutionof 25m.

2.2.2. Random declustering and fractal dimension
Due to different cantonal sampling strategies and local differ-

ences of population density in Switzerland, the measurements of
IRC in the database of the FOPH exhibit a strong spatial clustering.
This leads to biased estimates especially in the estimation of IRC
characteristics of geological units. To reduce this bias, we applied
random declustering (Kanevski and Maignan, 2004) by creating a
grid of 500 m � 500 m over all of Switzerland and by randomly
sampling 6 houses in each grid cell. The degree of clustering of the
point set was measured by its fractal dimension resulting from
sandbox counting (Kanevski and Maignan, 2004).

2.2.3. Attribution of IRC to buildings
In about 87% of the considered houses one measurement was

taken in inhabited rooms. 2 measurements of inhabited rooms
were available in 10% of the houses. With the exception of the floor
level analysis, we chose the maximum IRC in inhabited rooms as
the unique IRC for each house. This resulted in a total of 32,151
measurements. When certain variables were unknown (e.g.
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unknown year of construction), we excluded the measurement
from the analysis of the corresponding variable.

2.2.4. Distribution of IRC
Many authors refer to the fact that IRC follows a lognormal dis-

tribution (Bossew, 2010; Nero et al., 1986; Tuia and Kanevski, 2008).
However, Janssen and Stebbings (1992) found that the log-
transformed IRC can more accurately be described by a gamma dis-
tribution.We explored the distribution of the log-transformed IRC by
fitting gamma and normal probability density functions to it. The
probability density function of the normal distribution is given by:

f ðx;m;sÞ ¼ 1=ð2pÞexp
�
� ðx� mÞ2=ð2sÞ

�
(1)

The probability density function of the gamma distribution is
given by

f ðx; k; qÞ ¼ xk�1e�x=q=
�
qkGðkÞ

�
(2)

where k is called the shape and q the scale parameter. GðkÞ is the
gamma function given by

GðkÞ ¼
Z N

0
tk�1e�tdt (3)

The goodness of fit was measured and compared by means of
Kolmogorov distances between the real and the fitted distributions.

2.3. Probability mapping

To map a local probability estimation to exceed the recom-
mended reference level of 300 Bq/m3 (WHO, 2009), we created a
1 km � 1 km grid covering all of Switzerland. For each pixel, we
searched the 50 IRC measurements nearest to the center of the
pixel within a radius of 20 km. That means the measurement sites
could also be located outside of the pixel. As the probability to
exceed 300 Bq/m3 we calculated the percentage of measurements
higher or equal to 300 Bq/m3.

P
�
Rn > 300Bq=m3

�
¼ NRn>300Bq=m3=50 (4)

NRn>300Bq=m3 is the number of houses within the next nearest 50
neighboring houses with a radius of 20 km to the center of the pixel
which exceed an IRC of 300 Bq/m3. In regions with very low sam-
pling density this method doesn’t give meaningful results. There-
fore we excluded the area of the canton Valais from the mapping.

2.4. Statistical analysis

The fact that many authors reported the distribution of IRC to be
close to log-normality requires a careful determination of the
expectation value and its confidence intervals.

Confidence intervals of the log-normal mean can be directly
estimated by assuming that the arithmetic sample mean of a log-
normal distribution follows a normal distribution for infinitely
large sample sizes. However, the arithmetic sample mean of a log-
normal distribution converges very slowly to a normal distribution
(Land, 1972).

Therefore, we used the estimator (Shen et al., 2006):

v ¼ exp
�
xþ s2=2

�
(5)

for the expectation value of the IRC, where x is the arithmetic
samplemean of the log-transformed IRC and s2 the sample variance

of the log-transformed IRC. We calculated the approximate confi-
dence intervals at a given a-level according to a method proposed
by D. R. Cox (Land, 1972) by

exp
�
xþ s2=2� z1�N=2g

�
(6)

where z1�a=2 is the 1 � a/2 quantile of the standard normal dis-
tribution and

g2 ¼ s2=nþ s4=ð2ðnþ 1ÞÞ (7)

This method was reported to give good results for moderate to
large samples (Land, 1972; Zhou and Gao, 1997). We chose a ¼ 0.05
in order to estimate the two-sided 95% confidence intervals of the
log-normal mean.

Since most of the variables considered in this study are cate-
gorical, the principal method is to calculate mean values and the
95% confidence intervals of the IRC in each class and to graphically
compare the intervals of the classes. If the 95% confidence intervals
of two class means do not overlap, the probability can be consid-
ered as lower than 5% that the mean of one class lies in the 95%
interval of the other class. The mean values of the two classes are
hence regarded as being significantly different at a 95%-level.
Moreover, we carried out KruskaleWallis one-way analysis of
variance to quantify the association between IRC and each variable.
KruskaleWallis one-way analysis of variance tests whether the IRC
medians of the classes of an independent variable are significantly
different or not. The resulting test statistic is denoted as K. IRC
measurements with missing attributes were sorted out.

Additionally, for each class, we computed amap representing the
spatial aggregation of the number of measurements on a grid of
5 km � 5 km. This allows detecting biases caused by spatially irreg-
ular sampling. To explicitly quantify the uniformity of the spatial
distribution of samples, we performed c2-test for the corresponding
distributions of each class of each variable. The reduced statistic

c2red ¼ 1
df

Xn
i¼1

ðEi � OiÞ2=Ei (8)

gives information about the uniformity of the spatial distribution of
samples. The null hypothesis is that the spatial distribution of
sampling is uniform throughout the cells taken into account. Ei¼N/
n is the expected frequency and Oi is the observed frequency of
samples in cell i. N is the number of samples in the corresponding
class, n the number of cells and df ¼ n � 1 is the number of degrees
of freedom. The p-values were obtained by calculating the proba-
bility of a c2-distribution with degrees of freedom df to obtain the
non reduced statistic c2. The null hypothesis was rejected at the
0.05 significance level.

For statistical analysis and plotting we used the statistical soft-
ware R (R Core Team, 2012), for spatial analyses the R packages “sp”
(Bivand et al., 2008) and “RANN” (Kemp and Jefferis, 2012), and for
support vector regression the R package “e1071” (Dimitriadou et al.,
2012). For mapping, we used the GIS applications QGIS (Quantum
GIS Development Team, 2012) and GRASS (GRASS Development
Team, 2012).

2.4.1. Type of radon detector
The influence of the type of radon detector on IRC measure-

ments was analyzed by comparing the mean values and 95% con-
fidence intervals for track and electret detectors. We produced a
map with the spatial distribution of samples for track as well as for
electret detectors. To investigate the effect of spatial sampling we
carried out the analysis for two spatial domains: the Swiss Plateau
and whole Switzerland.
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2.4.2. Type of foundation
To analyze the influence of foundation on the IRC, we calculated

the mean values and the confidence intervals for the foundation
classes “Concrete”, “Concreted afterwards” and “Earth”. For each
class, we created a map representing the spatial distribution of
samples. The Canton of Ticino is nearly not represented in this
analysis because the foundation type has been registered in less
than 7% of all measured houses in this canton.

2.4.3. Year of construction
To quantify the impact of the building age on the IRC we

grouped the years of construction into 4 classes: <1900, 1901e
1970, 1971e1990, >1990. For older houses the information of the
year of construction can be inaccurate. This inaccuracy is
compensated by the classification into 4 broad classes. For each
class, we calculated the arithmetic mean and the corresponding
confidence intervals. The classes of years of construction are sup-
posed to be representative for substantial changes in building and
construction norms in Switzerland.

2.4.4. Type of building
To examine the relationship between IRC and building types, we

calculated mean values and confidence intervals for the following
classes: schools, farms, detached houses and apartment buildings.
The spatial distribution of samples was visualized by amap for each
class.

2.4.5. Floor levels
Since most radon gas enters the house by coming up from the

ground (Åkerblom et al., 1984) and because the basement is often
the less ventilated level in a building (Dessau et al., 2005) one may
expect that IRC would be higher on the lower floors. To explore this,
we compared IRC on different floors within buildings. For this
analysis, we chose only buildings were IRC had beenmeasured both
in the basement and on another floor during the same period of
time and in inhabited rooms. Finally, we could calculate the average
ratio of the IRC on the second-, first- or ground floor and the con-
centration in the basement. The average ratios between IRC of the
corresponding floor to IRC in the basement were plotted versus the
corresponding floor number.

Additionally, we investigated the correlation of measurements,
which were carried out in the same building but at different floor
levels. For this complementary analysis, we selected all buildings
for which both measurements in the basement and on the ground
floor had been carried out in inhabited rooms and during the same
period of time. Furthermore, we chose all houses in which the first
and second floor IRC had beenmeasured over the same time period.
For both datasets we calculated Spearman’s rank correlation co-
efficients of the IRC between both corresponding floors and created
scatter plots of the log-transformed IRC of both floors.

2.4.6. Altitude
We investigated the relationship of IRC to altitude by sub setting

IRC measurements into 5 classes of altitudes in meters: “<350”,
“350e500”, “500e700”, “700e900” and “>900”. We chose this
classification to represent the lower part of the Canton Ticino
(“<350”) and to consider two more or less balanced classes for the
Swiss Plateau (“350e500”, “500e700”) as well as for the moun-
tainous regions of Switzerland (“700e900” and “>900”). For each
class, we calculated the mean value of the measured IRC and the
confidence intervals for this mean value. The mean value was
plotted versus the altitude classes. Additionally, we calculated the
local sample sizes for each class and presented it graphically to get
an insight into the influence of the spatial distribution on the
resulting mean IRC.

2.4.7. Outdoor temperatures during measurement
Using the period of measurement registered in the Swiss data-

base for each single measurement enabled us to estimate the mean
outdoor temperature for each measurement by using support
vector regression. A comprehensive introduction to support vector
regression is given by Smola and Schölkopf (2004) and Cherkassky
and Mulier (2007). We used the temperature measurement from
the MeteoSwiss stations to interpolate the outdoor temperatures at
the location of each building. We considered only meteorological
stations situated between 193 m and 1069 m altitude, which cor-
responds to the minimum and the 97.5 percentile of the altitude of
all buildings taken into account in this study. We chose the 97.5
percentile to avoid leverage points of temperatures measured at
higher altitudes which are nearly not populated.

As independent variables of the support vector regression, we
took longitude, latitude and altitude into consideration. An
important parameter of support vector regression is the cost
parameter. The cost parameter determines the amount of over
fitting respectively under fitting of the data. If the cost parameter is
high, the support vector regression tends to over fit the data; if it is
small it tends to under fit. We optimized the cost parameter of the
support vector regression for each single day by 5-fold cross-
validation which yielded an R2 of 57% for the year 2000. We took
into account only cost parameters between 0.1 and 10 with a res-
olution of 0.1. We carried out interpolations for each single day of
the IRC measurement period. Hence, we calculated the mean out-
door temperature by averaging the estimated daily mean outdoor
temperatures over the whole period. Finally, we grouped outdoor
temperatures arbitrarily into 4 classes “<0 �C”, “0e5 �C”, “5e10 �C”
and “>10 �C” and calculated the mean outdoor temperature for
each class. The mean outdoor temperature in the Swiss Plateau is
around 10 �C. We chose this classification to obtain one class above
the mean temperature of the Swiss Plateau. However, most of the
measurements have been performed during the heating period. To
distinguish these classes by different degrees of cold, we chose
“<0 �C” as a class to represent very cold temperatures, “0e5 �C”
moderately cold temperatures and “5e10 �C” for rather mild
temperatures.

2.4.8. Lithology
Since the lithological database consists of 70 different classes,

interpreting it with respect to IRC is cumbersome. Therefore, we
generalized the lithological classes into 6 classes according to our
assumptions regarding their expected level for elevated radon po-
tential: (1) sediment, i.e. quaternary deposits which correspond to
loose surficial material mostly deposited after the last glaciation;
(2) carbonate rock Jura, i.e. limestone and associated carbonate rock
in the Jura Mountains; (3) carbonate rock Alps, i.e. limestone and
associated carbonate rock in the Alps (4) igneous rock, i.e. granites;
(5) metamorphic rocks which are rocks transformed through the
formation of the Alps, and (6) sedimentary rocks which are not
carbonates (e.g. sandstones, conglomerates etc.). Fig.1 shows amap
of the 6 generalized lithological classes. To investigate the influence
of the lithology on IRC we plotted the arithmetic mean values and
its confidence intervals versus the generalized lithological units.

3. Results

3.1. Distribution of IRC

The undeclustered point set yields a fractal dimension of 1.15
with 63,950 houses whereas after random declustering the fractal
dimension results in 1.42 with 34,297 houses. Knowing that pure
random locations would yield to a fractal dimension of 2.0, the
value 1.42 implies that some clustering is still present in the data.

G. Kropat et al. / Journal of Environmental Radioactivity 129 (2014) 7e2210



Since we only considered houses with measurements in inhabited
rooms, the final dataset is composed of 32,151 houses in the
declustered and 60,298 houses in the undeclustered case. Table 1
gives relevant statistical parameters of the distribution of IRC of
the Swiss radon database for declustered as well as for undeclus-
tered IRC measurements. The skewness of the declustered log
transformed IRC is 0.6 and the kurtosis 4.11.

Fig. 2 displays the log-transformed distribution of the declus-
tered IRC. We fitted a gamma and a normal probability density
function to the log-transformed IRC. The fit of the gamma distri-
bution yields a shape parameter of 20.78 and a rate of 4.54. The
lognormal distribution was fitted with a mean of 4.58 and a
standard deviation of 1.01. The hypotheses that the log-
transformed IRC are drawn from a gamma or a normal distribu-
tion are rejected by a KolmogoroveSmirnoff test in both cases
with p-values smaller than 2.2$10�16. The Kolmogorov distance for
the gamma distribution is 0.040 and for the normal distribution
0.055.

