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Abstract 27 

 Pneumocystis species are fungal parasites colonizing mammal lungs with strict host 28 

specificity. Pneumocystis jirovecii is the human specific species and can turn into an 29 

opportunistic pathogen causing severe pneumonia in immuno-compromised individuals. This 30 

disease is nowadays the second most frequent life-threatening invasive fungal infection 31 

worldwide. The most efficient drug co-trimoxazole presents important side effects, and 32 

resistance towards this drug is emerging. The search of new targets for the development of 33 

new drugs is thus of utmost importance. The recent release of the P. jirovecii genome 34 

sequence opens a new era for this task. It can now be carried out on the actual targets to 35 

inhibit, and no more on those of the relatively distant model Pneumocystis carinii, the species 36 

infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used 37 

for efficient therapeutic intervention, and (ii) it involves several enzymes which are essential 38 

for the pathogen and which have no human counterparts. In this study, we report the 39 

identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate 40 

synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes 41 

was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces 42 

cerevisiae. 43 
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Introduction 44 

Pneumocystis organisms are extracellular fungi that colonize the lungs of mammals (1, 45 

2). Each species displays strict host specificity for a given mammalian species. These fungi 46 

are thought to be obligate biotrophic parasites whose evolution has been marked by gene 47 

losses (3, 4, 5, 6, 7). Pneumocystis jirovecii is the human specific species whose reservoir 48 

would be only humans (8). P. jirovecii can turn into an opportunistic pathogen that causes 49 

severe pneumonia in immuno-compromised individuals (Pneumocystis jirovecii pneumonia, 50 

PCP). This disease is nowadays the second most frequent life-threatening invasive fungal 51 

infection worldwide with above 400’000 annual cases (9). 52 

The drug of choice for prophylaxis and treatment of PCP is currently co-trimoxazole, a 53 

combination of sulfamethoxazole and trimethoprim. The two latter drugs are inhibitors of the 54 

dihydropteroate synthase (DHPS) and the dihydrofolate reductase (DHFR), respectively. 55 

These two enzymes are involved in the biosynthesis of folic acid, a metabolite which is 56 

required for the biosynthesis of crucial cellular components. Organisms such as 57 

Pneumocystis and other lower eukaryotes can synthesize their own folic acid, whereas this 58 

compound is a vitamin obtained from food for mammals. Experiments in the rat animal model 59 

suggested that the anti-Pneumocystis activity of co-trimoxazole might be mainly due to 60 

sulfamethoxazole (10). The widespread use of co-trimoxazole for prevention of PCP since 61 

1989 has been found to be correlated with an increase of the prevalence of specific mutations 62 

within the putative active site of DHPS, similar to those observed in other pathogens resistant 63 

to co-trimoxazole. These mutations were found to be associated with breakthrough of 64 

prophylaxis for PCP (11, 12, 13). The impact of these mutations on PCP treatment remains 65 

controversial, but a strong effect seems unlikely because it would have been detected even in 66 
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studies with small cohorts (14). However, isolates resistant to the high doses of co-67 

trimoxazole used for treatment may emerge in the future. Co-trimoxazole presents also the 68 

disadvantage that it is associated with adverse effects in patients, such as intolerance and 69 

toxicity. Because of these drawbacks of the most efficient drug available, the development of 70 

new drugs against P. jirovecii is presently of utmost importance.  71 

Although P. jirovecii is an important cause of mortality of immuno-compromised patients, 72 

there is still no in vitro long term culture method available for this pathogen. A novel system of 73 

co-culture on human pseudostratified airway epithelial cells has been recently described (15), 74 

but it remains to be widely established. The lack of a culture method complicates the 75 

identification of new drug targets in P. jirovecii. The strategy used so far has been to identify 76 

potential drug targets in the genome of Pneumocystis carinii, the species infecting rats, which 77 

was used as model (16, 17, 18, 19, 20). The existing antifungal agents and their targets in P. 78 

carinii have been recently reviewed (21). The function of the potential targets was then 79 

characterized by complementation of the deletion mutant of the orthologous gene in the 80 

model yeasts Saccharomyces cerevisiae or Schizosaccharomyces pombe. This strategy 81 

proved useful but presents the drawback that P. carinii is relatively distant from P. jirovecii, 82 

with a mean divergence at the nucleotide level of ca. 20% (22). Although active sites are 83 

