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Abstract

The focus of my PhD research was the concept of modularity. In the last 15

years, modularity has became a classic term in different fields of biology. On the

conceptual level, a module is a set of interacting elements that remain mostly

independent from the elements outside of the module.

I used modular analysis techniques to study gene expression evolution in

vertebrates. In particular, I identified “natural” modules of gene expression in

mouse and human, and I showed that expression of organ-specific and system-

specific genes tends to be conserved between such distance vertebrates as mammals

and fishes.

Also with a modular approach, I studied patterns of developmental constraints

on transcriptome evolution. I showed that none of the two commonly accepted

models of the evolution of embryonic development (“evo-devo”) are exclusively valid.

In particular, I found that the conservation of the sequences of regulatory regions is

highest during mid-development of zebrafish, and thus it supports the “hourglass

model”. In contrast, events of gene duplication and new gene introduction are

most rare for genes expressed during early development, which supports the “early

conservation model”.

In addition to the biological insights on transcriptome evolution, I have also

discussed in detail the advantages of modular approaches in large-scale data

analysis. Moreover, I re-analyzed several studies (published in high-ranking journ-

als), and showed that their conclusions do not hold out under a detailed analysis.

This demonstrates that complex analysis of high-throughput data requires a co-

operation between biologists, bioinformaticians, and statisticians.



Résumé de la thèse

Le concept de modularité était au centre d’intérêt de ma thèse de doctorat. Au

cours des 15 dernières années, la modularité est devenue un terme classique dans

les différents domaines de la biologie. Sur le plan conceptuel, un module est

un ensemble d’éléments qui interagissent entre eux, et en même temps restent

indépendants des éléments extérieurs au module.

J’ai utilisé des techniques d’analyse modulaire pour étudier l’évolution de

l’expression des gènes chez les vertébrés. En particulier, j’ai identifié les modules

“naturelles” de l’expression des gènes chez la souris et l’homme, et j’ai montré que

l’expression de gènes organe-spécifiques et système-spécifiques est conservée entre

les vertébrés aussi distants que les mammifères et les poissons.

Egalement avec une approche modulaire, j’ai étudié les modèles de contraintes

de développement sur l’évolution du transcriptome. J’ai montré qu’aucun des

deux modèles de l’évolution du développement embryonnaire (“évo-dévo”) qui sont

communément admis n’est exclusivement valable. En particulier, j’ai trouvé que la

conservation des séquences des régions de régulation est la plus élevée au cours du

milieu du développement du poisson zèbre, et donc il suit le “hourglass model”. Au

contraire, les événements de duplication des gènes et de l’introduction de gènes

nouveaux sont les plus rares pour les gènes exprimés au début du développement,

qui soutient le “early conservation model”.

En plus des aperçus biologiques sur l’évolution du transcriptome, j’ai également

examiné en détail les avantages des approches modulaires de l’analyse des données

à grande échelle. De plus, j’ai ré-analysé plusieurs études (publiées dans des
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journaux de haut rang), et j’ai montré que leurs conclusions ne résistent pas

à une analyse détaillée. Cela démontre que l’analyse complexe de données à

grande échelle nécessite une coopération entre biologistes, bio-informaticiens et

statisticiens.



Introduction

It is unusual for a single idea to underpin such distant fields as biological sciences,

enterprise management, or the toy industry. Modularity is exactly this kind of

concept. Its meaning varies slightly depending on the context, but in general a

module is a part of the system that can be easily recombined with another module

to create a novel structure. One of the most illustrative example of modules are

the popular LEGO bricks (http://www.lego.com). The number of forms which

we can create with them is limited only by our imagination (and by the number

of bricks parents are willing to buy). The modular structure is also becoming

increasingly popular in the organization of enterprises. Especially in the computer

and apparel industries where integrated hierarchical organizations are replaced by

loosely coupled organizational forms. This allows for the flexible recombination of

organizational components into different configurations (Schilling and Steensma,

2001). While these and several other examples of modularity in product design

(Gershenson and Prasad, 1997), software design (Gamma, 1995), or even art

(Jablan, 2002), are human-derived, the most sophisticated modules were created

during the evolution of living organisms. Nevertheless, it is only in the last 15

years that the concept of modularity has attracted the attention of biologists

from different fields, including molecular biology, systems biology, evolutionary

developmental biology, or even cognitive psychology (Wagner et al., 2007).

From a biological point of view, a module is a set of elements that interact pref-

erentially between each other, and remain largely independent from the elements

outside of the module. It can be viewed as a semi-autonomous entity that evolves,

http://www.lego.com
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Figure 1: Examples of modules. (A) Mouse mandible consists of two variational modules — the
alveolar part and the ascending ramus (separated by the blue line). Figure adapted from Cook et al.
(1965). (B) The interaction network of cyclins and cyclin-dependent kinases is a functional module
responsible for yeast cell cycle progression. Figure generated with STRING version 9 (Jensen
et al., 2009). (C) cis-regulatory region of Cyp19 gene in which each promoter is a module driving
tissue-specific expression. Figure adapted from Rawn and Cross (2008).
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functions or participates in given processes relatively independently from other

modules (Espinosa-Soto and Wagner, 2010). A more precise definition of modu-

larity depends on the specific organismal level to which it applies. Several kinds

of modules are commonly recognized in biology, e.g. variational, functional, and

developmental (Wagner et al., 2007). A variational module is a set of phenotypic

features that vary together due to the pleiotropic effects of the genes involved in

their regulation, but remain independent of other such features due to the lack of

pleiotropic effects between them (Schlosser and Wagner, 2004). The two main parts

of the mouse mandible — the ascending ramus and the alveolar region — are good

examples of variational modules (figure 1A). Cheverud et al. (1997) has shown that

most of the QTLs influencing mandibular morphology affect either the components

of the ascending ramus or the components of the alveolus. A functional module is a

discrete unit that performs a biological function which is relatively independent

from the function of other modules (Hartwell et al., 1999). For example, a ribosome

is a module responsible for the synthesis of proteins, and the interaction network

of cyclins and cyclin-dependent kinases (figure 1B) is a module responsible for

yeast cell-cycle progression (Spirin and Mirny, 2003). A developmental module is

a part of an embryo that is autonomous in its differentiation process (Schlosser

and Wagner, 2004). It means that it can develop also outside its normal context,

e.g., in a different body location or even outside the body in a tissue culture. The

insect compound eye is a well known example of developmental module. Its devel-

opment has been induced on such different structures as wings, legs and antennae

of Drosophila (Halder et al., 1995). Importantly, the different kinds of modules

described above are not necessarily exclusive. For example, the two parts of the

mouse mandible are both variational and functional modules; the alveolus is a

teeth-bearing part and the ascending ramus is a muscle attachment site, which
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Figure 2: Integration of modules. Number of interactions between elements within the modules
is much higher, than the number of interactions between elements from different modules. Dashed
rectangles denote two modules. Figure adapted from Klingenberg (2008).

also articulates with the skull.

Modularity has been long ago recognized as an important feature for organismal

evolvability (Needham, 1933; Gould, 1977; Raff et al., 1991; Bonner, 1988; Wagner

and Altenberg, 1996). Due to the semi-independence of the modules, the changes

inside one module do not perturb the function of the other modules, and thus

modularity facilitates evolutionary processes. For example, cis-regulatory regions

show a highly modular structure, thanks to which adding a new promoter does not

disrupt gene expression but adds new tissue-specific function (e.g., in the primate

Cyp19 gene, which encodes for a key enzyme of estrogen biosynthesis, has evolved

a placenta-specific promoter; Bulun et al., 2004 [figure 1C]). Also, existing modules

can be re-deployed to perform new functions. Ancestral regulatory networks are

often re-used in a new context. For example, the gene network in which the

hedgehog protein induces the engrailed protein to pattern the insect wing is also

used to determine the localization of eyespots in butterflies wings (Keys et al.,

1999)

Depending on the level at which one studies modularity, and on the accessible

data, different methods are applied to detect the modules. Nevertheless, the final

result can always be pictured as shown on figure 2. Whatever the elements and
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the interactions are, the integration is always much stronger within than between

the modules. Here, only three examples of biological data and the methodologies

used for studying modularity will be discussed. First, one can analyze molecular

networks, such as protein–protein interaction networks or metabolic networks.

One of the common approaches to search for modular structures in networks is

based on the Girvan and Newman (2002) concept of edges betweenness, that allows

to distinguish inter- and intra-module edges, and thus divide the network into

modules. Briefly, one needs to compute all-against-all shortest paths of a network

and calculate the number of times each edge is traveled. The assumption is that

inter-modules edges are more often on some shortest path than intra-modules edges.

Second, one can analyze morphological data in order to detect variational modules.

High covariation among morphological traits allows to infer pleiotropic effects

of the genes and to delimit the modules. To this end all-against-all correlation

coefficients of the traits are calculated, and the sets of highly correlated traits define

the modules. Third, one can analyze gene expression data to identify regulatory

modules, i.e., sets of co-regulated genes that share a common function. These

modules are expected to consist of genes with coherent patterns of expression.

The most common approach to detect regulatory modules is based on clustering

methods that group together the genes with similar expression patterns. This type

of modules, their detection methods, and their study in an evolutionary context are

the focus of my work.