3.2. Probability mapping

Fig. 3a presents the local probability to exceed an IRC of 300 Bq/
m3 in inhabited rooms. The probability ranges from 0 to 0.92. The
probability to exceed 300 Bq/m3 is clearly higher in the Jura
Mountains, in the Canton of Ticino in the South of the Alps and in
parts of the Canton of Grisons in the South-East of the Alps. In the

very mountainous Canton of Valais in the South-West of
Switzerland, the sampling density was too low to perform reliable
probability mapping. Therefore we did not calculate the pixel
values in this area.

3.3. Statistical analysis

The hypothesis of uniform spatial distribution of samples was
rejected by the c2-test for each class of each variable.

3.3.1. Type of radon detector
Fig. 4a shows the mean IRC of track and electret detectors. The

red set corresponds to measurements which were taken over the
whole of Switzerland (K ¼ 17.9, p < 5$10�4) and the black one to

Fig. 1. Generalized lithological classes.

Table 1
Summary statistics of indoor radon concentrations in Switzerland.

Declustered data Undeclustered data

Number of houses 32,151 60,298
Arithmetic mean (Bq/m3) 189 198
Geometric mean (Bq/m3) 98 107
Median (Bq/m3) 87 95
Standard deviation (Bq/m3) 439 434
Geometric standard deviation 2.8 2.7
Interquartile range (Bq/m3) 119 131
Median absolute deviation (Bq/m3) 68 74
Fraction of houses above 300 Bq/m3 0.13 0.14
Fraction of houses above 1000 Bq/m3 0.03 0.03

Fig. 2. Distribution of log-transformed IRC with fitted Gaussian and Gamma density.
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measurements taken only in the Swiss Plateau (K ¼ 162.9,
p < 2$10�16). The confinement to the Swiss Plateau results in an
inversion of the effect of both detector types on the IRC. For the all-
of-Switzerland data, a strong discrepancy in spatial distribution can
be observed in Fig. 4b. The electret detectors show some over-
sampling in the Swiss Plateau and the track detectors have a
considerable share in the Jura Mountains and the canton Ticino.
Fig. 4c shows the spatial distribution of samples restricted to the
Swiss Plateau. The spatial distribution of sampling for both types of
detectors has a low deviation from uniformity.

3.3.2. Type of foundation
The mean IRC for different foundation types are shown in Fig. 5

(K ¼ 295.9, p < 2$10�16). Concrete foundations reveal the lowest
mean values followed by earth foundations. The highest class re-
lates to concrete slabs which were added after the construction.
The spatial distributions of samples for all classes don’t show
considerable differences.

3.3.3. Year of construction
This analysis included 27,878 buildings since the year of con-

struction was not indicated for all houses. Fig. 6 shows the mean
values of IRC depending on the year of construction (K ¼ 337.8,
p < 2$10�16). For the first three classes of years, a significant
decrease of mean IRC can be observed. Between the classes “(1970,
1990]” and “(1990, 2011]” the mean IRC are not significantly
different.

3.3.4. Type of building
Fig. 7a shows the mean IRC for the building type “School”,

“Apartment building”, “Detached house” and “Farm” (K ¼ 111.9,
p< 2$10�16). The IRC in apartment buildings are significantly below
those of detached houses and farms. The estimation of the mean
value for schools is very uncertain due to lack of measurements.
Nearly no samples for farms are available in the canton Ticino. The
spatial distribution of samples for detached houses is highly non-
uniform and shows a considerable oversampling in the canton of
Ticino.

3.3.5. Floor levels
Fig. 8 shows how IRC is dependent on the floor level. The mean

ratios of the basement concentrations and other floor levels are
plotted versus the corresponding floor levels. The graph reveals a
nearly linear dependency between the mean ratios and the floor
level. Since few houses (N ¼ 58) were measured at the same period
of time in the basement and on the second floor, the confidence
intervals are very large and a significant difference between the
first and second floor cannot be observed. Note that, surprisingly,
37% of all houses exceed 100 Bq/m3 in the second floor.

Fig. 9a shows the log-transformedconcentrationsmeasuredon the
ground floor versus the log-transformed concentrations measured in
the basement. The black line indicates the case of equality of IRC be-
tween the two floors. The Spearman’s rank correlation coefficient
equals r ¼ 0.65. About a quarter of the houses have higher concen-
trations on the ground floor than in the basement. Fig. 9b shows the
log transformed IRC on the first floor versus the log transformed
concentrations on the second floor. In this case the Spearman’s rank
correlation coefficient equals r ¼ 0.89. The correlation coefficients
show that concentrations in the basement aremuch less correlated to
concentrations on the ground floor than concentrations on the first
floor to concentrations on the second floor.

3.3.6. Altitude
Fig. 10a shows the mean IRC depending on the altitude

(K ¼ 1530.9, p < 2$10�16). The mean IRC of class “(900, 2235]”
differs considerably from the other classes. The spatial distribution
of IRC measurements in each altitude class is shown in Fig. 10b. The
spatial distribution of samples in the Swiss Plateau clearly de-
creases with higher altitude. Class “<350” reveals that the spatial
distribution of samples concentrates mainly on the northern part of
the Jura Mountains and the southern part of Ticino.

3.3.7. Outdoor temperature during measurement
The mean values for each outdoor temperature class are shown

in Fig. 11a (K ¼ 180.7, p < 2$10�16). A tendency of decreasing IRC
with increasing outdoor temperature can be observed. However
the mean value of the class “(5, 10]” is higher than the IRC mean
value of “(0, 5]”. Fig. 11b shows the spatial distribution of IRC

Fig. 3. Map of Switzerland indicating the local probability to exceed 300 Bq/m.3.
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measurements for the corresponding outdoor temperature class. In
both outdoor temperature classes “(�5, 0]” and “(10, 23]”, the
density of samples in the canton of Ticino in the south of the Alps is
smaller compared to the outdoor temperature classes “(0, 5]”, “(5,
10]”. The outdoor temperature classes “(0, 5]” and “(5, 10]” show
clear non-uniformity of spatial distribution of samples.

3.3.8. Lithology
Fig. 12a shows the means and confidence intervals of IRC

grouped by 6 different lithological classes (K¼ 1086.3, p< 2$10�16).

Igneous rock and carbonate rock in the Jura Mountains demon-
strated the highest IRC. Sediment and sedimentary rock have the
lowest IRC. Carbonate rock in the Alps and carbonate rock in the
Jura Mountains show a significant difference.

4. Discussion

The purpose of this work was to answer the following question:
Which factors influence IRC in Switzerland and how are IRC sam-
ples corresponding to these factors spatially distributed?

Fig. 4. a) Mean IRC versus radon detector type. Red circles: radon detectors located throughout Switzerland. Black squares: Measurements carried out exclusively in the Swiss
Plateau. Spatial distribution of samples by radon detector class carried out b) in the whole of Switzerland and c) exclusively in the Swiss Plateau. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Since IRCmeasurements in Switzerland are taken autonomously
by each canton, the spatial distribution of samples of the IRC data is
very irregular. This leads to local over- or under representation of
sampling. To reduce bias due to local over- or under sampling, we
applied random declustering on the IRC dataset. Table 1 shows that
the arithmetic mean for the undeclustered IRC dataset is higher
(198 Bq/m3) than the arithmetic mean in the declustered case
(189 Bq/m3). This difference can be explained by the sampling
strategy of the Swiss authorities to favor measurements in radon-
prone areas. The arithmetic mean value of the declustered data-
set of 189 Bq/m3 is large compared to the mean of 78 Bq/m3 re-
ported byMenzler et al. (2008). This is due to the fact that the mean

value in the present study is not a population weighted mean,
which would give a bigger weight to IRC of densely populated areas
in Switzerland. Most of Switzerland’s population is located in the
Swiss Plateau, which has rather low IRC as can be seen in Fig. 3a.
Therefore, population weighted mean of IRC in Switzerland is
smaller than the unweightedmean. Since this study aims to explore
variables that influence IRC, we favored a mean that takes all
sampled regions equally into account. The quantity estimated here
is the spatial mean.

Since log-transformed IRC were often observed to follow a dis-
tribution close to a normal or a gamma distribution, we used a
KolmogoroveSmirnov test to compare the distribution of the log-

Fig. 5. a) Mean IRC versus building foundation. b) Spatial distribution of samples by class of foundation.
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transformed IRC with a normal and a gamma distribution. The
KolmogoroveSmirnoff test rejects the hypotheses that the log-
transformed IRC in Switzerland follow normal or gamma distri-
butions. Nevertheless, the KolmogoroveSmirnov distance is
slightly smaller for the gamma distribution, indicating a better
goodness-of-fit with the gamma distribution. This may be due to
the fact that the gamma distribution is more flexible with regard to
skewness. The skewness of 0.6 indicates a deviation from the
symmetry of the normal distribution. The departure from log-
normality may be attributable to clustering, which is indicated by
the low fractal dimension of 1.42 of the IRC dataset. On the other
hand, a more rigorous random declustering of the spatial

distribution of the IRC data would be at the expense of data size
which would result in less accurate estimates for all analyses in this
study. A deeper insight into the reasons for the deviation from log-
normality is not in the scope of this work and will be subject to
future investigations. Nevertheless, as depicted in Fig. 2, the dis-
tribution of IRC in our study is reasonably close to log-normality,
thus justifying the use of statistical methods assuming normality
with log-transformed IRC.

A significant influence on the dispersion of IRC measurements is
the measurement process itself. We observed substantial differ-
ences between electret and track detectors in the estimation of IRC
(see Fig. 4a). Electret detectors measure the concentration of alpha

Fig. 6. a) Mean IRC versus year of construction. b) Spatial distribution of samples by class of years of construction.
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emitters in the air with a dielectric plastic film, which is discharged
by the impact of alpha particles. Higher air humidity and dirt can
lead to a faster discharge of the electret detector consequently
resulting in an overestimation of alpha particles in the air. This
overestimation of IRC by electrets is in accordance with earlier
findings, where several electret and track etch detectors were
compared pair wise in the same houses over a three month period
(Federal Office of Public Health, 2011). Consequently, IRC mea-
surements carried out with electret detectors have to be inter-
preted carefully and models which aim to predict IRC have to
account for the differences of electrets compared to other detectors.
The fact that the dataset from the Swiss Plateau reproduces these

findings rather than the dataset from the whole of Switzerland is
due to the more uniform spatial distribution of samples and a more
homogeneous geology in the Swiss Plateau. Track detectors have a
considerable higher share in the canton Ticino and the Jura
Mountains compared to electret detectors (see Fig. 4b). This may
explain the higher mean of IRC measurements for track detectors in
the case of the all-of-Switzerland data.

Building characteristics also contribute to the variability of IRC
measurements. The influence of the type of foundation on IRC is
represented in Fig. 5. Buildings with earth foundations are signifi-
cantly more prone to radon than buildings with concrete founda-
tions. Indeed, earth foundations are less sealed against radon entry

Fig. 7. a) Mean IRC versus type of building. b) Spatial distribution of samples by class of type of building.
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from the subsoil than concrete foundations. Concrete foundations
built into the house after construction result in higher IRC and
therefore suggest that this method is not effective to avoid radon
infiltration. The spatial distribution of measurements is similar for
all classes (see Fig. 5b). However, it is likely that buildings in which
the concrete foundation was built afterwards were particularly
radon prone before. Hauri et al. (2012) showed that the year of
construction of a building is one of the most influencing variables
with respect to IRC. Fig. 6a shows a significant difference between
IRC measured in buildings built before 1900, between 1900 and
1970, and after 1970. The drop after the 1970s can be explained by
new building regulations put in place following the oil crisis in the
1970s which resulted in better insulation against subsoil (Burkart
et al., 1984). Gunby et al. (1993) found that elevated IRC in build-
ings built before 1900 may be caused by the use of stones as a
building material. However, since information about building ma-
terials is not provided in the Swiss radon database, we could not
further study this variable. Moreover, the type of building in-
fluences IRC. In particular, apartment buildings do have signifi-
cantly lower IRC than detached houses and farms. Indeed,
apartment buildings are rather newer constructions with better
tightening of the bottom slab which prevents radon entries. On the
other hand, measurements for apartment buildings were carried
out at higher floor levels compared to detached houses with 35%
versus 22% of measurements taken above the ground floor,
respectively. Moreover, spatial distributions of samples for the
different classes are different as can be seen in Fig. 7b. This leads to
substantial biases in the estimation of IRC mean values for the
different building types.

The effect of the floor level on the IRC was studied by comparing
IRC of different floor levels in the same houses. This method avoids
biases that would occur by just calculating the mean value of the
IRC for each floor. Fig. 8 shows that the mean ratios between the
basement IRC and the other floors are significantly different except
between the first and the second floor. Nevertheless, the difference
between the ground floor and the basement is rather small. This is
in accordance to the fact that in 26% of cases, IRC on the ground
floor are higher than in the basement. The fact that the correlation
between IRC in the basement and on the ground floor are much
lower than the correlation between concentrations on the first floor

and second floor can be interpreted in three ways. First, IRC on
higher floors are predominantly determined by the exhalation of
IRC by the building materials, thus leading to similar IRC in all floor
levels. However, this hypothesis does not seem realistic since 37% of
the houses exceed concentrations of 100 Bq/m3 on the second floor,
a concentration which can rarely be found to be produced by
building materials in literature (Schuler et al., 1991). A second hy-
pothesis is that IRC on the higher floor levels are transferred by
electrical conduits. This would result in rather similar IRC on
different higher floor levels. Finally, the fact that indooreoutdoor
air exchange and anthropogenic influences are more similar be-
tween higher floors than between basement and ground floor, may
also explain the higher correlation between first and second floor.
Detailed investigations of radon pathways within houses remain a
topic for future studies.