generally more conserved than the rest of the proteins, which may ensure development of 84 

drugs across species, the sensibility to drugs of the targets may vary between the two 85 

species. However, the recent release of the P. jirovecii genome sequence (23) opens a new 86 

era for the search of new drug targets against this pathogen. Indeed, it offers the opportunity 87 

to identify the actual targets to inhibit within the P. jirovecii genome, and no more those of the 88 

model P. carinii.  89 
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Therapeutic intervention inhibiting the biosynthesis of folic acid is used successfully 90 

against a number of human pathogens. Seven enzyme activities involved in this pathway are 91 

ideal drug targets for antimicrobial therapy because (i) they are essential for the life of the 92 

pathogen, and (ii) they have no mammalian ortholog, which favours drug specificity and thus 93 

reduction of secondary effects in patients. These enzymes are the following: GTP 94 

cyclohydrolase (GTP-CH), dihydroneopterin aldolase (DHNA), dihydropterin 95 

pyrophosphokinase (HPPK), DHPS, dihydrofolate synthase (DHFS), para-aminobenzoate 96 

synthase (ABZ1), and aminodeoxychorismate lyase (ABZ2) (Fig. 1;  modified from 20). Only 97 

two enzymes have been targeted in this pathway so far: DHFR which has a human ortholog, 98 

and DHPS which does not. GTP-CH may not be a good candidate because it includes a 99 

pterin binding site which is very well conserved across all living species (24). The other five 100 

enzymes remain to be evaluated as drug targets. The DHNA, HPPK, and DHPS activities are 101 

encoded by a single trifunctional enzyme in fungi so that their study is complicated. On the 102 

other hand, DHFS, ABZ1, and ABZ2 are single enzymes.  103 

In the present study, we report the identification of the dhfs and abz2 genes encoding 104 

DHFS and ABZ2 within the P. jirovecii genome sequence, as well as the assessment of their 105 

function by the successful complementation of the deleted orthologous gene of S. cerevisiae.  106 
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Materials and methods 107 

 108 

Strains and growth conditions 109 

LCY1 is a S. cerevisiae haploid strain that has a disruption of the FOL3 gene which 110 

encodes Dhfs protein (Mata leu2-3,112 trp1 tup1 ura3-52 FOL3::URA3; 25). This strain is 111 

thereafter named “dhfs deletant”. In absence of folate synthesis, this strain requires 112 

methionine, adenine, histidine, and thymidine monophosphate (TMP). It was grown on 113 

complete medium YEPD (1% w/v Difco yeast extract, 2% Difco peptone, 2% glucose) 114 

supplemented with TMP (100g/mL) at 30 °C.  115 

Y00875 is a S. cerevisiae haploid strain with a deletion of the ABZ2 gene which encodes 116 

Abz2 protein (Mata his31 leu20 met150 ura30 YMR289w::kanMX4). This strain is 117 

thereafter named “abz2 deletant”. It was obtained from Euroscarf (EUROpean 118 

Saccharomyces Cerevisiae ARchive for Functional Analysis, http://web.uni-119 

frankfurt.de/fb15/mikro/euroscarf). The deletion of ABZ2 induces a para-aminobenzoate 120 

(PABA) auxotrophy (26). The parental strain of the abz2 deletant, strain BY4741 from 121 

Euroscarf (Mata his31 leu20 met150 ura30), was used as control in the 122 

complementation tests. 123 

Escherichia coli DH5 (Life Technologies, Basel, Switzerland) was used for gene 124 

cloning. Cells were made competent using the method of Chung & Miller (27), stored at -125 

80°C, and transformed for resistance to 50 g/mL ampicillin on solid LB medium (1% w/v 126 

Difco tryptone, 0.5% Difco yeast extract, 1% NaCl, 2% Gibco agar). 127 
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Source of P. jirovecii gene sequences  128 

The P. carinii Dhfs protein (NCBI accession number DQ128176; 20), or the S. cerevisiae 129 

Abz2 protein (NP_014016), was used as query sequence in BLASTp search against the P. 130 

jirovecii proteome at http://blast.ncbi.nlm.nih.gov/Blast.cgi. The P. jirovecii gene sequences 131 

encoding the proteins identified were then retrieved from the European Nucleotide Archive 132 

(http://www.ebi.ac.uk/ena; 28). The dhfs and abz2 genes correspond respectively to 133 