When I started my PhD, in 2008, microarray technology was in its heyday. It

allowed, for the first time ever, to study the function of thousands of genes simul-

taneously. But also for the first time ever it faced biologists with the challenges

of analyzing such complex and nonindependent data sets. Consequently the help

of statisticians and bioinformaticians became inevitable in molecular biological
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sciences. Having my degree both in biotechnology and mathematics I found it

exciting to contribute to the field.

The size of microarray data itself suggested the use of modular analysis. Divid-

ing the large-scale data into modules consisting of similarly expressed genes had

two important advantages. First, studying a limited number of modules, instead of

thousands of genes separately, simply made the analysis more feasible. Second,

the measure of expression level is more robust when averaged within the module,

than when considered separately for each gene, because fluctuations tend to cancel

each other out.

Initially, the most popular algorithms to partition gene expression data into

modules were hierarchical clustering and k-means clustering. In hierarchical

clustering, every gene starts in its own cluster, and the two most similar clusters

(according to the selected distance metric) are merged. The process is repeated

until a single cluster remains. As a result, the data are arranged in a tree structure

that can be divided into the desired number of clusters by cutting along the tree at

a given height. In k-means clustering, one needs to first specify the desired number

of clusters, k, and start with k data points (centroids of an initial set of clusters)

chosen either randomly or arbitrary. Then, all samples are partitioned into the k

clusters based on the selected distance metric. Next, the centroids are adjusted

to represent the new clusters’ center points and the partition of genes is repeated.

The procedure stops when the assignment of the genes to the clusters no longer

changes. Both hierarchical and k-means clustering methods were successfully used

to detect expression modules in very different contexts, e.g., functional clusters of

genes in the time course data of different processes in yeast (Eisen et al., 1998);

groups of genes differentially regulated in human tumor tissues (Alon et al., 1999;

Perou et al., 2000; Bittner et al., 2000); or transcriptional regulatory sub-networks
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in yeast (Tavazoie et al., 1999).

When the scale of the conditions under which gene expression was analyzed

changed from tens to hundreds the two clustering methods became of limited use.

The reason was twofold. First, standard clustering methods assign each gene to

a single cluster, while it is well known that thanks to the modular structure of

cis-regulatory elements a gene can perform more than one function in the organism

(e.g., Yuh et al., 1998; Pilpel et al., 2001). Thus, it would be desirable to allow for

partial overlap between the identified modules. Second, in standard clustering

methods the distance between genes (typically, Pearson’s correlation coefficient or

Euclidean distance) is calculated based on their expression across all experimental

conditions. This is problematic, because many genes are expressed only in a

limited number of conditions, and thus taking into account also the irrelevant

conditions introduces unwanted noise. This can hamper the identification of genes

co-regulated over small subsets of conditions.

The first method that took into consideration the two limitations of standard

clustering methods was the biclustering algorithm of Cheng and Church (2000).

The concept of bicluster introduced by the authors corresponded to a subset of

genes and a subset of conditions with a high similarity score (e.g., low mean

squared residue of bicluster elements). The algorithm was based on deletion

and addition of genes and conditions in order to iteratively improve the score of

biclusters. Biclusters which were discovered were masked to allow the detection of

other clusters in the next runs. Other algorithms that clustered simultaneously

the genes and their conditions of expression are briefly described in Ihmels and

Bergmann (2004), e.g., Coupled Two-Way Clustering (Getz et al., 2000), SAMBA

(Tanay et al., 2002), Fuzzy k-means (Gasch and Eisen, 2002), etc.

In 2003, Bergmann et al. proposed a new algorithm for large-scale data analysis,
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the Iterative Signature Algorithm (ISA). It aimed at discovering “transcription

modules” in gene expression data. A transcription module consisted of a set of

co-regulated genes, and the set of their regulating conditions. Thus, the module

genes show the most coherent expression patterns under the module conditions.

And vice versa, the module conditions are those that induce the most similar

expression of the genes in the module. The criterion for a gene (resp. condition)

to be assigned to a module is to have a gene (condition) score beyond the gene

(condition) threshold (figure 3A). A range of thresholds can be applied in a single

ISA run, which decomposes the data into the modules at different resolutions.

The higher the thresholds used, the smaller the modules obtained. Typically, the

algorithm starts from a set of randomly selected genes and through the iterations

it refines the genes and conditions until they match the definition of transcription

module. If the number of initial sets is large enough, all modules corresponding

to the given pair of thresholds can be recovered. An important advantage of the

ISA is its computation time that scales only linearly with the number of genes

multiplied by the number of conditions.

While the ISA was suitable to study the structure of a single data set at a

time, it soon became desirable to deal with more than one large-scale data set

in the studies of cellular phenotypes. For example, expression profiles of genes

(Staunton et al., 2001), proteins (Shankavaram et al., 2007), and microRNAs

(Gaur et al., 2007) were measured for 60 human cancer cell lines (NCI-60), along

with drug response profiles (Scherf et al., 2000). Thus, it was very tempting to

integrate these different kinds of high-throughput data, and thus shed light on

their interconnections on the molecular level. Initially, algorithms that aimed at

integrating different phenotypic data did it in a sequential manner. For instance,

groups of genes assigned to a cluster were tested for enrichment in genes from other



INTRODUCTION 9

Figure 3: Schematic representation of two modular algorithms. (A) The Iterative Signature
Algorithms discovers transcription modules (TM) by iteratively refining: (1) conditions in which
genes are expressed, and (2) genes which are expressed in conditions. (B) The Ping-Pong Algorithm
discovers co-modules (CM) by iteratively refining: (1) cells in which genes are expressed, (2) drugs
which affect cells, (3) cells responsive to drugs, and (4) genes that are expressed in cells. E —
expression data, R — drug response data.

predefined groups (such as those belonging to a cluster of a different data set). In

2008, Kutalik et al. proposed an extension of the ISA, a Ping-Pong Algorithm (PPA),

which allowed the simultaneous analysis of two large-scale data sets that share

one common dimension. Originally, it was used to combine the gene expression

data and drug-response data for NCI-60 cell lines. The PPA partitioned the data

into “co-modules” which consisted of genes, drugs and cell lines, such that the genes

were expressed in a similar way and the drugs induced similar response these cell

lines. Analogously to the ISA implementation, the PPA iteration also starts from a

random set of genes and uses thresholds when assigning genes, drugs and cells to

a co-module (figure 3B). Importantly (for my work), the PPA can be applied to any

large-scale data sets sharing one common dimension.

An important question in modern biology is whether gene expression is con-
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served through evolution between species (e.g., Yanai et al., 2004; Khaitovich et al.,

2005; Liao and Zhang, 2006a; Zheng-Bradley et al., 2010). There are two essential

methodological issues with the majority of studies aiming to answer this question.

First, they use the Pearson’s correlation coefficient or the Euclidean distance to

measure the similarity between gene expression patterns of two species. As I dis-

cuss in chapter 1, both metrics depend on the gene expression specificity, i.e., if one

compares a pair of broadly expressed genes vs. a pair of specifically expressed genes,

both pairs highly conserved, one pair will seem to be more conserved than the

other. Moreover, the results will be opposite for the Pearson’s correlation coefficient

and for the Euclidean distance. According to the Pearson’s correlation coefficient,

specifically expressed gene pair will seem more conserved, and the contrary will be

true for to the Euclidean distance. Second, in order to asses whether the expression

has been conserved by selection one needs to refer to an expectation for expression

similarity under neutral evolution. For species that have diverged for a long time,

and evolved under no selective pressure, no similarity in expression is expected to

remain. Jordan et al. (2005) suggested that such large neutral divergence could be

well approximated by calculating the distance between expression profiles of genes

with permuted orthology relations between them. In chapter 1 I show that this

approach is of very limited use when broadly expressed genes are abundant in the

data, which is a common case. Thus, I propose a novel randomization procedure

that is not biased by overrepresentation of any expression profiles in the data set.

Still, as discussed in section 1.4, the method is not free from some drawbacks.

In a further stage of my PhD research I abandoned the standard, but prob-

lematic approach, and used only the modular approach to study transcriptome

evolution. At that time, a modular approach to study gene expression evolution

was rather innovative. Only few studies in the field used modular approach,
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e.g., Oldham et al. (2006) analyzed modules of co-expressed genes in discrete

brain regions of human and chimpanzee, Yang and Su (2010) analyzed tissue-

related co-expression modules in mouse and human, and Cai et al. (2010) analyzed

co-expression modules of mouse and human stem cells. Although the modular

approach was not yet well established in the studies of gene expression evolution,

it led my research to very interesting findings.

In chapter 2, I present the results of my study on organ-specific and system-

specific genes and their expression conservation between vertebrates. Several stud-

ies already reported some evidence for conservation of gene expression between

homologous organs of vertebrates (Liao and Zhang, 2006a; Zheng-Bradley et al.,

2010; McCall et al., 2011). However, they computed organs’ similarity using Pear-

son’s or Euclidean distances that capture only global similarity across samples.

Specifically, these measures do not allow for detection of between-species units of

conservation, i.e., modules of organs and their specific genes that have remained

largely unchanged since the speciation event. To overcome this limitation, I used

the PPA to analyze mouse and human gene expression data. In this particular

case, the PPA requirement for data having a common dimension was fulfilled

twice, i.e., through one-to-one orthologous genes, and through homologous organs.

