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Abstract

We generalize an integral representation for the ruin probability in a Crámer-Lundberg
risk model with shifted (or also called US-)Pareto claim sizes, obtained by Ramsay
[14], to classical Pareto(a) claim size distributions with arbitrary real values a > 1 and
derive its asymptotic expansion. Furthermore an integral representation for the tail of
compound sums of Pareto-distributed claims is obtained and numerical illustrations of
its performance in comparison to other aggregate claim approximations are provided.

1 Introduction

Consider the classical compound Poisson model of collective risk theory, where the surplus
process R(t) at time t is given by

R(t) = u+ ct−
N(t)∑

i=1

Xi,

with N(t) denoting a homogeneous Poisson process with intensity λ, the claim sizes Xi are
i.i.d. distributed non-negative random variables with distribution function F and finite
mean µ = E(Xi), c is a constant premium intensity and the net profit condition c > λµ
holds. The ruin probability for a given initial surplus level u is denoted by

ψ(u) = Pr [R(t) < 0 for some t > 0 |R(0) = u]

and its properties are a classical object of study in risk theory (see for instance Asmussen
[3]). In many situations it turns out that heavy-tailed distributions provide an appropriate
fit to actual claim data and the focus of this paper will be on this case. Asymptotic
properties of ruin probabilities ψ(u) for large u in the case of subexponential claim size
distribution functions F have been studied quite extensively in the literature (see for
instance Teugels & Veraverbeke [18], Embrechts & Veraverbeke [9] and for higher-order
asymptotic expansions Grübel [10], Omey & Willekens [13], Willekens & Teugels [21],
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Baltrūnas [5] and Barbe et al. [6]). On the other hand, apart from asymptotic results,
also explicit expressions for ψ(u) for heavy-tailed claim sizes are of interest, not the least
for checking the accuracy of asymptotic estimates when applied to approximate the ruin
probability ψ(u) for moderate values of u. Among the heavy-tailed claim size distributions,
the Pareto distribution is very popular in actuarial practice. For claims with so-called
shifted (or US-)Pareto distribution function

F (x) = 1−
(
1 +

x

m

)−m−1
, x > 0, m ∈ N, (1)

Ramsay [14] derived an interesting integral representation of ψ(u), which only involves a
single (non-oscillating) integral along the positive real line. In [15] this integral represen-
tation was generalized to arbritrary (non-integer) m > 0, in [19] to a renewal risk model
with Erlang interclaim times and in [16] to the case of compound shifted Pareto sums.
In all these cases the used method is akin to the one used in [7] and [8] to determine the
density function of the finite sum of certain Pareto variables.
It is natural to ask whether one can establish a similar formula for classical Pareto claims
with density function

f(x) = ad(dx)−(a+1), x >
1
d
, a > 1, d ≥ 0, (2)

which is often preferred to the US-Pareto distribution by practitioners for modelling pur-
poses.
In this paper, we will show that for Pareto distributions a slightly weaker result holds. In
Section 2 a refined analysis of singularities in the complex domain is used to establish an
integral representation of ψ(u) for Pareto claim sizes with distribution function (2) and
arbitrary positive parameter a > 1. Two methods of proof are provided. Section 2.1 is
an extension of the proof technique of Ramsay [14] to our situation. Section 2.2 gives a
somewhat different proof which later on will allow us to extend the integral representa-
tion to other compound sums of Pareto random variables. In Section 3 we show how this
new expression can be used to quickly obtain higher-order asymptotics of ψ(u) for large
u. While the ruin probability, by the Pollaczek-Khintchine formula (cf. [3, Chapter 3.2,
p.61]), can be interpreted as a geometric compound of the integrated tail distribution, we
indicate in Section 4 how to use the proof method of Section 2.2 to derive an integral
representation for the tail of a compound sum of Pareto random variables. We especially
highlight the case of compound Poisson sums and compound negative binomial sums of
Pareto random variables (i.e. aggregate claims in the compound Poisson model or the
compound negative binomial model, respectively). In Section 5 some numerical illustra-
tions of the performance of the integral representations in comparison to other aggregate
claim approximations are provided.

2 An integral representation for the ruin probability with
Pareto claims

Since the parameter d in (2) is just a scale parameter, we will without loss of generality
assume d = 1 in the sequel.
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Extending the approach of Ramsay [14] to the case of general Pareto claim sizes with
density (2), we can derive an integral representation not for ψ(s) itself, but for a function
that has the same asymptotic expansion as ψ(s). In Remark 2.4 we will indicate why
strict equality between the integral representation and ψ(s) can not hold in the case of
general Pareto claims.

Define the Laplace transform of a function g by

L̂g(s) =
∫ ∞

0
e−stg(t)dt.

From the usual integro-differential equation for the ruin probability in the Cramér-Lundberg
model, it is not difficult to see that

L̂ψ(s) =
1
s
− c− λµ

cs− λ(1− L̂f (s))
(3)

(see e.g. Rolski et al. [17, Equation (5.3.14), p.165]). Further note that for the Pareto
density f(x) = ax−a−1

L̂f (s) = asaΓ (−a, s) , (4)

where Γ(a, s) =
∫∞
s e−xxa−1dx is the incomplete Gamma function (see e.g. [1, Chapter

6.5, Page 260]) . For the ruin probability ψ(u) in the compound Poisson model we then
get

Theorem 2.1. Consider a compound Poisson model with Pareto claim size density f(x) =
ax−a−1. If ρ := λµ/c = λa/((a− 1)c) and F I(x) = 1/µ

∫∞
x F (t)dt, then we have

ψ(u) ≈ ρ

1− ρ
F I(u)

(c− λµ)2

Γ(a− 1)

×
∫ ∞

0

xa−2e−x(
c+ λu/xRe

(
1− L̂f

(−x
u

)))2
+

(
πλ(x/u)a−1

Γ(a)

)2 dx. (5)

where the notation a(x) ≈ b(x) means that there exists a δ > 0 with |a(x)−b(x)| = O(e−δx)
as x→∞.

Remark 2.1. Recall that limu→∞ ψ(u)/
(

ρ
1−ρF I(u)

)
= 1 (see e.g. [3, Theorem 2.1,p.259]).

Remark 2.2. The integrand in (5) is positive non-oscillating and of exponential decay.
As in [14] the integral in (5) can be interpreted as the expected value of some function with
respect to a Gamma distribution.

Remark 2.3. Note that all common asymptotic expansions of ψ(u) (see e.g. [6]) have
an error term that asymptotically is of the order x−k for a k > 0, which is asymptotically
worse than the exponential convergence rate of the error of the approximation (5). In that
sense approximation (5) is more accurate than any asymptotic expansion (for a numerical
illustration, cf. Section 5).
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Remark 2.4. From Theorem 2.1 we get for some integrable function g(x)

ψ(u) ≈
∫ ∞

0
e−uxg(x)dx. (6)

A heuristic argument why we do not have equality in (6) is as follows: Due to the support
of F starting in x = 1, F ∗nI (x) is not differentiable at x = n, hence by the Pollaczek-
Khintchine formula ψ(u) is not holomorphic in the points u = n. On the other hand the
integral in (6) is a Laplace transform and hence holomorphic for Re(u) > 0 so that we can
not have equality, whereas in the US-Pareto case in [14], the support of F was the entire
postive half-line and consequently F ∗nI (x) was holomorphic in the entire right half plane
and equality in (6) was feasible.