PNEJI1_000945 and PNEJI1_000496 loci in the P. jirovecii genome assembly version 134 

ASM33397v2 published previously (23). Protein multiple sequence alignments were 135 

generated using T-Coffee (29). 136 

Cloning of P. jirovecii genes  137 

Since no introns are present in the P. jirovecii dhfs gene, this 1269 bps gene was 138 

amplified by PCR directly from DNA extracted from a bronchoalveolar lavage fluid sample 139 

(BAL) of a patient with PCP using QIAamp DNA Blood KIT (Qiagen). PCR was carried out 140 

using the proofreading High Fidelity Expand Polymerase (Roche Diagnostics), a final 141 

concentration of 3mM MgCl2, and primers 5'-GCG GGG GAT CCA TGT CGC TAA GAC TAG 142 

GTT TAT C-3' and 5'- CCC CCC CGT CGA CTT ATA TTA TTT TTT TAT CAA AAC-3'. These 143 

primers created unique BamHI and SalI restriction sites in the PCR product (restriction sites 144 

are underlined in primers). Primers were synthesized by Microsynth (Baglach, Switzerland). 145 

The PCR program included an initial denaturation for 3 min at 94°C, followed by 35 cycles 146 

consisting of 30 sec at 94°C, 30 sec at 52°C, and 90 sec at 72°C. The reaction ended with a 147 

10 min of extension at 72°C. The PCR product was extracted using QIAquick gel extraction 148 

KIT (Qiagen), digested with BamHI and SalI restriction enzymes, and then ligated using T4 149 

ligase (New England Biolabs) into the p414GPD expression vector (30) previously digested 150 
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with the same two restriction enzymes. After ligation, the plasmids were introduced into E. coli 151 

DH5 competent cells. Minipreparation of plasmid DNA was carried out according to Birnboim 152 

& Doly (31). 153 

The P. jirovecii abz2 gene without its two introns is 750 bps and was synthesized by 154 

GeneCust Europe (Dudelange, Luxembourg). It was cloned into p416GPD (27) as described 155 

here above for the dhfs gene. 156 

Transformation of S. cerevisiae deletants 157 

Recombinant plasmids p414GPD.Pjdhfs and p416GPD.Pjabz2 were introduced into 158 

their corresponding S. cerevisiae deletant by transformation for tryptophan or uracile 159 

prototrophy, respectively. Yeast transformations utilized the one-step method described by 160 

Chen et al (32). Transformants were selected on solid yeast nitrogen base medium (YNB, 161 

0.67% w/v yeast nitrogen base, 2% glucose, 2% Gibco agar) supplemented with CSM lacking 162 

tryptophan or uracile (MPbiomedicals). Four randomly chosen isolated colonies of 163 

transformants were purified by streaking and growth on the same selective medium.  164 

Complementation tests 165 

Functional complementation of the S. cerevisiae dhfs deletant with the P. jirovecii dhfs 166 

gene was assessed by growth on YEPD lacking TMP. As a further validation of functional 167 

complementation, the presence or absence of the P. jirovecii dhfs gene in the different strains 168 

was confirmed by PCR. The PCR conditions described here above were used. S. cerevisiae 169 

genomic DNA was extracted as described previously (33). 170 

Functional complementation of the S. cerevisiae abz2 deletant with the P. jirovecii abz2 171 

gene was assessed by the growth rate at 30°C in YNB lacking PABA and folic acid which was 172 
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supplemented with CSM. Overnight cultures were diluted at an absorbance at 540 nm of 0.1 173 

(ca. 1.5x106 cells/ml), and growth was followed by the optical density at 540 nm. In order to 174 

express its auxotrophy phenotype, the deletant was subcultured twice overnight in the 175 

medium lacking PABA and folic acid before the experiment. To confirm the presence or 176 

absence of the P. jirovecii abz2 gene, primers 5'-GCG ATG AAA AAA ACA GAA AAG C-3' and 177 

5'- CCC CTA TTC GAA GAA TGC CTG -3' were used to amplify the complete gene (GCG or 178 

