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Abstract

The expression of a social behaviour may affect the fitness of actors and recipients living

in the present and in the future of the population. When there is a risk that a future

reward will not be experienced in such a context, the value of that reward should be

discounted; but by how much? Here, we evaluate social discount rates for delayed fitness

rewards to group of recipients living at different positions in both space and time than

the actor in a hierarchically clustered population. This is a population where individuals

are grouped into families, families into villages, villages into clans, and so on, possibly

ad infinitum. The group-wide fitness effects are assumed to either increase or decrease

the fecundity or the survival of recipients and can be arbitrarily extended in space and

time. We find that actions changing the survival of individuals living in the future are

generally more strongly discounted than fecundity-changing actions for all future times

and that the value of future rewards increases as individuals live longer. We also find

that delayed fitness effects may not only be discounted by a constant factor per unit delay

(exponential discounting), but that, as soon as there is localized dispersal in a population,

discounting per unit delay is likely to fall rapidly for small delays and then slowly for

longer delays (hyperbolic discounting). As dispersal tends to be localized in natural

populations, our results suggest that evolution is likely to favour individuals that express

present-biased behaviours and that may be time-inconsistent with respect to their group-

wide effects.
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Why should I care about posterity? What’s posterity

ever done for me?

Groucho Marx
Introduction

Understanding how individuals trade-off between

immediate and future rewards to self and to other indi-

viduals in a population is one of the classical problem

in evolutionary biology and economics (Arrow & Levin

2009). Plants and animals trade-off between present
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investment into reproduction and delayed investment

into reproduction by temporarily allocating resources to

growth (León 1976; Stearns 1992); parents trade-off

between present investment into their own survival and

investment into the growth of their offspring, which

will reproduce only after a delay (Trivers 1974; Becker

& Barro 1988); and more generally individuals across

all levels of biological organization trade-off between

their own short-term interests and the long-term inter-

ests of the common good (Hardin 1968; Maynard Smith

& Szathmary 1995).

When faced with the choice between an immediate

and a future reward to self of equal magnitude, organ-

isms typically prefer the immediate reward and
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therefore discount the future (Tobin & Logue 1994).

Humans and other animals not only discount the

future, but they do so in a way where discounting

generally falls rapidly per unit of delay for small

delays, but then falls more slowly for longer delays

(e.g. Ainslie 1975; Laibson 1995; Green & Myerson

1996). Such a decreasing rate of discounting per unit of

delay is called hyperbolic discounting (e.g. Rogers

1994; Laibson 1995; Green & Myerson 1996; Sozou

1998), and it causes individuals to have a discount rate

that increases as the time preceding the reward

becomes shorter. That is, individuals become more

impatient when the reward becomes more imminent, in

which case they are said to be present-biased. Hyper-

bolic discounting may even result in time-preference

reversal effects (e.g. Sozou 1998, Fig. 1), which occurs,

for instance, if early in the year one tries to put money

aside for Christmas, but as time goes by, the money is

spent on summer vacations (Dasgupta & Maskin 2005).
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With hyperbolic discounting, individuals can be

described not only as being present-biased but also as

being time-inconsistent, a characteristic that has even

been interpreted as nonrational (Ainslie 1975; but see

the discussion of Sozou 1998).

What kind of discount rates are favoured by evolu-

tion? Life history theory predicts that the discounting of

a future reward to self should increase with a decrease

in the survival probability to (or fertility at) the time

when the reward is obtained, as there is an increased

risk that the reward does not translate into additional

offspring produced later in life (León 1976; Charles-

worth 1980; Stearns 1992). Discounting of a future

reward to self should also increase with an increase in

the growth rate of the population, as offspring pro-

duced earlier in life will have proportionally more

descendants in the population than offspring produced

later in life when the population is growing (León 1976;

Charlesworth 1980; Stearns 1992). Inclusive fitness the-
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k) ¼ 3 are indistinguishable, and in both cases, the substitution

ero (MRSi
k;1 ¼ 0), the curves for d(0,k) ¼ 2 and d(0,k) ¼ 3 will

hl for future rewards to the focal group (d(0,k) ¼ 0) is graphed

m MRSi
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k;t and discount rate hl are

in the first row of the figure.
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ory further emphasizes that a future reward to off-

spring should also be discounted according to the relat-

edness between actor and recipient, as offspring have a

lower chance than the parent to transmit its genes to

future generations (Hamilton 1964). Taking all these fac-

tors into account, Rogers (1994) showed that, for a pan-

mictic population of humans, individual discounting of

a future reward should peak at intermediate age. Other

models, which do not include demographic processes,

but focus instead on the exogenous uncertainty that

individuals have over the risk that a future reward will

be realized, have also shown that discounting is unli-

kely to be constant over time and may be hyperbolic

(e.g. Kagel et al. 1986; Sozou 1998; Stephens 2002; Das-

gupta & Maskin 2005, see Henly et al. 2007 for an

experimental account).

Individuals not only may discount future rewards to

self, or to their offspring, but are also likely to discount

future rewards to other individuals living in their group

or in other groups from the population. Social discount-

ing involves applying a diminishing weight to group-

wide future benefits (Sozou 2009). As most natural pop-

ulations tend to be spatially structured (Clobert et al.

2001; Balloux & Lugon-Moulin 2002), most behaviours

expressed by one individual are likely to have a fitness

consequence on others, be it from the same or from a

different group, in the present or in future times. Natu-

ral selection is then likely to have equipped humans

and other species with social discount rates.

How natural selection shapes the social discount rate

in a group-structured population with random migra-

tion and iteroparous reproduction was analysed by

Sozou (2009). In this case, social discounting is expo-

nential with the value of future rewards decreasing at a

constant rate, which is given by the product of the

migration and death rates of individuals living within

groups. Evolution favours nonunit (incomplete) social

discounting in a group-structured population because

the value to an actor of a future reward to its local

group is governed by the extent to which beneficiaries

are genetically related to the actor (Hamilton 1964,

1970, 1971). In a group-structured population, limited

migration and small group size induce individuals sam-

pled from the same group in the same or in different

generations to be related, as their genes are more likely

to coalesce in a more recent common ancestor than are

individuals sampled at random from the population.

Natural populations rarely follow the idealized ran-

dom patterns of migration of group-structured popula-

tions, where migrants choose at random a group from

the population. Rather, migrants can preferentially move

to neighbouring groups rather than randomly in the

landscape, a feature accounted for in models of isolation

by distance where individuals live on a regular lattice
� 2011 Blackwell Publishing Ltd
and where relatedness decreases as the spatial distance

between individuals increases (e.g. Malécot 1973, 1975;

Sawyer 1976; Nagylaki 1982). Migrants may also prefer-

entially move to groups located at a small hierarchical

distance in a hierarchically clustered population (Sawyer

& Felsenstein 1983), where individuals are grouped into

families, which are grouped into villages, which are

grouped into clans, and so on. A hierarchical structure

will also generate a pattern of isolation by distance

because the relatedness between individuals taken from

two different groups is likely to decrease as the hierar-

chical distance between the groups increases, as individ-

uals taken at random from larger levels of clustering

(from higher hierarchical distances) are less likely to

share a recent common ancestor than are individuals

taken from lower levels of clustering. Such spatial struc-

ture may describe the organization of human societies to

some extent at least (Johnson & Earle 1987), but multi-

level social structures also occur in insects (Bourke &

Franks 1995; Holzer et al. 2009) and mammals such as

shrews (Fontanillas et al. 2004), bats (Kerth et al. 2011),

baboons (Schreier & Swedell 2009) and elephants (Wit-

temyer et al. 2005). Whether a population is hierarchi-

cally clustered (Sawyer & Felsenstein 1983) or follows

the more standard models of isolation by distance

(Malécot 1975), social discounting may not only be tem-

poral but may also depend on the location of the groups

where individuals are sampled and may thus be a func-

tion of the migration distribution.

In this study, we evaluate marginal rates of substitu-

tion in fitness between present and delayed rewards to

other individuals living in hierarchically clustered pop-

ulations with overlapping generations. These substitu-

tion rates provide the selective pressures on inter-

temporal fitness effects and allow us to determine the

social discount rates that are favoured by evolution

when individuals affect the fecundity or the survival of

recipients living in their group, in other groups from

the population, and in both present and future times.

Our model incorporates phenotypic effect on recipients

that can be arbitrarily extended in space and time. It

extends previous models with similar contours but that

had different population structures and where pheno-

typic effects were either not extended in space and

time, or which did not consider overlapping genera-

tions, or which did not include both fecundity and sur-

vival-changing actions (Rogers 1990; Taylor 1992; Taylor

& Irwin 2000; Rousset 2004; Taylor et al. 2007; Lehmann

2007, 2008; Grafen & Archetti 2008; Johnstone & Cant

2008; Sozou 2009). Although we frame our model in

terms of hierarchically clustered populations, which is

somewhat easier to analyse mathematically, our main

results carry over to the more standard models of isola-

tion by distance of population genetics.



Table 1 List of symbols

Symbol Definition

N Group size.

nd Number of groups in the population.

s Survival probability of an individual from one

time period to the next.

m Migration rate out of the natal group.

l Mutation rate.

i Position of a group in the space of groups; that

is, i ¼ (i1,i2,i3,…,iH) represents the i1th group

(0 £ i1 < n1) in the i2th village (0 £ i2 < n2) in

the i3th clan (0 £ i3 < n3), ...

0 Position in the space of groups of the focal

group [0 ¼ (0,0,…,0)], which is a representative
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This article is organized as follows. Section ‘Hierar-

chically clustered populations’ defines a hierarchically

clustered population and the life cycle of the individu-

als in that population. Section ‘Phenotypic effects and

preferences’ defines the behaviour of individuals and

the marginal rates of substitution in fitness and intro-

duces a social discount rate. Section ‘Evolutionary equi-

librium under the joint action of natural selection and

genetic drift’ summarizes the population genetic

method we use to evaluate the discount rate that is

favoured by evolution. Section ‘Results’ presents the

new results and discusses their relation to previous

models, and Section ‘Discussion’ summarizes these

results and highlights their biological relevance.

group of the population.

d(i,j) Hierarchical distance between group i and j.

pk Probability that an individual migrates to

hierarchical distance k.

nk Number of clusters at the k-th level of clustering.

rk Total number of groups at hierarchal distance k

from the disperser’s group.

C Fecundity (or survival) cost of expressing the

mutant allele.

Bk,t Fecundity (or the survival) benefit shared among

all individuals in group k,t and resulting from

an individual expressing the mutant allele in

the focal group in a focal time period (at k ¼ 0

and t ¼ 0).

QR
k;t Probability that an individual randomly sampled

from group k,t carries an allele identical by

descent with that from an individual sampled

from the focal group.

Pk,t Probability that a line of descent from an

individual residing in the focal group at period

t ¼ 0 will be in group k at t time periods later

MRSi
k;t Marginal substitution rate between present

rewards to self at t ¼ 0 and delayed reward to

k,t group members.

MRSs
k;t Marginal substitution rate between present

rewards to all focal group members at t ¼ 0
Hierarchically clustered populations

We consider a population consisting of a finite number

nd of groups, each with a constant number N of adult

individuals that have the following life cycle (a list of

symbols is given in Table 1). (i) Each of the N adults in

a group produces a large number of juveniles and sur-

vives to the next time period with probability s. (ii)

Each juvenile either remains philopatric with probabil-

ity (1)m) or disperses with complementary probability

m to another group. (iii) In each group, juveniles com-

pete for vacant breeding spots (sN on average, with

binomial variation) so that exactly N individuals reach

adulthood in each group.

We assume that this population is structured accord-

ing to the hierarchically clustered group model of Saw-

yer & Felsenstein (1983). In this model, groups can be

thought of as families that are grouped into villages of

n1 families, which, in turn, are grouped into clans of n2

villages, which are grouped into tribes of n3 clans, and

so on up to H levels of clustering. The total number of

groups in the population can then be written as

and delayed reward to k,t group members.

hl Discount rate of rewards to group members

living at hierarchical distance k.

sÆ,sk,t Transmission coefficients of mutant genes to the

next time period.

wl l-th eigenvalue of the Markov migration matrix.
nd ¼ n1n2n3 � � � nH; ð1Þ

where nH is the number of clusters in the highest level

of clustering. When H ¼ 1, this reduces to the island

model of dispersal (Wright 1931).