Thus, the resulting co-modules consisted of orthologous genes and the mouse and

human organs in which these genes were overexpressed; or they consisted of sets

of homologous organs and sets of mouse and human genes with coherent overex-

pression in these organs. In the PPA run with genes on the common dimension,

I recovered the information of organ homology based only on orthologous genes

expression patterns. In the PPA run with organs on the common dimension, I

found organs grouped into homologous systems (between mouse and human), and

their functional genes in both species. These genes were often orthologous between
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species, i.e., with expression conserved through evolution. I also found that genes

with expression conserved between mammals have their orthologs expressed in

the corresponding homologous organs in zebrafish, and thus are conserved within

vertebrates. In conclusion, I found conserved modularity of gene expression in

vertebrates that is clearly related to anatomical modularity.

In chapter 3, I present the results of my study on patterns of developmental

constraints acting on vertebrate evolution. Two main hypotheses of the evolution of

embryonic development have been put forward so far. First, the early conservation

model predicts that the highest conservation occurs at the beginning of embryo-

genesis (von Baer, 1828). Second, the hourglass model predicts that the highest

conservation can be found during mid-embryogenesis (Duboule, 1994; Raff, 1996).

In recently published studies the hourglass model has been favored (Domazet-

Lošo and Tautz, 2010; Irie and Kuratani, 2011). Usually, authors have compared

descriptive statistics of all genes across all developmental time points. Such an

approach introduces dependencies between the sets of compared genes, and may

lead to results biased by constantly expressed genes. To overcome this limitation, I

used the ISA to study the evolution of zebrafish development. I identified modules

of genes co-expressed specifically in consecutive stages of zebrafish development.

Next, I performed a detailed comparison of several gene properties between mod-

ules. I detected the hourglass pattern only at the regulatory level, where sequences

of regulatory regions were most conserved for genes expressed in mid-development.

In contrast to some previous studies, I did not detect the hourglass model at the

level of gene sequence, gene age or gene expression. Gene duplication and birth

were most rare in early development, supporting the early conservation model.

Finally, all gene properties displayed the least conservation in late development

and adult, consistent with both models of developmental constraints. Overall,
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different levels of molecular evolution follow different patterns of developmental

constraints, and thus neither the early conservation nor the hourglass model seems

exclusively valid.

An important part of chapter 3 (in my humble opinion) is a detailed discus-

sion of work of Domazet-Lošo and Tautz (2010) who showed that the age of the

transcriptome expressed over zebrafish development reflects the hourglass pattern.

The existence of the hourglass model has been debated in the evo-devo community

over last 25 years. And any published evidence supporting this model was always

welcome with enthusiasm by the community. In 2010, the hourglass problem

has attracted considerable attention even outside the evo-devo field thanks to

two landmark papers in Nature (Domazet-Lošo and Tautz, 2010; Kalinka et al.,

2010) that were granted a cover page. The paper of Domazet-Lošo and Tautz was

widely commented also on general public venues, such as the Panda’s Thumb blog

(http://pandasthumb.org/archives/2010/12/its-just-a-stag-2.html). The

comments mostly referred to the finally discovered proof of the hourglass model. It

remained unnoticed that the methodology applied in this work was far from the

standard and widely accepted statistical methods for microarray data analysis. In

chapter 3, I show that after a detailed analysis of the data from Domazet-Lošo and

Tautz (2010), the authors’ conclusion does not hold out.

If I had to summarize my four years experience of being a graduate student, I

would say it reminded me of looking for a needle in a haystack. Moreover, I could

never be sure if I faced the right haystack. Nevertheless, I hope that the reading of

this dissertation will convince the reader that my work was not that hopeless as it

seems from purely probabilistic point of view.

Lausanne, 10th October 2012 B.P.

http://pandasthumb.org/archives/2010/12/its-just-a-stag-2.html
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Correcting for the bias due to expression specificity

improves the estimation of constrained evolution of

expression between mouse and human

Barbara Piasecka, Marc Robinson-Rechavi, Sven Bergmann

Abstract

Comparative analyses of gene expression data from different species have become

an important component of the study of molecular evolution. Thus methods are

needed to estimate evolutionary distances between expression profiles, as well as a

neutral reference to estimate selective pressure. Divergence between expression

profiles of homologous genes is often calculated with Pearson’s or Euclidean dis-

tance. Neutral divergence is usually inferred from randomized data. Despite being

widely used, neither of these two steps has been well studied. Here, we analyze

these methods formally and on real data, highlight their limitations, and propose

improvements.

It has been demonstrated that Pearson’s distance, in contrast to Euclidean

distance, leads to underestimation of the expression similarity between homologous

genes with a conserved uniform pattern of expression. Here, we first extend this

study to genes with conserved, but specific pattern of expression. Surprisingly, we
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find that both Pearson’s and Euclidean distances used as a measure of expression

similarity between genes depend on the expression specificity of those genes. We

also show that the Euclidean distance depends strongly on data normalization.

Next, we show that the randomization procedure that is widely used to estimate

the rate of neutral evolution is biased when broadly expressed genes are abund-

ant in the data. To overcome this problem, we propose a novel randomization

procedure that is unbiased with respect to expression profiles present in the data

sets. Applying our method to the mouse and human gene expression data suggests

significant gene expression conservation between these species.

This article was published in Bioinformatics (2012) 28 (14): 1865–1872.

doi: 10.1093/bioinformatics/bts266
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1.1 Introduction

Changes in gene expression have been suggested to underlie many differences

in gene function or in phenotype. More generally, expression is an important

component of gene function, and studying the evolution of gene expression is a

key step in evolutionary genomics. While there has been a great deal of research

concerning the primary treatment of expression data in general (see Quackenbush,

2002, and Garber et al., 2011 for reviews), there has been little investigation into

the methods used more specifically to quantify expression evolution (Pereira et al.,

2009). This can make it difficult to critically assess contradictory results, such as

the reports that broadly expressed genes are more conserved (Khaitovich et al.,

2005) or less conserved (Liao and Zhang, 2006b; Liao et al., 2010) than specifically

expressed genes.

In order to assess whether and how much expression has been conserved

between two orthologous genes by selection, we need an expectation for expression

similarity under neutral evolution. Thus, the estimation of gene expression conser-

vation requires two components: i) a measure of gene expression similarity, and ii)

the expected value of the divergence level under neutrality.

The two most common measures of similarity between expression profiles of or-

thologous genes are Pearson’s correlation coefficient (Yanai et al., 2004; Yang et al.,

2005; Liao and Zhang, 2006a,b; Xing et al., 2007; Chan et al., 2009; Zheng-Bradley

et al., 2010) and Euclidean distance (Yanai et al., 2004; Jordan et al., 2005; Liao and

Zhang, 2006a). The results obtained with Pearson’s and Euclidean distances have

been reported to be poorly correlated (Liao and Zhang, 2006a; Pereira et al., 2009).

This poses the question which of these measures provides a better description of

expression similarity. It has been demonstrated that Pearson’s correlation coeffi-

cient, in contrast to Euclidean distance, underestimates the expression similarity
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between orthologous genes with a conserved uniform pattern of expression. In

consequence, use of the Euclidean distance has been encouraged (Pereira et al.,

2009).

For neutral evolution, one expects that similarity between expression profiles of

orthologous genes gradually decreases with time. For species that have diverged for

sufficiently long time no detectable similarity in expression is expected to remain;

this has been postulated to be the case between mouse and human (∼ 100 million

years; Jordan et al., 2005). It has been suggested that such large neutral divergence

could be approximated by calculating the distance between expression profiles of

randomly chosen pairs of genes from the species compared. The standard approach

used to generate random pairs of genes is to permute the orthology relationship

between them (Liao and Zhang, 2006a,b; Xing et al., 2007; Chan et al., 2009;

Zheng-Bradley et al., 2010).

Here, we show formally and empirically that, in contrast to previous reports

(Liao and Zhang, 2006a; Pereira et al., 2009), there exists a relationship between

the Pearson’s correlation coefficient and the Euclidean distance, which depends on

the data normalization. We also extend the previous study of Pereira et al. (2009)

by considering more than just the uniform pattern of expression. We demonstrate

that in fact both distance measures depend on the expression specificity of analyzed

genes. Next, we discuss these observations in the context of the assessment of

gene expression conservation. We show that the comparison of expression profiles

for randomly permuted gene pairs is biased when broadly expressed genes are

abundant in the data, a distribution characteristic of many datasets. To overcome

this problem, we propose a novel procedure to generate random gene pairs. This

procedure is not biased by the over- or underrepresentation of any expression

profile in the data sets. Finally, we use our approach to provide clear evidence for
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constrained evolution of gene expression between mouse and human.

1.2 Methods

1.2.1 Gene expression data

We used the human and mouse gene expression data from the GNF Gene Expres-

sion Atlas of Su et al. (2004) as a case study. This study was performed on the

Affymetrix HG-U133A array as well as on the custom array GNF1H for human,

and on the custom array GNF1M for mouse. In total, expression profiles for 79

human and 61 mouse organs were measured, with 44,928 probe sets for human

and 36,182 probe sets for mouse. We only took into account organs belonging to

the homologous organ groups (HOGs) defined in the Bgee database (Bastian et al.,

2008). Using the mapping available in the Bgee database we could connect 36

human organs and 30 mouse organs to 27 HOGs. See Supplementary table S1 for

the list of HOGs and their corresponding organs. Microarray data were normalized

with the gcrma R package (Wu et al., 2004).