CCC were added at the 5’ end of the primers before the start and stop codons of the ORF in 179 

order to obtain similar melting temperatures). The PCR conditions were as described above 180 

for the dhfs gene except that the final concentration of MgCl2 was 4.5 mM, the temperature of 181 

hybridization 58°C, and the elongation 1 min at 72°C.  182 

Assessment of the extracted DNAs was done by amplification of the unrelated 183 

S. cerevisiae BRL1 gene encoding an essential nuclear membrane protein (18). The primers 184 

used were 5'- GAA ACT CTT GGT ACA GAG G -3' and 5'- TGA TCT GTC CCA GTT GTG -3’. 185 

The PCR conditions were as described above for the P. jirovecii dhfs gene except that the 186 

temperature of hybridization was 52°C and the elongation time was 2 min at 72°C. The PCR 187 

product was 2008 bps. 188 
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Results 189 

 190 

Identification and cloning of the P. jirovecii dhfs gene  191 

The Dhfs protein was identified within the P. jirovecii proteome by homology search 192 

using the Dhfs protein of P. carinii as query sequence. The gene encompasses no introns. 193 

The translation product of the ORF bears the highest degree of amino acid similarity with the 194 

Dhfs protein of P. carinii (72%), and a lower degree with those of S.  cerevisiae (36%) and S. 195 

pombe (40%) (Fig. 2A). Because of the absence of introns, the P. jirovecii dhfs gene was 196 

directly amplified by PCR from the genomic DNA extracted from a BAL of patient with PCP, 197 

and cloned into the expression vector p414GPD. 198 

 199 

Functional complementation of the S. cerevisiae dhfs deletant with the P. jirovecii dhfs 200 

gene 201 

The recombinant plasmid p414GPD.Pjdhfs and the empty p414GPD vector were 202 

introduced into the S. cerevisiae dhfs deletant. Transformant isolates were then grown on rich 203 

medium supplemented with or without TMP. Growth occurred on the medium lacking TMP 204 

only in the presence of p414GPD.Pjdhfs, but not of p414GPD (Fig. 3). This proved that 205 

expression of the P. jirovecii gene rescued the function of the deleted FOL3 gene encoding 206 

Dhfs protein. However, the growth rate of the rescued deletant proved to be lower than that of 207 

the wild-type strain (results not shown; notably, the deletant rescued with the P. carinii Dhfs 208 

protein constructed in reference 20 also showed a similar reduced growth rate).The presence 209 

or absence of the P. jirovecii dhfs gene in the different strains was assessed by PCR analysis. 210 

As expected, the P. jirovecii dhfs was present in the functionally complemented strains, but 211 
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not in the deletant (Fig. 4A). To confirm that the DNA from which the P. jirovecii dhfs gene 212 

could not be amplified was valid, the unrelated S. cerevisiae gene BRL1 was amplified (Fig. 213 

4A). 214 

 215 

Identification and cloning of the P. jirovecii abz2 gene  216 

The P. jirovecii abz2 gene was retrieved as described above for the dhfs gene, except 217 

that the S. cerevisiae Abz2 protein was used as the initial query sequence. The gene 218 

encompasses two introns. The translation product of the ORF bears the highest degree of 219 

similarity with the Abz2 protein of S. pombe (33%), and a lower degree with that of 220 

S. cerevisiae (20%) (Fig. 2 A). We identified only a truncated P. carinii abz2 gene (locus 221 

PNECA1_004600), possibly because of the known incompleteness of the genome sequence; 222 

this truncated gene was 240 bps long and its translation product consistently shared 59% 223 

identity with the corresponding region of the P. jirovecii abz2 gene. Because S. cerevisiae 224 

does not process Pneumocystis introns, a synthetic P. jirovecii abz2 gene without introns was 225 

cloned into p416GPD.  226 

 227 

Functional complementation of the S. cerevisiae abz2 deletant with the P. jirovecii abz2 228 

gene 229 

The recombinant plasmid p416GPD.Pjabz2 and the empty p416GPD vector were 230 

introduced into the S. cerevisiae abz2 deletant. Transformant isolates, the parental wild type 231 

strain of the abz2 deletant, and the abz2 deletant were grown in minimal medium lacking 232 

PABA and folic acid. A growth rate similar to the parental wild type strain was observed in the 233 

presence of p416GPD.Pjabz2, but not of p416GPD (Fig. 5). This proved that the P. jirovecii 234 

gene rescued the function of the deleted ABZ2 gene. The presence or absence of the P. 235 
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jirovecii abz2 gene in the different strains was assessed by PCR analysis. As expected, the P. 236 

jirovecii abz2 was present in the functionally complemented strains, but not in the deletant 237 