2.1 Proof of Theorem 2.1, Method 1

Proof of Theorem 2.1. A standard inversion formula of (3) yields

ψ(u) =
1

2πι

∫ s0+ι∞

s0−ι∞
eusL̂ψ(s)ds = 1− 1

2πι

∫ s0+ι∞

s0−ι∞
eus

c− λµ

sc− λ(1− L̂f (s))
ds (7)

for an s0 > 0, where ι =
√−1. From the definition of L̂f (s) it follows that the integrand

eus
c− λµ

sc− λ(1− L̂f (s))
(8)

in (7) as a function of s ∈ C is meromorphic in the sliced plane D = C\(−∞, 0]. Hence,
for the evaluation of (7) we can use a complex contour in D, taking care of its enclosed
poles, which are located at the zeroes of

N(s) := c− λ

s
(1− L̂f (s)).

Note that there will not be any pole inside the contour with positive real part because L̂ψ(s)
is bounded on that area except possibly for a branch point at s = 0. Since N(s) = N(s)
where s denotes the complex conjugate of s, we will concentrate our analysis on Im(s) ≥ 0.
We will use the contour given in Figure 1 and we have to make sure that no zero ofN(s) lies
on this contour. We will now state a series of lemmata, the proofs of which are postponed
to the Appendix. The first two lemmata bound |N(s)| from below. Lemma 2.2 establishes
that for every π/2 < φ0 < π there exists an r0 such that 1/N(s) is bounded on the set
{s = reιφ : r > r0 and φ0 < φ ≤ π}:
Lemma 2.2. For all ε > 0 and π/2 < φ0 < π there exists an r0 such that for all r > r0
and φ0 ≤ φ ≤ π

|N (r(cos(φ) + ι sin(φ))| > ε.

The next lemma gives us a family of horizontal lines on which 1/N(s) can be uniformly
bounded and hence can be part of our contour.

Lemma 2.3. For all ε > 0, there exists a k0 > 0 such that for all even integers k > k0

and all s := −α+ ιβ (α, β ∈ R) with α > 0 and β = (2k + 1)π/2

|N(s)| > c− ε
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Figure 1: The contour integral

To evaluate the integral in (7) we now use the contour given in Figure 1. At first we choose
a sequence φn with 3π/2 < φn < π/2 and limn→∞ φn = π/2. Then we choose an even
integer kn such that for |s| ≥ (2kn + 1)π/2 and for φn ≤ arg(s) ≤ π, N(s) > δ0 (this can
be done because of Lemma 2.2). Further we assume that kn > k0 as defined in Lemma
2.3 (where we choose ε < c − δ0) and define Rn = (2kn + 1)π/(2 sin(φn)). The contour
consists of the line s0 + ιx for x ∈ [−(2kn+1)π/2, (2kn+1)π/2], the lines x± ι(2kn+1)π/2
for x ∈ [Rn cos(φn), s0], the semi-circle CRn = {z : |z| = Rn, φn ≤ arg(z) ≤ 2π − φn}, the
line from [−Rn,−r] lying above the branch cut of the negative real axis with r < Rn, the
circle Cr = {z : |z| = r, z 6= −r} and the line from [−r,−Rn] lying below the branch cut
of the negative real axis (see Figure 1). From the residue theorem one obtains

− 1
2πι

∫ s0+ιR

s0−ιR
eus

c− λµ

cs− λ(1− L̂f (s))
ds

=
1

2πι




∫

CRn

+

Rn cos(φn)+ι
(2kn+1)π

2∫

s0+ι
(2kn+1)π

2

+

s0−ι (2kn+1)π
2∫

Rn cos(φn)−ι (2kn+1)π
2

+

−r∫

−R
+

∫

Cr

+

−R∫

−r


 eus

c− λµ

cs− λ(1− L̂f (s))
ds

−
Mn∑

i=1

Ressi

(
eus

c− λµ

cs− λ(1− L̂f (s))

)
,

where si, i = 1, . . . ,Mn are the zeros of N(s) that lie inside the contour.
By using Lemma 2.2 and the asymptotic behavior of the Gamma function, it is straight-
forward to see that

lim
n→∞

1
2πι

∫

CRn

1
s
eus

c− λµ

c− λ
s (1− L̂f (s))

ds = 0.
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Furthermore,

lim
r→0

=
1

2πι

∫

Cr

eus
1
s

c− λµ

c− λ
s (1− L̂f (s))

ds = −1

is a consequence of lims→0(1− L̂f (s))/s = µ, cf. (15) below.
From Lemma 2.3 we get:

∣∣∣∣∣
∫ Rn cos(φn)+ι

(2kn+1)π
2

s0+ι
(2kn+1)π

2

eus
1
s

c− λµ

N(s)
ds

∣∣∣∣∣ ≤
c− λµ

δ0

2
(2kn + 1)π

∫ s0

Rn cos(φn)
eusds

=
c− λµ

δ0

2
(2kn + 1)π

(
eus0 − euRn cos(φn)

)
,

which tends to 0 as n → ∞. For x ∈ R− define L̂f (x) = limy→0+ L̂f (x + ιy). With

L̂f (x) = L̂f (x), we get as in [14] that the sum of the two remaining integrals can be
expressed as

1
π

∫ R

r
e−ux

λ(c− λµ) ImL̂f (−x)∣∣∣cx+ λ(1− L̂f (−x))
∣∣∣
2 dx.

Taking the limit R→∞ and r → 0 yields

ψ(u) = − 1
π

∫ ∞

0
e−ux

λ(c− λµ) Im(L̂f (−x))∣∣∣cx+ λ(1− L̂f (−x))
∣∣∣
2 dx−

∞∑

i=1

Ressi

(
eus

c− λµ

cs− λ(1− L̂f (s))

)
. (9)

We have to show that
∞∑

i=1

Ressi

(
eus

c− λµ

cs− λ(1− L̂f (s))

)
= O(e−δu). (10)

For a single si it is quite obvious that for every ε > 0

Ressi

(
eus

c− λµ

cs− λ(1− L̂f (s))

)
= O(e(Re(si)+ε)u).

Hence we have to ensure that by summing over all si this property remains to hold. For
this we are only interested in si with |si| large. To determine the location of the zeros of
N(s) (and hence the si needed to evaluate the residuals of the integrand), the following
lemma gives an asymptotic relation between Re(s) and Im(s) of solutions of N(s) = 0.

Lemma 2.4. For every 0 < ε < min(c, 1), there exists a β0 > 0 such that for each zero
s := −α+ ιβ of N(s) with β > β0, its negative real part α > 0 satisfies

log
(

(c− ε)β2

aλ(1 + ε)

)
≤ α ≤ log

(
(1 + ε)(c+ ε)β2

aλ(1− ε)

)
.

The next lemma provides expressions for Im(s) for N(s) = 0. Together with Lemma 2.4
we can find expressions for the zeros of N(s).
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Lemma 2.5. For every 0 < ε < min(c, 1) there exists a β0 > 0 such that for each zero
s := −α+ ιβ of N(s) with β > β0,

| sinβ| < ε and | cosβ − 1| < ε.

After we approximately know where the zeros of N(s) are located we have to make sure
that there are not too many zeros close to each other in order to guarantee (10). Further
we will show that there exist zeros of N(s).

Lemma 2.6. There exists a constant c0 such that for every k > 0 the number of zeros
of N(s) inside the circle K1(sk) around sk = − log(c(2kπ)2/(aλ)) + ι2kπ with radius 1 is
less than c0. Moreover, there exists a k0 such that for every k > k0 the number of zeros
of N(s) inside the circle K1(sk) is 1.

Next one can bound the order of the zeros of N(x) which is needed to bound the residuals.

Lemma 2.7. 6 ∃ s ∈ D with N(s) = N ′(s) = N ′′(s) = 0 and there exists an M > 0 such
that for |s| > M , N(s) = N ′(s) = 0 has no solution.

The next lemma provides an exponential bound for a single residual at a pole si of the
integrand (8) with |si| large.