To assign the probe sets to their corresponding human or mouse genes we used

the mapping available in Bgee. We kept only probe sets which matched to a unique

Ensembl gene. A total of 15,121 probe sets corresponding to 13,853 mouse genes,

and 23,920 probe sets corresponding to 15,338 human genes were found.

To estimate the expected values of distances for gene pairs with conserved

expression patterns, we used data from replicated experiments, performed in each

species. Thus, for each probe set we had two vectors of values representing its

expression over the organs. The data sets contained 36 organs and 23,920 probe set

pairs for human, and 30 organs and 15,121 probe set pairs for mouse. The results

of the study on mouse gene expression data are presented in the Supplementary
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Materials.

To study gene expression evolution between mouse and human we merged

human and mouse organs into 27 HOGs. For every probe set in each HOG the

arithmetic mean of the gcRMA normalized expression values was calculated (each

HOG was represented by at least two microarrays). We used a subset of 8,942

one-to-one orthologous gene pairs (see Human–mouse orthologous genes). If the

gene was matched by more than one probe set on the microarray, we randomly

picked one probe set to represent that gene.

1.2.2 Human–mouse orthologous genes

Homology information of human and mouse genes was retrieved from Ensembl

release 55 (Hubbard et al., 2009), using BioMart (Smedley et al., 2009). A total of

8,942 pairs of human–mouse one-to-one orthologous genes had expression inform-

ation in the data sets we used.

1.2.3 Normalization procedures

For a given gene we consider a vector x of expression intensities xi across n different

organs indexed by i = 1, ...n. The Manhattan normalization of x is calculated by

dividing it by its L1 norm:

||x||1 =
n∑

i=1
|xi|.

In some studies (Liao and Zhang, 2006a; Pereira et al., 2009) this normalization is

called relative abundance. The Euclidean normalization of vector x is calculated

by dividing the vector by its L2 norm:

||x||2 =
√

n∑
i=1

x2
i .
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Finally, we introduce a so-called z-like normalization of x which corresponds to the

Euclidean normalization of x minus its mean value:

z̃x = x− x̄
||x− x̄||2

.

1.2.4 Pearson’s and Euclidean distances

The Pearson’s distance (dP) between two expression profiles is defined as 1− r,

where

r = 1
n

n∑
i=1

(xi − x̄)(yi − ȳ)
sxsy

= z̃T
x z̃y = 1

n
zx

Tzy (1.1)

is the Pearson’s correlation coefficient between vectors x and y. Here the vector

elements xi and yi are the expression signal intensities of two genes in the condition

i, x̄ and ȳ are the sample means, sx and sy are the sample standard deviations. zx

and zy are the z-scores of vectors x and y.

The Euclidean distance (dE) between two expression profiles is defined as

dE =
√

n∑
i=1

(xi − yi)2 (1.2)

with notations as for equation 1.1.

1.2.5 Organ specificity of gene expression

In order to measure the expression specificity of human genes we used the organ

specificity index τ (Yanai et al., 2005). The τ of a given gene with an expression

vector x is defined as follows:

τ=
∑n

i=1(1− x̂i)
n−1

, (1.3)
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where

x̂i = xi

||x||∞
= xi

max1≤i≤n(xi)
.

The value of τ varies between 0 and 1, with higher values indicating higher organ

specificity.

1.2.6 τ-group composition

In order to study the relation between dE and τ we used replicated expression

data for human genes (36 organs, 23,920 probe sets). We sorted the probe set pairs

according to the organ specificity index τ (equation 1.3) of the first replicate, and

we divided the probe set pairs into three τ-groups of equal size (e.g., the first group

contained 1/3 of the probe set pairs with the first replicate having lowest τ). For

each group we recorded the minimum and maximum τ value of the first replicate,

and used these values to filter out probe sets with the two replicates having τ

values from different groups. The resulting τ-groups were of similar, but not

equal, size (table 1.1). An alternative τ-group composition, with a more balanced

distributions of τ values (first group containing genes with τ ∈ [0,0.2); second group

with τ ∈ [0.2,0.6); and third group with τ ∈ [0.6,1]) leads to unbalanced sizes of

three groups. Nevertheless, for both approaches the results are qualitatively the

same (Supplementary figures S6 and S7).

1.2.7 Randomization procedures

Changes in gene expression patterns between randomly chosen genes from two

species have been suggested as an approximation for the result of neutral ex-

pression evolution (Jordan et al., 2005). We used two different randomization

procedures to create such sets of random gene pairs. First, we permuted the
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gene order within replicates (or within species). We refer to these as randomly

permuted pairs. Second, we performed what we refer to as “τ-uniform sampling”.

We first randomly chose an organ specificity index (τ), uniformly from the interval

of (τmin, τmax), where τmin and τmax are the lowest and the highest values of the

observed τ, respectively. Next, we picked the gene with the value of τ closest to the

randomly chosen τ within one data set (i.e., within one replicate, or one species).

Then, independently, we repeated the procedure for the second data set. Thus, we

obtained two randomly chosen genes which form a new random pair. Repeating

the procedure provides the“τ-uniform” random gene pairs.

1.3 Results and Discussion

1.3.1 Correlation between Pearson’s and Euclidean distances
depends on data normalization

To compare gene expression between species, over many different conditions, it is

important to normalize the expression levels between the conditions in order to

obtain a common scale between species. This is distinct from the preprocessing

normalization (within condition), which is typically done using methods such as

LOESS (Yang et al., 2002b) or gcRMA (Wu et al., 2004), and is not specific to

inter-species evolutionary studies. In the following, we only consider the impact

of the between conditions normalization on the evolutionary comparisons. We

discuss three normalization procedures commonly used for evolutionary studies:

Manhattan normalization (also referred to as “relative abundance”; Liao and Zhang,

2006a), Euclidean normalization and z-like normalization (see Normalization

procedures for mathematical definition of all three normalizations).

One can use any of these normalizations before calculating the Pearson’s or
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Euclidean distance between two gene expression profiles. However, the choice

of normalization can affect the results. Pearson’s distance (dP) between two

expression profiles remains the same, regardless of whether and how the data

are normalized, and it ranges between 0 and 2. The reason is that r is defined

on the z-scores (see equation 1.1 in Methods), which are invariant with respect to

linear transformation. In contrast, the Euclidean distance between two expression

profiles (dE) changes its value depending on the normalization used, even though

the interval of possible dE values is always between 0 and 2.

The correlation between dP and dE is poor for Manhattan (Supplementary

figure S1A; see also Liao and Zhang, 2006a; Pereira et al., 2009) and Euclidean

normalizations (Supplementary figure S1B). In contrast, z-like normalization leads

to an interdependent relationship between dP and dE, defined by

d2
E = 2dP (1.4)

(see Theoretical Analysis in Supplementary Material, and Supplementary figure

S1C). As dP gives the same results for all three normalizations, and for z-like

normalization it is equal to 1
2 d2

E, we focused on the Euclidean distance. If not stated

otherwise, the Euclidean distance was calculated for all three normalizations:

Manhattan, Euclidean and z-like, referred to as dM
E , dE

E and dZ
E, respectively.

1.3.2 Commonly used measures of gene expression similar-
ity depend on the organ specificity of the genes

Intuitively, one might assume that the distance between two orthologous genes

which have conserved the expression profile of their last common ancestor should be

close to zero, and that this should hold regardless of the gene expression pattern. In
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order to assess if this is indeed the case, we performed an empirical study. We used

human microarray data with the expression information from 36 different organs

in two replicates (Su et al., 2004). The replicates were used to “simulate” pairs

of genes with conserved expression profiles. We calculated the organ specificity

index τ (equation 1.3) for each pair of replicates, and then divided them into three

τ-groups of similar size (see τ-group composition for details). The first two groups

contained broadly expressed genes (τ≤ 0.295), and only the third group consisted

of genes with more specific expression patterns (τ> 0.295) (table 1.1).

Table 1.1: Composition of three τ-groups of human probe set (ps) pairs

Organ specificity (τ) Number of ps pairs
τ-group 1 0.003≤ τ≤ 0.117 6348
τ-group 2 0.117< τ≤ 0.295 5280
τ-group 3 0.295< τ≤ 0.879 6692

We measured the Euclidean distances (dM
E , dE

E and dZ
E) for probe set pairs

within each τ-group. The resulting levels of expression similarity between rep-

licates strongly depended on the organ specificity level. Values of dM
E and dE

E

were significantly lower for broadly expressed genes than for organ-specific genes

(p < 10−16, Mann–Whitney U test, figure 1.1A,B; Supplementary figure S5A,B).