Let the vector i ¼ (i1,i2,i3,…,iH) represent the i1th

group (0 £ i1 < n1) in the i2th village (0 £ i2 < n2) in the

i3th clan (0 £ i3 < n3), ..., so that the space of groups in

the population is given by S ¼ {(i1,i2,i3,…,iH):0 £ ij < nj}.

We denote by d(i,j) the hierarchical distance between

groups i and j, which is defined as the lowest level of

clustering necessary to separate an individual randomly

sampled in group i from that of an individual ran-

domly sampled in group i. In particular, d(i,i) ¼ 0

means that the two individuals are sampled from the

same group (or family); d(i,j) ¼ 1 means that the two
individuals are sampled in different groups within the

same village; d(i,j) ¼ 2 that they are sampled from two

different villages in the same clan. Likewise, d(i,j) ¼ 3

means that the two individuals are sampled from two

different clans within the same tribe. More formally, the

hierarchal distance between group i and j is defined as

d(i,i) ¼ 0 and d(i,j) ¼ k if ik „ jk and il ¼ jl for l > k

(Sawyer & Felsenstein 1983, eqn 2.2).

We denote by m(i,j) the probability that an individual

migrates from group i to group j. This probability is
� 2011 Blackwell Publishing Ltd
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assumed to depend only on the relative hierarchical dis-

tance between groups. Provided we define j±i as jk±ik
modulo nk for all k, we can then write m(i,j) ¼ m(0,j)i).

The step distribution mi ” m(0,i) is then spatially homo-

geneous and can be written as
mj ¼
pk

rk
ð2Þ

for d(0,j) ¼ k (Sawyer & Felsenstein 1983), where pk is

the probability that an individual migrates to hierarchi-

cal distance k (
PH

k¼0 pk ¼ 1 and with p0 ¼ (1)m) being

the probability that the individual remains in its group),

r0 ¼ 1, and rk ¼ n1n2n3� � �(nk)1) is the total number of

groups at hierarchal distance k from the disperser’s

group, which gives the number of groups the disperser

may settle in.

We assume that 0 < m < 1 and pk > 0 for all k so that

an immortal line of descent of an individual may possi-

bly visit any group in the population. The Markov tran-

sition matrix determined by the step distribution mj

(the migration matrix) can then be seen to define an

aperiodic random walk of this line of descent in the

space of groups (S), a feature that will be exploited in

our analysis.
Phenotypic effects and preferences

We assume that the individuals in the population

express a genetically determined social behaviour (phe-

notype), which may affect the vital rates (here fecundity

or survival) of the actor and that of other individuals in

the population, the recipients of the actor’s behaviour.

In order to describe the phenotypic effects of the

expression of the behaviour on various classes of recipi-

ents, we focus on a representative individual in the

population, called the focal individual. This individual

lives in a focal group, which is taken without loss of

generality to be the group located at 0¼(0,0,…,0) in the

space of colonies S.

We assume that the focal individual expresses a

behaviour that may increase the fecundity (or the sur-

vival) of the whole set of individuals living in group k

at t time periods in the future by Bk,t, where by a time

period we mean one iteration of the life cycle described

previously. That is, Bk,t is the total fecundity (or the

survival) benefit shared among all individuals in group

k,t and resulting from the focal individual expressing

its behaviour in a focal time period. This extended phe-

notypic effect is assumed to come at some fecundity (or

survival) cost C to the focal individual and may either

involve an active transfer of resources between individ-

uals that are in contact or result from a modification of

the physical environment in future time periods (e.g.
� 2011 Blackwell Publishing Ltd
niche construction, Odling-Smee et al. 2003) without

actor and recipient being ever in direct contact.

In order to ascertain how evolution shapes individuals

to trade-off between the present effect C on self and the

delayed group-wide effect Bk,t, we introduce the ratio
MRSi
k;t �

C

Bk;t
; ð3Þ

which is defined as the number of units of its own

fecundity (or survival) that a focal individual is willing

to exchange for one unit of fecundity (or survival)

accruing to the whole set of individuals living in group

k at t time periods in the future. Additionally, we also

want to ascertain how evolution shapes individuals to

trade-off between the present effect B0,0 on all focal

group members in the present and delayed effect Bk,t.

To that aim, we introduce the ratio

MRSs
k;t � �

B0;0

Bk;t
; ð4Þ

which is the number of units of fecundity (or survival)

to the focal individual’s group the focal individual is

willing to exchange for one unit of fecundity (or sur-

vival) accruing to the whole set of individuals living in

group k,t (hence C has been replaced by )B0,0, where

the minus sign reflects the fact that we are looking at a

fitness decrease).

Both MRSi
k;t and MRSs

k;t are marginal rates of substi-

tution in fitness (Hansson & Stuart 1990; Rogers 1994).

As these substitution rates represent cost-to-benefit

ratios of expressing behaviours, they are traditionally

used to ascertain how evolution allocates optimally

resources to competing ends (e.g. Maynard-Smith 1982;

Frank 1998). But the substitution rates can also be used

to evaluate discount rates. Allocation of resources

between the present and some time horizon t can be

determined by the long-term discount rate, which is the

rate per time step at which rewards are discounted

such as to yield the cost-benefit ratio over t time steps

(e.g. Rogers 1994; Hirshleifer et al. 2006). Evaluating the

discount rate is useful as it allows one to conveniently

capture the trade-off between present and delayed

rewards, and to determine whether discounting is con-

stant over time or hyperbolic (Rogers 1994; Green &

Myerson 1996; Laibson 1995; Sozou 1998).

We define the discount rate hl from the marginal sub-

stitution rate MRSs
k;t as

MRSs
k;t ¼ 1� hlð Þt , hl ¼ 1� MRSs

k;t

� �1
t ð5Þ

for d(0,k) ¼ l. Hence, hl gives the rate per time step at

which a benefit to the group located at hierarchical dis-
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tance l from the focal group should be discounted such

as to yield the marginal substitution rate over t time

steps, and where by definition MRSs
0;0 ¼ 1. The dis-

count rate hl also captures discounting of phenotypic

effects on groups located at different hierarchical dis-

tances because rewards to these groups will be dis-

counted differently if the cost-to-benefit ratio (marginal

substitution rate) of affecting the fitness of the group

members differs. For instance, lower substitution rates

with increasing hierarchical distance will result in

higher discounting.

Equation (5) allows one to evaluate the discount rate

from fitness effects (Rogers 1994; Sozou 2009), and the

main aim of this study is it to evaluate MRSi
k;t and the

discount rate hl
1 that are favoured by evolution

explicitly in terms of the demographic parameters N, s

and mj.
Evolutionary equilibrium under the joint action
of natural selection and genetic drift

In order to evaluate the substitution rates (MRSi
k;t,

MRSs
k;t) and the discount rate hl, we assume that the

individuals in the population are haploid and bear a

single genetic locus coding for the behaviour under

interest and that only two different alleles can simulta-

neously segregate in the population: a mutant allele,

whose carriers express the behaviour with effects )C on

self and Bk,t on others for evaluating MRSi
k;t (or effects

)B0,0 on self and Bk,t on others for evaluating MRSs
k;t),

and a resident allele, whose carriers receives the fecun-

dity or survival benefits but pay no cost. We also make

the standard simplifying assumption of weak selection

(the C and Bk,t’s are of small order d), without which it

would very difficult to obtain explicit analytical expres-

sions of MRSi
k;t and MRSs

k;t in structured populations.

At an evolutionary equilibrium, the fixation probabil-

ity of a single mutant allele resulting in phenotypic

effects C and Bk,t must be equivalent to the fixation

probability of a single resident allele. The fixation prob-

ability captures the overall effects of both genetic drift

and natural selection on gene frequency change, from

the appearance as a single copy to the eventual fixation

or loss of the mutant from the population (Foster &

Young 1990; Rousset & Billiard 2000; Fudenberg &

Imhof 2006).

We use population genetic techniques in order to

evaluate the weak selection effects of the mutant allele
1 The discount rate hl can be interpreted as a discrete analogue of the

average evolutionary discount rate of Rogers (1994, eqn 15). The aver-

age being over the instantaneous discount rate (or short-term discount

rate), which gives the rate at which a future reward is discounted over

a single given time step (Laibson 1995; Sozou 1998).
on its fixation probability and find that the marginal

rates of substitution in fitness can be expressed at an

evolutionary equilibrium as

MRSi
k;t ¼

sk;t

s�

MRSs
k;t ¼

sk;t

s0;0
; ð6Þ

where the coefficients s•, s0,0 and sk,t will depend on

the demographic parameters N, s, mj, and whether fit-

ness effects are fecundity or survival-changing, but not

on Ck,t and Bk,t. A detailed justification of eqn 6 is

given in Appendix I. Equation 6 entails that

MRSs
0;0 ¼ 1 and it also illustrates that hl can be used to

discount the future rewards at a direct cost to self

because MRSi
k;t ¼ MRSi

0;0MRSs
k;t so that the rate of

decline with delay of MRSi
k;t is the same as that of

MRSs
k;t.

The coefficients s• and sk,t can be thought of as stan-

dardized transmission rates of mutant gene copies over

one time period and the right member of eqn 6 as

scaled relatedness coefficients where the effect of local

competition has been included (Queller 1994; Grafen &

Archetti 2008). Namely, the substitution rates can be

thought of as above-average transmission rates of repli-

cate copies of the mutant allele by individuals in group

k,t relative to the transmission rate of the mutant by the

focal individual (or average group member for MRSs
k;t)

living in the present. For instance, for fecundity effects,

we find that we can write

s� ¼ � lim
l!0

ð1� sÞ
1�Q0;0

1�
X

i

X
j

mimi�jQ
R
j;0

2
4

3
5; ð7Þ

where QR
j;0 (Qj,0) is the probability that a gene sampled

in the focal individual and a homologous gene ran-

domly sampled with replacement (without replacement)

in group j are identical by descent, and l is the muta-

tion rate from one allele to another and the mutation

model is taken here to be the infinite allele model (Kim-

ura & Crow 1964) (see Appendix I for details).

The factor (1)s)/(1)Q0,0) in eqn 7 is always positive

and thus does not affect the forthcoming results. The

first term in square brackets, ‘1, in eqn 7 can be inter-

preted as the direct fitness cost to a focal individual

from expressing a mutant allele that reduces its fecun-

dity by one unit, which thus results in a loss of mutant

alleles sent into the next time period, while the second

term as the indirect fitness benefit stemming from the

decrease in competition faced by relatives of the focal

individual when it decreases its fecundity by one unit.

This competition term depends on the probabilityP
imimi)j that an offspring of the focal individual com-
� 2011 Blackwell Publishing Ltd
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petes against an offspring produced in group j, which

is related to the focal individual by QR
j;0.

The coefficient sk,t is
sk;t ¼ lim
l!0

ð1� sÞ
1�Q0;0

QR
k;t �

X
i

X
j

mimi�jQ
R
j�k;t

2
4

3
5; ð8Þ

where QR
k;t can be interpreted as the probability that a

gene sampled in the focal individual and a homologous

gene randomly sampled in group k at t time periods

later are identical by descent. The first term in square

brackets can be interpreted as the indirect fitness benefit

accruing to a focal individual from increasing the fecun-

dity of recipients in group k,t by a unit amount and the

second term is the indirect fitness cost stemming from

increasing the competition faced by relatives of the focal

individual living in other groups and resulting from

increasing the fecundity of recipients in group k,t. The

transmission coefficients for the survival effects take a

similar form to eqns 7–8 (see eqns A.13–A.14 in

Appendix I), and this form emphasizes a general fea-

ture of evolution in structured population, which is that

a behaviour resulting in an increase in the fecundity or

survival of various classes of recipients may also

decrease the fitness of the same or other classes of

recipients through the concomitant increase in competi-

tion (e.g. Grafen 1984; Taylor 1992; Queller 1994; Taylor

& Irwin 2000; West et al. 2007; Grafen & Archetti 2008;

Johnstone & Cant 2008; Sozou 2009).

