Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD

Carsten A. Böger1, Mathias Gorski2,3, Man Li4, Michael M. Hoffmann5, Chunmei Huang6, Qiong Yang7, Alexander Teumer8, Vera Krane9, Conall M. O’Seaghdha10,11, Zoltán Kutalik12,13, H.-Erich Wichmann3,14,15, Thomas Haak16, Eva Boes17, Stefan Coassin17, Josef Coresh18, Barbara Kollerits17, Margot Haun17, Bernhard Paulweber19, Anna Köttgen3,20, Guo Li21, Michael G. Shlipak22,23, Neil Powe24, Shih-Jen Hwang25,26, Fernando Rivadeneira26,27, André Uitterlinden26,27, Albert Hofman25,26, Jacques S. Beckmann28, Bernhard K. Krämer29, Jacqueline Witteman25,26, Murielle Bochud30, David Siscovick31, Rainer Retting32, Florian Kronenberg17, Christoph Wanner3, Ravi I. Thadhani6, Iris M. Heid2,3, Caroline S. Fox11,33, W. H. Kao18,9, The CKDGen Consortium

1 Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany, 2 Department of Epidemiology and Preventive Medicine, University Hospital Regensburg, Regensburg, Germany, 3 Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, 4 Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 5 Clinical Chemistry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany, 6 Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 7 Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America, 8 Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany, 9 University of Würzburg, Division of Medicine I, Division of Nephrology, University Hospital Würzburg, Würzburg, Germany, 10 Division of Nephrology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America, 11 NHLBI’s Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts, United States of America, 12 Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland, 13 Swiss Institute of Bioinformatics, Lausanne, Switzerland, 14 Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany, 15 Klinikum Großhadern, Munich, Germany, 16 Diabetes Klinik Bad Mergentheim, Bad Mergentheim, Germany, 17 Innsbruck Medical University, Division of Genetic Epidemiology, Innsbruck, Austria, 18 Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 19 First Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria, 20 Renal Division, University Hospital of Freiburg, Freiburg, Germany, 21 Department of Medicine, University of Washington, Seattle, Washington, United States of America, 22 Division of General Internal Medicine, San Francisco VA Medical Center, San Francisco, California, United States of America, 23 Department of Medicine, Epidemiology, and Biostatistics, University of California San Francisco, San Francisco, California, United States of America, 24 Department of Medicine, San Francisco General Hospital and University of California San Francisco, San Francisco, California, United States of America, 25 Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands, 26 Member of Netherlands Consortium for Healthy Aging (NCHA), Netherlands Genomics Initiative (NGI), Leiden, The Netherlands, 27 Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands, 28 Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland, 29 University Medical Centre Mannheim, 30th Department of Medicine, Mannheim, Germany, 31 University Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, 32 Cardiovascular Health Research Unit, Departments of Epidemiology and Medicine, University of Washington, Seattle, Washington, United States of America, 33 Institute of Physiology, University of Greifswald, Greifswald, Germany, 34 Division of Endocrinology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m2 at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression.

Citation: Böger CA, Gorski M, Li M, Hoffmann MM, Huang C, et al. (2011) Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genet 7(9): e1002292. doi:10.1371/journal.pgen.1002292

Editor: Stuart K. Kim, Stanford University Medical Center, United States of America

Received February 21, 2011; Accepted July 22, 2011; Published September 29, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The Atherosclerosis Risk in Communities Study (ARIC) was supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022, R01HL078641, R01HL59367, and R01HL068694; National Human Genome Research Institute contract U01HG00402, and National Institutes of Health contract HHSN268200625226C. Infrastructure was partly supported by grant number ULIR025005 from NIH Roadmap for Medical Research. AK was supported by the Emmy Noether Programme of the German Research Foundation. The support from the German Research Foundation, the NIH (R01HL86694), the NHLBI’s Framingham Heart Study, and the Center for Population Studies, Framingham, Massachusetts, United States of America.
Introduction

Chronic kidney disease (CKD) and end stage renal disease (ESRD) are associated with significant cardiovascular morbidity and mortality, with substantial economic burden [1–4]. Diabetes and hypertension are the primary risk factors for CKD and ESRD [5–8] but do not fully account for CKD and ESRD risk [9–11]. Studies indicate familial aggregation of ESRD [12]. In African Americans, high risk common variants in the MTHFR/APOI locus account for much of the excess genetic risk for non-diabetic ESRD compared to their counterparts in European descent. In contrast, comparable genetic risk loci of severe renal phenotypes have not been identified in individuals of European ancestry [13–15].