(Fig. 4B). To confirm that the DNA from which the P. jirovecii abz2 could not be amplified was 238 

valid, the unrelated S. cerevisiae gene BRL1 was amplified (Fig. 4B). 239 
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Discussion 240 

Because of the emergence of drug resistance in P. jirovecii towards the most efficient 241 

drug available and because of the side effects of this drug, the development of new drugs 242 

against this fungal pathogen is crucial. The publication of the P. jirovecii genome sequence 243 

opens a new era for the search of potential new drug targets because the actual genes to 244 

inhibit can be studied and no more those of models. Most enzymes involved in the 245 

biosynthesis of folic acid are ideal drug targets because of their essentiality and absence in 246 

humans. Accordingly, there are many drugs inhibiting this pathway which are currently used 247 

against many human pathogens. We focused on two enzymes involved in this pathway which 248 

were poorly investigated so far, the DHFS (dihydrofolate synthase) and the ABZ2 249 

(deoxychorismate lyase). In this study, we identified the two P. jirovecii genes encoding these 250 

enzymes and demonstrated their function by their ability to rescue the null allele of their 251 

respective S. cerevisiae orthologous gene. These are steps required in the search of new 252 

targets. The P. jirovecii enzymes identified bear a higher homology with the S. pombe 253 

orthologs than with those of S. cerevisiae. This is consistent with the fact that P. jirovecii and 254 

S. pombe are members of the Taphrinomycotina subphylum, but no S. cerevisiae. 255 

The DHFS enzyme carries out the final step of the folic acid biosynthesis, namely the 256 

addition of a glutamate to dihydropteroate to make folic acid (i.e. dihydrofolate; Fig. 1). The 257 

DHFS enzyme shares a high degree of similarity with the enzyme folypolyglutamate synthase 258 

(FPGS), which stabilize folic acid by the addition of several glutamates (Fig. 1). The specificity 259 

of these two enzymes for the addition of single or multiple glutamates is noteworthy. Humans 260 

have only a FPGS that has no DHFS activity (34), while S. cerevisiae and other fungi have 261 

both FPGS and DHFS activities encoded by two different genes (35). Other organisms such 262 



14 

 

 

 

as E. coli and Plasmodium falciparum have only one gene which encodes a single 263 

bifunctional polypeptide enzyme (36). The molecular basis for the mono- versus bifunctional 264 

activity remains to be elucidated. DHFS enzymes act in the cytoplasm of eukaryotes and do 265 

not include an N-terminal targeting signal sequence in order to be transferred into other cell 266 

compartments. On the other hand, eukaryotic FPGS enzymes are working in the cytoplasm 267 

as well as in the mitochondrion and possess a mitochondrial targeting signal sequence. The 268 

comparison of the P. carinii DHFS to the S. cerevisiae DHFS and FPGS showed that P. carinii 269 

DHFS is devoid of mitochondrial targeting signal sequence and thus has probably no FPGS 270 

activity (20). The P. jirovecii DHFS isolated in the present study is close to that of P. carinii 271 

without a supplementary N-terminal sequence (72% identity; Fig. 2A), strongly suggesting 272 

that it has also no FPGS activity. Consistently, the P. carinii and P. jirovecii DHFSs share more 273 

identity with the S. cerevisiae DHFS (35% and 36%, respectively) than with the S. cerevisiae 274 

FPGS (20% and 19%). The essentiality of its activity in many organisms together with its 275 

absence in humans suggests that the DHFS enzyme is a good candidate drug target against 276 

P. jirovecii. 277 

The aminodeoxychorismate lyase encoded by the abz2 gene is required for the 278 

biosynthesis of PABA, which in turn is necessary to produce folic acid (Fig. 1). The 279 

S. cerevisiae abz2 deletant has a reduced growth rate in a minimal medium lacking PABA and 280 

folate (26; Fig. 5). This is probably due to a cellular pool of PABA sufficient to allow survival for 281 

several generations. Subculturing the abz2 deletant in absence of PABA leads to exhaustion 282 

of this pool of PABA, allowing expression of PABA auxotrophy (26). Although an external 283 

source of PABA by scavenging from the host is possible, the product of the P. jirovecii abz2 284 

gene might be required to allow survival of the pathogen during infection, rendering this gene 285 
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a potential new drug target. This is plausible because antifolate drugs are effective against P. 286 

falciparum despite that this pathogen can scavenge folic acid from its human host (37, 38). 287 