IRC show significant association with altitude in Switzerland
(see Fig. 10a). This relationship can be explained by the relationship

Fig. 8. Ratio of IRC at a given floor level in a building to IRC in the basement of the
same building.

a)

b)

Fig. 9. IRC in different floor levels of same building while same measurement period:
a) ground floor versus basement b) second floor versus first floor.
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Fig. 10. a) Mean IRC versus altitude b) Spatial distribution of samples stratified by altitude.
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of altitude to outdoor temperature and geology. The tendency of
measuring lower IRC at higher outdoor temperatures (see Fig. 11a)
can be attributed to the higher ventilation during warmer periods.
However, this result has to be interpreted with caution since out-
door temperatures are often strongly associated with altitude.
Since geology is also dependent on altitude, the covariation of IRC
with outdoor temperature can be partly explained by the depen-
dence of IRC on geology. The Alps with granites and gneisses as well
as the Jura Mountains with a high abundance of karst lie at a higher
altitude than the Swiss Plateau that is dominated by quaternary
glacial sediments and sedimentary rock. Fig. 12a reveals that ge-
ology has a significant effect on IRC. Clearly carbonate rock and
igneous rock have higher IRC than sedimentary rock and sediment.

Gneisses in Switzerland and felsic igneous rock are rich in uranium
(Schön, 2004). This explains the high IRC mean in igneous rock in
Fig. 12a as well as the high probability of exceeding 300 Bq/m3 in
the Alps, a region where felsic igneous rock and gneisses are
abundant. The high IRC with carbonate rock in the Jura Mountains
can be explained by a widespread karstification of the carbonate
rock in this area compared to carbonate rock in the Alps. Since both
the Alps and the Jura Mountains are at higher altitudes, IRC are
obviously altitude-dependent (see Fig. 10a). The mean IRC in
metamorphic rock is centered between the other lithological clas-
ses. This is not surprising since metamorphic rock can originate
from a variety of different rocks which are not necessarily rich in
uranium (e.g. slate, paragneiss, etc).

Fig. 11. a) Mean IRC versus outdoor temperature b) Spatial distribution of samples stratified by outdoor temperature.
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It is important to note that IRC measurements in this study
were taken by house owners and not by trained personnel. We
may expect that this would have increased the random error
rather than the systematic error. A larger random error of a
measurement broadens the confidence intervals of the estima-
tion of the mean value of the measured quantity. However, in
most of our analyses, enough measurements were available in
order to provide sufficient confidence on the estimations of
mean values.

Furthermore, it has to be mentioned, that we considered the
maximum IRC measurements in inhabited rooms per house. Taking
the mean value could lead to different results. Nevertheless, in less
than 3% of the considered houses more than 2 measurements were
available in inhabited rooms. Taking the mean value of 2 mea-
surements still leaves a high uncertainty on the estimation. Ac-
cording to the Swiss legislation, we considered the maximum
measured IRC per house in inhabited rooms which is the legally
binding measurement to be compared with the reference level. In

Fig. 12. a) Mean IRC versus lithology b) Spatial distribution of samples by class of lithology.
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addition, the maximum IRC provides information about the po-
tential IRC that a house can reach and we think that it is more
relevant to compare directly this value with potentially influencing
variables.

The IRC measurements in this study haven’t been corrected for
seasonal variations. The FOPH applies a correction factor on IRC in
Switzerland (Piller and Johner, 1998). Those correction factors have
been calculated based onmeasurements carried out in summer and
inwinter. However the amount of summermeasurements available
in Switzerland is very small compared to the amount of winter
measurement. The correction factors derived from this data are
hence subject to strong uncertainty. To minimize additional errors
in our measurements we preferred to use the uncorrected mea-
surements for our analysis.

The fact that the sampling strategy changed over time may lead
to bias of the estimate of IRC mean values, which cannot be
adjusted by declustering. Nevertheless, the mapping of the spatial
distribution of samples permits to illustrate the lack of uniformity
of sampling and to assess the possible bias which could be pro-
duced by different sampling criteria.

Finally, it has to be born in mind that we did not correct IRC
measurements for possible errors due to thoron concentrations.

5. Conclusions

This study contributes to a better understanding of IRC in
Switzerland. We found significant relationships between IRC and
all variables taken into consideration. Our findings are in general
accordance with previous studies (Andersen et al., 2007; Appleton
and Miles, 2010; Gunby et al., 1993; Hauri et al., 2012; Hunter et al.,
2009; Khan, 2000; Papaefthymiou et al., 2003; �Zunic et al., 2007).
However, few studies explored IRC datasets with such a high spatial
sampling density. Additionally, we mapped the spatial distribution
of samples for each class of each variable. This provides a visual tool
to understand possible biases caused by unbalanced spatial distri-
butions of samples. Based on our results, it will be possible to
develop models for the prediction of local IRC considering for
geographical coordinates and most relevant associated variables.
For instance, we observed that geology has a significant influence
on IRC. Sedimentary rock and sediment have clearly lower IRC than
the carbonate rock in the Jura and igneous rock. On the other hand,
we found that carbonate rock in the Jura Mountains shows a
different radon characteristic than carbonate rock in the Alps.
Consequently, and unsurprisingly, 3D geological information is a
potential variable that could be used to predict IRC. Data driven
machine-learning techniques, such as Random Forests or kernel
density estimation, are interesting nonlinear methods to carry out
highly accurate prediction by combining categorical as well as
continuous predictors. However, prediction accuracy is often in
tradeoff with the interpretability of predictors since the interde-
pendency of predictors can be very complex. Therefore we stressed
the simple univariate relationships between potential predictors
and IRC in the present study without taking into account in-
teractions between variables. This work is essential for the devel-
opment of more complex predictive models to map IRC in
Switzerland. The follow-up work of our project will be the explo-
ration of the potential of data driven machine-learning techniques
to analyze, map and predict IRC in Switzerland based on the uni-
variate analyses of this study.
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H I G H L I G H T S

• Kernel regression was used to map indoor radon concentration in Switzerland.
• Our model explains 28% of the variations of radon concentration data.
• Maps were generated considering different architectural elements and geology.
• Maps showing the local probability to exceed 300 Bq/m3 were proposed.
• We developed a confidence index to assess the reliability of the probability map.
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Purpose: The aim of this study was to develop models based on kernel regression and probability estimation in
order to predict andmap IRC in Switzerland by taking into account all of the following: architectural factors, spa-
tial relationships between the measurements, as well as geological information.
Methods:We looked at about 240000 IRC measurements carried out in about 150000 houses. As predictor var-
iables we included: building type, foundation type, year of construction, detector type, geographical coordinates,
altitude, temperature and lithology into the kernel estimationmodels.Wedeveloped predictivemaps aswell as a
map of the local probability to exceed 300 Bq/m3. Additionally, we developed a map of a confidence index in
order to estimate the reliability of the probability map.
Results: Our models were able to explain 28% of the variations of IRC data. All variables added information to the
model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the in-
fluence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel
estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were al-
ready obtained earlier. On themunicipal level, we could show that ourmodel accounts well for IRC trendswithin
municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps
corresponding to detached houses with concrete foundations indicate systematically smaller IRC thanmaps cor-
responding to farms with earth foundation.
Conclusions: IRCmapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale
aswell as on a local level. This approach enables to develop tailor-mademaps for different architectural elements
andmeasurement conditions and to account at the same time for geological information and spatial relations be-
tween IRC measurements.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Radon is a radioactive gas that is known to be the second leading
cause of lung cancer after smoking (Zeeb and Shannoun, 2009a). In
Switzerland, radon accounts for about 230 deaths per year (Menzler
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et al., 2008). Many of these deaths could be avoided by effective radon
prevention.

Exposure to radon mainly takes place in closed environments
like buildings at home or at work. Since most of the radon enters
from the ground into a building, radon-exposure prevention con-
sists of remediation measures and changing ventilation habits of
the inhabitants.

The entry and the behavior of IRC inside houses are complex pro-
cesses driven by several variables: building characteristics, anthropo-
genic influences, and geological and meteorological factors. Much
of the variability of IRC is therefore related to variables which can
change among neighborhood houses and on the time scale of hours
(Groves-Kirkby et al., 2006; Miles, 2001).

The management of radon risk requires reliable predictive
maps. If radon can be predicted in local areas, the local population
would be informed about their health risk. This would motivate
homeowners to take measurements and remediate their build-
ings, as well as to consider radon preventive measures in new
constructions. Predictive mapping of indoor radon concentra-
tions (IRC) is however difficult, since IRC can strongly vary on
small spatial ranges (Borgoni et al., 2011; Cinelli et al., 2011;
Zhu et al., 2001).

The approaches which exist to estimate the local radon hazard can
be classified into two major groups. The first is that the radon hazard
can be estimated using prior knowledge of the radon characteristics of
the local geology. For example, uranium concentrations can serve as a
proxy to determine the radon characteristics of a geological unit
(Ielsch et al., 2010). An advantage of this approach is that no additional
radon measurements are needed, a process which can be very costly
and time consuming. However, mapping radon availability without
taking into account radon measurements requires a very detailed
knowledge about the local geology since uranium concentrations for
the same geological unit can be very different at different locations
(Schön, 2004). In addition to the amount of uranium, soils can be char-
acterized by their amount of radon gas in order to estimate local radon
hazards (Kemski et al., 2001). Fortunately, radon soil gas measure-
ments do give direct information about the radon footprint of a geo-
logical unit (Barnet et al., 2010; Kemski et al., 2009). Nevertheless, it
is difficult to transform uranium concentrations of the ground or
radon soil gas measurements into an estimation of IRC, since IRC is
additionally influenced by the architecture of the corresponding
houses, permeability of the ground, the habits of inhabitants andme-
teorological variables (Bossew and Lettner, 2007; Cucoş (Dinu) et al.,
2012; Groves-Kirkby et al., 2006; Kropat et al., 2014; Miles, 2001;
Žunic et al., 2007).

A second approach is to directly estimate the local radon haz-
ard from existing IRC measurements. Since natural radon concen-
trations are only of concern in closed environments, using IRC
data to estimate local radon availability is the most direct way
to estimate this health threat. Most national radon maps in
Europe are based on local IRC averages on a grid or administrative
boundaries (Dubois, 2005). Other studies report IRC mapping
based on geological units (Appleton and Miles, 2010; Appleton
et al., 2011; Drolet et al., 2014; Friedmann and Gröller, 2010;
Smethurst et al., 2008). Furthermore, many authors made use of
geostatistical techniques to interpolate IRC (Bossew et al., 2008,
2014; Cinelli et al., 2011; Dubois et al., 2007; Raspa et al., 2010;
Zhu et al., 2001). However, few studies on IRC mapping were pub-
lished which take the building characteristics and the measure-
ment conditions into account (Borgoni et al., 2011; Pegoretti
and Verdi, 2009).

The aim of this study was to develop models to predict and map IRC
by accounting for the following all at the same time: the spatial relation-
ships between IRCmeasurements and knowledge of measurement con-
ditions, building characteristics of corresponding houses and geological
information.

2. Data and methods

2.1. Data

2.1.1. IRC data
The IRC data used in this study are long-term IRCmeasurements car-

ried out with passive radon detectors from the early 1980s up to now.
For this purpose a laboratory sends the detectorswith an enclosed ques-
tionnaire and an instruction sheet to the households. The homeowners
expose thedetectors over a given timeperiod and send themback to the
responsible laboratorywith the completed questionnaire. The question-
naire indicates the address of the building, a unique ID of the Swiss na-
tional building registry, the coordinates, the altitude, the building type,
the year of construction, if the building was previously remediated,
the foundation type, the floor level of measurements, the room type of
measurement, whether the measured room was inhabited during the
measurement period or not, the exact dates of beginning and ending
of the measurement period and the detector type.

In the beginning, the IRC measurements were taken randomly to ob-
tain at least aminimumnumber ofmeasurements permunicipality. How-
ever, over time this strategy changed to targeted sampling of radon prone
areas. The raw database available before data preprocessing consisted of
238769measurements in 148458houses. Analogous tomany other stud-
ies, we performed all modeling and validations on log-transformed IRC
measurements, in order to diminish the influence of extreme values
(Andersen et al., 2007; Borgoni et al., 2011; Bossew et al., 2008; Cinelli
et al., 2011; Dubois et al., 2007; Hauri et al., 2012; Zhu et al., 2001).

2.1.2. Coordinates
Many buildings of the IRC database don't possess correct coordi-

nates. Often the coordinates of the houses are just the center of themu-
nicipality, in several cases the coordinates were outside the
geographical area of Switzerland or on the top of mountains where no
buildings exist. We only used measurement for which the coordinate
was clearly indicated as the location of the house. To reduce possible er-
rors we checked that within a distance of 100 m, there is actually a
house of the Swiss building registry. The range of the east–west coordi-
nate (EW-Coord) was 486295 m to 830883 m and 75881 m to 294237
m for thenorth–south coordinate (NS-Coord). Thewhole studywas car-
ried out in the Swiss coordinate system CH1903.

2.1.3. Detector type
In earlier work we found that detector types can have a substantial

influence on the result of an IRC measurement (Kropat et al., 2014). In
this study detector types were electret or track detectors from different
manufacturers. Electret detectors may be subject to unforeseen dis-
charge due to dust or air humidity. This can lead to overestimation of
IRC. To account for differences in detector types, we took each detector
type from eachmanufacturer as a unique class, which resulted in 13 de-
tector type classes.

2.1.4. Floor level and inhabitation
In a previous studywe found floor levels to have an important influ-

ence on IRC. The Swiss legislation only considers IRCmeasurements car-
ried out in inhabited rooms as legally binding. Since most of the
measurements have been carried out in the ground floor, we restricted
this study to IRC measurements carried out in inhabited rooms of the
ground floor. Around 50% of the measurements in the raw data base
corresponded to this condition.