In contrast, values of dZ
E were significantly higher for broadly expressed genes

than for organ-specific genes (p < 10−16, Mann–Whitney U test; figure 1.1C; Sup-

plementary figure S5C). See Supplementary figure S3 for the correlation analysis

between the Euclidean distances and organ specificity index.
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Figure 1.1: The distribution of expression similarity between human replicates depends
on their organ specificity. (A) dM

E and (B) dE
E are significantly lower for broadly expressed genes

(group 1) than for organ-specific genes (group 3). For randomly permuted gene pairs dM
E and dE

E
also differ between the three τ-groups. They are significantly lower for random pairs in group
1 than in group 3. (C) dZ

E is significantly higher for broadly expressed genes (group 1) than for
organ-specific genes (group 3). dZ

E for randomly permuted pairs is high in all three groups, even in
the first τ-group, where random pairs consist of two broadly expressed genes (this is a consequence
of low r for uniformly expressed genes). Note that the scale of the x-axis differs strongly between
graphs.
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1.3.3 The rate of neutral expression evolution estimated with
randomly permuted gene pairs depends on the organ
specificity of the genes

The rate of neutral expression evolution is typically approximated by calculating

the distance between expression profiles of randomly paired genes. The random

choice of the genes is assumed to remove any similarity between them (Jordan

et al., 2005). The standard approach to generate random gene pairs is to permute

the ortholog relationship between the genes in the data sets. We created random

probe set pairs by permuting the probe set order within each of the three τ-groups

separately, and we then calculated the Euclidean distances (dM
E , dE

E and dZ
E)

between their expression profiles. We found that dM
E and dE

E were significantly

lower for random pairs from the first τ-group, than for random pairs from the

third τ-group (p < 10−16, Mann–Whitney U test; figure 1.1A,B; Supplementary

figure S5A,B). This is because the first τ-group consisted of broadly expressed

genes. Consequently, even the randomly matched probe set pairs tended to have

similar expression patterns and thus low distances. In contrast, the third τ-group

consisted of genes with more specific expression patterns, and so the random pairs

were truly different.

dZ
E between random pairs was not affected by organ specificity, in the sense that

in all three τ-groups the median dZ
E was around 1.4 (figure 1.1C; Supplementary

figure S5C). Values of dZ
E were high even in the first τ-group, although it consisted

of random pairs with similar, broad patterns of expression. The reason is that

dZ
E =p

2(1− r) is a decreasing function of r, which for broadly expressed gene pairs

reflects mainly the noise of the measurement and is close to 0 (see Pereira et al.,

2009 for details, and Supplementary figure S2). Thus, random gene pairs from the

first τ-group tend to have high dZ
E values (around

p
2).
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1.3.4 A large fraction of broadly expressed genes leads to an
underestimation of expression conservation

Our analysis shows that if the fraction of broadly expressed genes is large, the level

of gene expression conservation is likely to be underestimated. This is especially

important if we consider the fact that housekeeping genes (broadly expressed) are

more frequent than organ-specific genes (Ramsköld et al., 2009). We found such

skewed distributions not only in the human data considered here (figure 1.3A),

but also in several other data sets, e.g., most mouse genes are broadly expressed

over different organs, most Arabidopsis genes are broadly expressed over different

light conditions, and most zebrafish genes are broadly expressed over different

developmental stages (Supplementary figure S4).

To illustrate the extent to which the abundance of broadly expressed genes

affects measures of gene expression conservation, we re-analyzed all the human

probe set pairs, without dividing them into τ-groups. We created random probe set

pairs by permuting the probe set order within both replicates, and we calculated

the Euclidean distances (dM
E , dE

E and dZ
E) both for the pairs of replicates and for

the random pairs. Ideally, one would expect to detect very high similarity between

replicates, and very low similarity between random pairs.

For Manhattan and Euclidean normalizations, distances for most human ran-

dom pairs were very small, indistinguishable from the distances between replicates

(figure 1.2A,B; Supplementary figure S8A,B). This contradicts the assumption that

differences between randomly paired genes are to approximate well the rate of

neutral divergence, with very low similarity (i.e., high distance) expected (Jordan

et al., 2005). For the z-like normalization, distances between random pairs were

high, which is consistent with the assumption of pseudo-neutrality (Jordan et al.,

2005). However the dZ
E values for the replicates were similarly high (figure 1.2C;
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Figure 1.2: Overrepresentation of broadly expressed human genes causes underestim-
ation of the conservation of expression when randomly permuted pairs are used to
approximate the neutral evolution rate. (A, B) For most randomly permuted pairs (grey) the
distance (dM

E and dE
E) is small, indistinguishable from the distances between replicates (green). For

τ-uniform random pairs (blue) dE
E and dM

E are higher, which is more consistent with the assumption
about neutral evolution (Jordan et al., 2005). (C) dZ

E is high both for randomly permuted gene pairs
and for the group of replicates. The distribution of dZ

E does not change with the new random pairs
set.

Supplementary figure S8C), whereas they are expected to be low. Thus, the pres-

ence of numerous broadly expressed genes causes systematically low values of

dM
E and dE

E between randomly paired genes, and systematically high values of dZ
E

between conserved gene pairs. The first is a consequence of the fact that it is easier

to randomly choose two broadly expressed genes, and thus to get a low value of

dM
E or dE

E . The second is a consequence of low values of r for uniformly expressed

genes, leading to the high values of dZ
E (as discussed in subsection 1.3.3). In all

cases, the level of gene expression conservation is underestimated.

Although we show this effect using a specific set of human microarray data, our

conclusions are very general and hold for any study in which a significant fraction

of the genes is uniformly expressed over conditions (see figure S2 and its caption

for a mathematical explanation).
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Figure 1.3: Random gene pairs have their τ values differently distributed depending on
the randomization procedure used. (A) τ distribution for human replicates. The τ pairs are
distributed along the diagonal, which is expected for replicates. (B) τ distribution for randomly
permuted gene pairs. The τ pairs are biased towards low values, which are the most frequent
values in human data sets. (C) τ distribution for τ-uniform random pairs. The τ pairs are uniformly
distributed, and not biased towards the low values.

1.3.5 An alternative construction of random gene pairs im-
proves the estimation of expression conservation

To overcome the limitation of using randomly permuted gene pairs to estimate

the expression divergence under neutrality, we propose a new procedure to create

random gene pairs. This procedure is unbiased regardless of over- or underrepres-

entation of any expression profiles in the data sets. Consequently, it provides a

better approximation of the expression divergence under neutral evolution between

distant species. In order to generate a single random pair of genes, one randomly

chooses two expression specificity values, τ1 and τ2, uniformly from the interval

of (τmin, τmax), where τmin and τmax are the lowest and the highest values of the

observed τ, respectively. Next, one picks the two genes from the two data sets

that have the closest τ values to τ1 and τ2, respectively. The resulting pairs of

genes have the two τ values uniformly distributed, and not biased as for randomly

permuted gene pairs (figure 1.3B,C).

We applied our new procedure 23,920 times to create as many random probe

set pairs for human data sets. Then, we calculated the Euclidean distances (dM
E ,
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dE
E , and dZ

E) both for replicates and random probe set pairs. We found that, relative

to classical randomly permuted pairs, the distribution of dE
E and dM

E for τ-uniform

random pairs differs strongly from that for replicates (figure 1.2A,B), with a high

frequency of large distance values, as expected for very divergent pairs. Of note, dM
E

and dE
E give the same shape of distribution (figure 1.1A,B and figure 1.2A,B). While

both of these measures could be combined with τ-uniform sampling to estimate

gene expression conservation, for mathematical consistency we prefer the use of

dE
E .

The estimation of gene expression conservation with dZ
E cannot be corrected by

creating the set of random gene pairs differently, because dZ
E varies significantly

with organ specificity for replicates, i.e., for conserved genes, and not for random

gene pairs. Thus, we do not recommend using dZ
E, and consequently the Pearson’s

correlation coefficient, in any study which aims to detect similarity between genes

expressed uniformly over all conditions.

Of note, neither the standard procedure used to generate random pairs, nor

our new proposed approach takes into consideration the time passed since the

divergence of two organisms. Therefore, the estimated “neutral” divergence will

be the same for closely related species (e.g., human and chimp) and more distant

species (e.g., human and mouse).

1.3.6 Results of the comparative study of human and mouse
gene expression differ strongly according to the choice
of randomization method

To demonstrate the importance of our novel approach, we investigated how much

evidence of selectively constrained gene expression evolution we can detect between

human and mouse. We selected 8,942 one-to-one orthologous gene pairs from the
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Figure 1.4: The choice of the randomization method changes the conclusions about gene
expression evolution between mouse and human. There is no clear evidence for constrained
evolution if we compare the distribution of dE

E for orthologous (green) and randomly permuted gene
pairs (grey). Whereas, comparison of dE

E distribution for orthologous (green) and τ-uniform random
pairs (blue) suggest that expression evolution is far from neutral.

human and mouse data sets (Su et al., 2004). We created two sets of random gene

pairs, using both random permutation and the procedure of τ-uniform sampling,

and we calculated the Euclidean distance (dE
E) for orthologous gene pairs and

for both sets of random pairs (see Figure S9 for analogous analysis with dM
E ).

If the dE
E value for a human–mouse orthologous gene pair is smaller than the

5th percentile of dE
E for randomly paired genes, there is some evidence that the

expression evolution of this pair has been constrained (Liao and Zhang, 2006a).

Using randomly permuted gene pairs did not provide clear evidence for constrained

evolution (figure 1.4). Only 8% of orthologous pairs were identified to have a

conserved expression pattern, which was close to the random expectation of 5%. In

contrast,with τ-uniform random pairs, 29% of orthologous genes were identified to

have conserved expression (figure 1.4).