Lemma 2.8. For every ε > 0 there exists a β1 > 0 such that for si = −α+ ιβ with β > β0

and N(si) = N(−α+ ιβ) = 0 and every k > 0
∣∣∣∣∣Ressi

(
eus

1
s

c− λµ

c− λ
s (1− L̂f (s))

)∣∣∣∣∣

≤ e−(u−k)α
(c− λµ)

(
aλ(1+ε)
c−ε

)k
(α2 + β2)

aλ
((

c−ε
aλ(1+ε)

)
β2 − (α2+β2)1/2

ρ − 1
)β−2k−1 ≤ e−(u−k)αβ−2k+1.

Hence (10) is proven and the integral representation follows by algebraic manipulations of
(9). 2

2.2 Proof of Theorem 2.1, Method 2:

Before we identify an alternative proof of Theorem 2.1, we will need an auxiliary result.

Lemma 2.9. Let g(s) be any meromorphic function on D∩{s : Re(s) > −t0} for a t0 > 0,
with a branch cut on the line (−t0, 0] (for 0 < x < t0 define g(−x) := limy→0+ g(−x+ιy)).
If further g(s) = g(s), g(s) has no pole for Re(s) ≥ 0, lims→0 g(s) = 1, and if there exists
a c0 and an ε > 0 such that, uniformly for α in bounded intervals,

|c0 − g(α+ ιβ)| = O
(

1
βε

)
, as β →∞,

then there exists a δ > 0 with

1
2πι

∫ s0+ι∞

s0−ι∞
eus

1
s
g(s)ds = 1− 1

π

∫ t0

0
e−ux

1
x

Im(g(−x))dx+O(e−δu). (11)
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s0 ι R1R1 +

Cr1R−

r ι R+−

r +ι−

Figure 2: The contour integral

If further g(−x) can be defined for x ∈ (−∞, t0] and there exists a δ0 > 0 with
∫ ∞

0

∣∣∣∣e−δ0x
1
x

Im (g(−x))
∣∣∣∣dx <∞, (12)

then there exists a δ > 0 with

1
2πι

∫ s0+ι∞

s0−ι∞
eus

1
s
g(s)ds = 1− 1

π

∫ ∞

0
e−ux

1
x

Im(g(−x))dx+O(e−δu). (13)

Proof. At first choose an 0 < r < t0 and 0 < R < t0 such that for a c1 < ∞, for all
α ∈ [−r, s0] and all β > R

|c0 − g(α+ ιβ)| ≤ c1
βε
.

For R1 > 0, r1 > 0 we will use the contour given in Figure 2 consisting of the line s0 + ιx,
x ∈ [−R1, R1], the lines x ± ι(R1) for x ∈ [−r, s0], the lines −r ± x for x ∈ [R,R1],
the complex paths γ±(t) for t ∈ [0, 1] connecting the points {−r ± ιR,−R} with −t0 <
Re(γ±(t)) ≤ −r, where γ±(t) does not cross any poles of g(s) and the length L(γ±) is
bounded, the line from [−R,−r1] lying above the branch cut of the negative real axis, the
circle Cr1 = {s : |s| = r1, s 6= −r1} and the line from [−r1,−R] lying below the branch cut
of the negative real axis. Note that

∣∣∣∣
∫ −r±ιR1

s0±ιR1

eus
1
s
g(s)ds

∣∣∣∣ ≤ (s0 + r)es0u
1
R1

(
1 +

c1
Rε1

)
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which tends to 0 as R1 →∞. Further, from lims→1 e
usg(s) = 1 it follows that

lim
r1→0

∫

Cr1

eus
1
s
g(s)ds = −1.

From g(s) = g(s) we have

1
2πι

(∫ −r1

−R
eux

1
x
g(x+ ι0)dx+

∫ −R

−r1
e−ux

1
x
g(x− ι0)dx

)

=
1

2πι

∫ −r1

−R
eux

1
x
g(x)− e−ux

1
x
g(x)dx =

1
π

∫ R

r1

e−ux
1
x

Im(g(−x))dx.

By the Cauchy Residual Theorem it follows that

1
2πι

∫ s0+ι∞

s0−ι∞
eus

1
s
g(s)ds−

(
1− 1

π

∫ R

0
e−ux

1
x

Im(g(−x))dx
)

= − 1
2πι

(∫

γ+

+
∫

γ−
+

∫ −r+ιR

−r+ι∞
+

∫ −r−ι∞

−r−ιR

)
eus

1
s
g(s)ds+

MR,r∑

i=1

Ressi

(
eus

1
s
g(s)

)

where si, i = 1, . . . ,MR,r are the poles of g(s) inside the contour. Since g(s) has no poles
with Re(s) ≥ 0, there exists a δ1 > 0 with −δ1 > Re(si) for all i = 1, . . . ,MR,r and hence

Ressi

(
eus

1
s
g(s)

)
= O(e−δu).

We have
∣∣∣∣
∫

γ±
eus

1
s
g(s)

∣∣∣∣ ≤ L(γ±) max
t∈[0,1]

∣∣∣∣euγ±(t) 1
γ±(t)

g(γ±(t))
∣∣∣∣ ≤ e−ruL(γ±) max

t∈[0,1]

∣∣∣∣
1

γ±(t)
g(γ±(t))

∣∣∣∣ .

Further
∫ −r+ι∞

−r+ιR
eus

1
s
g(s)ds = c0

∫ −r+ι∞

−r+ιR
eus

1
s
ds+

∫ −r+ι∞

−r+ιR
eus

1
s
(g(s)− c0)ds.

Note that
∣∣∣∣
∫ −r+ι∞

−r+ιR
eus

1
s
(g(s)− c0)ds

∣∣∣∣ ≤ e−ru
∫ ∞

R

∣∣∣∣
1

−r + ιx
(g(−r + ιx)− c0)

∣∣∣∣ ds

≤ e−ru
∫ ∞

R

c1
x1+ε

dx =
c1
εRε

e−ru.

Since there exists a c2 such that for all u > u0

∣∣∣∣
∫ ∞

R
eιux

1
−r + ιx

dx
∣∣∣∣ ≤ c2,

we have ∣∣∣∣
∫ −r+ι∞

−r+ιR
eus

1
s
ds

∣∣∣∣ ≤ c2e
−ur.
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The assertion finally follows by (u > δ0):
∣∣∣∣
∫ ∞

R
e−ux

1
x

Im(g(−x))dx
∣∣∣∣ ≤ e−R(u−δ0)

∫ ∞

R

1
x

∣∣∣e−δ0xIm(g(−x))
∣∣∣dx,

where g(−x) is interpreted as 0 where it is not defined. 2

Proof of Theorem 2.1. From (7) we see that we have to apply Lemma 2.9 with

g(s) =
c− λµ

c− λ
s (1− L̂f (s))

.

Clearly g(s) = g(s). For Re(s) ≥ 0 we get

∣∣∣1− L̂f (s)
∣∣∣ =

∣∣∣∣1−
∫ ∞

1
e−sxat−a−1dx

∣∣∣∣ =
∣∣∣∣1− e−s + s

∫ ∞

1
e−sxx−adx

∣∣∣∣

=
∣∣∣∣s

∫ ∞

0
e−sxF (x)dx

∣∣∣∣ ≤
∣∣∣∣s

∫ ∞

0
F (x)dx

∣∣∣∣ = |s|µ,

so that g(s) has no poles with Re(s) ≥ 0, due to the net profit condition c > λµ (alter-
natively, one could also argue except for a possible branch point at s = 0, L̂ψ(s) has no
poles with Re(s) ≥ 0).
An asymptotic expansion of Γ(−a, s) (cf. [12, Chapter 4]) gives

Γ(−a, s) = s−a−1e−s
(

1 +
n−1∑

i=1

∏i
j=1(−a− j)

s−i
+ εn(s)

)
, (14)

where |snεn(s)| can be uniformly bounded for large |s|. It follows that L̂f (s) ∼ a
se
−s, from

which we get that, uniformly for −r ≤ Re(s) ≤ s0 (r, s0 > 0), 1− L̂f (s) → 1 as |s| → ∞.
Hence ∣∣∣∣

c− λµ

c
− g(α+ ιβ)

∣∣∣∣ = O
(

1
β

)
.