It is worth recalling at this point that the phenotypic

effects Bk,t may either be positive (incrementing the fit-

ness of the recipients), in which case we refer to the

behaviour as ‘helping’, or negative, in which case we

refer to the behaviour as ‘harming’. Depending on the

structure of the population, the coefficients sk,t may

turn out to be negative so that selection favours harm-

ing. This occurs if individuals from group k,t are nega-

tively related to the focal individual, in which case the

absolute value of MRSk,t is taken in order to evaluate

the discount rate hl defined by eqn 5. Both helping and

harming may generally qualify in our model as, respec-

tively, altruism and spite sensu Hamilton (1964, 1970).

But in some situations, this may not be the case (espe-

cially when t ¼ 0), since whether a behaviour qualifies

as altruism and spite in the above sense depends upon

its effect on the fitness of the actor (eqns A.2 and A.7),

which may depend in a complex way on the demo-

graphic parameters of the model (e.g. N, s, mj). The

explicit calculations of the coefficients s• and sk,t deter-

mining the selection pressure on helping and harming

is carried out in Appendix I.

Finally, it is also worth mentioning that the phenotypic

effect Bk,t are not necessarily the result of a single and
� 2011 Blackwell Publishing Ltd
unilateral action taken by the focal individual. On the

contrary, it captures a total change in the vital rate of

individuals in group k,t stemming from the focal individ-

ual expressing the mutant allele over one iteration of the

life cycle. Hence, Bk,t is a net genetic effect and may be

the outcome of multimove social interactions (sequence

of actions during an individual’s lifespan) involving the

interaction between the phenotypic expressions or

behavioural response rules of any number of individuals

living in present and past generations of the population

(e.g. N-players repeated prisoner’s dilemma game, nego-

tiation game, optimal foraging game, repeated rounds of

cultural transmission, ecological public goods game,

Lehmann & Rousset 2010, section 7; an explicit calcula-

tion of the Bk,t coefficients for an ecological public goods

game is given in Lehmann 2008, eqn 17).
Results

Marginal substitution rates

Fecundity effects. When the phenotypic effects C and Bk,t

are on the fecundity of individuals, we find that
MRSi
k;t ¼

dk0þLkðFÞ�ð1þsÞ=nd

NþL0ðFÞ�ð1þsÞ=nd
if t ¼ 0

LkðGtÞ�ð1þsÞ=nd

NþL0ðFÞ�ð1þsÞ=nd
otherwise;

(
ð9Þ

where dk0 is the Kronecker-Delta (dk0 ¼ 1 if k ¼ 0, zero

otherwise), LkðDÞ is the inverse Fourier transform of a

given function D at k (eqn A.31 in Appendix II), and

FðwÞ ¼ 2sw
1þ sþ ð1� sÞw ;

GtðwÞ ¼
ð1þ sÞð1þ wÞ sþ ð1� sÞw½ �t

1þ sþ ð1� sÞw ; ð10Þ

where w is the characteristic function of the dispersal

distribution (eqn A.17). The marginal rate of substitu-

tion in fitness MRSs
k;t is given by eqn 9 with N replaced

by one. The proof of eqn 9 is given in Appendix III,

see in particular eqns A.38 and A.41.

Survival effects. When the phenotypic effects C and Bk,t

are on the survival of individuals, we find that

MRSi
k;t ¼

dk0þLkðFÞ�ð1þsÞ=ð2ndÞ
NþL0ðFÞ�ð1þsÞ=ð2ndÞ if t ¼ 0
LkðGtÞ�ð1þsÞ=ð2ndÞ

NþL0ðFÞ�ð1þsÞ=ð2ndÞ otherwise;

(
ð11Þ

where

FðwÞ ¼ � ð1� sÞw
1þ sþ ð1� sÞw ;
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GtðwÞ ¼
ð1þ sÞ sþ ð1� sÞw½ �t

1þ sþ ð1� sÞw : ð12Þ

The proof of eqn 11 is given in Appendix III, see

eqns A.48 and A.51.

Explicit Fourier transform. Equations 9 and 11 apply

both to hierarchically clustered populations and to the

more classical homogeneous isolation-by-distance mod-

els of population genetics, where groups of individuals

are positioned at the nodes of a regular lattice (e.g. a

circular lattice in one dimension and a torus in two

dimensions, Maruyama 1970b; Malécot 1975; Sawyer

1976; Nagylaki 1982; Taylor 1992) because in both cases

the migration distribution is translationally invariant:

m(i,j) ¼ m(0,j)i) for i,j 2 S. The inverse Fourier trans-

form for isolation-by-distance models is available but

does not usually reduce to simple expressions, and the

analysis turns out to be somewhat easier for hierarchi-

cally clustered population. For this latter case, the

inverse transform of a given function D(w) (here F(w) or

Gt(w)) takes the form

LhðDðwÞÞ ¼
Dðw0Þ

nd
� DðwlÞ

n1n2 � � � nl
þ
XH

j¼lþ1

DðwjÞðnj � 1Þ
n1n2 � � � nj

ð13Þ

for d(0,h) ¼ l, where the middle term does not occur if

l ¼ 0. Further, w0 ¼ 1, and for l > 0

wl ¼
Xl�1

j¼0

pj � pl=ðnl � 1Þ; ð14Þ

which is the characteristic function of the dispersal dis-

tribution evaluated at d(0,h) ¼ l. The proof of eqn 13 is

given in Appendix V.
Common features of the substitution rates

As s + (1)s)wl < 1 for l > 0 if s < 1 and Gt(w0) ¼ 1 + s

for fecundity effects and Gt(w0) ¼ (1 + s)/2 for survival

effects, we obtain by substituting eqn 13 into eqns 9

and 11 that MRSi
k;1 ¼ 0 and MRSs

k;1 ¼ 0 for both sur-

vival and fecundity effects if individuals have a non-

zero probability of dying. The present fitness value of

an effect on the fecundity or on the survival of any

group of individuals in the very long run (t fi ¥) is

thus zero, which stems from the fact that the related-

ness between a focal individual sampled in the present

and any recipient sampled in the very long run from

the population must be equal to zero. This can be seen

more explicitly by writing, for instance, MRSi
k;t for

d(0,k) ¼ l and for fecundity effects when t > 0 as
MRSi
k;t ¼

XH

j¼lþ1

yjð1þ sÞð1þ wjÞ sþ ð1� sÞwj

h it

N þ
PH

j¼1 yj2swj

� ylð1þ sÞð1þ wlÞ sþ ð1� sÞwl½ �t

N þ
PH

j¼1 yj2swj

;

ð15Þ

where yj ¼ (nj)1)/[(n1n2� � �nj){s+(1)s)wl}] and the second

term does not occur if d(0,k) ¼ 0. Each term of this

equation goes to zero as t fi ¥ if s < 1, but it also illus-

trates that the discounting of future rewards involves a

sum of exponential functions, so discounting is unlikely

to be exponential. Further, as wl can be close to one for

certain dispersal distribution, the temporal discounting

can be extremely low. So how does the valuation of

future group-wide benefit falls off with delay?

In a general perspective, be it for hierarchically clus-

tered or isolation-by-distance models, the stationary

probabilities of identity by descent (the Qk,t’s) can be

expressed in terms of the powers of the nonunit eigen-

values of the Markov matrix describing the random

walk of a gene lineage across space and across age clas-

ses (whose lth eigenvalue is given by s + (1)s)wl for

hierarchically clustered populations, see eqn 14). As

can be seen from eqn 15, the substitution rates are then

rational functions of such expressions and do not gener-

ally reduce to a single rational expression. The discount

rate is then variable and can decrease or even tran-

siently increase over time and may thus result in hyper-

bolic discounting.

In the long run, the substitution rate is dominated by

the largest subdominant eigenvalue of the Markov

matrix and the discount rate may then be considered

approximately constant. If individuals are more likely

to migrate to a small hierarchical distance than to a

longer one (dispersal is localized) such that

pi > pi+1(ni)1)/(ni+1)1), which implies wi+1 > wi for i > 0

from eqn 14, then the subdominant eigenvalue is given

by kH ¼ s + (1)s)wH. The valuation of future rewards

then decreases asymptotically at rate 1)kH ¼
(1)s)(1)wH) per unit delay, where wH ¼ 1)pHnH/

(nH)1). In the isolation-by-distance models on an

unbounded lattice, an infinite number of subdominant

eigenvalues are arbitrarily close to unity (Maruyama

1970b), so that in practice for large lattices, no eigen-

value can be singled out to characterize the long-term

behaviour of the discount rate. In that case too, the dis-

count rate can transiently increase over time. Hence, in

a geographically structured population, there is no rea-

son to believe that evolution may favour exponential

social discounting, where valuation of future rewards

falls by a constant factor per unit time.

We also note that the sign of MRSi
k;t is always nega-

tive for d(0,k) ¼ H, which holds for both fecundity and
� 2011 Blackwell Publishing Ltd
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survival effects. Hence, an actor is selected to harm an

individual from the highest level of clustering. This

stems from the fact that such individuals will be nega-

tively related to the actor. Equation 15 shows that the

lowest the hierarchical distance between actor and reci-

pient, the more likely an actor should help the recipient,

but the spatial discounting of a future reward (or pen-

alty) to other group members depends on the value of

the various life history parameters and does not

decrease proportionally with the hierarchical distance.

Apart from the above observations, eqns 9 and 11 (or

eqn 15) remain complicated. It is thus worthwhile to

analyse special cases of these equations in order to gain

a better intuition about how selection shapes spatial

and temporal discounting. This is carried out in the

next section.
Specific cases

Infinite island model of dispersal. Here, we assume that

when individuals migrate, they choose a group at ran-

dom from the whole population to settle in, so that

migration is panmictic. This situation can be described

as p0 ¼ 1)m, pk ¼ mrk/(nd)1) for k > 0 in eqn 2, where

m is the migration rate, which gives m0 ¼ 1)m, and

mj ¼ m/(nd)1). It is also convenient to assume that

n ¼ n1 ¼ … ¼ nH, in which case we obtain from eqn 14

that wl ¼ 1)mnd/(nd)1) for l > 0. If we further assume

that the number of groups becomes very large (say

nd fi ¥), then the probability of identity by descent

between actor and recipient sampled from two different

groups vanishes. Only individuals within groups will

be related, and it can be checked that MRSi
k;t ¼ 0 and

MRSs
k;t ¼ 0 in the limit for all k except k ¼ 0 [D(wj) is

a constant in eqn 13, in which case the whole expres-

sion is equal to zero for k „ 0 and so are eqns 9 and

11]. For fecundity effects, we then find that for all t
MRSi
0;t ¼

ð1þ sÞð2�mÞ sþ ð1� sÞð1�mÞ½ �t

N 2�mð1� sÞ½ � þ 2ð1�mÞs ; ð16Þ

while for survival effects, we have

MRSi
0;t ¼

ð1þ sÞ sþ ð1� sÞð1�mÞ½ �t

N 2�mð1� sÞ½ � � ð1�mÞð1� sÞ : ð17Þ

In the presence of complete migration, (m ¼ 1), both

eqns 16 and 17 reduce to MRSi
0;t ¼ st=N. Here, an actor

is then unrelated to group members living t time

periods in the future except if it has survived until that

stage (probability st) in which case it may benefit from

its own behaviour expressed t time periods earlier by

magnitude 1/N. We then have MRSs
0;t ¼ st, and the dis-
� 2011 Blackwell Publishing Ltd
count rate is then simply given by the probability of

dying hl ¼ (1)s) (Rogers 1994; Sozou 2009).

More generally, comparing eqns 16–17 shows that

the marginal rate of substitution in fitness is higher

under fecundity than survival effects. This stems from

the fact that by reducing the probability that group

members die, fewer breeding spots are vacated and

available to the offspring of the focal individual that do

not migrate. By contrast, by increasing the fecundity of

group members, the focal individual decreases the

chance that its offspring settle in an available breeding

spot only if they do not disperse and compete against

nondispersers. The effect on local competition of pro-

viding a fitness reward to group members is thus stron-

ger under survival effects, a feature first noted by

Taylor & Irwin (2000) for a model where t ¼ 0, in

which case eqns 16–17 exactly reduce to their result,

and their observation about competition extends to hier-

archically and isolation-by-distance structured popula-

tions.

Setting N ¼ 1 in eqns 16–17 gives MRSs
0;t ¼

sþ ð1� sÞð1�mÞ½ �t for both models, which in turn

yields the discount rate hl ¼ m(1)s). Future reward to

the local group should thus be discounted at a constant

rate per unit delay, which is given by the product of

the probability of migration and death per time period.