This is also supported by the fact that the PABA synthase of Aspergillus fumigatus is essential 288 

for pathogenicity (39). 289 

In conclusion, we characterized two new potential drug targets in P. jirovecii. They 290 

deserve future investigations. They could be involved in a strategy taking advantage of the 291 

synergism provided by combination therapy, a strategy which is widely and successfully used 292 

against important human pathogens.  293 

 294 

 295 

 296 
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Legends 417 

 418 

Fig. 1. Folate biosynthesis and utilization pathway. 419 

 420 

Fig. 2. Multiple sequence alignment of Dhfs (A) and Abz2 (B) proteins. T-Coffee (29) was 421 

used. The identical, strongly, and weakly conserved residues are indicated respectively by 422 

asterisks, double points, and single points. Dashes indicate gaps. A: Alignment of Dhfs 423 

proteins of P. jirovecii (locus tag PNEJI1_000945), P. carinii (accession number DQ128176), 424 

S. cerevisiae (NP_013831), and S. pombe (NM_001018363.2). Also shown is the P loop 425 

(phosphate binding), the  loop (involved in the folate binding site), and the linker that 426 

connects the N- and C-domains. B: Alignment of Abz2 proteins of P. jirovecii (locus tag 427 

PNEJI1_000496), S. cerevisiae (NP_014016.1), and S. pombe (NM_001021876.2). 200593). 428 

Also shown is the pyridoxal-binding (Py) site located at the interface of N- and C-domains of 429 

the enzyme which is a hallmark of aminotransferase-like enzyme. Conserved residues of both 430 

domains which form the active site are underlined.  431 

 432 

 433 

Fig. 3. Complementation of the S. cerevisiae dhfs deletant by expression of P. jirovecii 434 

dhfs gene on plasmid. Four single colonies were isolated from the original transformation 435 

Petri dish, purified by streaking on the same selection medium, and grown on rich medium 436 

YEPD with TMP (A) or without TMP (B) for 3 days at 30°C. Number 1 corresponds to the 437 

control strain bearing the empty p414GPD vector. Numbers 2 to 5 correspond to the four 438 

isolates bearing p414GPD.Pjdhfs. 439 
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 440 

Fig. 4. PCR assessment of the presence or absence of the P. jirovecii dhfs and abz2 441 

genes. A: The presence of the P. jirovecii dhfs gene (PCR product of 1293 bps) was 442 

confirmed in the DNA from the BAL of a patient with PCP (lane 1) and in one isolate of S. 443 

cerevisiae dhfs deletant bearing p414GPD.Pjdhfs (lane 3), whereas the gene was absent in 444 

the dhfs deletant without plasmid (lane 2). As a control, the unrelated S. cerevisiae BRL1 445 

gene was amplified (PCR product of 2008 bps) from the dhfs deletant bearing 446 

p414GPD.Pjdhfs (lane 5) or without plasmid (lane 4). B: The presence of the P. jirovecii abz2 447 

gene was confirmed in the DNA from the BAL of a patient with PCP (lane 1; PCR product with 448 

introns of 829 bps) and in one isolate of S. cerevisiae abz2 deletant bearing p416GPD.Pjabz2 449 

(lane 3; PCR product without introns of 756 bps), whereas the gene was absent in the DNA of 450 

the abz2 deletant (lane 2). The unrelated S. cerevisiae BRL1 gene was amplified from the 451 

abz2 deletant bearing p416GPD.Pjabz2 (lane 5) or without plasmid (lane 4). 452 

 453 

Fig. 5. Complementation of the S. cerevisiae abz2 deletant by expression of P. jirovecii 454 

abz2 gene on plasmid. Strains were grown overnight in YNB lacking PABA and folic acid 455 

which was supplemented with CSM. The cultures were diluted in the same medium at an 456 

optical density of 0.1 (time 0) and incubated at 30°C. The optical density at time 0 was 457 

normalized at 0.1 for each strain. Standard deviations of triplicate optical density 458 

measurements were small (below 0.005). The four complemented isolates were analyzed with 459 

similar results, one representative experiment of one complemented isolate is shown. The 460 