From [1, Equation 6.5.29, Page 262] we get that for a 6∈ N

L̂f (s) = asaΓ(−a)− aΓ(−a)γ∗(−a, s) = asaΓ(−a)− a
∞∑

n=0

(−s)n
(n− a)n!

. (15)

On the other hand, for a ∈ N define

Ea(x) =
∫ ∞

1

e−xt

ta
dt

leading to (cf. [1, Equation 5.1.12, Page 229])

L̂f (s) = aEa+1(s) =
(−s)a

(a− 1)!

(
− log(s)− γ +

a∑

n=1

1
n

)
− a

∞∑

n=0
n6=a

(−s)n
(n− a)n!

, (16)
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where γ = 0.577216 . . . is Euler’s constant. In both cases it follows

lim
s→0

1
s
(1− L̂f (s)) =

a

a− 1
= µ, or equivalently lim

s→0
g(s) = 1.

Note that

Im(g(−x)) =
λ
x Im(L̂f (−x))(

c+ λ/xRe
(
1− L̂f (−x)

))2
+ λ2

x2 Im
(
L̂f (−x)

)2

and (cf. (15), (16))

Im(L̂f (−x)) = − πxa

Γ(a)
, (17)

so that for every δ0 > 0 (12) holds. The theorem finally follows with Lemma 2.9 and some
algebraic manipulations. 2

3 Asymptotic expansion of the ruin probability

Expansions for ruin probabilities in the Cramér-Lundberg model can be derived from
expansions for compound distributions whenever the ladder height distribution of the
claim size distribution

FI(u) =
1
µ

∫ u

0
F (x)dx

admits expansions for convolutions, see e.g [6] or [20]. For instance, if the claim size
distribution F (u) has a density f(u) such that its negative derivative −f ′(u) is regularly
varying with index −a − 2, a > 3 (such that the moments µk := a/(a − k) = E

[
Xk

]
are

finite for k = 1, 2, 3), then the expansion for the infinite horizon ruin probability ψ(u) of
third order reads (cf. [20])

ψ(u) =
ρ

1− ρ
F I(u) +

ρ2

(1− ρ)2
µ2

2µ2
F (u) +

(
ρ2

(1− ρ)2
µ3

3µ2
+

ρ3

(1− ρ)3
µ2

2

4µ3

)
f(s) + o(f(s)).

(18)
In this section we are going to show that an asymptotic expansion of (5) indeed retains
(18). An advantage of this alternative method to derive expansions is that one can also
derive the asymptotic expansion for values a < 3. In particular, we will see that for every
noninteger a > 2 the expansion

ψ(u) =
ρ

1− ρ
F I(u) +

ρ2

(1− ρ)2
µ2

µ2
F (u) +

(
ρ3

(1− ρ)3
3µ2

2

4µ3
+

ρ2

(1− ρ)2
µ3

3µ2

)
f(u)

− π

tan(aπ)
ρ2

(1− ρ)2
2Γ(2(a− 1))
Γ(a)Γ(a− 1)

F I(u)2 +O
(
u−min{a+2,2a−1}

)
, (19)

where for a < 3 the first term in the second line of (19) will dominate the O-term.

Remark 3.1. In (19), one observes that for a = (2n + 1)/2 (n ∈ N), the constant in
front of F I(u)2 in the expansion vanishes, which illustrates the special role played by these
values of the shape parameter a.
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From now on we will assume that a 6∈ N. At first we want to look for an expansion of the
denominator of the integral (5). Define

c1 =
π

Γ(a) tan(aπ)
and an =

a

(n+ 1− a)(n+ 1)!
,

to get
1− Re

(
L̂f (−x)

)

x
= c1x

a−1 +
∞∑

n=0

anx
n.

With

c2 = − π

Γ(a)
and bn =

n∑

k=0

akan−k

we obtain

(
c+ λ/x

(
1− Re

(
L̂f (−x)

)))2
+
λ2

x2
Im

(
L̂f (−x)

)2

= c2 + 2cλ
1− Re

(
L̂f (−x)

)

x
+ λ2


1− Re

(
L̂f (−x)

)

x




2

+
λ2

x2
Im

(
L̂F (−x)

)2

= c2 + λ2(c21 + c22)x
2a−2 + 2λc

(
c1x

a−1 +
∞∑

n=0

anx
n

)

+ 2λ2c1x
a−1

∞∑

n=0

anx
n + λ2

∞∑

n=0

bnx
n.

Define

c0 :=λ2(c21 + c22),

dn :=

{
2λ2c1a0 + 2λcc1 n = 0,
2λ2c1an n ≥ 1,

en :=

{
c2 + λ2b0 + 2λca0 n = 0,
λ2bn + 2λcan n ≥ 1.

Note that if a = (2k + 1)/2 for k ∈ N, then c1 = 0. We get

(
c+ λ/x

(
1− Re

(
L̂f (−x)

)))2
+
λ2

x2
Im

(
L̂f (−x)

)2

= c0x
2a−2 + xa−1

∞∑

n=0

dnx
n +

∞∑

n=0

enx
n.

For ease of notation let

Nu(x) :=
(
c+

uλ

x

(
1− Re

(
L̂f

(
−x
u

))))2

+
u2λ2

x2
Im

(
L̂f

(
−x
u

))2
,
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and

Zu(x, n0, n1, n2) := I{n2=0}c0
(x
u

)2a−2
+

(x
u

)a−1
∞∑

n=n1

dn

(x
u

)n
+

∞∑
n=n0

en

(x
u

)n
.

Note that
Nu(x) = Zu(x, 0, 0, 0).

To find an asymptotic expansion for (5) we first give an expansion for integrals of the form
∫ ∞

0

Zu(x, n0, n1, n2)xm(a−1)+n−1e−x

Nu(x)
dx,

where n0,m ≥ 1 and n1, n2, n, k ≥ 0.

Lemma 3.1. We have
∫ ∞

0

Zu(x, n0, n1, n2)xm(a−1)+n−1e−x

Nu(x)
dx

= I{n2=0}c0u−2(a−1)

∫ ∞

0

x(m+2)(a−1)+n−1e−x

Nu(x)
dx

+
∞∑

i=n1

diu
−(a−1)−i

∫ ∞

0

x(m+1)(a−1)+n+i−1e−x

Nu(x)
dx

+
∞∑

i=n0

eiu
−i

∫ ∞

0

xm(a−1)+n+i−1e−x

Nu(x)
dx.

Proof. There exists an M > 0 such that M ≥ 1/Nu(x) for all x ≥ 0. We get for β > 0
and i ≥ 0 ∫ ∞

0

xβ−1+ie−x

Nu(x)
dx ≤M

∫ ∞

0
xβ−1+ie−xdx = MΓ(β + i).

It then suffices to show that
∞∑

i=n1

diu
−iΓ(β + i) and

∞∑

i=n0

eiu
−iΓ(β + i),

are absolutely convergent series. We have for i > 1

diΓ(β + i) = 2λ2c1
aΓ(β + i)

(i+ 1− a)Γ(i+ 2)
.

Since for α > 0, m ∈ N, m+ 1 + b > α > m+ b, −b 6∈ N, and i > m+ 1

Γ(α+ i)
Γ(b+ i)

=
Γ(α)

∏i−1
j=0(α+ j)

Γ(b)
∏i−1
j=0(b+ j)

=
Γ(α)

Γ(b)
∏m
j=0(b+ j)

i−m−2∏

j=0

α+ j

b+m+ 1 + j

m∏

j=0

(α− j − 1 + i),

13



we obtain that ∞∑

i=n1

diu
−iΓ(β + i)

converges absolutely for all u > 1. For the second sum, note that for n > 1, en =
λ2bn + 2λan, hence we have to show that

∑
i=n0

biΓ(β + i)u−i is absolutely convergent.
But for u > 2 the latter follows from

|bn| =
∣∣∣∣∣
n∑

k=0

a2

(k + 1− a)(k + 1)!(n− k + 1− a)(n− k + 1)!