Recently, 16 genetic risk loci associated with estimated glomerular filtration rate (eGFR) and prevalent CKD were identified and replicated by genome wide association studies (GWAS) in about 70,000 individuals of European ancestry [13–15]. However, these studies focused on intellectual impairment, obesity, or CKD risk in the general population, who were free of CKD at baseline [16,17]. Two of these loci were also identified by an independent consortium [10]. However, these studies focused on eGFR and prevalent CKD (defined as eGFR <60 ml/min/1.73m²) at one time point, which encompasses the entire spectrum of CKD, and does not address the question of whether these genetic factors are involved in the initiation of CKD or in the progression to ESRD, the most advanced stage of CKD. We thus sought to associate the development of CKD and with ESRD in a total of over 34,000 individuals of European descent.

Results

Association of SNPs with Incident CKD

Overall, 26,308 individuals of European descent, from eight population-based prospective studies, who were free of CKD at baseline were included in the incident CKD analysis (Table 1). At baseline, mean age ranged from 40.5 to 71.7 years. After a median follow-up of 7.2 years, 2122 participants developed incident CKD.

Of the 16 SNPs analyzed, 11 were associated with incident CKD (Table 2; SNPs in bold). PRKAG2, ANXA9, DAB2, SHROOM3, DACHI, STCI, SLC34A1, ALMS1/NAT8, UBE2Q2 and GCKR showed p-values ranging from p = 4.1×10⁻⁷ in UMOD to p = 0.03 in GCKR. The odds ratios (OR) for incident CKD of the minor alleles at each of the 11 loci ranged from 1.76 per copy of the T allele (allele frequency 10%) at the UMOD locus to 1.19 per copy of the A allele (allele frequency 22%) at PRAEG2. After additional adjustment for baseline eGFR, 6 SNPs (at the UMOD, PRKAG2, ANXA9, DAB2, DACHI and STCI loci) remained significantly associated with incident CKD, with minimal attenuation of effect size (Table 3).

At each of the significant loci, the direction and the magnitude of the association was similar to those from the discovery analyses.
Author Summary

Chronic kidney disease (CKD) affects about 6%–11% of the general population, and progression to end stage renal disease (ESRD) has a significant public health impact. Family studies suggest that the risk for CKD and ESRD is heritable. Unraveling the genetic underpinning of risk for these diseases may lead to the identification of novel mechanisms and thus diagnostic and therapeutic tools. We have previously identified 16 genetic markers in association with kidney function and prevalent CKD in general population studies. However, little is known about the relevance of these SNPs to the initial development of CKD or to ESRD risk. Therefore, we have now analyzed the association of these markers with the initiation of CKD in more than 26,000 individuals from the general population using serial estimations of kidney function, and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). We show that many of the 16 markers are also associated or show a strong trend towards association with initiation of CKD, while only 2 markers are nominally associated with ESRD. Further work is required to characterize the association of genetic determinants of different stages of CKD progression.

Association of SNPs with ESRD

For the ESRD analysis, we included four case-control studies with a total of 3775 ESRD patients and 4577 controls of European descent without CKD (Table 3). Mean age ranged from 50.7 to 66.2 years in cases and from 47.7 to 62.1 years in controls. Although the direction and magnitude of association for 8 SNPs (at the UMOD, GCKR, PIP5K1B, PRKAG2, STC1, VEGFA, SHROOM3, and ALMS1/NAT8 loci) were consistent with our previous findings for eGFR and prevalent CKD [16,17], only two SNPs showed nominally significant associations with ESRD (Table 2): rs1260326 in GCKR (OR = 0.93; p-value = 0.03) and rs12917707 in UMOD (OR = 0.92; p-value = 0.04). The lack of association was not likely due to heterogeneity of ESRD cases as only two SNPs showed moderate heterogeneity in their associations with ESRD (Table 2): rs4744712 at the PIP5K1B locus (p = 0.04 for heterogeneity) and rs626277 at the DACH1 locus (p = 0.02 for heterogeneity).