This agrees with the result of Sozou (2009) established

under a continuous time model with fecundity effects

and shows that his result holds for both fecundity and

survival effects.

Semelparous reproduction. We now assume that all indi-

viduals have a zero survival probability (s fi 0), in

which case individuals reproduce only once (they are

semelparous) and the underlying reproductive scheme

corresponds to the standard Wright–Fisher model of

population genetics (Ewens 2004). Letting s fi 0 in

eqn 9, we have F ¼ 0 and Gt ¼ wt, which produces for

all t
MRSi
k;t ¼

ndPk;t � 1

ndN � 1
; ð18Þ

where Pk;t ¼LkðwtÞ can be interpreted as the probabil-

ity that a line of descent from an individual residing in

the focal group will be in group k at t time periods in

the future (LkðwtÞ is the inverse transform of the t-fold

convolution of the characteristic function of the dis-

persal distribution). Equation 18 is equivalent to results

found for the evolution of extended phenotypes under

a standard model of isolation by distance (Lehmann

2008, eqns 10 and A.21).

As
P

kPk,t ¼ 1 for all t and P0,0 ¼ 1, we have Pk,0 ¼ 0

for k „ 0, which illustrates that selection may favour
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helping of the individuals from the focal group in the

time period where the behaviour is expressed, while

selection may favour harming individuals living in any

other group, be it from the same village, clan or tribe.

Similar results were observed under a standard isola-

tion-by-distance pattern of population structure, where

individuals living in groups at any other lattice point

than the focal group should be harmed by the focal

individual (as implied by Rousset 2004, eqn 7.21).

When dispersal is preferentially between hierachically

closer levels, so that pi > pi+1 for all i, P0,t is a decreasing

function of t (see eqn A.66). But Pk,t is likely to first

increase over time, then decrease, before approaching

the uniform distribution asymptotically: Pk,¥ ¼ 1/nd

(see eqn A.65), in which case MRSi
k;1 ¼ 0. This suggests

that under localized dispersal in a hierarchically clus-

tered population, the present value of a future reward to

the local group is likely to decrease as time passes by,

while the present value of a future penalty to the neigh-

bouring groups may increase as well as decrease with t.

If ndPk,t)1 > 0 for some t, then helping instead of harm-

ing should be favoured. More generally, for an arbitrary

dispersal distribution or for localized dispersal on a reg-

ular lattice, P0,t may also transiently increase over time,

but it is not clear whether this is realistic.

In order to be able to evaluate Pk,t quantitatively, we

assume that the dispersal distribution is given by a

truncated geometric distribution: p0 ¼ 1)m and pk ¼
m(1)g)gk)1/(1)gH) for k > 0, where the parameter g

(varying between zero and one) allows one to investi-

gate a continuum of spatial structures, ranging from the

case where individuals tend to migrate only to the near-

est cluster when g fi 0 or tend to choose a level of clus-

tering at random when g fi 1, in which case pk fi m/H.

Figure 1 shows that for a population with six levels of

clustering, where nk ¼ n for all k, and n ¼ 10 and N ¼
10 (107 individuals in the population), individuals from

the same group and village should be helped, while the

substitution rate MRSi
k;t (eqn 6) is vanishingly low for

d(0,k) > 1. Panel (B) of Fig. 1 also illustrates that the

discount rate hl of a future reward to the local group

decreases very slowly and is approximately constant.

But panel (B) of Fig. 1 also illustrates that the discount

rate of a future reward to individuals from other

groups actually falls rapidly for small delays, but then

slowly for longer delays, namely discounting is hyper-

bolic (Rogers 1994; Green & Myerson 1996; Sozou 1998).

Finally, the peak of the bump in the curve describing

the discount rate for d(0,k) ¼ 2 and d(0,k) ¼ 3 in

panel (A) of Fig. 1 delineates the region where individ-

uals should be helped from that where they should be

harmed. That is, for t smaller than the peak of the

bump (located here at t ¼ 1), individuals should be

harmed but the gains of harming are extremely small
because hl is high, and for t larger than the peak of the

bump, individuals should be helped (see Fig. 2 here

below where this is more apparent).

In panels (A)–(B) of Fig. 1, the migration rate is

assumed to be small (m ¼ 0.1) and that dispersal is

localized (g ¼ 0.1). But when the migration rate

becomes larger and dispersal remains localized, the dis-

count rate hl of a future reward to the focal group is no

longer approximately constant and becomes hyperbolic

[panels (C)–(D) of Fig. 1]. That an increase in migration

results in a variable discount rate can be read out of the

eigenvalues of the migration matrix. Assuming a large

number of groups and a large number of levels of clus-

tering (nd and H large), the l-th eigenvalue is approxi-

mately wl ¼ 1)mgl)1 (see eqn A.60 of Appendix V).

When m and g are small, the different eigenvalues will

approximately take the same value and thus dictate a

similar rate of decay on MRSi
0;t (eqn 15), which

decreases proportionally to this value. But as m

increases, the difference between the different values

the eigenvalues take becomes stronger and so MRSi
0;t no

longer decays constantly.

For survival effects, we were unable to find a com-

pact expression for MRSi
k;t because when s fi 0 in

eqn 11, we have F ¼ )w/(1 + w) and Gt ¼ wt/(1 + w),

which does not simplify easily. Nevertheless, we see

that for t¼0, each individual, except those of the focal

group, should be harmed and more so than under

fecundity effects. As was observed for fecundity effects,

as time goes by the present value of a future reward to

the local community decreases, while that to other

groups may increase [panels (A)–(B) of Fig. 2]. The fig-

ure also shows that discounting will generally not be

exponential when the migration rate becomes larger

and dispersal remains localized [panels (C)–(D) of

Fig. 2], which is the same as that observed above for

semelparous populations. Likewise, the value of future

rewards will be higher under fecundity that survival

effects [compare panels (A) and (E) of Fig. 1], and the

bump in the curves for d(0,k) ¼ 2 and d(0,k) ¼ 3 again

delineates regions of helping and harming, which also

shows that harming is more likely to be selected for

under survival than fecundity effects, holding every-

thing else constant.

Iteroparous reproduction. We now allow individuals to

survive from one time period to the next. When s takes

positive values and dispersal is localized, the expression

for MRSi
k;t remains complicated. By increasing the sur-

vival probability s, the relatedness between group mem-

bers tends to increase, and we thus expect that MRSi
k;t

will be higher than in the previous section, everything

else being held constant. This is indeed the case and is

illustrated in panels (A)–(B) of Fig. 2. As was observed
� 2011 Blackwell Publishing Ltd
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in the previous section (s fi 0), when the migration rate

becomes larger and dispersal remains localized, the dis-

count rate hl of a future reward to the focal group

becomes hyperbolic [panels (C)–(D) of Fig. 2], but the

effect is mitigated by survival because as s increases, the

eigenvalues of the transition matrix become more similar

to each other (kl ¼ s + (1)s)wl). Panels (E)–(F) of Fig. 2

show that future rewards will be more valuable under

fecundity than survival effects, which was also observed

in the previous section. Finally, comparing Figs 1 and 2

illustrates that, everything else being equal, the discount

rate per unit delay is likely to be larger for iteroparous

than for semelparous populations.

Letting s fi 1 in eqn 9 (which gives F(w) ¼ w and

Gt(w) ¼ 1 + w), we find that for fecundity effects and

for all t, we have

MRSi
k;t ¼

ndðdk0 þmkÞ � 2

ndðN þm0Þ � 2
; ð19Þ

which is directly determined by the migration distribu-

tion mk and is independent of t so that there is no tem-

poral discounting. In the limit as s approaches 1, at

most one individual dies per time interval, and then

one can formulate the process over time intervals in
� 2011 Blackwell Publishing Ltd
which exactly one individual dies, which produces the

Moran model of reproduction (Ewens 2004). Equa-

tion 19 actually agrees exactly with the qualitative

results found for the Moran process under a standard

isolation-by-distance population structure and when

phenotypic effects are intra-temporal and only on near-

est-neighbours (Ohtsuki & Nowak 2006; Taylor et al.

2007), and when the phenotypic effects are arbitrarily

extended in space (Lehmann et al. 2007, eqn 8). Hence,

eqn 19 suggests that for the Moran process, extended

phenotypic effects in time should not be discounted

when the number of individuals in the population

becomes infinitely large, which may merit further inves-

tigations. Finally, if we assume that nk ¼ n for all k,

then we have ndmk.nH)kmpk so that individuals living

at hierarchical distance k should be helped if

nH)kmpk > 2, and harmed otherwise.

For survival effects, we find that when s fi 1 in

eqn 11, we have

MRSi
k;t ¼

nddk0 � 1

ndN � 1
; ð20Þ

which is independent not only of time but also of the

spatial structure. In this case, individuals from every
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group in the population should be harmed except those

from the focal group. This again agrees exactly and gen-

eralizes known results found under the Moran process

and going under the heading of the ‘BD protocol (Oht-

suki & Nowak 2006; Taylor et al. 2007), which can be

biologically interpreted as representing a situation with

phenotypic effects on survival (Lehmann & Rousset

2010, section 4c).

Small migration. We now assume that individuals

migrate only with small probability out of their natal

group (weak migration) but let all other life history

parameters vary freely and set m0 ¼ 1)m in the dispersal

distribution (eqn 2), so that the dispersal probability to

any other cluster is proportional to m. We then perform a

first-order Taylor expansion of the characteristic function

of dispersal around m ¼ 0 and neglect terms of order

O(m2) in this function, which gives for fecundity effects

MRSi
k;t ’

1
x nd 2� fsþ 2ð1� sÞtgmð Þ � 2½ � if k ¼ 0
1
x ndfsþ ð1� sÞ2tgmk � 2½ � otherwise;

�
ð21Þ

where

x ¼ nd
2ðN þ sÞ

1þ s
�ms

� �
� 2: ð22Þ

The proof of eqn 21 is given in Appendix IV. This

equation shows that for small migration rates, an

increase in survival decreases the value of groups living

in the future of the population except the focal group,

whose value actually increases with higher survival.

Under small migration rates, we find for survival

effects that

MRSi
k;t ’

1
x ndf2� ð1� sÞð2t� 1Þmg � 2½ � if k ¼ 0
1
x ndð1� sÞð2t� 1Þmk � 2½ � otherwise;

�
ð23Þ

where

y ¼ nd
4ðN � 1Þ

1þ s
þmð1� sÞ þ 2

� �
� 2: ð24Þ

The proof of eqn 23 is also given in Appendix IV. This

equation illustrates that, as for fecundity effects, an

increase in survival decreases the value of groups living

in the future of the population except the focal group.

Comparing eqns 21–23 also shows that for k „ 0, the

numerator of eqn 21 is larger than that in eqn 23

because s+(1)s)2t > (1)s)(2t)1). Hence, everything thing

else being equal, this shows in accordance with the pre-

vious results that the present value of a future reward

is stronger under fecundity than survival effects.
If we assume that the total number of groups

becomes very large (nd fi ¥) and that s ¼ 0, then we

have from eqn 2 that MRSi
0;t ¼ ð1� tmÞ=N and

MRSi
k;t ¼ tmpk=fn1n2 � � � ðnk � 1ÞNg. This illustrates that

the value of a future reward to a group at distance k,t

from the focal group is discounted according to the

total number of individuals in the cluster.
Discussion

Summary of the results

In this study, we have derived social discount rates,

which are favoured by evolution in hierarchically clus-

tered populations, where individuals can have semelp-

arous or iteroparous life histories. Social discounting

involves applying a diminishing weight to group-wide

future benefits (Sozou 2009). We have evaluated dis-

count rates for phenotypic effects that can be arbitrarily

extended in space and time, from here to infinity. Our

analysis, which also applies qualitatively to the more

standard models of isolation-by-distance types of popu-

lation structure, where groups are arranged on a regu-

lar lattice (e.g. a circle in one dimension, a torus in two

dimensions), has revealed four main features of how

evolution is likely to shape social discounting in spa-

tially structured populations.