labels of the curves are explicated on the up left side of the figure. 461 





                                       ---P---                      -----Ω----- 

P.jirovecii    MSLRLGLSRIRQLLDYLGNPQNYFQAIHVAGTNGKGSVCAYLSSYLNFSGIRVGLYCSPHLMDRWDCIKVAG 

P.carinii      MLVKLGLLRIRQLLKYLGNPQNSFQAVHVAGTNGKGSVCAYLSSCLALSGIRVGQYCSPHLIDRWDCVKVIG 

S.cerevisiae   MAIELGLSRITKLLEHLGNPQNSLRVLHIAGTNGKGSVCTYLSSVLQQKSYQIGKFTTPHLVHVTDSITINN 

S.pombe        MPIQLGLQRMLQLLKHLGNPQESFCAVQIAGTNGKGSICSYIYTSLLQAAIKTGRYTSPHFLEPRDTISING 

               * :.*** *: :**.:*****: : .:::********:*:*: : *   . : * : :**::.  * :.: . 

 

 

 

P.jirovecii    EVVDKDIFFRIENKIKILNQEHNVGATEFEIMTAVAFEIFYRSKIELAVIETGVGGRLDATNVLSRV--LLT 

P.carinii      RDIDKHQFLEIESKIKNLNQRCNIGATEFEIMTAVAFEILSKNNVELAVIETGVGGRLDATNVLSQV--LLT 

S.cerevisiae   KPIPLERYQNIRLQLEALNKSHSLKCTEFELLTCTAFKYFYDVQCQWCVIEVGLGGRLDATNVIPGANKACC 

S.pombe        QIASEEIFNTCWKQVIEVDRRFRTKATEFELLTATAFQCFHHSGVRVAVIETGMGGRLDATNVFEEP--VLS 

               .    . :     ::  :::     .****::*..**: :     . .***.*:*********:         

 

 

 

P.jirovecii    IITKISTDHQELLGNTLEDIAKEKSGIMKNNVPC-VVDGANEDSVLKVIKDESIKCESGQIILATM--DLDK 

P.carinii      IITKISMDHQELLGNTIQKIAREKSGIMKKNIPC-IVDGTNEDSVLKVIKEESIKSGSSRVILTPM--DLDK 

S.cerevisiae   GITKISLDHESFLGNTLSEISKEKAGIITEGVPFTVIDGTNEASVINVVKERCK-ALGSELSVTDS--QLNG 

S.pombe        IISRICLDHQAFLGNTLEAIAKEKAGIFKKNVPC-VVDGLNEVNVLNQLKLSAEETRAHPFYLAKGKSGENK 

                *::*. **: :****:. *::**:**:.:.:*  ::** ** .*:: :*  .    .  . ::      :  

 

 

                                                                     ----linker----- 

P.jirovecii    S---IYIQQWKKSEI-KTILDISYQRNNLACVLVSLEVLSKYY-SVITPKFFSEGFLRTYWPGRLEWIDL-- 

P.carinii      S---LYIQEWKKHEF-KTSLYRTYQRTNLACVSASLEILSKYY-PKITPDILSKGLLETYWPGRLEWIDL-- 

S.cerevisiae   N--MIDTNSWGCFDLAKLPLNGEYQIFNLRVAMGMLDYLQMNELIDITKNEVSTRLAKVDWPGRLYRMDYRF 

S.pombe        NEWIINTPNWGTNTF-STPLKGDYQGQNLACAVTALDILSSSF-SIMLPH-VQNGVKNTSWPGRLDIRSV-- 

               .   :   .*    : .  *   **  **  .   *: *.      :  . ..  . .. *****   .    

 

 

 

P.jirovecii    SQIAFGADKILLDGAHNIEGMHSLSKYVNSIRS-GTHSVSWLIAFSQTKDADSLLSILLRPYDKVYSVEFET 

P.carinii      SQIAFGANKILLDGAHNIDGINSLSEYINSIRN-GVQSVSWLTAFTQGKDVDSLLSILLKPYDKIHSVEFEP 

S.cerevisiae   DKVSNRTVPILMDGAHNGSAAVELVKYLRK-EY-GNQPLTFVMAVTHGKNLEPLLQPLLRPIDQVILTRFNN 

S.pombe        PS----LGDILFDGAHNKEAAIELAKFVNSQRREHNKSVSWVVAFTNTKDVTGIMKILLRKGDTVIATNFSS 

                .       **:***** ..  .* :::.. .    :.:::: *.:: *:   ::. **:  * :  ..*.  