Discussion

Among individuals of European Ancestry, most genetic loci associated with the quantitative trait eGFR are also associated with risk for initiation of CKD, with more than half of these associations independent of eGFR at the baseline examination. In contrast, only two SNPs were nominally associated with ESRD.

To date, the genetic loci showing significant and replicated associations with ESRD are limited [13–15,19–26], and genetic studies for incident CKD or for renal function decline in established kidney disease are only recently emerging [27–29]. The loci we analyzed were identified in association with renal function cross-sectionally and with prevalent CKD by GWAS in the general population. Typical of many SNPs uncovered in GWAS, the majority of these SNPs reside in intronic regions with unknown functional consequences, although several are associated with αs expression levels in liver tissue or leukocytes (Table S3) [16,17]. These newly identified loci are non-overlapping with those previously identified in individuals of European or Asian descent with advanced diabetic nephropathy [19–26], or in African Americans with non-diabetic ESRD [13–15].

For the ESRD analysis, we had adequate power to detect effects that were similar to those for prevalent CKD in the discovery GWAS, where odds ratios ranged from 0.8 to 1.19 [16,17]. In the

Table 1. Cohort characteristics of the incident CKD analysis (n = 26,308).

<table>
<thead>
<tr>
<th>n</th>
<th>Incident CKD cases, % (n)</th>
<th>Mean Age (yrs)</th>
<th>Women (%)</th>
<th>DM (%)</th>
<th>HTN (%)</th>
<th>eGFR (baseline)</th>
<th>eGFR (follow-up)</th>
<th>Duration between baseline and follow-up (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIC</td>
<td>8735</td>
<td>8.3 (728)</td>
<td>54.2</td>
<td>52.7</td>
<td>8.4</td>
<td>26.3</td>
<td>90.8</td>
<td>82.0</td>
</tr>
<tr>
<td>CHS</td>
<td>2389</td>
<td>12.3 (295)</td>
<td>71.7</td>
<td>60.8</td>
<td>11.4</td>
<td>33.2</td>
<td>86.2</td>
<td>83.9</td>
</tr>
<tr>
<td>CoLaus</td>
<td>1842</td>
<td>4.1 (75)</td>
<td>53.4</td>
<td>54.2</td>
<td>5.7</td>
<td>34.0</td>
<td>93.1</td>
<td>86.1</td>
</tr>
<tr>
<td>FHS incl original cohort</td>
<td>2313</td>
<td>10.5 (244)</td>
<td>57.6</td>
<td>54.0</td>
<td>7.9</td>
<td>27.9</td>
<td>92.0</td>
<td>81.2</td>
</tr>
<tr>
<td>KORA S3/F3 GWAS</td>
<td>1588</td>
<td>9.6 (153)</td>
<td>52.3</td>
<td>50.1</td>
<td>4.3</td>
<td>38.2</td>
<td>92.6</td>
<td>84.6</td>
</tr>
<tr>
<td>KORA S4/F4 GWAS</td>
<td>1737</td>
<td>5.2 (92)</td>
<td>53.4</td>
<td>51.2</td>
<td>3.4</td>
<td>33.4</td>
<td>90.8</td>
<td>86.1</td>
</tr>
<tr>
<td>KORA S3/F3 denovo</td>
<td>1235</td>
<td>3.3 (40)</td>
<td>40.5</td>
<td>51.7</td>
<td>1.6</td>
<td>22.7</td>
<td>99.4</td>
<td>94.2</td>
</tr>
<tr>
<td>KORA S4/F4 denovo</td>
<td>1149</td>
<td>4.1 (47)</td>
<td>41.1</td>
<td>52.6</td>
<td>1.7</td>
<td>20.7</td>
<td>98.9</td>
<td>93.9</td>
</tr>
<tr>
<td>Rotterdam Study</td>
<td>2236</td>
<td>12.6 (283)</td>
<td>66.6</td>
<td>58.6</td>
<td>7.9</td>
<td>49.5</td>
<td>79.5</td>
<td>74.5</td>
</tr>
<tr>
<td>SHIP</td>
<td>3084</td>
<td>5.3 (165)</td>
<td>49.2</td>
<td>51.8</td>
<td>11.2</td>
<td>53.1</td>
<td>92.4</td>
<td>90.6</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pgen.1002292.t001
Table 2. Results for incident CKD and ESRD, CKDGen consortium.