∣∣∣∣∣

≤ a2

(minz∈N |z − a|)2
n∑

k=0

1
k!(n− k)!

=
(

min
z∈N

|z − a|
)−2 a22n

n!
.

2

From
∫ ∞

0

xm(a−1)+n−1e−x

Nu(x)
dx =

∫ ∞

0

xm(a−1)+n−1e−x

(c− λµ)2
dx

−
∫ ∞

0

(
Zu(x, 0, 0, 0)− (c− λµ)2

)
xm(a−1)+n−1e−x

(c− λµ)2Nu(x)
dx

=
Γ (m(a− 1) + n))

(c− λµ)2
−

∫ ∞

0

Zu(x, 1, 0, 0)xm(a−1)+n−1e−x

(c− λµ)2Nu(x)
dx

we get
∫ ∞

0

Zu(x, n0, n1, n2)xm(a−1)+n−1e−x

Nu(x)
dx

=
c0Γ ((m+ 2)(a− 1) + n)) I{n2=0}

(c− λµ)2
u−2(a−1)

+
dn1Γ ((m+ 1)(a− 1) + n+ n1))

(c− λµ)2
u−(a−1)−n1

+
en0Γ (m(a− 1) + n+ n0))

(c− λµ)2
u−n0

− I{n2=0}c0u−2(a−1)

∫ ∞

0

Zu(x, 1, 0, 0)x(m+2)(a−1)+n−1e−x

(c− λµ)2Nu(x)
dx

− dn1u
−(a−1)−n1

∫ ∞

0

Zu(x, 1, 0, 0)x(m+1)(a−1)+n+n1−1e−x

(c− λµ)2Nu(x)
dx

− en0u
−n0

∫ ∞

0

Zu(x, 1, 0, 0)xm(a−1)+n+n0−1e−x

(c− λµ)2Nu(x)
dx

+
∫ ∞

0

Zu(x, n0 + 1, n1 + 1, n2 + 1)xm(a−1)+n−1e−x

Nu(x)
dx.
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The terms with integrals depending on u are of higher order than at least one of the other
terms and these integrals are of the same type as the starting integral; hence one can
iteratively get the complete asymptotic expansion of the first integral.
Since

ψ(u) ≈ ρ

1− ρ
F I(u)

(c− λµ)2

Γ(a− 1)

∫ ∞

0

xα−2e−x

Nu(x)
dx,

one can in this way obtain the complete asymptotic expansion of ψ(s) in terms of F (s)αi ,
αi ∈ R.

As a concrete example, we derive the asymptotic expansion for ψ(u) up to the order of
f(u) = au−a−1 for a > 2. We get

ψ(u) ≈ ρ

1− ρ
F I(u)

(c− λµ)2

Γ(a− 1)

(
Γ(a− 1)
(c− λµ)2

−
∫ ∞

0

Zu(x, 1, 0, 0)xa−2e−x

(c− λµ)2Nu(x)
dx

)

=
ρ

1− ρ
F I(u)− ρ

1− ρ

F I(u)
Γ(a− 1)

(
1
u

e1Γ(a)
(c− λµ)2

− e1
u

∫ ∞

0

Zu(x, 1, 0, 0)xa−1e−x

(c− λµ)2Nu(x)
dx+

∫ ∞

0

Zu(x, 2, 0, 0)xa−2e−x

Nu(x)
dx

)

=
ρ

1− ρ
F I(u)− e1

ρ

1− ρ

a− 1
(c− λµ)2

F I(u)
u

+
ρ

1− ρ

e1F I(u)
uΓ(a− 1)(c− λµ)2

(
1
u

e1Γ(a+ 1)
(c− λµ)2

− e1
u

∫ ∞

0

Zu(x, 1, 0, 0)xae−x

(c− λµ)2Nu(x)
dx+

∫ ∞

0

Zu(x, 2, 0, 0)xa−1e−x

Nu(x)
dx

)

− ρ

1− ρ

F I(u)
Γ(a− 1)

(
1
u2

e2Γ(a+ 1)
(c− λµ)2

− e2
u2

∫ ∞

0

Zu(x, 1, 0, 0)xae−x

(c− λµ)2Nu(x)
dx+

∫ ∞

0

Zu(x, 3, 0, 0)xa−2e−x

Nu(x)
dx

)
.

For a > 3 we get with

F I(x) =
1
a
x−a+1, fI(x) =

a− 1
a

x−a and f ′I(x) = (1− a)x−a−1,

so that

ψ(u) =
ρ

1− ρ
F I(u)− ρ

1− ρ

e1
(c− λµ)2

fI(u)

+
(

ρ

1− ρ

e21
(c− λµ)4

− ρ

1− ρ

e2
(c− λµ)2

)
f ′I(u) +O(u−min{a+2,2a−2}).
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From

a0 =
a

1− a
= −µ, a1 =

a

2(1− a)
= −µ2

2
, a2 =

a

6(3− a)
= −µ3

6
and

b1 = 2a0a1 = µµ2, b2 = 2a0a2 + a2
1 =

µµ3

3
+
µ2

2

4
,

and

e1 = λ2b1 + 2λca1 = −λµ2(c− λµ) and e2 = λ2b2 + 2λca2 =
λ2µ2

2

4
− λµ3

c− λµ
,

it follows that

− ρ

1− ρ

e1
(c− λµ)2

fI(u) =
ρ

1− ρ

λµ

c− λµ

µ2

µ
fI(u) =

ρ2

(1− ρ)2
µ2

µ
fI(u) =

ρ2

(1− ρ)2
µ2

µ2
F (u),

and
(

ρ

1− ρ

e21
(c− λµ)4

− ρ

1− ρ

e2
(c− λµ)2

)
f ′I(u)

=
(
− ρ3

(1− ρ)3
µ2

2

µ2
+

ρ

1− ρ

λ2µ2

(c− λµ)2
µ2

2

4µ2
− ρ

1− ρ

λµ

(c− λµ)2
µ3

3µ

)
f ′I(u)

=
(

ρ3

(1− ρ)3
3µ2

2

4µ3
+

ρ2

(1− ρ)2
µ3

3µ2

)
f(u).

which is in accordance with (18).

For a < 3, clearly 2(a− 1) < a+ 1, so that we have to add further terms. We get
∫ ∞

0

Zu(x, 3, 0, 0)xa−2e−x

Nu(x)
dx =

d0Γ (2(a− 1))
(c− λµ)2

u−(a−1)

− d0u
−(a−1)

∫ ∞

0

Zu(x, 1, 0, 0)x2(a−1)−1e−x

(c− λµ)2Nu(x)
dx

+
∫ ∞

0

Zu(x, 3, 1, 0)xa−2e−x

Nu(x)
dx

=
d0Γ (2(a− 1))

(c− λµ)2
u−(a−1) +O

((
u−min{a,2a−2,3}

))
.

By defining µ3 = a/(a− 3), even if the third moment does not exist, we obtain for every
noninteger a > 2 the expansion (19). For a < 2, one has to insert even further terms to
get an asymptotic expansion with the desired accuracy.