2.1.5. Year of construction
The year of construction is associated with several other variables

like building materials and the method of construction. These variables
have been shown to have a significant influence on IRC in several
previous studies (Cucoş (Dinu) et al., 2012; Hauri et al., 2012; Kropat
et al., 2014). Since detailed information about building materials and
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the method of construction was not available, we took the year of con-
struction into account as a proxy variable. However, in many cases
homeowners only gave a vague estimation of a building's year of
construction. To account for this uncertainty, we merged the years of
construction into 4 classes rather than attributing the exact year of con-
struction to each building. Since building materials changed over time
we merged all buildings built before 1900 into the class “(1499,
1900)”. The assumption that before 1900 natural stone was consider-
ably more used in construction is in accordance with Gunby et al.
(1993). As a second class we merged together all buildings between
1900 and 1970 into the class “(1900, 1970)”. Themethods of construct-
ing buildings before and after 1970 considerably differ since the petrol
crisis in 1970 led to substantial changes in building regulations. One
consequence of the new building regulations was, for example, better
insulation of the buildings against the subsoil (Burkart et al., 1984).
Furthermore, we joined all buildings built between 1970 and 1990
into the class “(1970, 1990)”. We assume that prefabricated houses
were built differently before 1990. Furthermore, energy-saving
construction techniques developed substantially in the last 20 years
(Frei, 2013).

2.1.6. Building type
Wemerged the various building types into four classes: “Apartment

building”, “Detached houses”, “Farm”, “School” and “Other”. In an earlier
study we found these classes to have significantly different IRC mean
values (Kropat et al., 2014).

2.1.7. Foundation type
It is very well known that the type of foundation has an influence on

IRC of a building (Jelle, 2012; Mäkeläinen et al., 2001). Since we
observed in a previous study (Kropat et al., 2014) that concrete founda-
tion, earth foundations, and foundations that were concreted after con-
struction show significantly different IRC, we took these classes into
account resulting in the foundation type classes: “Concrete”, “Concreted
afterwards”, “Earth” and “Other”.

2.1.8. Altitude
According to earlier observations, the altitude is related to IRC in

Switzerland (Kropat et al., 2014). This can be explained by the fact
that geology depends on the altitude in Switzerland. For example igne-
ous rocks like granites have a higher abundance at higher altitude in the
Alps than at lower altitudes in the Swiss Plateau. However, the Swiss
Plateau is mainly characterized by quaternary deposits. To account for
this information, we included this variable into our models. To correct
the altitude information of the measured buildings we used a digital
elevation model (swisstopo, 2004) on a grid resolution of 25 m. To
avoid uncertainty of the altitude indication from the questionnaire we
sampled the altitudes of each house at the corresponding coordinates
from the digital height model of Switzerland (swisstopo, 2004). The
altitude in the final data set ranged from 193 m to 2434 m with 5%
and 95% quantiles at 255 and 1122 m respectively.

2.1.9. Outdoor temperature
To estimate the outdoor temperatures we downloaded daily mean

temperatures of 125 temperature stations which are uniformly distrib-
uted all over Switzerland.We downloaded the data for the last 30 years
(MeteoSwiss, 2013). To calculate the mean outdoor temperature over
the period of each measurement we interpolated daily mean tempera-
tures of Swiss weather stations for each day of the measurement.
Finally, we calculated the arithmetic mean of the estimated daily
mean outdoor temperatures over the whole period of time. We used
the same method to calculate outdoor temperatures as in an earlier
study (Kropat et al., 2014). To interpolate the daily outdoor tempera-
tures we used support vector regression (Cherkassky and Mulier,
2007; Smola and Schölkopf, 2004) by taking into account coordinates
and altitudes as predictors. The support vectors were learned on the

basis of the data of 125 weather stations. Support vector regression is

a method that aims to find the flattest function f x!
� �

that has no larger

deviation than ε from the training observations y. In our case x! are the

independent variable coordinates and altitude and f x!
� �

is an estimator

of the temperature y. Keeping f x!
� �

as flat as possible for a given train-

ing error maintains the best generalization properties to predict un-
known temperatures. At the same time increasing flatness of the
function may result in underfitting of the data, which consequently
increases the training error. The goal is to find the optimum between
flatness of function and training errors. To control this tradeoff a cost-

parameter c is introduced. If the cost parameter c small, f x!
� �

tends

to underfit the data. If c is high f x!
� �

tends to overfit the data. The

cost parameter was optimized for each day by 5-fold-cross validation
which resulted in an R2 of 57% in the year 2000.

The final estimations of the temperature ranged between −4.5 °C
and 21.2 °C with the 5% and 95% quantiles at −0.6 °C and 8.8 °C
respectively.

2.1.10. Lithology
The information about the local lithological characteristics was ex-

tracted from a lithological map “Lithologic/petrographic map of Swit-
zerland – Lithologic main groups 1:500 000” (SGTK, 2000) which is
vectorized on a scale of 1:500000. The lithological data consists of 70
classes. In many classes no IRC measurements have been taken. This
poses problemswith respect to mapping since the corresponding litho-
logical classes would appear as holes on the final map. Therefore, we
merged the original 70 lithological classes into 6 generalized lithological
classes, which we supposed to be reasonable with respect to IRC
concentrations: carbonate rock in the Jura mountains (“Carbonate
Rock Jura”), carbonate rock in the alps (“Carbonate Rock Alps”),
sediments (“Sediments”), sedimentary rock which is not carbonate
rock (“Sedimentary Rock”) (e.g. Sandstone, Conglomerate), metamor-
phic rock (“Metamorphic Rock”) and igneous rocks (“Igneous Rock”).
The same classification was used in Kropat et al. (2014).

2.2. Statistical modeling

2.2.1. Kernel regression
For the readerwho is only interested in a very brief description of the

kernel regression method, we refer to the last part of this chapter
(Kernel regression in a nutshell).

2.2.1.1. Regression model. The issue of predicting IRC based on variables
like measurement conditions, geological data can be stated in a com-
mon regression model (Racine and Li, 2004):

y ¼ g x!
� �

þ ε: ð1Þ

The variable y is the outcome variable of themodel and x! is a vector

of all the predictors taken into account. g �ð Þ ¼ E yj x!
� �

is the conditional

expectation of y given x! and ε is a random error term. The conditional

expectation E yj x!
� �

can be written as (Racine and Li, 2004)

E yj x!
� �

¼

XN
i¼1

YiK σ!; λ
!
; x!; X

!
i

� �

XN
i¼1

K σ!; λ
!
; x!; X

!
i

� � ð2Þ

K σ!; λ
!
; x!; X

!
i

� �
is a so called kernel function which weights each ob-

servation Yi depending on the predictor variables X
!

i observed at each
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observation, the predictor variables x! indicating the point at which E

yj x!
� �

is estimated and vectors of smoothing parameters σ! for contin-

uous and λ
!

for categorical variables. Each continuous variable is repre-

sented by an entry in σ! and each categorical variable by an entry in λ
!
.

We chose the optimal σ! and λ
!

based on cross-validation. K

σ!; λ
!
; x!; X

!
i

� �
is a product kernel. That means that K σ!; λ

!
; x!; X

!
i

� �
is

composed by the product of two kernelsW for continuous and L for cat-
egorical variables.

K σ!; λ
!
; x!; X

!
i

� �
¼ W x!c

; X
!c

i ; σ
!� �

L x!d
; X
!d

i ; λ
!� �

ð3Þ

X
!c

i is indicating the ith observations of the continuous predictors x!c

and X
!d

i corresponds to the ith observations of the discrete predictors x!d
.

2.2.1.2. Kernel for continuous variables. In this studywe assumed aGauss-
ian kernel w for continuous variables (Specht, 1991)

w
xct−Xc

t;i

σ t

 !
¼ 1ffiffiffiffiffiffi

2π
p e

−1
2

xct−Xct;i
σt

� �2

ð4Þ

where σt stands for the bandwidth and Xt,i
c for the ith observation of the

tth continuous variable xt
c. The Gaussian kernel implies a certain spatial

correlation structure in the case of the coordinates. Several other types
of kernels could be taken into account, for example Gaussian or
Epanechnikov kernels at higher orders. We chose the Gaussian kernel
as described in Eq. (4) in this study since it performed best in prelimi-
nary tests and also because it is the most common one, which makes
the approach more accessible for other researchers.

Since we took into account several continuous variables we consid-
ered a product kernel

W x!c
; X
!c

i ; σ
!� �

¼ ∏
p

t¼1

1ffiffiffiffiffiffi
2π

p e
−1

2

xct−Xct;i
σ t

� �2

ð5Þ

where p is the number of continuous variables. This product kernel does
not account for covariance termsbetween two variables.We think how-
ever, that the simple product of two kernels should sufficiently model
the correlation of two variables within the joint probability distribution
function underlying the data generating process.

2.2.1.3. Kernel for categorical variables. For categorical variables we as-
sumed the kernel (Aitchison and Aitken, 1976)

l xdt ;X
d
t;i;λt

� �
¼

1−λt if Xd
t;i ¼ xdt

λt

ct−1
if Xd

t;i≠xdt

8><
>: ð6Þ

where λt is the bandwidth, ct the number of categories and Xt,i
d the ith

observation of the tth categorical variable xt
d.

Since we dealt with several categorical variables we combined the
kernels to a product kernel

L x!d
; X
!d

i ; λ
!� �

¼ ∏
k

t¼1
l xdt ;X

d
t;i;λt

� �
ð7Þ

where k is the number of categorical variables.

2.2.1.4. The role of bandwidths. The optimal bandwidth acts as a measure
of importance of a predictor variable. The value of the bandwidths de-
termines the weight that each observation gives to the prediction. Is

the kernel weight K(⋅) in Eq. (2) the same for all observations, the pre-
diction consists simply in the arithmetic mean of all observations.

For categorical variables the bandwidth λ can attain a maximum
value λ max = (ct − 1)/ct for which the kernel weight l(⋅) is the same,
nomatter if an observation has the same class as the point of prediction
or not. If λ b λ max, the kernel weight l(⋅) takes on different values for
each observation depending on the observation class. In this case the
categorical predictor variable makes different predictions for different
classes and consequently has an influence on the outcome variable.

A similar reasoning can be done for continuous variables. A larger
optimal bandwidth σ results in a slower decrease of the kernel weight
w(⋅) in dependence of the corresponding continuous variable. That
means for a σ that is much larger than the extent of the continuous var-
iable, the kernel weights w(⋅) are nearly the same for all observations.
Consequently, the related variable doesn't influence the prediction.
Note that after a distance of σ, the kernel weights w(⋅) decrease to
61% of its maximum value.

2.2.1.5. Kernel regression in a nutshell. Kernel regression aims at
predicting a variable y by taking into account variables (predictor
variables) that have an influence on y. In essence kernel regression con-
sists of calculating a weighted average over previous observations of y.
For each predictor variable a weighting function (kernel function) is
multiplied to each observation of y. In the case of continuous variables
this kernel function decreases with the distance between the point of
prediction and the point of observation. In the case of categorical vari-
ables the kernel function changes depending on whether a point of es-
timation has the same class as the point of the observation or not. The
kernel functions are controlled by bandwidths. Fig. 1 shows several
IRC measurements (blue pentagons) which serve to predict a point
were no measurement has been taken out (orange pentagon). To esti-
mate the IRC value at the coordinate of the orange pentagon, kernel re-
gression calculates a weighted average over the IRC values of the blue
pentagon. The contribution (weight) of each IRC measurement to the
average is indicated by different shades of blue. The weights decrease
with the distance to the point of estimation (orange pentagon). The ker-
nel bandwidth controls the decrease of theweightswith the distance. In

Fig. 1. Illustration of the decrease of kernel weights for each IRC measurement with in-
creasing distance to the point of estimation (orange pentagon). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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this case the bandwidths are σEW =1922 m and σSN =1514 m. In the
case of the Gaussian kernel function the weight decreases to 61% of its
initial value after a distance of σ. That means that, in the special case
of Fig. 1, the IRC measurement decreases to 61% of its actual value in
EW-direction after around 2 km. The bandwidth σ serves hence as a
measure of the range of an IRC measurement.

2.2.2. Probability estimation
The probability to exceed a certain IRC in a house can be obtained

by the estimation of the conditional cumulative distribution function
F yj x!
� �

.

2.2.2.1. Kernel estimation of conditional cumulative distribution function.
The conditional cumulative distribution function (CDF) can be estimat-
ed in the following way (Li et al., 2013):

F̂ yj x!
� �

¼ 1
N

XN
i¼1

Ι Yi≤yð ÞK σ!; λ
!
; x!; X

!
i

� �
= f̂ x!
� �

ð8Þ

where Ι(A) is an indicator functionwhich equals to 1when A is true and
0 otherwise. The optimal bandwidths σ! and λ

!
can be found via cross

validation.

2.2.2.2. Confidence index and validation of conditional cumulative distribu-
tion function. Due to the nature of IRC sampling in Switzerland, the dis-
tribution of IRC samples is not homogenous all over Switzerland. It is
therefore to be expected that the conditional probability estimate does
not have the same reliability everywhere. To quantify the local reliabil-
ity we developed a confidence index of the conditional cumulative dis-
tribution function.

The standard error of a proportion is known to take the following
form (Diez et al., 2012)

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 1−Pð Þ

N

r
ð9Þ

where P is the actual probability which is estimated by the proportion,
and N is the sample size. The uncertainty of the probability estimate de-
pends hence on the probability P and the sample size N. In the case of
kernel estimation of conditional cumulative distribution functions it is
however difficult to determine the sample size from which a local esti-
mation F̂a yj x!