The number of detected genes with conserved expression pattern may seem

surprisingly low in comparison to Liao and Zhang (2006a), who reported that as
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much as 84% of genes showed conserved expression between human and mouse.

However, we note that Liao and Zhang (2006a) used two different metrics to calcu-

late the distance between orthologous genes and between randomly paired genes

— the so called net distance and the Euclidean distance, respectively. We show

that this inconsistency caused an overestimation of the expression conservation

between human and mouse (see Supplementary Materials and Supplementary

figure S10). Consequently, we believe that correcting for the randomization process

yields more accurate results than a one-sided correction of the distance.

We are aware that the alternative way of creating random gene pairs proposed

in this paper has some weaknesses, such as visible artificial peaks in the dE
E

distribution (figure 1.4), which are the consequence of the non uniform distribution

of τ between 0 and 1. This is because with the τ-uniform sampling one chooses

the genes with less frequent τ values more often than genes with more frequent τ

values. For example here, the number of narrowly expressed genes was increased

at the expense of decreasing the number of broadly expressed genes. Consequently,

when only a few genes have a τ value in some non-negligible range, these few

genes might repeat many times in the randomized set, and discrete effects may

manifest themselves causing artificial peaks. Note that the peaks would disappear

if τ values were uniformly distributed between 0 and 1, but then there would be no

need for τ-uniform sampling of gene pairs at all. Note also that the peaks do not

affect the analysis, as they do not change the overall shape of the distribution of

distance values between the randomized gene pairs (figure 1.4).

Finally, one may argue that the τ-uniform sampling contradicts the very pur-

pose of randomization because it makes a probability of choosing a gene higher, if

its τ-value is underrepresented in the data set. But the aim of the set of randomized

gene pairs is not to be “just random”, but to display maximal divergence between
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gene pairs, i.e., to simulate the neutral evolution defined in Jordan et al. (2005). In

contrast to the standard approach, the τ-uniform sampling makes the distribution

of distance values between gene pairs actually independent of the τ distribution

observed in the analyzed data set. Thus, we believe that the distance between

τ-uniform random gene pairs approximates better a large neutral divergence.

1.4 Conclusions

The Euclidean distance should be used with caution as an estimator of gene

expression conservation because it varies as a function of expression specificity. Our

results strongly suggest that to assess whether gene expression evolves neutrally,

one should use dE
E (Euclidean distance preceded by Euclidean normalization) and

compare its distribution for orthologous and τ-uniform random pairs. Importantly,

we validated this approach on real data, and recovered clear evidence for gene

expression conservation between mouse and human. Previous small differences

reported between real and random gene pairs were likely caused by the way the

random pairs were constructed (Liao and Zhang, 2006a,b). Although in this study

we applied our approach to microarray data analysis, the issues highlighted here

are also relevant to data acquired with RNA-seq technology (Mortazavi et al.,

2008).

We would like to emphasize that while it is possible to verify whether the

expression of a given set of genes was under selective pressure, there is no straight-

forward way to compare the strength of selection acting on two groups of genes with

different expression patterns. Indeed, if we compare a group of broadly expressed

genes with a group of narrowly expressed genes, with similar high conservation

of expression, the latter will always have higher dE
E values (and lower dZ

E values).

This methodological problem suggests a need to re-interpret results from previous
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evolutionary studies comparing the evolution of broadly and narrowly expressed

genes. In particular, studies which have reported higher conservation of organ-

specific genes (Liao and Zhang, 2006b; Liao et al., 2010; Movahedi et al., 2011)

could have been biased by the fact of using the Pearson’s correlation coefficient

(equivalent to dZ
E) as a measure of conservation.

In this paper, we thoroughly analyzed, formally and experimentally, the com-

mon measures of expression conservation, and we showed the superiority of the

Euclidean distance paired with the Euclidean normalization. We also highlighted

the limitation of using randomly permuted pairs to approximate neutrally evolving

genes, and proposed a new methodology to better estimate the rate of neutral

evolution. With the increase of expression data for many species, our work is likely

to become very useful for evolutionary studies of gene expression.
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correlation between r and d2 is low (0.12 and 0.09, respectively). (C) For z-like

normalization there is linear dependence between r and d2.

Figure S2: Euclidean distance between two genes with conserved ex-

pression patterns (A,B) depends on data normalization mode and spe-

cificity of genes expression. For Euclidean normalization the distance is lower

for genes expressed over all conditions (C) than for specifically expressed genes

(D). For z-like normalization the distance is higher for genes expressed over all

conditions (E) than for specifically expressed genes (F). Regression line is plotted

in red. Identity line (y = x) is plotted in blue. Note that d2
E can be estimated by

summing squared distances (in the y-direction) from the points to the blue line.

Figure S3: Euclidean distance between replicates (simulating genes

with conserved expression patterns) depends on data normalization and

specificity of genes expression. For Manhattan and Euclidean normaliza-

tion (A,B) the distance is positively correlated with the expression specificity,

whereas for z-like normalization (C) this correlation is negative. Top: human rep-

licates. Spearman correlation coefficients: for dM
E : 0.89, for dE

E : 0.88, for dZ
E :−0.56.

Bottom: mouse replicates. Spearman correlation coefficients: for dM
E : 0.68, for

dE
E : 0.64, for dZ

E :−0.81.

Figure S4: τ distribution is not uniform in the real data. (A,B) τ dis-

tribution for human replicates. (C,D) τ distribution for mouse replicates. (E) τ

distribution for zebrafish genes expressed during the ontogeny (Domazet-Lošo and

Tautz, 2010). (F) τ distribution for Arabidopsis genes expressed in different light

conditions (NASC 2007, GEO accession number GSE5617).

Figure S5: The distribution of expression similarity between mouse

replicates depends on their organ specificity. (A) dM
E and (B) dE

E are signi-

ficantly lower for broadly expressed genes (group 1) than for organ specific genes
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(group 3). For randomly permuted pairs of genes dM
E and dE

E also differ between

the three τ-groups. They are significantly lower for random pairs in group 1 than

in group 3. (C) dZ
E is significantly higher for broadly expressed genes (group 1)

than for organ specific genes (group 3). dZ
E for randomly permuted pairs is high

in all three groups even in the first τ-group, where random pairs consist of two

broadly expressed genes (this is a consequence of low r for uniformly expressed

genes) Note that scale of x-axis differs strongly between graphs.

Figure S6: The distribution of expression similarity between human

replicates depends on their organ specificity. Presented 3 groups of gene

pairs have balanced τ distribution. Group 1: τ: 0–0.2; 10,723 gene pairs; Group

2: τ: 0.2–0.6; 7,551 gene pairs; Group 3: τ: 0.6–1; 1,514 gene pairs. For the

explanation of the figure please refer to figure S5.

Figure S7: The distribution of expression similarity between mouse

replicates depends on their organ specificity. Presented 3 groups of gene

pairs have balanced τ distribution. Group 1: τ: 0–0.2; 5,424 gene pairs; Group 2: τ:

0.2–0.6; 5,688 gene pairs; Group 3: τ: 0.6–1; 2,303 gene pairs. For the explanation

of the figure please refer to figure S5.

Figure S8: Overrepresentation of broadly expressed mouse genes causes

underestimation of the conservation of expression when randomly per-

muted pairs are used to approximate the neutral evolution rate. (A,B) For

noticeable number of randomly permuted pairs the distances (dM
E and dE

E) are

small, indistinguishable from the distances for replicates. (C) dZ
E is high both for

permuted gene pairs and for the group of replicates. (A,B) For τ-uniform random

pairs dE
E and dM

E are higher, which is more consistent with the assumption about

neutral evolution from Jordan et al. (2005). (C) distribution of dZ
E does not change

with the new random pairs set.
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Figure S9: The choice of the randomization method changes the con-

clusions about gene expression evolution between mouse and human.

There is no clear evidence for constrained evolution if we compare the distri-

bution of dM
E for orthologous (green) and randomly permuted gene pairs (grey).

Whereas, comparison of dM
E distribution for orthologous (green) and τ-uniform

random pairs (blue) suggest that expression evolution is far from neutral.

Figure S10: One-sided correction of the Euclidean distance lead to

different distributions of distance values for two sets of randomly paired

genes. Using 3,193 human–mouse orthologous gene pairs (all human genes

covered by multiple probe sets), we generated two sets of randomly permuted gene

pairs. For the first set (simulating the set of genes with non-conserved expression

profiles) we calculated the net distance, for the second set (used to estimate neutral

evolution) we calculated the Euclidean distance. Because both sets were “equally

random”, one should not expect any differences between them. However, as much

as 20% of gene pairs from the first random set (green) was detected to be more

conserved than gene pairs from the second random set (grey).

Table S1: List of homologous organ groups (HOGs) and their corres-

ponding organs (sample names) in mouse and human.

Table S2: Composition of three τ-groups of mouse probe set (ps) pairs.
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Abstract

The degree of conservation of gene expression between homologous organs largely

remains an open question. Several recent studies reported some evidence in favor of

such conservation. Most studies compute organs’ similarity across all orthologous

genes, whereas the expression level of many genes are not informative about organ

specificity.

Here, we use a modularization algorithm to overcome this limitation through

the identification of inter-species co-modules of organs and genes. We identify

such co-modules using mouse and human microarray expression data. They are

functionally coherent both in terms of genes and of organs from both organisms.