First, the present value of a future reward to the local

group should be discounted by an approximately con-

stantly falling factor under both survival and fecundity

effects when dispersal is localized and migration is

small [panel (B) of Fig. 1]. This results in social dis-

counting that tends to be exponential, which was

shown to be the rule in the island model of dispersal

(Sozou 2009). When dispersal becomes stronger but

remains localized and survival is not too large, a future

reward to the the local group should be discounted by

a factor falling rapidly for small delays but then slowly

for longer delays [panels (C)–(D) of Fig. 1]. This results

in social discounting that is hyperbolic (Rogers 1994;

Green & Myerson 1996; Sozou 1998). We find that a

future reward to individuals from other groups, such as

those from the same village, clan or tribe, should gener-

ally be discounted with declining rates [panel (A) of

Fig. 1 and extensive numerical investigations]. Our

analysis thus suggests that evolution will generally not

favour exponential social discounting when it occurs in

spatially structured populations and may favour hyper-

bolic discounting.

That evolution may favour a discount rate that is

nonconstant as a function of delay is message number

one of our results. We expect this to be a general con-

clusion, not specific to our model, as it stems from the

fact that the decay of relatedness per unit delay is unli-
� 2011 Blackwell Publishing Ltd
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kely to be exponential under localized dispersal. In such

situations, relatedness is a sum of at least as many

exponential functions as there are distinct dispersal

probabilities mi to different hierarchical or spatial dis-

tances, and even under the stepping-stone model of dis-

persal on a lattice, a large number of different

eigenvalues affect relatedness (Maruyama 1970a, b).

This suggests that nonconstant discounting should be a

generic feature of many demographic scenarios under

localized dispersal, and exponential discounting is

likely to be an exception. This result should apply not

only to the long-term discount rate hl but also to the

short-term discount rate (instantaneous discount rate),

which gives the rate of at which a future reward is dis-

counted over a single given time step (Laibson 1995; So-

zou 1998; numerical explorations not shown suggest

that the instantaneous discount rate is as variable as hl

in our model).

The second feature that emerges from our analysis is

that the present value of a future group-wide reward is

higher for all delays when the reward affects the fecun-

dity of individuals living in the future rather than when

it affects their survival [compare panel (A) to panel (E)

in Fig. 1 and Fig. 2]. This is a consequence of selection

being stronger on fecundity than on survival enhancing

actions (see section ‘Infinite island model of dispersal’

and Taylor & Irwin 2000). But the discount rate per unit

delay is approximately the same in the two situations

[compare panel (B) to panel (F) in Fig. 1 and Fig. 2],

which suggests that the change in the valuation of

future rewards follows the same trend under both

fecundity and survival-changing behaviours. In our

examples, we have also assumed that the expression of

the social behaviour affects the same vital rate of actors

and recipients, but it may be the case that the behaviour

affects the survival of actors and the fecundity of recipi-

ents (or vice versa). This can be accounted for by using

the appropriate transmission coefficients in the substitu-

tion rates (e.g. using eqn A.13 for s• and eqn 8 for sk,t

in MRSi
k;t of eqn 6), and it would not result in a quali-

tative difference for the time dynamics of the social dis-

count rate as only the effect on recipients is time

dependent.

The third feature that emerges from our analysis is

that the present value of a future reward tends to be

higher for all delays when the survival of individuals

from one time period to the next increases [compare

panels (A) in Figs 1 and 2 and panels (E) in those two

figures]. This follows from the fact that relatedness

between actor and recipient is higher when individuals

remain throughout their lifespan in the group they have

settled. This was already observed in the absence of

phenotypic effects extending in time (Taylor & Irwin

2000; Irwin & Taylor 2001), and our analysis shows that
� 2011 Blackwell Publishing Ltd
it holds more generally, but different results are

expected when adult individuals can also disperse (Leh-

mann & Rousset 2010).

The fourth feature illustrated by our model is that

individuals taken in groups at different hierarchical dis-

tance from each other will be related only if the total

number of individuals in the cluster encompassing

those groups is not too large. The present value of a

future reward to the individuals from a given level of

clustering then decreases proportionally according to

the total number of individuals in that cluster (section

‘Small migration’). Hence, evolution will favour incom-

plete (nonunit) spatial discounting only if clusters

encompassing actor and recipients of the behaviour are

not too large, which is actually a standard prediction of

inclusive fitness theory (Keller 1999; Bourke 2011).

When the total population is of finite size, individuals

taken at the largest hierarchical distance will be nega-

tively related to the actor and so should be harmed

instead of helped or treated indifferently (see eqn 15),

thus always inhibiting the evolution of benevolent rela-

tions between individuals taken from different clusters

of the largest level of clustering, which is again a stan-

dard prediction (Hamilton 1970; Hirshleifer 1998).
Biological implications

That spatial discounting increases rapidly with the hier-

archical distance between groups is another way of say-

ing that the selective pressure on helping decreases in

that case. Hierarchically clustered population may have

been the form of social organization of early human

populations (Johnson & Earle 1987), and individuals

may then have affected the fitness of others from the

same village, clan or tribe. Although the selective pres-

sure on social behaviours affecting individuals from

other levels of clustering may be small if, for instance,

the number of clans within tribes is large, it may still

have played a role by tipping the balance in favour of

better outcomes in conditions of selection between alter-

native equilibria (Binmore et al. 1995; Binmore 2005), or

by initiating the emergence of forms of cooperation

between individuals from different clans that initially

need some interactions occurring between relatives such

as reciprocity (Axelrod & Hamilton 1981), be it of the

direct, indirect or generalized form.

Hierarchically clustered populations occur in other

mammals as well (e.g. Fontanillas et al. 2004; Kerth

et al. 2011; Wittemyer et al. 2005; Schreier & Swedell

2009). It is usually the lowest level of clustering that

functions as the unified social unit, while interactions

among individuals from higher levels of clustering tend

to be more temporary and less cohesive, because altru-

ism between them is less likely to occur (Keller 1999;
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Bourke 2011). In Hamadryas baboons, the most cohe-

sive unit is the one-male unit, which consists of one

male and several females with their offspring. Several

such units may come together at night as the increased

number of individuals in the cluster may provide

enhanced protection to predators (Wittemyer et al.

2005). In elephants, the merging of multiple families

into a higher social level structure has been suggested

to increase anti-predatory behaviour and better

resource/territorial defence (Schreier & Swedell 2009).

While the indirect fitness effects stemming from chang-

ing the fitness of individuals from second or third level

of clustering may be small, the higher levels of cluster-

ing may nevertheless be organized along kinship lines

because relatedness should not be equal to zero

between individuals from different clusters, unless the

total number of individuals in a cluster is very large.

But these results on how individuals trade-off

between fitness effect to self and to individuals from

other groups in the population mainly parallel related-

ness distributions observed under isolation-by-distance

models (Maruyama 1970a; Malécot 1975; Taylor & Irwin

2000) and expected from previous multilevel kin selec-

tion arguments (Keller 1999; Bourke 2011). By contrast,

our findings concerning the form of temporal discount-

ing are more relevant. Here, our results suggest that

hyperbolic social discounting may be selected for as

soon as there is localized dispersal. Hyperbolic dis-

counting causes individuals to be present-biased and

even time-inconsistent (e.g. Sozou 1998, Fig. 1). Our

results suggest that these characteristics do not only

apply to individual discounting, which has been repeat-

edly observed in animals (e.g. Ainslie 1975; Laibson

1995; Green & Myerson 1996), but may also apply to

social discounting, thereby causing individuals to be

present-biased with regard to the consequences of their

actions on their local or neighbouring groups. Because a

constant discount rate is favoured under the island

model of dispersal, where individuals do not express

any temporal bias (see eqns 16–17 and Sozou 2009), a

main prediction of our model is that the more the dis-

persal is localized, the more present-biased individuals

are likely to be. This illustrates that demography and

migration patterns are likely to tune the cognitive biases

of the individuals in a population (here impulsivity and

time-inconsistency).

Whether evolution has really equipped organisms

with nonunit social discounting rates depends on the

extent to which the extended phenotypic effects (the

Bk,t’s) can be extended in time. If extended phenotypic

effects do not exist in natural populations to begin with,

then there is no need to discount the future. Extended

phenotypic effects may, for instance, result from indi-

viduals refraining of consuming present resources,
which may increase resource abundance for the actor

and its group members at later time points. But the phe-

notypic effects Bk,t may also extend beyond the actor’s

lifespan. Plants may change the availability of nutrients

in the soil of later generations and parasite may affect

the bodily conditions of their host, which may change

the fitness of future generations of parasites (e.g. incep-

tive perturbations, Odling-Smee et al. 2003, Table 2.1).

In humans, the constructions of settlements, the provi-

sion of agricultural field or technological innovations

may potentially last beyond the lifespan of the actor and

result in multigenerational phenotypic effects.

The extent to which phenotypic effects extend over

multiple time periods in natural populations would be

interesting to document, as the presence of such effects

may strengthen the hypothesis that evolution has

equipped individuals with incomplete (nonunit) social

discount rates. Our analysis suggests that whether com-

munal constructions will rapidly fall apart or survive

for a longer time, possibly beyond the constructor’s life-

span, is likely to correlate with the relatedness of indi-

viduals sampled at different time points in the same

group, which could be measured by using molecular

markers. For instance, the higher the relatedness

between generations in the focal group, the stronger the

selection pressure on investment into behaviours

increasing the fitness of individuals living in down-

stream generations (eqns A.12 and A.14 with k ¼ 0).

Our model also predicts that when faced with the

choice between an immediate reward to self and a

future reward to all group members (like in a public

goods game), and everything else being the same, indi-

viduals living in populations exhibiting isolation by dis-

tance should be more impatient than those living in

populations where dispersal is random.
Limitations of the model

It is worthwhile to point out that our model of transfer

of resources between individuals under isolation by dis-

tance has at least three main limitations that merit fur-

ther study. The first is that we have evaluated fitness

effects for average phenotypic effects, where individuals

express their behaviour regardless of their age. But it

may be more realistic to consider that individuals

express behaviours conditional on their age, as the pop-

ulation structure will change with their age and so the

valuation of rewards given to others will change with

age as well. Understanding the evolution of time prefer-

ence in this context will require the evaluation of con-

text-specific relatedness coefficients (e.g. Johnstone &

Cant 2010). The second limitation is that individuals do

not senesce (or age) as the survival probability is con-

stant throughout life. Ageing affects individual dis-
� 2011 Blackwell Publishing Ltd
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counting (Rogers 1994; Sozou & Seymour 2003), and

this may affect social discounting as well. The third lim-

itation is that we assumed constant population size. A

model allowing for an explicit demography may also be

more appropriate for understanding the evolution of

time preferences. In an expanding population, which is

the case for the human population since its inception,

individual discounting of the future may be increased

(Rogers 1994) and this may again affect social discount-

ing. Taking all these features into account may allow

for a better understanding of how the demographic

background of a population affects the evolution of an

individual’s valuation of its future effects on the com-

mon goods of the population.
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E V O L U T I O N O F S O C I A L D I S C O U N T I N G I N
2 Selection favours the mutant if / > 0, which, owing to the property

that the effects on the focal individual’s fitness of all individuals in a

generation in the population must sum up to zero (Rousset & Billiard

2000), can also be recast under the form
P

t

P
kRk,tbk,t)c > 0 (Lehmann

2010). This is Hamilton’s rule, where )c ” ¶w/¶z•, bk,t ” ¶w/¶zk,t, and

Rk,t ¼ limlfi0(Qk,t)�Qt)/(1)�Q0), with �Qt ¼
P

kQk,t/nd being the average

probability of identity between two homologous alleles sampled in two

distinct individuals living at t generations apart. This relatedness coeffi-

cient Rk,t provides a measure of the extent to which an individual sam-

pled in group k,t is more (or less) likely to transmit a mutant allele to

the next generation than is a randomly sampled individual from t, rela-

tive to the extent to which the focal individual is more likely to transmit

the mutant allele to the next generation than is another individual sam-

pled in its generation. But owing to the zero sum property of fitness

effects, one can also choose to write relatedness as Rk,t ¼
limlfi0(Qk,t)Q0,0)/(1)Q0,0) so that relatedness coefficients are defined

relative to the probability of identity Q0,0 in the focal deme, which facil-

itates empirical estimations (see Lehmann & Rousset 2010, section
Appendix I: method

Inclusive effects on fixation probabilities

In this appendix, we describe how to obtain eqn 6 of

the main text by focusing on the fixation probability of

the mutant allele. To that aim, we first note that the

average effect of a class of actors on the fitness of

individuals bearing the mutant allele depends on the

probability that both the actor and recipient bear the

mutant allele, hence that their gene lineages have a

common ancestor in a single ancestral individual car-

rying the mutant allele. Under weak selection, the

cumulative effects on allele frequency change of actor–

recipient interactions over generations until the loss or

fixation of a single initial mutant allele can be

expressed in terms of the fitness differential induced

by the interaction weighted by the average coalescence

time (i.e. the average time to the first common ances-

tor) of pair of genes taken in actor and recipients. The

overall effect of selection can then be expressed in

terms of fitness differential weighted ratios of average

coalescence times for different pairs of genes (Rousset

2003; for more rigorous arguments see also Lessard &

Ladret 2007; Lehmann & Rousset 2009). Actor–recipi-

ent interactions do not need to be limited between

individuals living in the same or adjacent generations

but may involve a multigenerational gap between the

expression of the behaviour by actors and their pheno-

typic effect on the fitness of recipients, in which case,

even for an arbitrary number of time steps between

the generation of the actor and that of the recipient,

selection can still be expressed in terms of average

coalescence times (Lehmann 2007).