� �
has been obtained. Instead of N we propose therefore

to use the kernel sum

KS x!
� �

¼
XN
i¼1

K σ!; λ
!
; x!; X

!
i

� �
ð10Þ

as an equivalent for the local sample size, assuming, that the estimate

should be more accurate by increasing KS x!
� �

.

Defining a new uncertainty estimate

UE yj x!
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂ yj x!
� �

1− F̂ yj x!
� �� �

KS x!
� �

vuuut ð11Þ

we obtain an estimate which is in itself not a standard error but which
we expect to take appropriately into account the probability estimate
and the density of samples contributing to the local estimate. To define
a confidence index from the uncertainty estimates, we determined the
percentiles at 0, 10, 20, …, 100% of the obtained uncertainty estimates
and numbered them decreasingly from 10 to 0. Hence, a confidence
index of 10 corresponds to the least uncertainty on a map. In other
words, there are no probability estimations on the probability map
which would vary less if one would re-estimate the probability map
with a similar set of IRC measurements. Whereas a confidence index

of 5 indicates that half of the probabilities estimated elsewhere would
vary more than the corresponding probability estimate.

For the kernel probability estimation we used around 50% of the IRC
measurements that were available after data preprocessing as training
data. The other 50% were used as test data for the validation of the ker-
nel probability estimates. For this purpose we created a 5 km × 5 km
grid over the whole of Switzerland and calculated the actual proportion
of measurements above 300 Bq/m3 based on the test data. Grid cells
covering less than 20 measurements were excluded from the proce-
dure. Furthermore we calculated themean value of the kernel probabil-
ity estimation for each grid cell based on the training data. By comparing
both estimates in each grid cell, we obtained the amount of variance of
the proportion estimates (test data) that is explained by the variation of
the kernel probability estimates (training data).

2.2.2.3. Computational tools. For mapping and data analysis we used the
open source tools R (R Core Team, 2014), Quantum Gis (QGIS
Development Team, 2014) and GRASS (GRASS Development Team,
2012). The kernel bandwidth estimation was carried out on a 96 core
compute cluster with the R package “npRmpi” (Hayfield and Racine,
2008). However, we did only use a part of the computational power of
the cluster and want to point out that in the case of most national
radon surveys the calculations can be done with much less performing
hardware. For the temperature calculations we used the R package
“e1071” (Meyer et al., 2014).

3. Results

Fig. 2a shows the current national IRC map of Switzerland that is
based onmunicipal average IRC (FOPH, 2013). Fig. 2b displays themea-
surements thatwe used formapping themodel estimation in this study.
After data preprocessing and removal of missing values, the number of
IRC observations resulted to 72638. Around 8% ofwhichwere smaller or
equal to 30 Bq/m3,which is theminimumdetectable IRC for track detec-
tors (Zeeb and Shannoun, 2009b). The spatial density of measurement
in the Alps is much smaller than in the Swiss Plateau or the Jura Moun-
tains. The followingmapswere all calculated at an outdoor temperature
of 3.5 °C and for the detector type Gammadata. 3.5 °C corresponds to the
mean outdoor temperature of themeasurements taken into account for
analysis and Gammadata to the mode of detector types of the IRC data
set. Two maps of the IRC kernel prediction are shown in Fig. 3. Each
map corresponds to a different combination of building characteristics.
Fig. 3a shows the map for detached houses with earth foundation built
between 1900 and 1970. Fig. 3b corresponds to apartment buildings
with concrete foundation, which were built between 1970 and 1990.
Fig. 3b reveals clearly lower IRC than Fig. 3a. Both maps in Fig. 3 show
that IRC are substantially higher in the Alps and in the Jura Mountains.
Comparing Figs. 2b and 3 reveals that in alpine regions, where few IRC
measurements were available, the IRC estimation in certain areas is
dominated by a few measurements. Fig. 4 demonstrates the IRC map-
ping in the community of St. Imier. Fig. 4a shows the indoor radon
map of Switzerland based on municipal IRC means. Fig. 4b reveals the
measurements that have been used from this community to estimate
the kernel bandwidths. The result of the kernel regression for St. Imier
is shown in Fig. 4c for the classes: detached houses, concrete foundation
and year of construction 1970–1990, Fig. 4d reveals the result of the ker-
nel regression for classes: farms, earth foundation and year of construc-
tion 1900–1970 and Fig. 4e shows the lithological classes of this area. A
clear difference in radon concentrations can be seen in Fig. 4c and d and
the shape of the lithological units can be clearly observed in the kernel
regression result.

Fig. 5a shows the result of thefive-fold cross validation for thewhole
data set. The IRC measurements are plotted versus the IRC predictions.
The kernel regression explains about 28% of the variance in the log-
transformed IRC data. Restricting the test sets only to buildings of the
type “Farms” results to an explained variance of 38%. The kernel
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bandwidths estimated from the data are shown in Table 1. In the
case of categorical variables the bandwidths are all considerably
smaller than the maximum bandwidths. The bandwidths of the co-
ordinates are in the range of about 1 km. The probability to exceed
300 Bq/m3 is mapped in Fig. 6 for the classes of detached houses,
concrete foundation and year of construction 1900–1970. The pat-
tern of higher radon availability in the Jura Mountains and in the
Alps can be observed in this map as well. The validation of the prob-
ability estimate resulted to an R2 of 78%. Finally, Fig. 7 shows the
confidence index of the probability estimate in Fig. 6. It can be
seen that the reliability is higher in the valleys of the Alps compared
to the regions of higher altitude.

4. Discussion

The aim of this study was to develop models to predict and map IRC
by accounting at the same time for the spatial relationships between IRC
measurements and knowledge of measurement conditions, building
characteristics of corresponding houses and geological information.
We developed predictive maps as well as a map indicating the local
probability to exceed 300 Bq/m3. Our predictive model could explain
28% of the variance of the IRC data. The validation of the probability es-
timation yielded an R2 of 78%. Finally, we developed a confidence index
in order to assess the local reliability of the probabilitymap. Thesemaps
are appropriate to communicate IRC risk in Switzerland.

Fig. 2. a) Current IRC map of Switzerland (FOPH, 2013). (Radon risk in terms of the arithmetic municipality mean: low b 100 Bq/m3, medium 100–200 Bq/m3, high N 200 Bq/m3), b) IRC
measurements used to perform mapping in this study.
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Our results reproduce well the regional IRC differences which have
been observed in earlier studies. The difference of IRC in the Alps, the
Swiss Plateau and the Jura Mountains appears clearly in Fig. 3. This
trend can be explained by major geological differences between these
regions as mentioned by Hauri et al. (2012) and Kropat et al. (2014).
However, the predictions in our model are only partly driven by the li-
thology variable. This can be seen in the corresponding bandwidth of
0.7 compared to themaximum bandwidth of 0.86. This is not surprising
since the lithological data was only available on a very coarse scale,
which results consequently to a higher geological misclassification
rate. However, the lack of spatial detail of the lithological data is com-
pensated by the spatial relationship between the IRC measurements.

The bandwidth of the variable EW-Coord of 1081 m shows that the
weight of measurements decreases to around 61% after this distance,
the bandwidth in north–south direction was 719 m. This leads to the
conclusion that radon data contains more information in north–south
direction than in east–west direction,whichmay bedue to stronger var-
iations of the spatial trend of IRC between the JuraMountains, the Swiss
Plateau and the Alps. In regions that exhibit a stronger variation of spa-
tial trend in EW-direction, like the canton of Ticino, the chosen band-
width is maybe only suboptimal. We chose a global bandwidth for the
sake of simplicity of the approach. However in future work local adap-
tive bandwidths may be considered. The kernel weights of the altitude
decrease to 61% after a difference in elevation of about 164 m. A

Fig. 3. Predictivemap of IRC for the classes: a) detached houses, earth foundation, year of construction 1900–1970, detector type: Gammadata, outdoor temperature: 3.5 °C b) apartment
building, concrete foundation, year of construction: 1970–1990, detector type: Gammadata, outdoor temperature: 3.5 °C.

143G. Kropat et al. / Science of the Total Environment 505 (2015) 137–148

image of Fig.�3


bandwidth of the altitude of 164m indicates some predictive power re-
garding the fact that 90% of the data lie within 866 m. As discussed in
Kropat et al. (2014) this may be attributable to the association between
geology and altitude. Taken as a whole, the interpretation of the band-
widths suggests that coordinates and altitude act as a proxy for the lack-
ing spatial detail in lithological data. The kernel regression comes in
handy here, since very detailed information of local lithology would ne-
cessitate much more data to assure a reliable estimate of the regional
IRC footprint.

Like many other countries, Switzerland possesses a radon risk map
based on municipal IRC mean values (Fig. 2a). Overall, we obtained sim-
ilar spatial IRC patterns. However, a strong benefit fromkernel regression

basedmethods is that trends withinmunicipals can be accounted for. To
illustrate this, we chose a municipality, in which IRC measurements ex-
hibit a visible trend (Fig. 4b). Kernel regression accounts for this trend,
resulting in more cartographical detail as can be seen in Fig. 4c and d.
Fig. 4c and d maps two contrary cases: due to easier radon entry we ex-
pected different IRC characteristics for detached houses with concrete
foundation built between 1970 and 1990 compared to farms with
earth foundation built between 1900 and 1970. The differences of the
bandwidth of the variables “Building type”, “Foundation” and “Year of
construction” to their correspondingmaximal bandwidth indicate a con-
siderable difference in IRC estimation for the two abovementioned cases.
This difference emerges clearly in Fig. 4c and d.

Fig. 4. Community of St. Imier: a) Swiss radonmap b) radonmeasurements c) kernel regression radonmap for classes: detached houses, concrete foundation, year of construction 1970–
1990, detector type: Gammadata, outdoor temperature: 3.5 °C d) kernel regression radon map for classes: farms, earth foundation, year of construction 1900–1970, detector type:
Gammadata, outdoor temperature: 3.5 °C e) lithological classes.
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Furthermore, the structure of the lithological units is visible in the
kernel regression results. With a bandwidth of λ = 0.7 compared to
λ max = 0.86, geology introduces information into the model. In other
words, for the prediction at a given geographical coordinate with a
given geology, measurements with the same distance and architectural
elements contribute to a different extent depending on their underlying
geology. For example, the prediction in a lithological unit of sedimentary
rock is influenced by ameasurement carried out in the same lithological

unit with a kernel weight of 0.3. Ameasurementwith the same distance
in the lithological unit of carbonate rock, however, contributes onlywith
aweight of 0.14. This result illustrates the benefit of kernel regression to
account at the same time for the spatial relationship between IRC mea-
surements as well as for geological information.

Countries that defined a geogenic radon potential, see Gruber et al.
(2013), Kemski et al. (2001) and Neznal et al. (2004), could consider
for the variable geology to take into account kernels for ordered cate-
gorical variables, see for example (Wang and van Ryzin (1981). This
would avoid that geological units are treated as being equally dissimilar.
However, since a geogenic radon potential is not defined in Switzerland
and for simplicity of the approach we chose a kernel for unordered cat-
egorical variables for the lithology as described in Eq. (6).

Since 90% of the outdoor temperature estimations can be found
within a range of 8.2 °C, the bandwidth of 5.8 °C for the outdoor temper-
ature indicates that our models weakly account for outdoor tempera-
ture. Seasonal variations of IRC have often been observed (Arvela,
1995; Bossew and Lettner, 2007; Groves-Kirkby et al., 2010; Tapia
et al., 2006). This can be explained by the fact, that houses are more
often closed in winter than in summer. A further driving factor can be
also pressure difference between indoor and outdoor. This pressure dif-
ference should be stronger at lower outdoor temperatures. Two argu-
ments could explain the weak temperature influences in our model.
Either the temperature influence is very different all over Switzerland,
such that IRC variance due to temperature is overlaid by another source
of variance, for example geology. Another is that our temperature esti-
mations are subject to uncertainty. Including atmospheric pressure dif-
ferences into IRC models could be revealing and possibly improve the
predictability further. Unfortunately, this information was not available
from the questionnaires. Hence, itmight be interesting in futurework to
develop methods for the estimation of atmospheric pressure difference
of existing IRC measurements.

Fig. 5a reveals, that the kernel regression model can explain 28% of
the variation across all IRC data. This indicates that a large part of the
data variation remains unexplained. It is visible in Fig. 5a that the
model tends to overestimate low concentrations and underestimate
high concentrations, which indicates a smoothing effect of the model.
We suppose smoothing effects to be inherent inmodeling of spatial ran-
dom variables with high variance on small spatial scales as it was ob-
served for IRC in earlier studies (Cinelli et al., 2011; Tapia et al., 2006).
Another reason for the amount of unexplained variance is that not
enough variables are available to explain more variance and that the
variables taken into account are themselves subject to uncertainty like
for example the house coordinates. Furthermore, it may be that the
kernel regressionmodel does not sufficiently account for the interaction
effects between the variables. Moreover, the entry and the distribution
of IRC in buildings may be a too complex process to be predicted with
very high accuracy. Hauri et al. (2012) modeled IRC in Switzerland
based on linear models and could explain 20% of the variation of IRC.
This indicates that IRC in Switzerland are particularly difficult to
model due to a complex geology and to different regional approaches
to sample IRC, which leads to some heterogeneity of IRC sampling. We
observed that 38% of the variation of IRC in farms can be explained by
the kernel regression model. This remarkable difference to the predict-
ability of the case of inclusion of all building classesmay be explained by
the fact that IRC measurements in farms are generally higher than in
other houses (Kropat et al., 2014). Consequently, in farms, fewer IRC
measurements are near the detection limit, which results in a better
predictability.