4 Integral representations for compound sums

In this section we are concerned with the collective risk model, i.e. we assume that
SN = X1 + . . . + XN , where the Xi are iid Pareto and N is an integer-valued random
variable independent of the Xi. We are interested in

G(u) = P(SN > u).
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If we denote with QN (z) = E
[
zN

]
, then

L̂G(s) =
1
s
− 1
s
QN

(
L̂f (s)

)
,

and for an s0 > 0 we get

G(u) = 1− 1
2πι

∫ s0+ι∞

s0−ι∞
eus

1
s
QN

(
L̂f (s)

)
ds. (20)

Theorem 4.1. Let X1, X2, . . . be iid Pareto random variables with density f(x) = ax−a−1

and N be an integer-valued random variable independent of Xi such that there exists an
ε > 0 with

E
[
(1 + ε)N

]
=

∞∑

n=0

pn(1 + ε)n <∞,

where pn = P(N = n). Then there exists a t0 > 0 with

P(SN > u) = G(u) ≈ − 1
π

∫ t0

0

1
x
e−uxIm

(
QN

(
L̂f (−x)

))
dx.

If further QN
(
L̂f (−x)

)
exists for all x > 0 and for a δ0 > 0

∫ ∞

0

∣∣∣∣e−δ0x
1
x

Im
(
QN

(
L̂f (−x)

))∣∣∣∣ <∞,

then
P(SN > u) = G(u) ≈ − 1

π

∫ ∞

0

1
x
e−uxIm

(
QN

(
L̂f (−x)

))
dx.

Proof. We would like to apply Lemma 2.9 with

g(s) = QN

(
L̂f (s)

)
.

At first we have to show that g(s) is holomorphic on D ∩ {s : Re(s) > −t0}. Since∑∞
n=0 pn(1 + ε)n < ∞, it is enough to show that there exists a t0 such that |L̂f (s)| <

1 + ε/2 on {s : Re(s) > −t0}. Since |L̂f (s)| ≤ 1 for Re(s) ≥ 0, lim|s|→∞ |L̂f (s)| = 0
on {s : Re(s) > −t1} for every t1 > 0 and |L̂f (s)| is continuous on {s : Re(s) > −t1}
for every t1 > 0, it follows by continuity arguments that there exists a t0 > 0 such that
{s : Re(s) > −t1} for every t1 > 0.
Clearly we have g(s) = g(s). From lims→0 L̂f (s) = 1 and E

[
(1 + ε)N

]
<∞ it follows that

lims→0 g(s) = lims→0 E
[
(L̂f (s))N

]
= 1. Denote by m ≥ 1 the smallest positive integer

with pm 6= 0, then uniformly for bounded sets of α > −t0:

|p0 − g(α+ ιβ)| ≤ |L̂f (α+ ιβ)|m
∞∑

n=0

pm+n|L̂f (α+ ιβ)|n = O
(

1
βm

)
.

2
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4.1 The compound Poisson model

Assume that N ∼ Poisson(λ), i.e. P(N = n) = e−λ λ
n

n! . Note that

L̂G(s) =
1
s
− 1
s
e−λ(1−L̂f (s)) =

1
s
− 1
s
e−λ(1−asaΓ(−a,s)),

is holomorphic on D. From Theorem 4.1 we get

G(u) ≈ 1
π

∫ ∞

0

1
x
e−ux−λRe(1−a(−x)aΓ(−a,−x)) sin

(
λxaπ

Γ(a)

)
dx. (21)

Remark 4.1. The integral in (21) is oscillating, but it is at least absolutely integrable,
which is not the case for the integral in (20). Further note that

Re (1− a(−x)aΓ(−a,−x)) ∼ a

x
ex,

so that the integrand decays very quickly for large x, which makes a numerical evaluation
of the integral quite feasible.

4.2 The compound negative binomial model

For the negative binomial distribution given by

P(N = n) =
(
r + n− 1

n

)
ρr(1− ρ)n, 0 < ρ < 1, r > 0

and

QN (z) =
(

ρ

1− (1− ρ)z

)r

,

Theorem 4.1 gives

P(SN > u) = G(u) ≈ − 1
π

∫ ∞

0

1
x
e−uxIm

((
ρ

1− (1− ρ)a(−x)aΓ(−a,−x)
)r)

dx.

5 Numerical examples

We now provide numerical illustrations for the performance of the derived approximations
to ψ(u) and G(u), respectively. We will compare the approximations with the first order
asymptotic approximations given by ρ/(1 − ρ)F I(u) and E [N ]F (u), respectively. We
also include a second order asymptotic approximation (containing the next significant
asymptotic term). For a compound sum with E [X] < ∞ and regularly varying density
f(x), this extra term is 2E

[(
N
2

)]
E [X] f(u). When f(x) is regularly varying with index

α = a + 1 = 2, then the next term is 2E
[(
N
2

)]
f(u)

∫ u
0 F (x)dx. In principle, there is

also a next asymptotic term when f(x) is regularly varying with index α = a + 1 < 2,
but in the case a = 1/2 (which is the case in our examples) it turns out that this term
is 0 and hence we omit the second order approximation for the compound sums in this
case (see e.g. [20] and [2] for further details on these higher order expansions). In the
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case of the ruin probability, we use the Pollaczek-Khintchine formula to rewrite the ruin
probability as a compound sum, for the case a = 1.5 we use the next term in the expansion
given in Section 3. Furthermore we use a Monte Carlo estimate with 100 000 iterations.
We use the estimator NF (max(MN−1, (u− SN−1))), where MN−1 = max(X1, . . . , XN−1)
of [4]. This estimator is proven to be asymptotically efficient for compound sums. To
provide upper and lower bounds for the actual values of ψ(u) and G(u), respectively,
we use Panjer recursions with stepsize 0.01 for the ruin probabilities and 0.1 for the
compound sums (cf. [11, Chapter 6.6]). To compare the efficiency of the approximations,
the needed computation times of the Monte Carlo estimate, Panjer bounds and the integral
approximations are provided (Panjer recursions were implemented in C++, whereas all
other calculations where done using Mathematica 6.0). We will see that the integral
approximations provide excellent results whereas the common asymptotic approximations
can be far off the correct values.

5.1 Approximation of the ruin probability

For the risk process we choose the parameters a = 1.5, λ = 1, c = 3.5 or a = 1.5, λ = 1,
c = 2.5 or a = 2.5, λ = 1, c = 2, which corresponds to ρ = 0.857, ρ = 0.8 or ρ = 0.833,
respectively. For each of these examples, the Panjer recursion for the evaluation of upper
and lower bounds needs 390 seconds. A Monte Carlo simulation of sufficient accuracy
takes between 8 and 14 seconds and the numerical evaluation of the integral (5) takes
approximately 0.04 seconds. The estimates are given in Table 1, 2 or 3 respectively.

u upper bound lower bound integral first order second order MC
16 0.56549 0.56513 0.56535 1 1.03406 0.56447
30 0.48582 0.48557 0.48572 0.73030 0.74356 0.48659
50 0.41931 0.41913 0.41924 0.56569 0.57185 0.41893
100 0.33189 0.33179 0.33185 0.4 0.40218 0.33126
500 0.17017 0.17016 0.17017 0.17889 0.17908 0.16955
1000 0.12320 0.12319 0.12320 0.12649 0.12656 0.12312

Table 1: Numerical estimates of ruin probabilities with different methods with a = 1.5,
λ = 1, c = 3.5 and ρ = 0.857

u upper bound lower bound integral first order second order MC
16 0.20141 0.20058 0.20105 0.12500 0.25852 0.20069
30 0.10591 0.10553 0.10574 0.6667 0.11023 0.10571
50 0.05795 0.05780 0.05788 0.04 0.05732 0.05792
100 0.02507 0.02503 0.02505 0.02 0.02488 0.02496
500 0.00423 0.00423 0.00423 0.00400 0.00425 0.00423
1000 0.00206 0.00206 0.00206 0.00200 0.00207 0.00206