The coalescence times are purely genealogical proper-

ties, not depending on any mutation process, but can be

recovered as low-mutation limit values of measures of

the genetic structure of populations in models with

genetic mutation (Rousset & Billiard 2000; Rousset

2004). For effective computations in the hierarchically

clustered population model presented in the main text,

the perturbation of the fixation probability of a single

mutant allele is conveniently written as

/ ¼ lim
l!0

1

1�Q0;0

@w

@z�
þ
X1
t¼0

X
k

@w

@zk;t
Qk;t

" #
; ðA:1Þ
� 2011 Blackwell Publishing Ltd
(Lehmann 2007, eqn A.10)2, where l is the mutation rate

from one allele to another. The function w gives the fit-

ness of a focal individual, which is defined as the

expected number of its descendants (possibly including

itself) after one full iteration of the life cycle of the organ-

ism (Hamilton 1964), and it depends on the focal individ-

ual’s phenotype z• and potentially on the phenotype of

every individual living in the population in present and

past times, where zk,t is the average phenotype of indi-

viduals living in group k at t time periods in the past.

The partial derivatives are the fitness differentials with

¶w/¶z• being the effect on its fitness of the focal individ-

ual expressing its phenotype and ¶w/¶zk,t is the effect of

all neighbours separated by distance k,t from the focal

group. Finally, Qk,t is the stationary probability that a

gene sampled in the focal individual is identical with a

homologous gene sampled in an individual chosen at

random without replacement from group k at t time

periods in the past. Under the present model, the pheno-

types can be thought of as the average frequency of the

mutant allele among the classes of actors under consider-

ation and are evaluated at z• ¼ … ¼ zk,t ¼ 0; that is, in a

population monomorphic for the resident allele that does

not express the C and Bj,t perturbations, but more gen-

eral interpretations in terms of evolving traits are possi-

ble (Rousset & Billiard 2000; Lehmann 2008).
Direct fitness function

The direct fitness function (Taylor & Frank 1996; Frank

1998) for the hierarchically clustered population model

can be written as

w ¼ sþ 1� sð Þ
X

i

mi
1þ v�P

jmi�j 1þ vj

� � ; ðA:2Þ

where 1 + v• is the fecundity of a focal individual

(strictly speaking the fecundity of an individual relative
‘Results’ for a discussion)
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to that of a resident in a monomorphic population), and

v• is the increase in the fecundity of the focal individual

stemming from individuals in the population carrying

the mutant allele. The fitness function w can be under-

stood by noting that a fraction mi(1+v•) of the focal indi-

vidual’s offspring enter in competition in group i with

a fraction
P

jmi)j(1 + vj) of the total number of offspring

produced in the population, where vj is the increase in

average relative fecundity of individuals in group j.

Equation A.2 has exactly the same form as that found

under the more standard isolation-by-distance models

of population structure (e.g. Gandon & Rousset 1999,

eqn 1, Lehmann 2008, eqn 5).

This formulation of the fitness function will allow us

to evaluate the two substitution rates defined by

eqns 3–4, but we will write the fecundities on a case-

by-case basis. In order to capture the case where the

focal individual trades off its own fecundity with that

of individuals from group k,t (eqn 3), we need to eval-

uate the evolutionary dynamics of a mutant allele hav-

ing phenotypic effect )C on the actor and Bk,t on group

k,t members. We then write
v� ¼ �Cz� þ Bk;tz
R
k;t; ðA:3Þ

where C > 0, Bk,t > 0, and zR
k;t ¼ zk;t for all k and t

except that zR
0;0 ¼ z�=N þ z0;0ðN � 1Þ=N because the

focal individual is in proportion 1/N in the focal

group. For the case where the focal individual trades-

off the average fecundity of the focal group in the

focal generation with that of individuals from group

k,t, we need to evaluate the evolutionary dynamics of

a mutant having phenotypic effect B0,0 on the focal

group and effect Bk,t on group k,t with either k > 0 or

t > 0, which gives

v� ¼ B0;0zR
0;t þ Bk;tz

R
k;t: ðA:4Þ

Although both eqns A.3 and A.4 describe situations

where the mutant alleles have effects on two classes of

recipients, one may more generally be interested in

assessing selection on alleles having an effect on an

arbitrary number of recipients in which case one can set

v� ¼ �Cz� þ
P1

t¼0

P
k Bk;tz

R
k;t. The expressions for vj

corresponding to eqns A.3 and A.4 are respectively

vj ¼ �CzR
j;0 þ Bk;tz

R
j�k;t; ðA:5Þ

and

vj ¼ B0;0zR
j;0 þ Bk;tz

R
j�k;t; ðA:6Þ

which can be changed to vj ¼ �CzR
j;0þP1

t¼0

P
k Bk;tz

R
j�k;t if actors have an effect on an arbi-
trary number of recipients living at different positions

in space and time.

For survival effects, the direct fitness function can be

written as

w ¼ s 1þ v�ð Þ þ
X

i

mi 1� s 1þ við Þ½ �; ðA:7Þ

which can be understood by noting that a focal individ-

ual survives with probability s(1 + v•) to the next time

period and that a fraction mi of its offspring (no effect

on fecundity) enters in competition in group i, where

there is an average fraction 1)s(1 + vi) of vacated breed-

ing spots. Note that at z• ¼ … ¼ zk,t ¼ …0, we have

w ¼ 1 in both eqns A.2 and A.7.

Substituting eqns A.3 and A.5 into eqn A.2 (or into

eqn A.7), which is then inserted into eqn A.1, and eval-

uating the partial derivatives show that / ¼ 0 can be

written as

Bk;tsk;t � Cs� ¼ 0; ðA:8Þ

and substituting eqns A.4 and A.6 into eqn A.2 (or into

eqn A.7) and evaluating / ¼ 0 show that it can be writ-

ten as

Bk;tsk;t þ B0;0s0;0 ¼ 0: ðA:9Þ

The coefficients s• and sk,t in these equation will

depend on the demographic parameters N, s, mj and on

whether phenotypic effects are fecundity or survival

enhancing, but not on Ck,t and Bk,t. Substituting

eqns A.8 and A.9 into, respectively, eqns 3–4 of the

main text yields eqn 6.
Fecundity effects

The coefficient s• in eqn A.8 for fecundity effects can be

directly obtained by substituting eqns A.2, A.3, and A.5

into eqn A.1 and then evaluating s• ¼ //C by setting

B0,0 ¼ 0 and Bk,0 ¼ 0. This gives

s� ¼ � lim
l!0

ð1� sÞ
1�Q0;0

1�
X

i

X
j

mimi�jQ
R
j;0

2
4

3
5; ðeqnA:10Þ

with

QR
j;t ¼ Qj;tfor all j and t except QR

0;0 ¼
1

N
þ N � 1

N

	 

Q0;0;

ðA:11Þ

where QR
j;t is the probability that two individuals ran-

domly sampled at ‘distance j,t’ carry a homologous

gene identical by descent so that sampling with replace-

ment occurs only if the two individuals are sampled

from the same group.
� 2011 Blackwell Publishing Ltd
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The coefficients sk,t in eqns A.8–A.9 for fecundity

effects are obtained by substituting eqns A.2, A.3 and

A.5 into eqn A.1 and then evaluating sk,t ¼ //Bk,t by

setting C ¼ 0 and Bj,h ¼ 0 except for j ¼ k and h ¼ t.

This gives

sk;t ¼ lim
l!0

ð1� sÞ
1�Q0;0

QR
k;t �

X
i

X
j

mimi�jQ
R
j�k;t

2
4

3
5; ðA:12Þ

where QR
j�k;t it the probability of identity by descent

between two homologous genes sampled in two indi-

viduals living at k steps apart in the population and t

time periods of interval.
Survival effects

For survival effects, the coefficient s• in eqn A.8 is

obtained by substituting eqns A.3, A.5, and A.7 into

eqn A.1 and then proceeding as to obtain eqn A.10.

This gives

s� ¼ � lim
l!0

s

1�Q0;0

1�
X

j

mjQ
R
j;0

2
4

3
5; ðA:13Þ

where the first term in square brackets, ‘1’, can be inter-

preted as the direct fitness cost to a focal individual

from expressing a mutant allele that reduces its survival

by a unit amount, while the second term as the indirect

fitness benefit stemming from the decrease in competi-

tion faced by relatives of the focal individual when it

decreases its survival. This reduction in competition

depends on the probability mj that an offspring of the

focal individual competes for vacant spots in group j,

which are increased by an amount sQR
j;0.

The coefficient sk,t for survival effects is given by

sk;t ¼ lim
l!0

s

1�Q0;0

QR
k;t �

X
j

mjQ
R
j�k;t

2
4

3
5: ðA:14Þ
Appendix II: IBD probabilities

In this appendix, we evaluate the explicit expressions

for the stationary IBD probabilities necessary to evalu-

ate the coefficients s• and sk,t under the life cycle

described in the main text. In doing so, we use standard

population genetic methods for homogeneous popula-

tions (e.g. Malécot 1975; Nagylaki 1982; Rousset 2004)

and use classical results on Fourier analysis. All of these

results used in this appendix and the methods used to

construct recurrence equations for the Qk;t probabilities

are detailed in Rousset (2004), and the appendix sum-

marizes and extends results derived previously (Malé-

cot 1973; Lehmann et al. 2007; Grafen & Archetti 2008;

Lehmann 2008).
� 2011 Blackwell Publishing Ltd
Recursions for spatial IBD probabilities

Following the life cycle assumptions described in the

main text, the probability of identity between a pair of

homologous genes sampled in two different adult indi-

viduals living at distance k of each other in the same

time period satisfies at steady state the recursion

Qk;0 ¼ s2Qk;0 þ 2sð1� sÞ ffiffifficp X
i

miQ
R
k�i;0þ

1� sð Þ2c
X

i

X
j

mimi�jQ
R
k�j;0;

ðA:15Þ

where c ¼ (1)l)2. This equation can be understood by

noting that with probability s2, two surviving (adult)

individuals are sampled, in which case the two individ-

uals carry homologous genes that are identical with

probability Qk;0; with probability 2s(1)s), a newborn

and an adult are sampled, in which case the two indi-

viduals carry homologous genes that are identical with

probability
ffiffiffi
c
p

QR
k�i;0 when the newborn has migrated i

steps. Finally, with probability (1)s)2, two newborns are

sampled, in which case with probability mimi)j they

carry homologous genes that are identical with proba-

bility cQR
k�j;0 (Lehmann et al. 2007, eqn 27).