<table>
<thead>
<tr>
<th>SNP ID</th>
<th>Locus #</th>
<th>Chromosome</th>
<th>Effect allele</th>
<th>Effect allele frequency</th>
<th>OR Incident CKD</th>
<th>OR Incident CKD adjusted for baseline-eGFR</th>
<th>OR Incident CKD adjusted p-value</th>
<th>OR ESRD</th>
<th>ESRD p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs12917707</td>
<td>UMOD;FLJ20581,GP2,PDILT</td>
<td>16</td>
<td>T</td>
<td>0.18</td>
<td>0.18E-09</td>
<td>0.79</td>
<td>6.40E-07</td>
<td>0.92</td>
<td>0.04</td>
</tr>
<tr>
<td>rs7805747</td>
<td>PRKAG2</td>
<td>7</td>
<td>A</td>
<td>0.22</td>
<td>0.0004</td>
<td>1.12</td>
<td>0.01</td>
<td>1.05</td>
<td>0.12</td>
</tr>
<tr>
<td>rs267734</td>
<td>ANXA5;FAM63A,PRUNE,BNP,FLJ12578,SETDB1</td>
<td>1</td>
<td>C</td>
<td>0.21</td>
<td>0.001</td>
<td>0.89</td>
<td>0.005</td>
<td>1.02</td>
<td>0.63</td>
</tr>
<tr>
<td>rs11999928</td>
<td>DAB2C9</td>
<td>5</td>
<td>A</td>
<td>0.45</td>
<td>0.002</td>
<td>1.07</td>
<td>0.04</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>rs17319721</td>
<td>SHROOM3;FLJ125770</td>
<td>4</td>
<td>A</td>
<td>0.43</td>
<td>0.005</td>
<td>1.05</td>
<td>0.10</td>
<td>1.01</td>
<td>0.42</td>
</tr>
<tr>
<td>rs626277</td>
<td>DACHI</td>
<td>13</td>
<td>C</td>
<td>0.4</td>
<td>0.006</td>
<td>0.91</td>
<td>0.006</td>
<td>0.99*</td>
<td>0.56*</td>
</tr>
<tr>
<td>rs10109414</td>
<td>STC1</td>
<td>8</td>
<td>T</td>
<td>0.41</td>
<td>0.006</td>
<td>1.07</td>
<td>0.04</td>
<td>1.04</td>
<td>0.22</td>
</tr>
<tr>
<td>rs6420094</td>
<td>SLC3A1;GRK6,SG514,LMAN2,PRR7,F12,PFN3</td>
<td>5</td>
<td>G</td>
<td>0.34</td>
<td>0.008</td>
<td>1.05</td>
<td>0.13</td>
<td>0.96</td>
<td>0.87</td>
</tr>
<tr>
<td>rs13538</td>
<td>NAT8;NAT8;ALMS1</td>
<td>2</td>
<td>G</td>
<td>0.22</td>
<td>0.009</td>
<td>0.95</td>
<td>0.10</td>
<td>1.00</td>
<td>0.52</td>
</tr>
<tr>
<td>rs1394125</td>
<td>UBE2Q2F;8X022</td>
<td>15</td>
<td>A</td>
<td>0.34</td>
<td>0.03</td>
<td>1.06</td>
<td>0.07</td>
<td>0.94</td>
<td>0.91</td>
</tr>
<tr>
<td>rs1280362</td>
<td>GCKRF;TF12,FND4</td>
<td>2</td>
<td>T</td>
<td>0.42</td>
<td>0.03</td>
<td>0.96</td>
<td>0.13</td>
<td>0.93*</td>
<td>0.03</td>
</tr>
<tr>
<td>rs1246876</td>
<td>SLC7A8;CCDC123,ECAT8</td>
<td>19</td>
<td>C</td>
<td>0.39</td>
<td>0.06</td>
<td>0.99</td>
<td>0.43</td>
<td>1.01</td>
<td>0.57</td>
</tr>
<tr>
<td>rs653378</td>
<td>ATXN2;BRAP</td>
<td>12</td>
<td>T</td>
<td>0.5</td>
<td>0.08</td>
<td>0.97</td>
<td>0.20</td>
<td>1.05</td>
<td>0.87</td>
</tr>
<tr>
<td>rs4744712</td>
<td>PIP5K1B;FAM122A</td>
<td>9</td>
<td>A</td>
<td>0.39</td>
<td>0.16</td>
<td>1.01</td>
<td>1.11*</td>
<td>0.07*</td>
<td></td>
</tr>
<tr>
<td>rs881858</td>
<td>VEGFA</td>
<td>6</td>
<td>G</td>
<td>0.29</td>
<td>0.02</td>
<td>1.03</td>
<td>0.78</td>
<td>0.98</td>
<td>0.38</td>
</tr>
<tr>
<td>rs347685</td>
<td>TFDPS2;ATP1B3</td>
<td>3</td>
<td>C</td>
<td>0.28</td>
<td>0.57</td>
<td>1.05</td>
<td>0.13</td>
<td>1.05</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Significant p-values in **bold**.