We show that a large proportion of genes belonging to the same co-module are

orthologous between mouse and human. Moreover, their zebrafish orthologs also

tend to be expressed in the corresponding homologous organs. Notable exceptions

to the general pattern of conservation are the testis and the olfactory bulb. Inter-
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estingly, some co-modules consist of single organs, while others combine several

functionally related organs. For instance, amygdala, cerebral cortex, hypothalamus

and spinal cord form a clearly discernible unit of expression, both in mouse and

human.

Our study provides a new framework for comparative analysis which will be

applicable also to other sets of large-scale phenotypic data collected across different

species.

This article was published in BMC Genomics (2012) 13: 124.

doi: 10.1186/1471-2164-13-124
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2.1 Background

Specific over-expression of a gene in an organ is often taken to imply a function

of the gene in that organ. If so, and if orthologous genes have conserved function,

we would expect a slow rate of organ-specific expression evolution. Some early

comparisons of microarray data between species suggested the opposite. The most

studied data set in this regard is the GNF gene atlas of human and mouse organs

(Su et al., 2002, 2004). Yanai et al. (2004) used an early version of these data

(Su et al., 2002), and reported that the expression profiles of orthologous genes

differed remarkably between two mammalian species. Moreover, comparing the

expression profiles of 16 tissues (for both species), they found that human tissues

were more similar to each other than to their corresponding mouse tissues. In

contrast, Liao and Zhang (2006a), based on a more recent version of the data

(Su et al., 2004), and correcting for systematic error, found that human–mouse

orthologous gene pairs had significantly lower expression divergence than random

gene pairs. Additionally, they found that gene expression profiles of homologous

tissues between species are more similar to each other than expression profiles of

non-homologous tissues. Two recent studies (Zheng-Bradley et al., 2010; McCall

et al., 2011) have confirmed that gene expression profiles of mouse and human

homologous organs are indeed more similar than expression profiles between two

different organs within a species, at least for the limited number of samples studied

(immune system, heart and muscle, skin and gastrointestinal organs, liver and

brain in Zheng-Bradley et al., 2010; kidney, liver, brain, spleen, skeletal muscle

and lung in McCall et al., 2011).

In many of these studies the Pearson’s correlation coefficient or Euclidean

distance were used as estimators of gene expression conservation, either when

calculating the distance between expression profiles of orthologous genes, or when
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clustering homologous organs from two species. These measures depend strongly

on data normalization (Piasecka et al., 2012), and only capture global similarity

across all samples. Specifically, none of these measures allows discovering between-

species units of conservation, i.e., modules of organs and their specific genes that

have remained largely unchanged since the speciation event. To facilitate gene

expression studies, McCall et al. (2011) have created a database of gene expression

states in different conditions. It allows finding groups of co-expressed genes, but

only for manually chosen conditions. Consequently, discovering modules of organs

and their specific genes, requires an a priori guess about the potential groups of

organs that express the same set of genes.

In this work, we take an alternative approach that automatically discovers such

modules. We use the Ping-Pong Algorithm (that was originally developed for the

unsupervised simultaneous modularization of gene expression and drug response

data (Kutalik et al., 2008)) to co-analyze microarray gene expression data from

mouse and human. Using the resulting co-modules, that contain genes and organs

in which these genes are coherently expressed, we address several questions: 1)

Are there any “natural” modules of mammalian organs, meaning groups of organs

with very similar sets of co-expressed genes? 2) Which genes are module-specific?

3) Are these genes conserved between species?

2.2 Results

2.2.1 The Ping-Pong Algorithm

The Ping-Pong Algorithm (PPA; Kutalik et al., 2008) is an algorithm for the integ-

rative analysis of two large-scale data sets sharing one dimension. When applied

to gene expression data from two species, it identifies, simultaneously in both
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data sets, subsets of samples for which certain sets of genes are coherently overex-

pressed. We refer to the combined subsets of samples and genes as co-modules. The

dimensions shared by our data sets are twofold: orthology relation between genes

(figure 2.1A) and organ homology (figure 2.1B). First, we ran the PPA on the data

sets matched through one-to-one orthologous gene pairs. Thus, the co-modules con-

sisted of orthologous genes and the mouse and human organs in which these genes

were overexpressed. Second, we ran the PPA on the data sets matched through

homologous organ groups (HOGs; Parmentier et al., 2010; Niknejad et al., 2012).

The resulting co-modules consisted of sets of homologous organs and (potentially

different) sets of mouse and human genes with coherent overexpression in these

organs. Each organ and gene received a score indicating their membership (if

non-zero) and contribution to a given co-module. The further the score for a gene

or organ is from zero, the stronger the association to the co-module.

Representing coherent features across both data sets in terms of co-modules

reduces the complexity of the data and facilitates the study of its biological proper-

ties. There are only a few dozen co-modules to study, instead of thousands of genes.

Moreover, the mean expression level of genes in a co-module is more robust than

the expression measure for a single gene, as measurement noise tends to cancel

out.

2.2.2 Co-modules based on orthologous genes contain homo-
logous organs

We applied the PPA to the mouse–human data sets matched through 8,942 one-

to-one orthologous genes, containing the expression signal from 27 organs of

both species. We ran the PPA starting from 10,000 different seeds consisting of

random homologous organ groups. We obtained 25 distinct co-modules consisting
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Figure 2.1: Schematic representation of the Ping-Pong Algorithm. (A) The PPA run for two
data sets with orthologous genes on the common dimension. (B) The PPA run for two data sets
with homologous organs on the common dimension. EH — human expression data, EM — mouse
expression data, OM — mouse organs, OH — human organs, G — human and mouse one-to-one
orthologs, GH — human genes, GM — mouse genes, O — homologous organs, CM — co-module.

of orthologous genes and the mouse and human organs where these genes were

expressed.

Importantly, this analysis allowed us to recover the information about organ

homology: co-modules contained mouse and human organs that are known to be

homologous. The mouse organs which were grouped together with their human

homolog were the following: lymph node, cerebellum, hypothalamus, tongue, testis,

pancreas, liver and kidney. Moreover, we recovered information about functional

groups of organs, which are conserved between mouse and human. In particular,

we found a muscle co-module containing heart, skeletal muscle and tongue, a
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Figure 2.2: Median gene score of co-modules from both Ping-Pong Algorithm runs. (i)
median gene scores for 25 co-modules detected in the PPA run on data matched through orthologous
genes. (ii) median human gene scores for 98 co-modules detected in the PPA run on data matched
through homologous organs. (iii) median mouse gene scores for 98 co-modules detected in the PPA
run on data matched through homologous organs.

central nervous system (CNS) co-module with amygdala, and cerebral cortex, and

an immune system co-module containing both lymph node and thymus. Genes

and organs belonging to the same co-module were coherent in terms of functional

annotation. For example, the muscle co-module was enriched in genes involved

in glycolysis, the immune co-module in immune response, the testis co-module in

sperm motility, and the liver co-module in catabolic processes (see Additional file

1).

The median gene score for each co-module varied between 0.18 and 0.49 (figure

2.2), which suggests that the contribution of individual genes to co-modules was

rather weak.

2.2.3 Co-modules based on homologous organs are organ- or
system-specific

Above, we applied the PPA to the data sets matched through one-to-one orthologous

genes. This recovered the information about organ homology and thus validated
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our approach, but limited it to one-to-one orthologous genes only. In a second step,

in order to broaden the analysis, we applied the PPA to the data sets matched

through 27 homologous organ groups. In contrast to the first run, here we used the

expression signal coming from all 36,182 mouse probe sets and 44,928 human probe

sets. We ran the PPA starting from 10,000 seeds consisting of random homologous

organ groups. We obtained 98 distinct co-modules consisting of homologous organ

groups and mouse and human probe sets carrying the signal specific for these

HOGs. Next, the probe sets were mapped to their corresponding genes, and those

which did not map unambiguously to a gene were excluded from further analysis.

First, for every single organ we detected a co-module containing this organ

and its specific genes from mouse and human (e.g., figure 2.3A), which confirms

that organs are “natural” modules of gene expression in mammals. We refer to

these co-modules as organ-specific co-modules. The median numbers of mouse and

human genes assigned to these co-modules were 117 and 264.5, respectively.

Second, we confirmed and extended the discovery of co-modules containing

several functionally related organs. We refer to them as system-specific co-modules.

These notably include ovary and uterus; lung and trachea; lymph node and thymus;

and liver and kidney (figure 2.3B). The median numbers of mouse and human

genes assigned to these co-modules were 257 and 281, respectively.

Third, the central nervous system (CNS) emerged as a particular case of a

system-specific co-module. For instance, we found co-modules consisting of: amyg-

dala, cerebellum and cerebral cortex; amygdala, hypothalamus and spinal cord;

or cerebellum, hypothalamus, and spinal cord. After closer analysis of these co-

modules we found that four central nervous system organs were connected more

tightly than the others. These organs were: amygdala, cerebral cortex, hypothal-

amus and spinal cord. Whenever a co-module detected by the PPA contained one
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of these four CNS organs (e.g., cerebral cortex and olfactory bulb, figure 2.3C), the

genes from that co-module were also expressed in the three other CNS organs,

although sometimes just below the threshold level that PPA used to add the organ

into co-modules (see Methods). The median number of mouse and human genes

assigned to these co-modules were 336 and 149, respectively.