 

 

 

P.jirovecii    VDGMPWVKAMSSHDIAKKALKYVYKENIIQYSTD---LFSAIKSISQDKGL-RIICGSLYLIGQVHRLLRKC 

P.carinii      VDGMQWIKPVNSSEIAKIARKYLYEENVKQHGTD---LLSAIRSISQDKGL-QVICGSLYLIGQVHRLLHKR 

S.cerevisiae   VEGMPWIHATDPEEIKDFILTQGYTKEIVI-ENDLHQVLPSLAHVSDEQRRPIVVCGSLYLCGELLRIHNSH 

S.pombe        VSGMPWIKSMEPEVIKNSISSE---SSVECYTADNL-TISEILRLAKEKNSSVIVCGSLYLLGDMYRYLKLD 

               *.** *::. ..  * .   .    ..:     *    :. :  ::.::    ::****** *:: *  .   

 

 

 

P.jirovecii    CFDKKII-- 

P.carinii      ILLQKGSRK 

S.cerevisiae   LR------N 

S.pombe        V-------- 

 

P.jirovecii    MKKTEKL---------NNIIQGRTWELLETILYDG------------------------------------- 

S.cerevisiae   MSLMDNWKTDMESYDEGGLVANPNFEVLATFRYDPGFARQSASKKEIFETPDPRLGLRDEDIRQQIINEDYS 

S.pombe        MEES---------------------NLFETTLYDG------------------------------------- 

               *.                       ::: *  **   

 

 

 

P.jirovecii    --------------------------------------------KDFFLLEKHMQRLVKSSMDF--GWKTV- 

S.cerevisiae   SYLRVREVNSGGDLLENIQHPDAWKHDCKTIVCQRVEDMLQVIYERFFLLDEQYQRIRIALSYFKIDFSTSL 

S.pombe        ---------------------------------------------ELFLLPSHLQRMKASAKSL--GYSWP- 

                                                              :*** .: **:  :   :  .:.    

 

 

                                                                       -----Py----- 

P.jirovecii    ----------------DIEIVKKELWNSVTRCKSSKVRLTIAQNGTINIEISPFILPKNL------------ 

S.cerevisiae   NDLLKLLVENLINCKEGNSEYHEKIQKMINERQCYKMRVLVSKTGDIRIEAIPMPMEPILKLTTDYDSVSTY 

S.pombe        ----------------GEQYIENKLREAVQDTSMARVRWELSKAGDVTVQIVPIQT---------------- 

                               . .  .::: : :   .  ::*  ::: * : ::  *:                   

 

 

 

P.jirovecii    -----FGVFSKNEQQETKPWKVYLDTIPMNDALRPFFCHKTTYRDPYETSRKR--LKIG------------- 

S.cerevisiae   FIKTMLNGF---LIDSTINWDVVVSSEPLNAS--AFTSFKTTSRDHYARARVR--MQTAINNLRGSEPTSSV 

S.pombe        --------------LEKAPYTLILDKQPSSTEKNPSCINKMTNRAIYIEAMNRNDAQYS------------- 

                              ..  : : :.. * .    .    * * *  *  :  *   : .              

 

 

 

P.jirovecii    EAMEVLLYNQHGYVMEGSICNVAFFR-----DHQWITPSLKEGCLPGVMRETLLERGHIVERP---IQVSEL 

S.cerevisiae   SQCEILFSNKSGLLMEGSITNVAVIQKDPNGSKKYVTPRLATGCLCGTMRHYLLRLGLIEEGD---IDIGSL 

S.pombe        KAQDVLLYNHQGFVTEATIFNVAFHR-----NGQWITPSLKHGLLSGTMRKNLLENGSIHEDDKGLLQKDNL 

               .  ::*: *: * : *.:* ***. :     . :::** *  * * *.**. **. * * *     :: ..* 

 

 

 

 

P.jirovecii    VNGERLLLFNSLRGCFNGILYFKPMSRNNFKK---YQAFFE 

S.cerevisiae   TVGNEVLLFNGVMGCIKGTVKTK-----------------Y 

S.pombe        KNGEQVLLFNSFRKVCKGVLIIQPEKACELLKKKDSSEKLS 

                 *:.:****..    :* :  :              
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