The gene closest to the SNP is listed first and printed in bold if the SNP is located within the gene. Other genes in the region are listed after ‘‘;’’.

*OR and p-value from random effects model due to significant heterogeneity between studies (rs4744712: p = 0.04 for heterogeneity; rs6267277: p = 0.02 for heterogeneity).

doi:10.1371/journal.pgen.1002292.t002
present study, where associations were observed, the odds ratios for ESRD tended to be smaller and ranged from 0.92 to 1.11. There are several potential explanations for this effect dilution. First, the mechanisms involved in the initiation of CKD, the progression of CKD, and the incidence of ESRD may differ [30–33]. Experimental animal data and gene expression profiling in human kidney biopsies suggest differential biological pathways contributing to kidney disease initiation and progression [34–36]. Second, the majority of patients with CKD die of cardiovascular disease before developing ESRD [37–39]. Thus, the genetic findings for kidney function in the general population may not apply to the highly selected group of dialysis populations. Finally, the process of progression from CKD to ESRD often involves repeated insults including episodes of acute kidney injury by diagnostic and operative procedures and therapies [40–43], cardiac function deterioration [44], variation in access to adequate health care [45,46] and other non-genetic factors [47]. Jointly, these factors may further decrease the relative impact of the small effects of SNPs derived from GWAS of eGFR in the general population at the earliest stage of disease initiation.

The observed small effect sizes for ESRD in our study are in contrast to the large effect sizes observed in relatively small cohorts of individuals of African descent for variants in the MTHFR/APO1 locus, where odds ratios for ESRD ranged from 7.3 for the G1–G2 haplotype at the APO1 locus to 2.38 for the E1 haplotype in the MTHFR locus [13–15]. However, the strong effect at this locus is an exceptional case and may be a consequence of a pronounced positive selection against vulnerability for Trypanosoma brucei rhodesiense infection at the price of a higher susceptibility for non-diabetic ESRD in African Americans not observed in other ethnicities. The establishment of large cohorts is thus needed for performing GWAS of CKD initiation and progression as well as ESRD to overcome the challenge of identifying novel loci significantly associated with these phenotypes with small effect sizes.