Note that different assumptions about the occurrence

of mutation events in the life cycle may alter the nature

of the mutation factors in eqn A.15, but would not

affect our qualitative conclusions (differences in fixation

probabilities would be only of order of the inverse to

the total population size). Further, in order to match the

assumptions about mutation leading to the derivation

of eqn A.1, all components of the right member of

eqn A.15 should be multiplied by c, rather than by dif-

ferent powers of c, but eqn A.15 is biologically more

realistic and using this form, rather than that with the

same powers in c, does not affect the qualitative and

quantitative results reported below. For these reasons,

we use eqn A.15 throughout this Appendix and insert-

ing eqn A.11 under the form QR
0;0 ¼ Q0;0þ ð1�Q0;0Þ=N

allows us to write eqn A.15 as
Qk;0 ¼ s2Qk;0 þ 2sð1� sÞ ffiffifficp X
i

miQk�i;0 þmk
ð1�Q0;0Þ

N

" #

þ ð1� sÞ2c
"X

i

X
j

mimi�jQk�j;0

þ
X

i

mimi�k
ð1�Q0;0Þ

N

#
:

ðA:16Þ
We write

wðhÞ �
X
k2S

mkeık�h ðA:17Þ
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the Fourier transform of the dispersal distribution

(characteristic function), where ı �
ffiffiffiffiffiffiffi
�1
p

, S ¼
{(k1,k2,k3,…,kH):0 £ ki<ni}. We write wh its value in

h(h) ” 2p(h1/n1,h2/n2,…,hH/nH) (Sawyer & Felsenstein

1983, eqn 2.6). Call Q0ðhÞ �
P

k2S Qk;0eık�hðhÞ the Fourier

transform of the IBD probabilities between pairs of

genes sampled in the same time period. Multiplying

both sides of eqn A.16 by eıkÆh(h), which can be written

as eıiÆh(h)eı(j)i)Æh(h)eı(k)j)Æh(h), and summing over the space

of all groups produces the recursion

Q0ðhÞ ¼ s2Q0ðhÞ þ 2sð1� sÞ ffiffifficp wh Q0ðhÞ þ
1�Q0;0

N

	 


þ ð1� sÞ2cw2
h Q0ðhÞ þ

1�Q0;0

N

	 

;

ðA:18Þ

which can be solved for Q0ðhÞ to give

Q0ðhÞ ¼
ð1�Q0;0Þ

N
Xh; ðA:19Þ

where

Xh ¼
2s

ffiffiffi
c
p

wh þ ð1� sÞcw2
h

1þ s� 2s
ffiffiffi
c
p

wh þ ð1� sÞcw2
h

�  : ðA:20Þ
Recursions for space–time IBD probabilities

The probability of IBD between a gene sampled in a

focal individual residing in a focal group (situated at

position 0) and a homologous gene sampled from an

individual chosen at random in group k at t time peri-

ods earlier satisfies for t‡2 the recursion

Qk;t ¼ sQk;t�1 þ ð1� sÞ ffiffifficp X
i

miQk�i;t�1: ðA:21Þ

The right member can be understood by noting that

with probability s, the focal individual was already

alive one time period earlier, in which case the IBD

probability between the focal individual’s gene and the

gene sampled t time periods earlier is Qk,t)1. With prob-

ability 1)s the focal individual is a newborn, in which

case it has migrated from group i with probability mi

and the IBD probability between the focal individual’s

gene and the gene sampled t time periods earlier is

Qk)i,t)1.

For t ¼ 1 and k „ 0, one has

Qk;1 ¼ sQk;0 þ ð1� sÞ ffiffifficp X
i

miQk�i;0 þmk
ð1�Q0;0Þ

N

 !
;

ðA:22Þ

where the second term accounts for the fact that the

individual sampled at random one time period earlier
might be the parent of the focal individual. Finally, for

t ¼ 1 and k ¼ 0

Q0;1 ¼ s Q0;0 þ
1�Q0;0

N

	 


þ ð1� sÞ ffiffifficp X
i

miQk�i;0 þmk
ð1�Q0;0Þ

N

 !
;

ðA:23Þ

where the first term accounts for the fact that the indi-

vidual sampled at random one time period earlier

might be the focal individual itself. Combining the last

two equations produces for t ¼ 1 and all k

Qk;1 ¼ s Qk;0 þ dk0
1�Q0;0

N

	 


þ ð1� sÞ ffiffifficp X
i

miQk�i;0 þmk
ð1�Q0;0Þ

N

 !
;

ðA:24Þ

where dk0 is the Kronecker-Delta.

Call QtðhÞ �
P

k2S Qk;te
ık�hðhÞ the characteristic func-

tion of the probabilities of identity between pairs of

genes sampled at t time periods of interval. Multiplying

both sides of eqn A.21 by eıkÆh(h) and summing over the

space of all groups gives the recursion
QtðhÞ ¼ sþ ð1� sÞ ffiffifficp whð ÞQt�1ðhÞ; ðA:25Þ

whose solution is QtðhÞ ¼ s þ ð1� sÞ ffiffifficp wh

� �t�1
Q1ðhÞ.

The Q1ðhÞ term is obtained by multiplying both sides of

eqn A.24 by eıkÆh(h), summing over the space of all

groups, noting that
P

kdk0eıkÆh(h)¼1 if k¼0, zero other-

wise, which gives

Q1ðhÞ ¼ sþ ð1� sÞ ffiffifficp whð Þ Q0ðhÞ þ
1�Q0;0

N

	 

; ðA:26Þ

whereby

QtðhÞ ¼ sþ ð1� sÞ ffiffifficp whð Þt Q0ðhÞ þ
1�Q0;0

N

	 

: ðA:27Þ

Substituting eqn A.19 into eqn A.27 yields
QtðhÞ ¼
ð1�Q0;0Þ

N
Yh;t; ðA:28Þ

where

Yh;t ¼
ð1þ sÞ sþ ð1� sÞ ffiffifficp wh

� �t

1þ s� 2s
ffiffiffi
c
p

wh þ ð1� sÞcw2
h

�  : ðA:29Þ
� 2011 Blackwell Publishing Ltd
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Stationary IBD probabilities

From eqns A.19 and A.28, we finally have that the sta-

tionary IBD probability Qk,t can be obtained as
Qk;t ¼
ð1�Q0;0Þ

N
LkðDh;tÞ; ðA:30Þ

where
LkðDh;tÞ �
1

nd

X
h2S

Dh;te
�ık�hðhÞ ðA:31Þ

is the inverse Fourier transform at distance k of the

function Dh,t, which is given by eqn A.20 for t ¼ 0,

eqn A.29 otherwise.
Appendix III: explicit selective effects

Fecundity effects

Transmission coefficients. Substituting eqn A.11 into

eqns A.10 and A.12 gives
s� ¼ � lim
l!0

ð1� sÞ
1�Q0;0

1�
X

i

X
j

mimi�jQj;0

2
4

� ð1�Q0;0Þ
N

X
i

m2
i

#

s0;0 ¼ lim
l!0

ð1� sÞ
1�Q0;0

ð1�Q0;0Þ
N

þQ0;0 �
X

i

X
j

mimi�jQj;0

2
4

� ð1�Q0;0Þ
N

X
i

m2
i

#

sk;0 ¼ lim
l!0

ð1� sÞ
1�Q0;0

Qk;0 �
X

i

X
j

mimi�jQj�k;0

2
4

� ð1�Q0;0Þ
N

X
i

mimi�k

#
if k > 0
sk;t ¼ lim
l!0

ð1� sÞ
1�Q0;0

Qk;t �
X

i

X
j

mimi�jQj�k;t

2
4

3
5

if k > 0; t > 0:

ðA:32Þ
� 2011 Blackwell Publishing Ltd
Using eqn A.31, we will simplify the above equations

by using
Qk;t �
X

i

X
j

mimi�jQj�k;t ¼
ð1�Q0;0Þ

Nnd

X
h

Dh;t e�ık�hðhÞ
h

�
X

i

X
j

mimi�je
�ıðk�jÞ�hðhÞ

�

¼ ð1�Q0;0Þ
Nnd

X
h

Dh;t 1� w2
h

� �
e�ık�hðhÞ; ðA:33Þ

P
i m2

i ¼ 1
nd

P
h w2

h, and
P

i mimi�k ¼ 1
nd

P
h w2

he�ık�hðhÞ.

Substituting these identities into eqn A.32 and using

eqns A.20 and A.29 gives

s� ¼ �ð1� sÞ 1þ 1

Nnd

X
h

lim
l!0

Xh 1� w2
h

� �
� 1

Nnd

X
h

w2
h

" #

s0;0 ¼ ð1� sÞ 1

N
þ 1

Nnd

X
h

lim
l!0

Xh 1� w2
h

� �
� 1

Nnd

X
h

w2
h

" #

sk;0 ¼ ð1� sÞ 1

Nnd

X
h

lim
l!0

Xh 1� w2
h

� �
e�ık�hðhÞ

"

� 1

Nnd

X
h

w2
he�ık�hðhÞ

#
if k > 0

sk;t ¼ ð1� sÞ 1

Nnd

X
h

lim
l!0

Yh;t 1�w2
h

� �
e�ık�hðhÞ

" #
if k> 0; t> 0:

ðA:34Þ

Intra-temporal effects. In order to evaluate s•, s0,0 and

sk,0, we need the function liml!0 Xh 1�w2
h

� �
. For h „ 0,

this is from eqn A.20
!h �
whð1þ whÞ 2sþ ð1� sÞwh½ �

1þ sþ ð1� sÞwh

: ðA:35Þ

For h ¼ 0, !0 ¼ 1 + s because w0 ¼ 1, while

liml!0 X0 1� w2
0

� �
¼ 0. Hence
1

nd

X
h

lim
l!0

Xh 1� w2
h

� �
e�ık�hðhÞ ¼ 1

nd

X
h

!he�ık�hðhÞ � 1þ s

nd
:

ðA:36Þ

Inserting this equation into eqn A.32 and using the

identity
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Fh � !h � w2
h ¼

2swh

1þ sþ ð1� sÞwh½ � ðA:37Þ

gives

s� ¼ �
ð1� sÞ

N
N þL0 Fhð Þ �

1þ s

nd

� �

s0;0 ¼
ð1� sÞ

N
1þL0 Fhð Þ �

1þ s

nd

� �

sk;0 ¼
ð1� sÞ

N
Lk Fhð Þ �

1þ s

nd

� �
if k > 0: ðA:38Þ

Inter-temporal effects. In order to evaluate sk,t, we need

liml!0 Yh;t 1� w2
h

� �
. For h „ 0, this is from eqn A.29

Gh;t �
ð1þ sÞð1þ wh sþ ð1� sÞwh½ �t

1þ sþ ð1� sÞwh

: ðA:39Þ

For h ¼ 0, we have G0,t ¼ 1 + s, while

liml!0 Y0;t 1� w2
0

� �
¼ 0, whereby

1

nd

X
h

lim
l!0

Yh;t 1� w2
h

� �
e�ık�hðhÞ ¼ 1

nd

X
h

Gh;te
�ık�hðhÞ � 1þ s

nd
;

ðA:40Þ

which, on substitution into eqn A.32, produces
sk;t ¼
ð1� sÞ

N
Lk Gh;t

� �
� 1þ s

nd

� �
if k > 0; t > 0: ðA:41Þ
Survival effects

Transmission coefficients. Substituting eqn A.11 into

eqns A.13–A.14 gives

s� ¼ � lim
l!0

s

1�Q0;0
1�

X
j

mjQj;0 �m0
ð1�Q0;0Þ

N

2
4

3
5

s0;0 ¼ lim
l!0

s

1�Q0;0

ð1�Q0;0Þ
N

þQ0;0

�

�
X

j

mjQj;0 �m0
ð1�Q0;0Þ

N

#

sk;0 ¼ lim
l!0

s

1�Q0;0
Qk;0 �

X
j

mjQj�k;0 �mk
ð1�Q0;0Þ

N

2
4

3
5

if k > 0
sk;t ¼ lim
l!0

s

1�Q0;0
Qk;t �

X
j

mjQj�k;t

2
4

3
5if k > 0; t > 0:

ðA:42Þ

These equations will be simplified by using eqn A.31

and
Qk;t �
X

j

mjQj�k;t ¼
ð1�Q0;0Þ

Nnd

X
h

Dh;t e�ık�hðhÞ
h

�
X

j

mje
�ıðk�jÞ�hðhÞ

#

¼ ð1�Q0;0Þ
Nnd

X
h

Dh;t 1� whð Þe�ık�hðhÞ;

ðA.43)

m0 ¼ 1
nd

P
h wh, and mk ¼ 1

nd

P
h whe�ık�hðhÞ. Substituting

these identities, eqns A.20, and A.29 into eqn A.42

gives
s� ¼ �s 1þ 1

Nnd

X
h

lim
l!0

Xh 1� whð Þ � 1

Nnd

X
h

wh

" #

s0;0 ¼ s
1

N
þ 1

Nnd

X
h

lim
l!0

Xh 1� whð Þ � 1

Nnd

X
h

wh

" #

sk;0 ¼ s
1

Nnd

X
h

lim
l!0

Xh 1� whð Þe�ık�hðhÞ
"