Table 2: Numerical estimates of ruin probabilities with different methods with a = 2,
λ = 1, c = 2.5 and ρ = 0.8
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u upper bound lower bound integral first order second order MC
16 0.11888 0.11757 0.11828 0.3125 0.7520 0.12006
30 0.03581 0.03539 0.03561 0.01217 0.02130 0.03529
50 0.01109 0.01100 0.01.105 0.00566 0.00820 0.01095
100 0.00264 0.00263 0.00264 0.00200 0.00245 0.00262
500 0.00019 0.00019 0.00019 0.00018 0.00019 0.00019
1000 0.00006 0.00006 0.00006 0.00006 0.00006 0.00007

Table 3: Numerical estimates of ruin probabilities with different methods with a = 2.5,
λ = 1, c = 2, and ρ = 0.833

5.2 Compound Poisson

Let us now consider an example for the calculation of the tail of a compound Poisson
sum of Pareto(0.5), Pareto(1) and Pareto(1.5) claims with λ = 2. In this case the Panjer
recursion takes 4 seconds to evaluate upper and lower bounds. The Monte Carlo simulation
takes 14 seconds and the evaluation of each integral takes between 0.02 and 0.06 seconds.
The estimates are given in Tables 4, 5 and 6:

u upper bound lower bound integral first order MC
16 0.44592 0.44318 0.44508 0.50000 0.44257
30 0.34268 0.34132 0.34224 0.36515 0.34192
50 0.27207 0.27136 0.27184 0.28284 0.27026
100 0.19610 0.19583 0.19601 0.20000 0.19565
500 0.08909 0.08906 0.08908 0.08944 0.08896
1000 0.06312 0.06311 0.06312 0.06325 0.06309

Table 4: Numerical estimates of tail probabilities for a compound Poisson sum with a = 0.5
and λ = 2 with different methods

u upper bound lower bound integral first order second order MC
16 0.16942 0.16573 0.16811 0.12500 0.18395 0.16805
30 0.08336 0.08233 0.08299 0.06667 0.08623 0.08301
50 0.04689 0.04655 0.04677 0.04000 0.04786 0.04675
100 0.02198 0.02190 0.02195 0.02000 0.02224 0.02192
500 0.00410 0.00410 0.00410 0.00400 0.00412 0.00409
1000 0.00203 0.00203 0.00203 0.00200 0.00203 0.00203

Table 5: Numerical estimates of tail probabilities for a compound Poisson sum with a = 1
and λ = 2 with different methods
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u upper bound lower bound integral first order second order MC
16 0.05487 0.05248 0.05396 0.03125 0.04883 0.05400
30 0.01670 0.01635 0.01657 0.01217 0.01582 0.01646
50 0.00683 0.00676 0.00680 0.00566 0.00668 0.00682
100 0.00220 0.00218 0.00219 0.00200 0.00218 0.00219
500 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018
1000 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006

Table 6: Numerical estimates of tail probabilities for a compound Poisson sum with a =
1.5, λ = 2 and E [SN ] = 6 with different methods

5.3 Compound negative binomial

Finally, we consider the determination of the tail of a compound negative binomial sum
of Pareto(0.5), Pareto(1) and Pareto(1.5) claims with ρ = 0.5 and r = 3. The Panjer
recursion takes 4 seconds to evaluate upper and lower bounds. A Monte Carlo simulation
takes 17 seconds and the evaluation of the integral takes between 0.02 and 0.04 seconds.
The estimates are given in Tables 7, 8 and 9.

u upper bound lower bound integral first order MC
16 0.55915 0.55611 0.55812 0.75 0.57117
30 0.45624 0.45432 0.45554 0.54772 0.47091
50 0.37635 0.37516 0.3759 0.42426 0.34788
100 0.28116 0.28062 0.28095 0.30 0.29469
500 0.1323 0.13224 0.13228 0.13416 0.13302
1000 0.0942 0.09418 0.09419 0.09487 0.09775

Table 7: Numerical estimates of tail probabilities for a compound negative binomial sum
with a = 0.5, ρ = 0.5 and r = 3 with different methods

u upper bound lower bound integral first order second order MC
16 0.2881 0.28093 0.28525 0.1875 0.36434 0.28407
30 0.15035 0.14733 0.14908 0.10 0.15868 0.1486
50 0.08259 0.08147 0.08211 0.06 0.08358 0.0816
100 0.03649 0.03625 0.03639 0.03 0.03673 0.03657
500 0.00632 0.00631 0.00631 0.006 0.00635 0.00635
1000 0.00309 0.00308 0.00309 0.003 0.00309 0.00308

Table 8: Numerical estimates of tail probabilities for a compound negative binomial sum
with a = 1, ρ = 0.5 and r = 3 with different methods
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u upper bound lower bound integral first order second order MC
16 0.13498 0.12677 0.13146 0.04688 0.09961 0.13212
30 0.03825 0.03643 0.03744 0.01826 0.02921 0.03737
50 0.01314 0.0128 0.01299 0.00849 0.01154 0.0129
100 0.00367 0.00363 0.00365 0.003 0.00354 0.00364
500 0.00028 0.00028 0.00028 0.00027 0.00028 0.00028
1000 0.0001 0.0001 0.0001 0.00009 0.0001 0.0001

Table 9: Numerical estimates of tail probabilities for a compound negative binomial sum
with a = 1.5, ρ = 0.5, r = 3 and E [SN ] = 9 with different methods
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A Proofs of the auxiliary lemmata

Proof of Lemma 2.2. The lemma is a direct consequence of the asymptotic behaviour
of the incomplete Gamma function (14). 2

Proof of Lemma 2.3. Clearly, cosβ = 0 and sinβ = 1, hence we have

s−2e−s =
2αβ − ι(α2 − β2)

(α2 + β2)2
eα,

and Re(s−2e−s) > 0. Using the asymptotic behaviour of the incomplete Gamma function
(14) we get

N(s) = c+ aλs−2e−s − aλs−2e−s
(

1− Γ(−a, s)
s−a−1e−s

)
− λ

s
.
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Now choose k0 > 0 such that for k > k0 (s = α+ ι(2k + 1)π/2)
∣∣∣∣1−

Γ(−a, s)
s−a−1e−s

∣∣∣∣ <
ε

2c
and

λ

|s| <
ε

2
.

This gives

|N(s)| ≥ ∣∣c+ aλs−2e−s
∣∣− ∣∣aλs−2e−s

∣∣
∣∣∣∣1−

Γ(−a, s)
s−a−1e−s

∣∣∣∣−
λ

|s|
≥ ∣∣c+ aλs−2e−s

∣∣
(
1− ε

2c

)
− ε

2
≥ c− ε.

2

Proof of Lemma 2.4. Choose β0 > 0 such that for β > β0 both λ/|s| ≤ ε,
∣∣∣∣1−

Γ(−a, s)
s−a−1e−s

∣∣∣∣ ≤ ε

hold and further for a δ > 0 and for all β1 > β0 and all α1 >
√
εβ1 it is valid that

N(−α1 + ιβ1) > δ (compare Lemma 2.2). Since N(s) = 0 we get that α ≤ √
εβ and

|c| =
∣∣∣∣aλs−2e−s − aλs−2e−s

(
1− Γ(−a, s)

s−a−1e−s

)
− λ

s

∣∣∣∣ ,

from which we can deduce

c+ ε

aλ(1− ε)
≥ ∣∣s−2e−s

∣∣ ≥ c− ε

aλ(1 + ε)
. (22)

Since ∣∣s−2e−s
∣∣ =

eα

α2 + β2
,

we get

α ≥ log
(

c− ε

aλ(1 + ε)
(α2 + β2)

)
≥ log

(
(c− ε)β2

aλ(1 + ε)

)

and

α ≤ log
(

c+ ε

aλ(1− ε)
(α2 + β2)

)
≤ log

(
(1 + ε)(c+ ε)β2

aλ(1− ε)

)
.