The strength of our work lies in the large number of individuals studied. Further, we exclusively analyzed candidate SNPs identified by the unbiased method of GWAS [16,17]. However, some limitations warrant mention. First, seven of the eight cohorts used for the incident CKD analysis were also part of the CKDGen discovery effort; thus the two samples are not entirely “independent”. However, the phenotype studied differs substantially; in Kottgen et al [17], we used prevalent eGFR data including those with CKD, while follow-up data in those without CKD at the baseline examination was used for the present incident CKD analysis. In the present work, we demonstrate robustness of our findings independent of baseline GFR. Second, we relied on only two serum creatinine measurements to define incident CKD, which may have introduced misclassification and biased our findings towards the null. Third, we did not account for pharmacological treatment with inhibitors of the renin-angiotensin-aldosterone system. Since these drugs may affect kidney function independently of kidney damage, their use may have diluted observable genetic effects [48]. Fourth, our study was not designed to detect fluctuations in eGFR. Furthermore, the etiology of ESRD in the cases we examined may vary between studies, though we observed a low degree of heterogeneity. Finally, our sample consisted of individuals of European ancestry; findings may not be generalizable to other ethnicities.

SNPs associated with eGFR in population-based studies are associated with incident CKD, whereas modest associations were observed with ESRD. Additional work is necessary to characterize the genetic underpinnings across the full range of kidney disease phenotypes, which could ultimately lead to novel diagnostic and therapeutic strategies.

Materials and Methods

Ethics statement

In all studies, all participants gave informed consent. All studies were approved by their appropriate Research Ethics Committees.

Study design and phenotype definition

In population based cohorts, serum creatinine measurements were calibrated to the National Health and Nutrition Examination Study (NHANES) standards in all studies to account for between-laboratory variation across studies, as described previously [10,16,17]. Using calibrated serum creatinine, we calculated the estimated glomerular filtration rate (eGFR) with the 4-variable MDRD equation [49].

For incident CKD, we analyzed studies of incident CKD in eight population-based cohorts in the CKDGen consortium with follow-up available: ARIC, CHS, CoLaus, FHS, KORA S3/F3, KORA S4/F4, the Rotterdam Study and SHIP. Each study’s design is shown in Text S1. Incident CKD cases were defined as those free of CKD at baseline (defined as eGFR≥60 ml/min/1.73m²) but with a follow-up eGFR<60 ml/min/1.73m². Controls were those free of CKD at baseline and at follow-up.

Table 3. Characteristics of the ESRD case-control studies (n = 3,775 cases, n = 4,577 controls).^4^

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Mean Age (yrs)</th>
<th>Women (%)</th>
<th>DM (%)</th>
<th>HTN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESRD cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENDIAN</td>
<td>453</td>
<td>64.8</td>
<td>43.9</td>
<td>100.0</td>
<td>11.0</td>
</tr>
<tr>
<td>4D</td>
<td>1148</td>
<td>65.7</td>
<td>45.7</td>
<td>100.0</td>
<td>89.0</td>
</tr>
<tr>
<td>aMORR</td>
<td>1244</td>
<td>66.2</td>
<td>47.8</td>
<td>23.6</td>
<td>39.9</td>
</tr>
<tr>
<td>CHOICE</td>
<td>518</td>
<td>59.0</td>
<td>42.5</td>
<td>45.8</td>
<td>13.3</td>
</tr>
<tr>
<td>FHKS</td>
<td>331</td>
<td>58.3</td>
<td>37.8</td>
<td>34.7</td>
<td>95.0</td>
</tr>
<tr>
<td>MMKD</td>
<td>81</td>
<td>50.7</td>
<td>37.0</td>
<td>0.0</td>
<td>96.3</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENDIAN</td>
<td>326</td>
<td>62.1</td>
<td>43.3</td>
<td>100.0</td>
<td>32.2</td>
</tr>
<tr>
<td>KORA F3 denovo</td>
<td>1407</td>
<td>50.4</td>
<td>52.7</td>
<td>4.4</td>
<td>27.8</td>
</tr>
<tr>
<td>KORA F4 denovo</td>
<td>1130</td>
<td>47.7</td>
<td>52.3</td>
<td>3.2</td>
<td>12.2</td>
</tr>
<tr>
<td>SAPHIR</td>
<td>1714</td>
<td>51.3</td>
<td>36.6</td>
<td>3.3</td>
<td>56.0</td>
</tr>
</tbody>
</table>

^4^The four case-control studies comprised the following comparisons: GENDIAN cases versus GENDIAN controls, 4D versus KORA F3 denovo, aMORR and CHOICE versus KORA F4 denovo, FHKS and MMKD versus SAPHIR.

doi:10.1371/journal.pgen.1002292.t003
For the ESRD analysis, we performed four case control studies of ESRD. Cases were ESRD patients from six cohorts of ESRD patients: CHOICE, ArMORR, GENDIAN, 4D, MMKD and FHKS. Controls were those free of CKD (defined as eGFR≥60 ml/min/1.73m²) in three population-based cohorts (KORA F3, KORA F4, SAPHIR) and one type 2 diabetes cohort (GENDIAN). Each study’s design is shown in Text S1.