It has been shown that the probability to exceed a certain value is a
good way to complement risk communication instead of solely stating
the mean value (Ibrekk and Morgan, 1987). Fig. 6 shows that kernel
probability estimation is a useful tool to develop IRC probability maps.
As can be expected, the spatial structure of thismap is similar to the spa-
tial structure of the predictive maps in Fig. 3. Probabilities near 100% to
exceed IRC of 300 Bq/m3 in Fig. 6 occur mainly in regions where only

Fig. 5. Scatterplots of predicted versus measured radon concentrations: a) whole data set
b) test sets only consisting of measurements in farms.

Table 1
Bandwidths of each variable taken into account.

Variable λ or σ ct λmax

Building type 0.46 5 0.8
Foundation 0.46 4 0.75
Year of construction 0.31 4 0.75
Detector type 0.59 12 0.92
EW-Coord 1081 – –

NS-Coord 719 – –

Temperature 5.78 – –

Altitude 164 – –

Lithology 0.7 6 0.86
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few measurements have been carried out. This means that the esti-
mate in these regions is less reliable. Regions that are known for high
IRC like the Jura Mountains and which have high sampling densities
at the same time show probabilities closer to 50%. In order to evaluate
the reliability of the probability estimate in Fig. 6 we created a confi-
dence index map (Fig. 7). The Swiss topography is clearly visible on
this map, which is reasonable, since the sampling density strongly de-
creases with altitude. However, regions with a similar altitude and dif-
ferent spatial densities of sampling are pointed out by the map. Finally,
the variation in local sample size is more visible on this map than the

variation in the probability estimate. This is because the magnitude of
change of the sample size is much larger than the magnitude of change
of the probability. The explained variance of 78% is indicating a good
accordance between observed and estimated probability values on a
grid of 5 km × 5 km. The reader has to bear in mind, that the explained
variance in this case is not based on a point wise comparison of prob-
ability estimation and observation, but rather on the comparison of
spatial aggregates. However, a point wise observation of probability
is not feasible in our view since several houses cannot be on the
same point.

Fig. 6. Map of the local probability to exceed 300 Bq/m3.

Fig. 7. Confidence index of the probability to exceed 300 Bq/m3. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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In regions with few measurements like the Alps, the map in Fig. 3
shows coarse IRC patterns. This may be due to the fact that in these re-
gions the IRC estimation of larger areas is dominated by just one mea-
surement. However, for the communication of local radon risk we
recommend making use of the IRC probability map. In this case the
probability estimation is accompanied by a qualitative confidence
index (Fig. 7), which prevents stakeholders from putting too much
weight into potentially erroneous estimations.

Finally, we have to admit that the bandwidths of categorical and
continuous variables do not directly quantify the predictive power of a
variable and can thus not be directly compared. Nevertheless, the band-
widths provide useful information about how influential each predictor
is.

Many studies were published, proposing IRCmapping based on geo-
logical boundaries (Appleton and Miles, 2010; Drolet et al., 2014;
Friedmann and Gröller, 2010; Smethurst et al., 2008). Taking into ac-
count geological information as a main determinant for IRC is a natural
choice since radon can be expected to come predominantly from the
underlying ground into houses. On the other hand, spatial interpolation
procedures like kriging have the advantage that they account for infor-
mation about IRC stemming from the spatial correlation among neigh-
bored measurements (Cinelli et al., 2011; Dubois et al., 2007; Zhu
et al., 2001). IRC variation on small spatial scales can hence be better
represented. However, Kemski et al.'s (2009) argument that interpola-
tion techniques like kriging do not account for boundaries of geological
units, which they consider being the primary source of geogenic radon.
Bossew et al. (2008) address this issue by modeling radon potentials
based on kriging by taking into account geological classes as external
drift. Moreover Borgoni et al. (2011) use linear models to fit IRC based
geological information and building characteristics and perform kriging
on the resulting residuals. Finally Pegoretti and Verdi (2009) use a
weighted k-nearest neighbor approach to fit IRC also based on geo-
logical information and building characteristics. We demonstrated
an approach with the benefit that predictive as well as probability
maps can be obtained for different architectural situations. The
method takes into account geological information as well as the spa-
tial relation among IRC measurements. Furthermore the method al-
lows considering meteorological variables and it does not require
linear relationships between IRC and predictor variables. In addition
to that our approach has the advantage that a confidence index map
can be easily obtained in order to evaluate local uncertainties about
probability estimations.

5. Conclusions

Our results clearly show that kernel regression is a versatile tool to
map, predict and analyze IRC on both national and municipal levels.
The main advantage of kernel regression is to provide tailor-made
maps for different architectural elements andmeasurement conditions.
In addition to that, kernel regression takes into account at the same time
geological information and spatial relations between IRC measure-
ments. A big advantage of kernel regression is that is does not require
linear relationships between IRC and predictor variables. Furthermore
we found a reliable way to map the probability to exceed a given IRC.
As in the case of kernel regression, the method allows the production
of probability maps for different architectural elements. The future of
this work consists in developing models that can explain a larger
amount of the IRC variance. For that, it will be interesting to integrate
other potentially relevant predictors like ventilation characteristics of
houses, building materials, uranium content and permeability of the
ground as well as radon soil gas concentration. Other meteorological
variables like change of atmospheric pressure or precipitation levels
could be also of interest as potential predictors. Furthermore, we need
to explore other machine learningmethods like random forests that ac-
count more strongly for interactions among predictor variables.
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Abstract 

Purpose: In Switzerland each year approximately 230 people die as a result of radon exposure. This 25 

public health concern makes reliable indoor radon prediction and mapping methods necessary in order 

to improve risk communication to the public. The aim of this study was to develop an automated 

method to classify lithological units according to their radon characteristics and to develop mapping 

and predictive tools in order to improve local radon prediction. 

Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings 30 

were available for our analysis. The automated classification of lithological units was based on k-

medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological 

units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees 

(BART). 

Results: k-medoids clustering of lithological units based on pair-wise Kolmogorov distances of IRC 35 

distribution accounts well for the IRC characteristics of lithological units. Especially the heterogeneity 

in metamorphic rocks like gneiss is well resolved by this method. The maps produced by random 

forests soundly represent the regional difference of IRC in Switzerland and improve the spatial detail 

compared to existing approaches. We could explain 33% of the variations in IRC data with random 

forests. Additionally, the variable importance evaluated by random forests shows that building 40 

characteristics are less important predictors for IRC than spatial/geological influences. BART could 

explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. 

Conclusion: Ensemble regression trees are a powerful tool to model and understand the 

multidimensional influences on IRC. Automatic clustering of lithological units increases the value of 

this method by facilitating the interpretation of radon properties of rock types. This study provides an 45 

important element for radon risk communication. Future approaches should consider taking into 

account further variables like indoor and outdoor pressure differences as well as more detailed 

geological information. 
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1. Introduction 50 

Radon is a natural radioactive gas that is known to be the most important cause of lung cancer after 

smoking. In Switzerland, about 230 people die each year as a result of radon exposure (Menzler et al. 

2008). Many of these deaths could be avoided if public radon exposure could be effectively reduced. 

Radon exposure is mainly of concern in closed environments like buildings. Since radon mainly enters 

a building from the ground (Zeeb and Shannoun 2009b), it is strongly dependent on the underlying 55 

geology (Dubois et al. 2007; Cinelli et al. 2009; Appleton and Miles 2010; Friedmann and Gröller 

2010; Bossew et al. 2014). Thus, IRC vary strongly from region to region (Friedmann et al. 1996; 

Manic et al. 2006). If these regional differences can be identified correctly, substantial reductions of 

radon exposure to the population can be achieved through the appropriate construction of new 

buildings, the mitigation of already existing buildings and local smoking cessation campaigns 60 

(Groves-Kirkby et al. 2008, 2011). The prediction of IRC and identifying zones at risk is however 

difficult and still subject to scientific debate (Friedmann and Bossew 2010). 

IRC are known to be subject to several sources of variance. Building architecture is an important 

factor. In several studies the influence of the building underground on IRC was observed (Burkart et 

al. 1984; Mäkeläinen et al. 2001; Kropat et al. 2014). Construction materials are known to play an 65 

important role for the occurrence of IRC in buildings (Gunby et al. 1993; Girault and Perrier 2012; 

Demoury et al. 2013). Furthermore, the ventilation habits of people are an important factor of IRC 

(Gunby et al. 1993). This leads to visible seasonal effects (Singh et al. 2002; Bossew and Lettner 

2007; Denman et al. 2007; Groves-Kirkby et al. 2010; Trevisi et al. 2010). In winter time, buildings 

are generally less ventilated than in summer. In addition to that, indoor/outdoor pressure differences 70 

can lead to stack effects. IRC dependencies on weather conditions also have been observed (Miles 

2001). Finally, one of the most discussed determinants of IRC is the geology subjacent to the 
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concerned buildings. IRC is known to be strongly dependent on geological parameters like uranium 

content, permeability of the ground as well as soil properties (Buchli and Burkart 1989; Gundersen 

and Schumann 1996; Singh et al. 2002; Neznal 2005; Bossew et al. 2008; Appleton et al. 2011). 75 

However, finding geological units which are appropriate to represent the local IRC characteristic is 

still subject to debate in the scientific community (Tondeur et al. 2014). Many studies have suggested 

generalizing the geological units in order to simplify analysis and modeling of IRC with respect to 

geological information (Kemski et al. 2001; Miles and Appleton 2005; Bossew et al. 2008; Smethurst 

et al. 2008; Kropat et al. 2014, 2015). Most of these approaches were based on the generalization into 80 

standard geological categories like metamorphic, igneous and sedimentary rock as well as quaternary 

geology. Others took into account the direct information of the uranium content of rocks obtained via 

airborne gamma ray spectrometry (Smethurst et al. 2008).  

The aim of this study was twofold: We developed a data driven method to classify lithological units 

based on their similarity in terms of IRC distribution. Furthermore, we performed IRC prediction and 85 

mapping based on ensemble regression trees by accounting for the following variables: building 

coordinates, altitude, building type, foundation type, year of construction, detector type, clustered 

lithological units and temperature. 

2. Methods 

2.1. Data and predictor variables 90 

2.1.1. IRC data 

In Switzerland, long term IRC measurements have been carried out since the early 1980s resulting in a 

total of 238,769 measurements in 148,458 buildings. In the beginning the sampling strategy was to 

target radon prone areas. It then evolved in order to reach a minimum number of samples per 

municipality. To perform the measurements, local laboratories sent IRC detectors to the homeowners. 95 
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Upon reception, the homeowners exposed the detectors in their buildings and sent them back once the 

measurement period was completed. The mean duration of measurements was about 3 months. The 

measurements were accompanied by a questionnaire in which the homeowner gave details about 

measurement conditions and architectural characteristics of the measured building. IRC measurements 

in Switzerland only have a legal implication if they have been carried out in an inhabited room. Hence 100 

we restricted our study to measurements that were carried out in inhabited rooms on the ground floor 

of the concerning buildings. Most of the measurements in inhabited rooms were carried out in ground 

floors. About 30% of IRC measurements from the raw data base corresponded to this criterion. Like 

many other studies , we carried out analysis, mapping and validation on log-transformed IRC in order 

to avoid the influence of extreme values and to stay comparable to other approaches (Zhu et al. 2001; 105 

Andersen et al. 2007; Dubois et al. 2007; Bossew et al. 2008; Borgoni et al. 2011; Cinelli et al. 2011; 

Hauri et al. 2012). 

2.1.2. Detector types 

The IRC measurements used in this study were mainly performed with alpha track and electret 

detectors (Zeeb and Shannoun 2009a). We observed in an earlier study that IRC measurements 110 

substantially differ between these two detector types (Kropat et al. 2014). To account for this fact, we 

considered detector types as an IRC predictor variable. Finally, the variable "Detector type" contained 

12 classes which differed by vendor and detector type. 

2.1.3. Coordinates 

The classification of the coordinates in the IRC database consists of three classes: municipal 115 

coordinates, buildings coordinates and coordinates determined by the Swiss Federal Statistical Office 

(FSO). The FSO coordinates are the most reliable ones, since the data quality is directly guaranteed by 

the FSO. The municipal coordinates indicate the center of the buildings municipality. These 

coordinates are the least precise because a single value defines the location of all the building of the 
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concerned municipality. Finally, the building coordinates are the coordinates which have been 120 

indicated by the building owners or by the laboratory conducting the corresponding IRC measurement. 

Hence the building coordinates are more prone to uncertainty than the FSO coordinates. In this study 

we only used FSO as owner-declared coordinates. As a quality control, we checked that all building 

coordinates were not in regions which are actually not populated such as lakes or mountain summits. 

Furthermore, we verified that each building coordinate was in the attributed municipality and that 125 

there was at least one building from the national building registry (FSO 2014) in a vicinity of 100 m. 

The coordinates were reported in the Swiss coordinate System CH1903.  

In order to make the geographical orientation in Switzerland easier for the reader, Figure 1 indicates 

all locations, cantons and geological regions which are mentioned in this article . 

2.1.4. Altitude 130 

The homeowners were asked to indicate the altitude of the measured buildings. To reduce uncertainty 

of the altitude indication we sampled the altitude for each building from a digital elevation model with 

a resolution of 25 m (swisstopo 2004) based on the building coordinates. 

2.1.5. Lithology 

To determine the underlying lithology of each building we used a vector map of lithological classes in 135 

Switzerland (SGTK 2000). This map contains about 70 lithological classes and is vectorized on a scale 

of 1:500 000. Based on the building coordinates we sampled the lithological class for each building 

from this map. 