2

Proof of Lemma 2.5. At first choose an ε1 > 0 such that for all x with |1− cosx| < ε1
it follows that | sinx| < ε, note that this is possible since sinx and the inverse of cosx are
continuous. In view of (22), choose β1 > 0 such that for all β > β1

∣∣∣∣aλs−2e−s
(

1− Γ(−a, s)
s−a−1e−s

)
+
λ

s

∣∣∣∣ <
cε1
2
.
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We have

N(s) =c+ aλs−2e−s − aλs−2e−s
(

1− Γ(−a, s)
s−a−1e−s

)
− λ

s
,

Re(N(s)) =c+
aλeα

α2 + β2

(
α2 − β2

α2 + β2
cos(β) +

2αβ
α2 + β2

sin(β)
)

− Re
(
aλs−2e−s

(
1− Γ(−a, s)

s−a−1e−s

)
+
λ

s

)
,

Im(N(s)) =
aλeα

α2 + β2

(
2αβ

α2 + β2
cos(β)− α2 − β2

α2 + β2
sin(β)

)

− Im
(
aλs−2e−s

(
1− Γ(−a, s)

s−a−1e−s

)
+
λ

s

)
,

and

|Re(N(s))| ≥ |c− c cos(β)| −
∣∣∣∣c−

aλβ2eα

(α2 + β2)2

∣∣∣∣ | cos(β)|

−
∣∣∣∣
aλeα

α2 + β2

(
α2

α2 + β2
cos(β) +

2αβ
α2 + β2

sin(β)
)∣∣∣∣−

cε1
2
.

Since from Lemma 2.4, it follows that

lim
β→∞

∣∣∣∣c−
aλβ2eα

(α2 + β2)2

∣∣∣∣ | cos(β)|+ lim
β→∞

∣∣∣∣
aλeα

α2 + β2

(
α2

α2 + β2
cos(β) +

2αβ
α2 + β2

sin(β)
)∣∣∣∣ = 0,

there exists a β0 such that for β > β0

0 = |Re(N(x))| ≥ c|1− cos(β)| − cε1, i.e. |1− cos(β)| ≤ ε1.

2

Proof of Lemma 2.6. Let k be large. Note that all zeros of N(s) are poles of order one
of the function h(s) = N ′(s)/N(s) and the corresponding residual is 1. Hence the number
of zeros is

1
2πι

∫

K1(sk)
h(t)dt.

We have

h(s) =
a(a− 1)λsa−2Γ(−a, s) + (1− ae−s)λs−2

c− λ
s (1− asaΓ(−a, s)) =

(a− 1)s−1 + 1
asa+1Γ(−a,s) − s−a−1e−s

Γ(−a,s)
c

aλsa−1Γ(−a,s) − 1
asaΓ(−a,s) + 1

Note that |saΓ(−a, s)| → ∞ as |s| → ∞ and s ∈ K1(sk) for a k > 0. For φ ∈ [0, 2π) and
sφ,k = sk + eιφ we have:

c

aλsa−1
φ,k Γ(−a, sφ,k)

=
cs2φ,k

aλe−sφ,k
− cs2φ,k
aλe−sφ,k

(
1−

s−a−1
φ,k e−sφ,k

Γ(−a, sφ,k)

)
,
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and for αk = log(c(2kπ)2/(aλ)), βk = 2kπ

cs2φ,k
aλe−sφ,k

= ecos(φ)eι(sin(φ)+βk)

× (cos(φ)− αk)2 − (sin(φ) + βk)2 + 2(cos(φ)− αk)(sin(φ) + βk)ι
β2
k

,

hence we get uniformly in φ

lim
k→∞

h(sφ,k) = − 1
1− ecos(φ)eι(sin(φ))

,

and it follows that

lim
k→∞

1
2πι

∫

K1(sk)
h(t)dt = − 1

2π

∫ 2π

0

eιφ

1− ecos(φ)eι(sin(φ))
dx = 1.

Note that 1
2πι

∫
K1(sk) h(t)dt is an integer. 2

Proof of Lemma 2.7. Recall

N(s) = c− λ

s
(1− asaΓ(−a, s)).

N ′(s) =
λ

s2
(1− asaΓ(−a, s))− aλsa−2Γ(1− a, s)

=
λ

s2
(1− asaΓ(−a, s)) + a2λsa−2Γ(−a, s)− aλs−2e−s

=a(a− 1)λsa−2Γ(−a, s) + (1− ae−s)λs−2,

N ′′(s) =(a− 2)a(a− 1)λsa−3Γ(−a, s)
− a(a− 1)λs−3e−s − 2(1− ae−s)λs−3 + aλs−2e−s

=a(a− 1)(a− 2)λsa−3Γ(−a, s)− λs−3(a(a− 3)e−s + 2) + aλs−2e−s.

For the existence of an s with N(s) = N ′(s) = N ′′(s) = 0, the following three equations
would have to be fulfilled at the same time:

Γ(−a, s) =
s−a

a
− cs−a+1

aλ
, (23)

Γ(−a, s) =
(ae−s − 1)
a(a− 1)sa

, (24)

Γ(−a, s) =
(a(a− 3)e−s + 2)− ase−s

a(a− 1)(a− 2)sa
. (25)

From (23) and (24) we get

s−a

a
− cs−a+1

aλ
=

(ae−s − 1)
a(a− 1)sa

,

1− cs

λ
=

a

a− 1
e−s − 1

a− 1
,

1− s

ρ
− e−s = 0. (26)
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From (24) and (25) we get

(ae−s − 1)
a(a− 1)sa

=
(a(a− 3)e−s + 2)− ase−s

a(a− 1)(a− 2)sa
,

ae−s − 1 =
a(a− 3)
a− 2

e−s +
2

a− 2
− ase−s

a− 2
,

a

a− 2
e−s − a

a− 2
=

a

a− 2
se−s,

es = 1− s.

Substituting this into (26) one obtains

1− s

ρ
− 1

1− s
=0,

1− s− (s− s2)
ρ

− 1 = 0,

s(s− 1− 1/ρ) = 0,

s ∈
{

0,
1 + ρ

ρ

}
,

but N(1 + 1/ρ) 6= 0 and N(0) 6= 0.
For the second part of the assertion choose β0 as in Lemma 2.4 and s = −α + ιβ with
N(s) = 0 to obtain

∣∣∣∣1−
s

ρ
− e−s

∣∣∣∣ ≥ |e−s| − |s|
ρ
− 1 ≥ c− ε

aλ(1 + ε)
β2 −

√
α2 + β2

ρ
− 1,

which tends to infinity as β →∞ and the result follows from (26). 2

Proof of Lemma 2.8. Choose β1 > max(β0,M) where β0 is according to Lemma 2.4
and M is according to Lemma 2.7 such that for every β > β1.

0 ≤
(c− λµ)

(
aλ(1+ε)
c−ε

)k
α2+β2

β2

aλ
((

c−ε
aλ(1+ε)

)
β2 − (α2+β2)1/2

ρ − 1
) ≤ 1.

Since N ′(si) 6= 0 one has

|Res (1/N(si))| = 1
|N ′(si)| =

1
|a(a− 1)λsia−2Γ(−a, si) + (1− ae−si)λsi−2| .

From (23) it follows that

|N ′(si)| =
∣∣∣∣a(a− 1)λsia−2

(
si
−a

a
− csi

−a+1

aλ

)
+ (1− ae−si)λsi−2

∣∣∣∣

=
∣∣∣∣
aλ

si2

(
1− si

ρ
− e−si

)∣∣∣∣ ≥
aλ(eα − |si|/ρ− 1)

|si|2

≥
aλ

(
c−ε

aλ(1+ε)β
2 − (α2+β2)1/2

ρ − 1
)

α2 + β2
,
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so that the assertion is implied by

|eusi | = e−(u−k)αe−kα ≤ e−(u−k)α
(
aλ(1 + ε)
c− ε

)k

β−2k.

2
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