Statistical methods

In each study, we performed age- and sex adjusted logistic regression of incident CKD, with and without additional adjusting for baseline eGFR, or ESRD status with each SNP. In multicenter studies further adjustment for study-center was performed to account for possible differences between recruiting centers. For family-based studies, we applied logistic regression via generalized estimating equations (GEE) to account for the familial relatedness. Study-specific results were then combined by meta-analysis using a fixed effects model, using METAL (http://www.sph.umich.edu/csg/abecasis/Meta/index.html) [50]. When significant heterogeneity between studies was observed (p for heterogeneity between studies <0.05) we used the random effects model [51]. Statistical significance was defined as a one-sided p-value <0.05 for each SNP without adjustment for multiple testing since all SNPs examined had strong prior probabilities of being associated with the outcomes and the same alleles were hypothesized to be associated with lower eGFR, incident CKD, and ESRD.

Power estimation

We used the QUANTO software for power estimation, assuming an additive genetic model (http://hydra.usc.edu/GxE) [52]. For the ESRD analysis and for SNPs with minor allele frequency ranging from 0.2 to 0.4 we had 80–100% power to detect an OR ≥1.10, whereas power was borderline for an OR of 1.05 to 1.09. For example, for the SNP rs12917707 at UMOD, we had 100% power to detect an association with ESRD in the 3775 ESRD cases and 4577 controls assuming that the effect in ESRD had 100% power to detect an association with ESRD in the 3775 cases.

Genotyping methods and quality control

For the incident CKD analysis, we used the allele dosage information of each of the 16 SNPs from each study’s genome wide data set imputed to HAPMAP CEU samples described previously [17,18]. Imputation provides a common SNP panel across all studies to facilitate a meta-analysis across all contributing SNPs. Information on each study’s genotyping and imputation methods and quality control procedures are shown in Table S1. Table S2 summarizes each SNPs imputation quality.

De novo genotyping of the 16 SNPs was performed in each of the ESRD case-control studies as described previously [17]. Briefly, genotyping was performed either on a MassARRAY system using Assay Design v.3.1.2 and the iPLEX™ chemistry (Sequenom, San Diego, USA) at the Helmholtz Zentrum in Munich, Germany (ArMORR, GENDIAN, 4D, MMKD, FHKS, KORA F3/F4-subset without GWAS data, KORA S4/F4-subset without GWAS data, SAPHIR); by using 5’ nuclease allelic discrimination assays on 7900HT Fast Real-Time Taqman PCR genotyping systems (Applied Biosystems, Foster City, CA, USA) at the Innsbruck Medical University (ArMORR, GENDIAN, 4D, MMKD, FHKS, KORA F3-subset without GWAS data, KORA F4-subset without GWAS data, SAPHIR); or as part of a larger panel of 768 SNPs genotyped on the Illumina Bead Station (CHOICE). The SNPs rs347685, rs11959928, rs4744712 and rs12460676 were not available for de novo genotyping on the Sequenom platform, thus the proxy SNPs rs6773343, rs1150193, rs1556751 and rs1010909, with pairwise r² of 1.0, 0.97, 0.97 and 1.0 respectively [53], were included in the MassARRAY multiplex PCR.