2.1.6. Building type 

We divided the type of building into the following 5 classes: “Detached Houses”, “Apartment 140 

Building”, “Farm”, “School” and “Other”. Information about the building type was obtained from the 

questionnaire filled in by the homeowner. 
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2.1.7. Year of construction 

We showed in an earlier study that IRC are associated with a building’s year of construction (Kropat 

et al. 2014). We suppose that the construction of buildings built before 1900 more often involved 145 

natural stones than the constructions after 1900 (Gunby et al. 1993). Furthermore, we assume that 

building regulations changed substantially after 1970 following the oil crisis, a situation that resulted 

in better insulation of buildings against subsoil (Burkart et al. 1984). Finally, we presume that 

processes for constructing readymade buildings as well as energy saving measures have changed since 

1990 (Frei 2013). Following this logic, we divided the year of construction into the classes:  “(1499 – 150 

1900]”,   “(1900 – 1970]”,  “(1970 – 1990]”, “(1990 – 2012]”. The same classification was used in 

(Kropat et al. 2014, 2015). Information about a building’s year of construction was obtained from the 

questionnaire filled in by the homeowner. 

2.1.8. Foundation type 

Since a building’s foundation type is known to influence IRC (Mäkeläinen et al. 2001; Jelle 2012; 155 

Kropat et al. 2014), we divided the foundation types into 4 classes: “Concrete”, “Concreted 

afterwards”, “Earth”, “Other”. Information about the foundation type was obtained from the 

questionnaire filled in by the homeowner. 

2.1.9. Outdoor temperature 

In an earlier study, we found that IRC was associated with outdoor temperature (Kropat et al. 2014). In 160 

this study, we used the same method to estimate the mean outdoor temperature. For this purpose, we 

used the daily mean temperatures of the last 30 years for about 125 Swiss weather stations that we 

downloaded from the database of the Federal Office of Meterology and Climatology MeteoSwiss 

(MeteoSwiss 2013). To infer the mean temperature of each day of an IRC measurement we 

interpolated the mean temperatures of the weather station for the corresponding days based on support 165 

vector regression. We used the coordinates and the altitude of a building as predictor variables. A 
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detailed description about support vector regression can be found in (Smola and Schölkopf 2004; 

Cherkassky and Mulier 2007). Support vector regression is a method used to model the relation 

between an outcome variable y  and some predictor variables x  with  y f x   .  f x  

represents the functional relation between x  and y  and   a random error. For this study, y  170 

corresponds to the daily mean temperatures and x to a vector containing the coordinates and the 

altitude. For the sake of simplicity we describe the principle of support vector regression in general for 

the case of a one-dimensional predictor variable x . The goal of support vector regression is to 

approximate the function  f   by accounting at the same time for several conditions: data 

observations  ,i ix y  do not contribute to the estimation procedure when  i if x y    for a given 175 

0  . The region around  f   with  i if x y    is also called  -insensitive tube. A further 

restriction is that observations iy  outside of the  -insensitive tube shall not have a larger distance 

than 
i   to  if x . Finally  f   is supposed to be as flat as possible. The optimum of  f   

under these conditions can be found by means of Lagrange formalism and the Karush-Kuhn-Tucker-

theorem (Cherkassky and Mulier 2007). The tradeoff between the flatness of  f   and the fit 180 

contributions of observations iy  lying far away from  if x  is controlled by the cost parameter C . A 

large C  strongly penalizes large deviations 
i . Observations iy  with large 

i  have hence a 

stronger influence on the determination of  f  . If C  is small, more importance is given to the 

flatness of the curve. C  is hence a parameter that determines the tradeoff between over- and 

underfitting of  f  . We determined C  for each day via 5-fold-cross validation. For example, the 185 

explained variance for the year 2000 resulted in average to 57%. The mean outdoor temperature of a 

measurement was finally determined by predicting the mean outdoor temperature of each day of an 

IRC measurement and calculating the temperature average over all days. 
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2.2. Clustering of lithological units 

The IRC characteristics of a lithological unit depend on a variety of different parameters like the type, 190 

fracturing, dissolution as well as the uranium and radium content of the rock (Smethurst et al. 2008; 

Kemski et al. 2009; Appleton et al. 2011). These parameters can locally vary themselves for a given 

lithological unit. It is hence not trivial to group lithological units according to their IRC characteristics 

based only on prior assumptions of their lithological properties. In this work we developed a method 

to group lithological units based on their similarity in IRC characteristics. This could be done simply 195 

by comparing their mean values. This however does not account for the difference in variability of the 

IRC between several lithological units. We expect for example that, due to rock fracturing and 

dissolution, the variability in karstic regions is higher than in quaternary deposits. In this study we 

grouped the lithological units according to their similarity in IRC distribution measured via the 

Kolmogorov distance (Györfi et al. 1996). The Kolmogorov distance measures the maximum 200 

difference in probability of two cumulative distribution functions. Based on this similarity measure a 

similarity matrix can be produced for each lithological unit. We performed the analysis based on the 

average IRC in inhabited rooms of the ground floor for each building. Original lithological units, for 

which less than 30 buildings were available, were excluded from the clustering procedure. The 

resulting similarity matrix can be used to produce clusters of similar lithological units. In this work we 205 

used a k-medoids algorithm to find the most suiting clusters (Xu and Wunsch 2008). We chose the 

number of clusters based on the predictability of the resulting clusters. The smallest number of clusters 

above which the predictability did not increase was chosen as the final cluster number. Furthermore, 

we created a map of the obtained clustered lithological units.  



10 
 

 
 
 

3. Ensemble regression trees 210 

3.1. Random forests 

Random forests are a special case of regression trees. In order to explain the concept of random forests 

we first explain regression trees. Then we clarify the concept of random forests which is an ensemble 

method of regression trees. For the interested reader, a more comprehensive explanation of these 

concepts can be found in (Cutler et al.; Hastie et al. 2009). 215 

3.1.1. Regression trees 

Regression trees are a method to estimate the regression function    |g x E y x , where  E   is 

the conditional expectation of a dependent variable y  given a number of predictor variables 1, , px x   

represented as vector  1, , px x x . The basic principle used to estimate  g x  is called recursive 

partitioning. It consists of partitioning the space of possible values of x  into smaller subspaces and to 220 

calculate a simple model for y  in each of these subspaces. In our case, the model was simply the 

mean value of observations 
iy  in each of the different subspaces of x . The choice of the subspaces 

works by recursively partitioning x . The principle of recursive partitioning can be represented as a 

tree structure. The tree starts with a root node. A random subset of the predictor variables  1, px x  

is chosen. Each variable jx  of the random subset is split into two regions, such that the mean values 225 

1regiony  and 2regiony of y  in the new subspaces fit best to the observations 
iy  in these regions. The 

variable jx  with the best fit is chosen, to create two new nodes at the split point determined before. 

The same procedure is then subsequently repeated for the newly created nodes until the previously 

defined size of the tree is achieved. 

3.1.2. The principle of random forests 230 
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As the name suggests, random forests take advantage of the ensemble of several regression trees. The 

principle of random forests is to grow regression trees, as described in the previous paragraph, on 

several numbers N of bootstrap samples of the data. Hence for each bootstrap sample, a different 

estimation of  g x  is obtained. The prediction of y  is simply obtained by averaging over the N  

different estimations of  g x . At each bootstrap sampling step, about one third of all observation is 235 

left out of the estimation process. The left out data is called out-of-bag sample. 

3.1.3. Variable importance 

The out-of-bag data plays an important role in random forests, since it can be used to estimate the 

importance of each predictor variable. From the out-of-bag sample the prediction error can be 

calculated. The importance of a variable can be estimated in two steps. First, the random forests are 240 

trained and the prediction error of each tree is calculated using the out-of-bag sample as test set. The 

prediction errors are then averaged over all trees. In the second step, the variable of interest is 

randomly permuted and the random forests are computed again with the corresponding out-of-bag 

error estimate. The difference between the first and the second out-of-bag error estimate quantifies the 

importance of a variable. If the out-of-bag error estimate is higher after random permutation of the 245 

variable of interest, the variable adds information to the model. If the out-of-bag error estimate is the 

same after permutation, the corresponding variable does not have an importance within the model. 

This measure of importance is however biased. Categorical variables with many classes are more 

likely to produce a good criterion value just by chance compared to categorical variables with fewer 

classes (Kononenko 1995; Hothorn et al. 2006b; Strobl et al. 2007). Moreover, the aggregation scheme 250 

based on bootstrap resampling of observations introduces an additional bias (Strobl et al. 2007). This 

problem can be overcome by using a statistical test as split criterion at each node of a tree, instead of 

maximizing an information measure like R2 etc. A detailed description of this procedure is given in 
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(Hothorn et al. 2006b). The bias due to bootstrap resampling can be avoided just by using resampling 

without replacement instead of bootstrapping. 255 

3.2. Bayesian Additive Regression Trees (BART) 

The principle of BART is described in detail in (Chipman et al. 1998) and (Chipman et al. 2010). The 

following is a synthesis of the method described in these two works. 

Like random forests, BART approximates  |E y x  by averaging over an ensemble of trees. This can 

be stated as the following regression model 260 

  
1

; ,
m

j j

i

Y g x T M 


    (0.1) 

Where jT  describes the structure, jM  is the set of the terminal node values of the j th tree of the 

ensemble.  is a random error with  2~ N 0,   and  g   the functional representation of a single 

tree. The fundamental difference with random forests is the way in which trees are grown and how the 

final ensemble of trees is determined.  265 

A single tree  ,j jT M  in BART is stochastically grown according to a predefined prior distribution. 

The grown tree is then adapted to the data by changing the internal tree structure. 

The prior distribution of a single tree  ,j jT M  consists of 3 elements: a prior  jp T  of the tree 

structure, a prior  jp M  of the terminal node values and a prior  p   of the residual variance. 

The prior  jp T  of the tree structure is composed of a uniform distribution for the splitting rule at 270 

each internal node, a uniform distribution of the variable choice at each internal node and the 
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probability of a node to be nonterminal. The probability of a node to be nonterminal is controlling the 

size of the tree. 

The prior  jp M  of the terminal node values is a normal distribution with zero mean. The variance 

of the normal distribution depends inversely on the number of trees in the BART ensemble. Hence, the 275 

larger the number of trees in an ensemble, the smaller the contribution of each terminal node to the 

sum over all trees.  jp M has consequently a shrinkage effect on the tree ensemble, which prevents 

overfitting of the model. 

The prior  p   of the residual standard deviation   is an inverse chi-square distribution. 

Contrary to random forests, the BART model is determined not by fitting the data but rather by fitting 280 

the residuals jR  between the model and the data. In other words, each tree of the model is 

subsequently modified by taking into account the residuals jR  between the data and the ensemble of 

all other trees except the tree  ,j jT M . 

  ; ,j k k

k j

R y g x T M


    (0.2) 

Each tree jT  depends hence on the other trees of the ensemble via jR . A single tree can be modified 285 

via one of the four following procedures: growing a terminal node, pruning a pair of terminal nodes, 

swapping the splitting rules between a parent and a child and changing the splitting rule of a non-

terminal node. Whether the modification of a tree jT  improves the tree ensemble is assessed via the 

ratio between the posterior probabilities of the modified and the unmodified tree. 

The posterior distribution of the tree parameters  ,j jT M  given the residuals jR of the model is 290 

derived based on the Bayes’ theorem by accounting for the above described priors and the likelihood 
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to obtain residuals jR  given a set of tree parameters  ,j jT M . For a more complete description of the 

posterior and the likelihood we refer to (Chipman et al. 1998) and (Chipman et al. 2010). 

If the modification of  ,j jT M  augments the posterior ratio, it is accepted. If the modification does 

not augment the posterior ratio, it is only accepted with a certain probability. By applying this 295 

procedure subsequently to every tree of the ensemble, a Metropolis-Hastings algorithm is 

implemented. The periodical repetition of this principle produces a posterior sample of tree ensembles. 

The mean of the posterior sample finally provides the estimation of  |E y x  and can be used to 

perform predictions. The standard deviation of the posterior sample gives an estimate of the 

uncertainty of the prediction. 300 

3.3. Software 

For data analysis and visualization we used the opensource software tools R (R Core Team 2014), 

QGis (QGIS Development Team 2014) and GRASS (GRASS Development Team 2012). We used the 

R package e1071 (Meyer et al. 2014) to implement support vector regression, randomForest (Liaw and 

Wiener 2002) and cforest (Hothorn et al. 2006a, 2006b; Strobl et al. 2008) for random forests, 305 

BayesTree for BART (Chipman and McCulloch 2009) and cluster (Maechler et al. 2014) to implement 

k-medoids clustering . 

4. Results 

After preprocessing, the number of IRC measurements resulted in 72 460 in 63 076 buildings. 48 of 

the original 69 lithological classes were represented in the IRC data. We marked lithological classes as 310 

undefined when not enough measurements were available. Figure 2a) shows the IRC distributions of 

the different lithological classes that were taken into account. Figure 2b) illustrates the results of the k-

medoids clustering of the lithological units by means of multidimensional scaling. We calculated the 
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predictability of the clustering results for different numbers of clusters via cross validation. Six 

clusters resulted in about 6.3% of explained variance of the IRC data. More than 6 clusters did not 315 

improve the predictability. The original lithological classification could explain 6.5% of the variability 

of IRC. The resulting map of the clustered lithological units can be seen in Figure 3. Original 

lithological units, for which no more than 30 measurements were available, were excluded from the 

clustering procedure and are indicated as grey surfaces on Figure 3. Detailed information about the 

clustering results can be found in Table A1. On average, 19% of the polygons of an original 320 

lithological unit contained an IRC measurement. In case of decimal numbers we rounded up the 

number of measurements per 10 km2. The original lithological units were covered with an average 

IRC density of sampling of about 10 buildings per 10 km2. 