� 1

Nnd

X
h

whe�ık�hðhÞ

#
if k > 0

sk;t ¼ s
1

Nnd

X
h

lim
l!0

Yh;t 1� whð Þe�ık�hðhÞ
" #

if k > 0; t > 0:

ðA:44Þ

Intra-temporal effects. In order to evaluate s•, s0,0, and

sk,0 under survival effects, we need the function

limlfi0Xh(1)wh). For h „ 0, this is
!h �
wh 2sþ ð1� sÞwh½ �
1þ sþ ð1� sÞwh

: ðA:45Þ

For h ¼ 0, !0 ¼ (1 + s)/2, while limlfi0X0(1)w0) ¼ 0,

hence
� 2011 Blackwell Publishing Ltd
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X
h

lim
l!0

Xh 1� whð Þe�ık�hðhÞ ¼ 1

nd

X
h

!he�ık�hðhÞ � 1þ s

2nd
:

ðA:46Þ

Inserting this equation into eqn A.44 and using the

identity

Fh �
wh 2sþ ð1� sÞwh½ �
1þ sþ ð1� sÞwh½ � � wh ¼ �

ð1� sÞwh

1þ sþ ð1� sÞwh

ðA:47Þ

gives

s� ¼ �
s

N
N þL0 Fhð Þ �

1þ s

2nd

� �

s0;0 ¼
s

N
1þL0 Fhð Þ �

1þ s

2nd

� �

sk;0 ¼ �
s

N
Lk Fhð Þ �

1þ s

2nd

� �
if k > 0: ðA:48Þ

Inter-temporal effects. In order to evaluate sk,t, we need

the function limlfi0Yh,t(1)wh). For h „ 0 this is

Gh;t �
ð1þ sÞ sþ ð1� sÞwh½ �t

1þ sþ ð1� sÞwh

: ðA:49Þ

For h ¼ 0, G0,t ¼ (1 + s)/2, while limlfi0Y0,t(1)w0) ¼
0, hence

X
h

lim
l!0

Yh 1� whð Þe�ık�hðhÞ ¼ 1

nd

X
h

Gh;te
�ık�hðhÞ � 1þ s

2nd
;

ðA:50Þ

which, on substitution into eqn A.44, produces
sk;t ¼
s

N
Lk Gh;t

� �
� 1þ s

2nd

� �
if k > 0; t > 0: ðA:51Þ
Appendix IV: small migration approximation

The expressions for the inverse Fourier transform of Fh

(eqn A.37 for fecundity effects and eqn A.47 for survival

effects) and Gh,t (eqn A.39 for fecundity effects and

eqn A.49 for survival effects) are complicated and will

be approximated in this appendix by assuming that the

migration rate m is very small (weak migration approxi-

mation). We can then write m0 ¼ (1)m) and mi ¼ mgi

(Rousset 2004, chapter 3). From these definitions, the

characteristic function of the dispersal distribution can be

expressed as w ¼ 1)mx, where x ¼ 1)
P

i„0gie
ıiÆh.
� 2011 Blackwell Publishing Ltd
Fecundity effects

Inserting w ¼ 1)mx into Fh (eqn A.37) and Gh,t

(eqn A.39) and Taylor expanding around m ¼ 0 gives

Fh ¼
s 1� sþ ð1þ sÞwð Þ

2
þOðm2Þ

Gh;t ¼ ð1þ sÞ 1þ fsþ 2ð1� sÞtgðw� 1Þ
2

� �
þOðm2Þ:

ðA:52Þ

Noting that the inverse transform of a constant a is

LkðaÞ ¼ 0 except that L0ðaÞ ¼ a, we obtain after rear-

rangements from eqns A.38 and A.41 the approxima-

tions
s� ¼
ð1� sÞ

N
N þ sf2� ð1þ sÞmg

2
� 1þ s

nd

� �

s0;t ¼
ð1� sÞ

N
1þ

sf2� ð1þ sÞmg � 2m 1� s2
� �

t

2
� 1þ s

nd

� �

sk;t ¼
ð1� sÞ

N

ð1þ sÞfsþ 2ð1� sÞtgmk

2
� 1þ s

nd

� �
if k > 0:

ðA:53Þ

Substituting these expressions into eqn 6 yields eqn 22

of the main text.
Survival effects

Inserting w ¼ 1)mx into Fh and Gh,t for survival effects

(respectively eqns A.47 and A.49) and Taylor expand-

ing around m ¼ 0 gives
Fh ¼ �
ð1� sÞ 1� sþ ð1þ sÞwð Þ

4
þOðm2Þ

Gh;t ¼ ð1þ sÞ 3� wþ fsþ 2ð1� sÞtgðw� 1Þ
4

� �
þOðm2Þ:

ðA:54Þ

Inverse transforming these expressions and inserting

into eqns A.48 and A.51 gives after rearrangements
s� ¼
s

N
N � ð1� sÞf1� sþ ð1þ sÞð1�mÞg

4
� 1þ s

2nd

� �

s0;t ¼
s

N
1� ð1� sÞf1� sþ ð1þ sÞð1�mþ 2tmÞg

4
� 1þ s

2nd

� �
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sk;t ¼
s

N

fsþ 2ð1� sÞt� 1gmk

4
� 1þ s

2nd

� �
if k > 0: ðA:55Þ

Substituting these expressions into eqn 6 yields

eqn 22 of the main text.
Appendix V: Fourier transforms for
hierarchically clustered populations

We here recall some results of Sawyer & Felsenstein

(1983) about Fourier transforms in the hierarchically

clustered model that we will then apply. Fourier meth-

ods also more classically apply to more standard mod-

els of isolation by distance, where individuals are more

likely to disperse locally, for instance to adjacent

patches (Malécot 1975).

The characteristic function of the dispersal distribu-

tion can be written
wh ¼
XH

k¼0

X
a2AðkÞ

pk

rk
exp 2pı

Xk

j¼1

ajhj=nj

2
4

3
5; ðA:56Þ

where A(0) ¼ {0} and A(k) ¼ {a 2 S:ak „ 0,ak+1 ¼ � � � ¼
aH ¼ 0} for k > 0 (Sawyer & Felsenstein 1983, p. 4), so

that the number of elements in the set A(k) is |A(0)| ¼
1 and |A(k)| ¼ n1n2� � �(nk)1) ¼ rk for k > 0.

If h1 ¼ h2 ¼ � � �hl)1 ¼ 0 and hl „ 0, then
X
a2AðkÞ

e
2pı
Pk

j¼1
ajhj=nj

¼

P
a2AðkÞ e

0 ¼ jAðkÞj if 0 � k < lP
a2AðlÞ e2pıalhl=nl ¼ �n1n2 � � � nl�1 ifk ¼ l

P
a2AðkÞ e

2pı
Pk

j¼l
ajhj=nj ¼ 0 if l < k � H;

8>>><
>>>:

ðA:57Þ

where the second line is obtained by noting thatPnl�1
al¼1 e2pıalhl=nl ¼ �1 can be factored out of the sum and

third line is obtained by noting that
Pnl�1

al¼0 e2pıalhl=nl ¼ 0

can be factored out of the sum. Thereby w0 ¼ 1 for l ¼
0 (d(0,h) ¼ 0) and for d(0,h) ¼ l > 0
wh � wl ¼ p0 þ p1 þ � � � þ pl�1 � pl=ðnl � 1Þ ðA:58Þ

(Sawyer & Felsenstein 1983, eqn 2.7). Relative compact

explicit expressions for wl can be found for specific dis-

persal distribution. For instance, when dispersal is pan-

mctic p0 ¼ 1)m and pk ¼ mrk/(nd)1) for k > 0 (Sawyer
& Felsenstein 1983). On substitution of these equations

into A.58 and rearranging produces
wl ¼ 1�mnd=ðnd � 1Þ: ðA:59Þ

One may also assume that the dispersal distribution is

given by a truncated geometric distribution: p0 ¼ 1)m

and pk ¼ m(1)g)gk)1/(1)gH) for k > 0 and that nl ¼ n

for all l. This gives
wl ¼ 1�
m ðn� qÞ ql � q1þH

� �
þ ð1� qÞq1þH

� 
ðn� 1Þq 1� qHð Þ ; ðA:60Þ

which, when n and H are very large (say n fi ¥ and

H fi ¥), reduces to wl ¼ 1)mql)1.

Equation A.58 will prove especially useful when

evaluating inverse Fourier transforms of any function

D(wb) of the characteristic distribution wb. Let

LhðDÞ � 1
nd

P
b2S DðwbÞe�ıh�hðbÞ be the inverse Fourier

transform of D at b. This equation can be written as
LhðDÞ ¼
1

nd

XH

k¼0

X
b2BðkÞ

DðwhÞ exp �2pı
XH

j¼k

bjhj=nj

2
4

3
5;
ðA:61Þ

where B(H) ¼ {0} and B(k) ¼ {b 2 S:b1 ¼ � � � ¼ b2 ¼
� � � ¼ bk)1 ¼ 0,bk „ 0}. The number of elements in the

set B(k) are |B(0)| ¼ 1 and |B(k)| ¼ (nk)1)nk+1� � �nH for

k > 0. The set B(k) corresponds precisely to the condi-

tions leading to eqn A.58, so that

LhðDÞ ¼
1

nd

XH

k¼0

DðwkÞ
X

b2BðkÞ
exp �2pı

XH

j¼k

bjhj=nj

2
4

3
5:
ðA:62Þ

If the hierarchical distance of group h relative to a

focal group is d(h,0) ¼ l, then hl „ 0 and hl+1 ¼ hl+1 ¼
� � � ¼ hH ¼ 0. Therefore

X
b2BðkÞ

e
�2pı

PH

j¼k
bjhj=nj

¼

1 if k ¼ 0

0 if 0 < k < lP
b2BðjÞ e�2pıblhl=nl ¼ �nlþ1nlþ2 � � � nH if k ¼ lP
b2BðkÞ e

0 ¼ jBðkÞj if l < k � H;:

8>>>><
>>>>:

ðA:63Þ

where the second line is obtained by noting thatPnl�1
al¼0 e�2pıalhl=nl ¼ 0 can be factored out of the sum.

With this, the Fourier transform becomes
� 2011 Blackwell Publishing Ltd



E V O L U T I O N O F S O C I A L D I S C O U N T I N G I N H I E R A R C H I C A L L Y C L U S T E R E D P O P U L A T I O N S 25
LhðDÞ ¼
Dðw0Þ

nd
� DðwlÞ

n1n2 � � � nl
þ
XH

j¼lþ1

DðwjÞðnj � 1Þ
n1n2 � � � nj

ðA:64Þ

for d(h,0) ¼ l, where the middle term does not occur if

l ¼ 0 and wl is given by eqn A.58.

For instance, when D(w) ¼ wt, LhðwtÞ gives the proba-

bility Ph,t that a line of descent from an individual

residing in the focal group will be in a group at hierar-

chical distance d(h,0) at t time periods in the future (see

section ‘Semelparous reproduction’ of the main text).

For d(h,0) ¼ l > 0, this is

Ph;t ¼
1

nd
�
Pl�1

i¼0 pi � pl=ðnl � 1Þ
h it

n1n2 � � � nl

þ
XH

j¼lþ1

Pj�1
i¼0 pi � pj=ðnj � 1Þ

h it
ðnj � 1Þ

n1n2 � � � nj
;

ðA:65Þ
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which is equal to zero if t ¼ 0, while

P0;t ¼
1

nd
þ
XH

j¼1

Pj�1
i¼0 pi � pj=ðnj � 1Þ

h it
ðnj � 1Þ

n1n2 � � � nj
; ðA:66Þ

which is equal to one if t ¼ 0. From eqn A.66, we can

see that P0,t is a decreasing function of t if pi > pi+1 for

all i, as it then involves only positive terms in the sum.

By contrast, under the same conditions, Ph,t for h „ 0

can first increase, reach a value exceeding 1/nd and

then decrease before approaching the asymptotic value

of 1/nd. This is more likely to be the case for small hier-

archical distances l as the last term in eqn A.65 (the

sum) is then more likely to dominate the negative term.