For the obtained duplicate genotypes (9–22% of the subjects in GENDIAN, 4D, MMKD, FHKS, KORA F3-subset without GWAS data, KORA F4-subset without GWAS data, and SAPHIR; no duplicate genotyping possible due to limited DNA-availability in CHOICE and ArMORR; concordance was 96–100% (median: 100%), SNPs with a per-study call rate <90% or with a per-study HWE p value <0.0001 were excluded from further analysis (rs6773343 and rs653178 in GENDIAN cases; rs133588, rs267734, rs10109414, rs1394125 in ArMORR, rs6773343, rs10109414, rs1556751, rs653178, rs8101881 in CHOICE). In addition, individual samples with c<80% successfully genotyped SNPs were excluded from further analysis. After these exclusions, call rates ranged from 91–100% (mean: 98%) across all studies and all SNPs.

Supporting Information

Table S1 Genotyping and Imputation Platforms Used by Studies in the incident CKD analysis.

Table S2 Imputation quality scores of SNPs across incident CKD cohorts.

Table S3 Location and function of analyzed SNPs.

Text S1 Study-specific details.

Acknowledgments

Atherosclerosis Risk in Communities Study (ARIC)

The authors thank the staff and participants of the ARIC study for their important contributions.

Cardiovascular Health Study (CHS)

A full list of principal CHS investigators and institutions can be found at http://www.chs-nihli.org/pi.htm.

CoLaus

The CoLaus authors thank Yolande Barreau, Mathieu Firmann, Vladimir Mayor, Anne-Lise Bastian, Binasa Ramie, Martine Morarville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey, and Sylvie Mermoud for data collection.

Framingham Heart Study (FHS)

This research was conducted in part using data and resources from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARE) project.

The Rotterdam Study

We thank Pascal Arp, Mila Jiumai, Dr Michael Moorhouse, Marijn Verkerk, and Sander Bertofts for their help in creating the GWAS database. The authors are very grateful to the participating patients and staff from the Rotterdam Study, the participating general practitioners, and the pharmacists. We would like to thank Dr. Tobias A. Knoch, Luc V. de Zeeuw, Anis Abseiris, and Rob de Graaf, as well as their institution the Erasmus Computing Grid, Rotterdam, The Netherlands.

Accelerated Mortality on Renal Replacement (ArMORR)

The authors thank the participants, nurse and laboratory staff, medical doctors and directors of the ArMORR study for their important contributions to the study.

4D

We thank all investigators and study nurses who participated in the 4D study (www.nephrologie.uni-wuerzburg.de).
Mild to Moderate Kidney Disease Study (MMKD)

We appreciate the collaboration with the following members of the Mild and Moderate Kidney Disease (MMKD) Study Group: Erich Kuen, Division of Genetic Epidemiology, Innsbruck Medical University (Innsbruck, Austria); Paul König, Innsbruck University Hospital (Innsbruck, Austria); Guntra Kraatz, Ernst Moritz Arndt University (Greifswald, Germany); Johannes F. E. Mann, München Schwabing Hospital (München, Germany); Gerhard A. Müller, Georg August University (Göttingen, Germany); Ulrich Neyer, Feldkirch Hospital (Feldkirch, Austria); Hans Kohler, Medizinische Universitätskliniken des Saarlandes (Homburg/Saar, Germany); Peter Rieger, Bozen Hospital (Bozen, Italy).

Author Contributions

Conceived and designed the experiments: CAB MG MMH CH QY AD DS FK CF RR KT CSF WHK. Genotyped: CAB MG ML MMH CH QY AD DS FK CF RR KT CSF WHK IMH MB RR RT. Study management: CAB MG CH HK QY AD DS FK CF RR KT CSF WHK. Subject recruitment: CAB CH HK QY AD DS FK CF RR KT CSF WHK. Critical evaluation of manuscript: CAB MG ML MMH CH QY AD DS FK CF RR KT CSF WHK. Misinterpreting data and making conclusion: CAB MG MMH CH QY AD DS FK CF RR KT CSF WHK. Statistical methods and analysis: CAB MG MMH CH QY AD DS FK CF RR KT CSF WHK. Interpretation of results: CAB MG ML MMH CH QY AD DS FK CF RR KT CSF WHK. Genotyping: CAB MMH HK QY AD DS FK CF RR KT CSF WHK. Bio-informatics: CAB MG ML MMH CH QY AD DS FK CF RR KT CSF WHK.

References