Figure 4 shows the IRC map resulting from random forests modeling. The Jura Mountains in the 

north-west of Switzerland and the Swiss Alps exhibit a substantially higher tendency of IRC than the 325 

Swiss Plateau. Areas of lakes, glaciers or areas in which lithological units were not defined were 

indicated with grey color. The 5-fold cross-validation of the modeling is illustrated in Figure 5 and 

results in an R2 of 33%. The variable importance measures for the biased and unbiased random forests 

can be obtained in Table 1. The mapping results of the BART algorithm is shown in Figure 6. Figure 7 

maps the local posterior standard deviation resulting from BART. BART could explain 29% of the 330 

variability of the IRC data. 

5. Discussion 

The aim of this study was to develop an automatic method to classify lithological units based on their 

similarity in IRC distributions and to map and predict IRC by means of ensemble regression tree 

algorithms. 335 

The automatic lithological classification procedure clearly points out the geological areas, Alps, Jura 

Mountains and Suisse Plateau (Figure 3). Cluster 1 is found only in the Swiss Alps and contains 
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lithological classes like igneous rock and gneiss. Both igneous rock and gneiss have been associated to 

elevated IRC and soil gas radon concentrations (Bossew et al. 2008; Kemski et al. 2009; Barnet et al. 

2010). In the eastern part of the Canton of Graubünden a substantial area is covered by Cluster 1. This 340 

part is actually consisting of dolomite rocks. As can be seen in Table A1, the sampling density in this 

lithological unit is very low and only few of the polygons of this lithological unit have been measured. 

The result in this area must, therefore, be interpreted cautiously. The Jura Mountains are mainly 

covered by cluster 2. Cluster 2 and 3 can be found in the Jura Mountains as well as in the Alps. Both 

classes contain several classes of carbonates. As can be seen in Figure 2b, Cluster 2 is intermediate 345 

between Cluster 1 and 3. In an earlier study we already observed that carbonate rocks in the Jura 

Mountains bear higher IRC than carbonate rocks in the Alps (Kropat et al. 2014). Carbonate rocks, 

especially limestone, are subject to weathering, which is also called karstification. Karst formations 

are often characterized by large cave systems that facilitate the propagation of radon gas (Savoy et al. 

2011). Few explanations exist however for high uranium or radium abundances in carbonate rock. One 350 

explanation for the IRC difference between carbonate rocks in the Jura Mountains and the Alps may 

be that carbonate rock in the Jura Mountains are closer to the crystalline basement than carbonate rock 

in the Alps. Consequently, the pathways for radon gas originating from the radium content in the 

crystalline basements are shorter in the Jura Mountains than in the Alps. The fact that Cluster 2 is 

between Cluster 1 and Cluster 3 fits well into this theory. The Swiss Plateau is dominated by clusters 4 355 

and 5. As can be seen in Table A1 these groups consist mainly of quaternary deposits. The grouping of 

lithological units accounts well for the heterogeneity within major classes of rocks. At the edges of the 

Riviera and the Leventina valley, for example, we found gneisses with mica of homogenous 

appearance. Gneiss is a metamorphic type of rock that can have its origin in a variety of rock types—

for example granite rock that can be high in uranium content (Quindós Poncela et al. 2004) as well as 360 

sedimentary rock that may have a lower uranium content. Hence, gneiss can vary substantially in its 

impact on IRC. Putting gneisses into a group “Metamorphic rocks” or even putting all different 

gneisses into a group “Gneiss” would indicate the Riviera and the Leventina valleys as regions with 
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moderate IRC, even if this region actually has much higher IRC. Cluster 6 consists only of marl and is 

found in the Suisse plateau. The number of lithological units and the number of measurements in this 365 

cluster is, however, too small to draw a final conclusion. Like any other classification methods, the 

approach reported here is prone to misclassification. As already mentioned, we excluded lithological 

units with less than 30 buildings. Nevertheless, for future work maybe this criterion should be shifted 

to 100 buildings, to obtain more robust results. Since the approach is based on IRC measurements, 

inhabited zones are better represented by this method. 370 

The mapping of IRC based on regression trees represents well the regional difference of IRC which 

were observed in earlier Swiss IRC mapping attempts (FOPH 2013; Kropat et al. 2015). Furthermore, 

the map reveals spatial detail beyond municipal limits. In regions like the Canton of Thurgau few 

measurements have been carried out. This leads to linear artifacts in south-north direction, which is 

due to the binary nature of the regression trees underlying random forests and BART. Without the 375 

ensembling of several trees we expect this effect to be even stronger. The Alps are also a region with a 

low density of IRC sampling. Here the linear artifacts are less pronounced. This may be due to the 

high spatial variation of altitude in this area. Since IRC are related to altitude, the spatial variation of 

IRC mapping is consequently higher than in flatter regions. Overall, the linear artifacts are not very 

prominent on the map, which is due to the good sampling coverage over a large part of Switzerland. 380 

We found the explained variance of random forests with 33% to be superior to that of BART with 

29%. Also the computation time was considerably faster. Compared to earlier Swiss IRC prediction 

models, random forests considerably improve the explained variance ((Hauri et al. 2012): 20%; 

(Kropat et al. 2015): 28%). In addition, the great advantage of BART is that it provides a direct 

uncertainty measure of the prediction. Figure 7 clearly points out areas of high altitude in the Alps as 385 

being areas of high prediction uncertainty. This can be explained because in this region the sampling 

density is very low. 



18 
 

 
 
 

The variable importance measure of the biased random forests tends to put more weight on continuous 

variables and categorical variables with many classes (Table 1). This effect seems to be less 

pronounced in the unbiased method. The variables with the strongest importance are clearly the 390 

variables related to the location of the buildings like lithology, the coordinates and the altitude. After 

location related variables, the detector type was found to strongly influence the IRC concentration. 

This is a finding which is in accordance with an earlier finding from a univariate study (Kropat et al. 

2014) where the authors hypothesized that contrary to other detectors, electret detector can be biased 

by the presence of dust or humidity. We found that variables related to architectural characteristics 395 

have less influence on the IRC. Finally, the two variables with the lowest importance are building type 

and outdoor temperature. However, a substantial influence of outdoor temperature was observed in an 

earlier univariate IRC analyses (Kropat et al. 2014). Possibly the formerly observed outdoor 

temperature effect was due to the spatial inhomogeneity of IRC sampling. The difference between 

location-based and construction-related variables can be explained by the assumption that construction 400 

related variables are much less precise than location based variables. The year of construction, the 

foundation and building type only give limited information about the properties of a building. 

6. Conclusions 

This study contributes to a better understanding of the multi factorial determinants of public radon 

hazards as well as the radon properties of geological units. Furthermore, here we propose data driven 405 

modeling techniques which have the potential to substantially improve the creation of national radon 

risk maps. 

We found ensemble regression trees to be a powerful tool for assessing the importance of a predictor 

variable in a multidimensional setting. We observed that building-related variables have a less 

important influence on IRC than location/ geology related variables.  410 
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Based on state-of-the-art clustering, we found a method which enables the creation of a coherent 

definition of geological classes in terms of their radon characteristics. Combining this method with 

ensemble regression trees leads to models which considerably improve the predictability compared to 

former studies carried out on Swiss IRC. 

National radon risk communication is subject to two main issues; what are the effects of radon on 415 

human health and how can radon hazards be localized? This study addresses the localization of radon 

hazards and proposes modeling approaches which can in the future be combined with the health 

effects of radon in order to perform appropriate national radon risk communication. Future 

improvements of these approaches could be obtained by including more detailed geological 

information as well as more explanatory variables like pressure differences and the uranium content of 420 

the ground. 
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7. Tables 

Table 1 Variable importance obtained by biased and unbiased random forests 

Variable Number of levels  Random Forests CForest  
Building type 5 3274 0.09 
Foundation type 4 2584 0.1 
Year of construction 4 3009 0.14 
Detector type 13 4234 0.18 
Coordinate X - 13758 0.2 
Coordinate Y - 12462 0.18 
Temperature - 10312 0.06 
Altitude - 12903 0.2 
Clustered lithological units 6 4064 0.21 
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8. Figure captions 

Figure 1 Map of main geological regions in Switzerland and locations of cantons and valleys which 

are mentioned in this study. The black lines indicate the cantonal and national boundaries. 

Figure 2 a) Boxplot of IRC distributions within different lithological classes b) Multidimensional 

scaling representation of Kolmogorov distances between IRC distributions of lithological classes. The 600 

different groups resulting from k-medoid clustering are indicated by different colors. 

Figure 3 Map of clustered lithological units. Areas of lakes, glaciers or of lithological units for which 

not enough IRC measurements were available are indicated in grey. 

Figure 4 Mapping of IRC by means of random forests. 

Figure 5 Comparison of observed and predicted IRC obtained by 5-fold cross validation of IRC 605 

modeling via random forests 

Figure 6 IRC mapping with BART. The estimation corresponds to the posterior sample mean for each 

pixel of the map. 

Figure 7 Mapping of uncertainty estimate obtained from BART. The uncertainty estimate corresponds 

to the posterior sample standard deviation of each pixel. 610 
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9. Annex 

Table A1 Reclassification of lithological units 

GEOTECH LITH_PET LITH_PET_GENERAL LITH_CLUSTER N Fraction of measured 
polygons in % 

Number of 
measurements 
per 10 km

2
 

50 Granites with transitions in quartz diorites and quartz syenites  Igneous Rock 1 125 3 1 
54 Porphyrites and porphyrite-tuff Igneous Rock 1 236 12 22 
22 Conglomerates to breccias with arkoses and sandstones  Sedimentary Rock 1 162 4 2 
47 Dolomite rocks partly with lime-layers Carbonates 1 187 3 1 
46 Lime-breccias or lime-conglomerates Carbonates 1 39 25 16 
65 Two-mica- to biotite-gneisses, feldspar-rich, predominantly in homogeneous formation Metamorphic Rock 1 252 11 6 
40 Limestones, often with marly intermediate layers Carbonates 2 5838 11 5 
61 Gneisses with abundant feldspar, developed under sericite, epidote and chlorite 

formation 
Metamorphic Rock 2 98 7 1 

60 Gneisses with abundant feldspar Metamorphic Rock 2 1536 6 8 
52 Quartz-porphyries Igneous Rock 2 39 8 3 
35 Lime-phyllites to lime-mica-slates Metamorphic Rock 2 187 5 2 
64 Sericite-rich conglomerates and breccias Sedimentary Rock 2 135 21 13 
130 Pebbles and sands, partly with clayey or silty layers Sediment 3 10566 34 26 
42 Limestones with important layers of marl Carbonates 3 1189 9 3 
132 Scree and talus slope Sediment 3 1051 12 7 
131 Sands, pebbles, stones and boulders Sediment 3 3633 38 54 
43 Helvetic siliceous limestones Carbonates 3 124 9 2 
30 Clay-slates to phyllites with enclaves of sandstones and breccias to conglomerates Metamorphic Rock 3 72 10 2 
44 Sand-limes to pebble-limes with layers of marl slates Sedimentary Rock 3 382 12 3 
48 Dolomites and cellular limes Carbonates 3 52 8 3 
80 Amphibolites with transitions in diorites and in hornblende bearing gneisses Metamorphic Rock 3 258 5 4 
63 Sericite-chlorite-gneisses to -slates Metamorphic Rock 3 1292 12 7 
56 Limestones to lime-marbles Carbonates 3 219 4 10 
68 Biotite- to muscovite-rich gneisses, partly chlorite bearing, partly with lime-silicate rocks 

or quartzite layers (hornfels) 
Metamorphic Rock 3 1327 5 24 

66 Two-mica- to biotite-gneisses, feldspar-rich, laminated Metamorphic Rock 3 113 16 2 
120 Pebbles and sands Sediment 4 8005 37 22 
10 Marls with weakly consolidated sandstone-, conglomerate-, or cobble-layers Sedimentary Rock 4 3350 30 16 
38 Limestones with dolomite layers Carbonates 4 327 25 6 
111 Silts to silty sands, often clayey, mostly lime-bearing Sediment 4 755 24 7 
62 Biotite- to muscovite-rich gneisses and mica-slates Metamorphic Rock 4 2014 8 4 
45 Clauconite-bearing quartz-sandstone with echinoderm clasts Sedimentary Rock 4 35 9 3 
33 Marl-slate to lime-phyllite with layers of volcanic tuff-sandstones Metamorphic Rock 4 106 8 11 
59 Two-mica- to biotite-gneisses feldspar-rich of changeful structure Metamorphic Rock 4 530 25 6 
110 Silts to silty sands, with pebbles, sands and boulder Sediment 5 10638 23 9 
11 Predominantly lime-bearing, porous sandstones with marl-layers Sedimentary Rock 5 2762 44 14 
112 Clayey silts to clays with sand-layers Sediment 5 1260 40 13 
21 Sandstone- and marl-layers with layers of weakly to moderately consolidated 

conglomerates 
Sedimentary Rock 5 820 43 8 

13 Marl and slate-clays with lime-, dolomite-, sandstone-banks Sediment 5 367 21 4 
16 Sandstone with marl-layers Sedimentary Rock 5 510 23 8 
15 Marl with layers of stronger consolidated sandstones Sedimentary Rock 5 220 16 4 
20 Conglomerates with sandstone- and marl-layers Sedimentary Rock 5 942 38 7 
14 Ferriferous clays Sedimentary Rock 5 126 23 46 
32 Firm, compact sandstones with layers of marl-slate and lime-phyllites Sedimentary Rock 5 84 11 1 
81 Green slate with transitions in basic igneous rock, eclogite Metamorphic Rock 5 39 3 1 
31 Marl-slate to lime-phyllite with enclaves of sandstones Metamorphic Rock 5 542 10 3 
41 Limestone, often marlish Carbonates 5 328 13 5 
17 Marls with layers of firm, sandy coquina Sedimentary Rock 6 52 100 15 
12 Marls with layers of shell rich sandstones with shell-breccia Sedimentary Rock 6 152 50 33 
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