The median gene score for each co-module varied from 0.46 to 0.96 for human,

and 0.49 to 0.99 for mouse (figure 2.2). The genes’ contribution to co-modules

was stronger than in the analysis with genes on the common dimension, which

indicates that these co-modules are more reliable. This is probably due to the

larger data sets used.

2.2.4 Genes belonging to co-modules are enriched in func-
tions relevant to the corresponding organs

Functional annotation analysis confirmed that genes belonging to each co-module

were enriched in functions relevant to the respective organs, for both mouse

and human. For example, the testis co-module was enriched in genes involved

in spermatogenesis and sperm motility, the heart co-module in those involved

in regulation of heart contraction, the lymph node co-module in those involved

in immune response, and the nervous system co-modules were enriched in genes

important during nervous system development (see Additional file 2). This confirms

the functional coherence of the organ- or system-specific co-modules detected.

2.2.5 Organ-specific gene expression is often related to organ-
specific hypomethylation of regulatory elements

Recently, Nagae et al. (2011) reported a strong association between hypomethylated

CpG-poor promoters and tissue-specific patterns of gene expression. We found
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Figure 2.3: Mean expression of genes belonging to three exemplary co-modules. (A)
testis-specific co-module; (B) liver and kidney co-module; (C) co-module with two CNS organs
assigned: cerebral cortex and olfactory bulb, but with an evidence for the gene expression also in
amygdala, hypothalamus, and spinal cord.
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Figure 2.4: Relation between organ-specific expression of genes and organ-specific hy-
pomethylation of their regulatory regions. For every organ-specific co-module we calculated
the overlap between human genes belonging to the co-module and genes reported to be hypomethyl-
ated specifically in blood, brain, liver, tongue, skeletal muscle, and testis (Nagae et al., 2011). Only
co-modules with significant overlap are presented on the heat map. The shade of grey corresponds
to the corrected P-values of hypergeometric test in log10 scale.

a very significant overlap between our results and these of Nagae et al, for five

out of six common tissues between both studies. For instance, genes that were

hypomethylated in a brain-specific manner were over-represented in our cerebral

cortex-specific co-module (p = 3.1×10−8), and genes hypomethylated specifically

in the liver, were overrepresented in liver-specific co-module (p = 3.6×10−82). See

figure 2.4 for a summary of the results.

2.2.6 Constraint on gene sequence is organ-specific

To check whether sequences of genes assigned to different co-modules evolve under

different selective pressure, we computed their nonsynonymous to synonymous

substitution ratios (dN /dS). For most co-modules the selective pressure did not

differ from a random expectation (see Methods for test details). However, genes

belonging to CNS-specific co-modules had significantly lower dN /dS, and genes

from co-modules related to lymph node, liver, and testis had significantly higher
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dN /dS, than expected by chance (Additional file 3).

2.2.7 Genes’ essentiality, duplicability, and age are weakly
related to organ-specificity

Looking for other gene characteristics that may be related to different co-modules,

we also studied: 1) gene essentiality, 2) gene duplicability, and 3) gene age (for

details see Additional file 4). First, we did not detect any significant relation

between the co-modules and essentiality of the genes. Second, we found that

CNS-related co-modules are significantly enriched in duplicated genes. Further

studies are needed to investigate the causality of this relation. Third, we found

that human genes from four co-modules and mouse genes from fourteen co-modules

had an age distribution significantly different than expected. Importantly, only

two co-modules were consistent in the age distribution for mouse and human

genes, i.e., the tongue–trachea co-module showed an overrepresentation of young

genes (Euteleostomi and later taxonomic levels), and the cerebellum–olfactory

bulb co-module showed an overrepresentation of old genes (Bilateria). A few other

CNS-related co-modules showed a similar age distribution, but only for mouse

genes (figure S1 in Additional file 4). In addition, we found that testis-related

genes in mouse were enriched in genes from the Chordate level, and tongue-related

genes were particularly young (Euteleostomi and later taxonomic levels). For

human only we found that thymus-related genes were enriched in very old genes

(Fungi/Metazoa). While these observations were significant in terms of statistics,

they were not supported by consistent evidence from both mouse and human. This

makes the interpretation of any relationship between gene age and co-modules

difficult. Like for duplicability, we believe that further studies with more data will

be necessary.
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Figure 2.5: Estimating the expression conservation rate (γ) of co-modules. For every co-
module we calculated the following numbers: nog —- number of orthologous groups, n f amh —
number of all human gene families, n f amm — number of all mouse gene families, and γ — the
expression conservation rate. Here, nog = 2, n f amh = 4, n f amm = 3, γ= nog/min(n f amh ,n f amm ) =
2/3.

2.2.8 Gene expression is conserved between mouse and hu-
man organs

In order to study gene expression evolution between mouse and human, we calcu-

lated the rate of expression conservation (γ) for all co-modules resulting from the

PPA run on data sets matched through homologous organs. We defined γ (equation

2.1, Methods) as the ratio between the actual number of orthologous groups in

a given co-module, and the maximal possible number of orthologous groups, i.e.,

the minimum of the number of human gene families and the number of mouse

gene families present in this co-module (figure 2.5). Thus the values of γ ranged

from 0 to 1, with higher values indicating higher gene expression conservation

in a given co-module. To assess if γ was significantly higher than expected by

chance, we calculated it also for randomly paired mouse and human genes. The me-

dian γ for mouse–human orthologous genes was equal to 0.20, while for randomly

paired genes the median γ was equal to 0.03 (figure 2.6). Thus, the conservation

of gene expression in mammals was significantly higher than expected by chance

(p = 6.5×10−6, Mann–Whitney U test). γ values for all co-modules are shown in

figure 2.7 and in Additional file 5. To determine the upper bound of the expression
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Figure 2.6: Distribution of expression conservation rate (γ). Value of γ was estimated in
four different cases: (i) for co-modules containing randomly paired human–mouse genes; (ii) for
co-modules containing human–mouse orthologous genes; and for co-modules containing replicated
human probe sets (iii) and replicated mouse probe sets (iv).

conservation rate that can be detected by our method with these data, we applied

the PPA also to mouse–mouse and human–human data sets constructed by distrib-

uting the technical replicates from Su et al. (2004) into two disjoint sets. If these

replicates had given identical expression profiles, we would observe γ= 1. However,

due to experimental noise even using the replicate data one expects smaller values

for γ. Indeed, this was the case for both comparisons, with a median γ of 0.86 for

mouse replicates and a median γ of 0.55 for human replicates. Such low values

of γ for data sets with identical underlying biological gene expression suggests

that the values of γ which we obtained for human–mouse comparison probably

underestimate the actual expression conservation.

2.2.9 Gene expression is conserved between mammalian and
fish organs

Given the conservation of expression between mouse and human organs, we asked

if this is also true for more distant vertebrates. Using a modified version of the

topGO R package (Alexa et al., 2006; Roux and Robinson-Rechavi, unpublished), we
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Figure 2.7: Expression conservation rate (γ) for organ-specific and selected system-
specific co-modules. The median γ for all co-modules is marked with dotted line. Abbrevi-
ation for CNS-specific co-modules: am — amygdala, ce — cerebellum, cc — cerebral cortex, ht —
hypothalamus, sc — spinal cord.

assessed organ expression enrichment for the zebrafish orthologs of genes, which

belonged to the co-modules detected within the PPA run on data sets matched

through organs, and were conserved between mouse and human. In other words,

we measured in which zebrafish organs these orthologs were expressed more often

than expected by chance. We found conservation of gene expression both for organ-

specific co-modules, such as heart or liver, and for nervous system co-modules.

For example, genes conserved in the co-module consisting of amygdala, cerebral

cortex, hypothalamus, olfactory bulb and spinal cord in mammals, were found to

be expressed in the following nervous system organs in zebrafish: retinal ganglion

cell, trigeminal placode, cranial ganglion, and spinal cord in fishes. An exception to

the general pattern of conservation was that the zebrafish orthologs of mammalian

testis-specific genes seemed to be expressed in a wider variety of organs, including

Kupffer’s vesicle, the peripheral olfactory organ or the pronephric duct, but not

including the zebrafish testis (see Additional file 6).
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2.3 Discussion

Our methodology has allowed us to find “natural” modules of mammalian gene

expression. In the first PPA run, with genes on the common dimension, we were

able to recover the information of organ homology based only on orthologous genes

expression patterns. In the second PPA run, with organs on the common dimension,

we found organs grouped into homologous systems (between mouse and human),

and their functional genes in both species; the latter were enriched in, but not

limited to, orthologous genes.

According to our results the whole nervous system, and amygdala, cerebral

cortex, hypothalamus and spinal cord in particular, forms a clearly discernible

module both in mouse and human. Co-clustering of amygdala, hypothalamus

and spinal cord was also reported in Liao and Zhang (2006a). We found several

other functionally related co-modules, for instance a co-module containing kidney

and liver, a co-module related to the immune system (including lymph node and

thymus), a female reproductive system co-module (ovary and uterus), or a respirat-

ory system co-module (lung and trachea). A recent study of Brawand et al. (2011)

also showed that neural tissues (brain and cerebellum), and kidney and liver, form

expression modules in amniotes. Grouping of some of the nervous system organs,

was also reported in Zheng-Bradley et al. (2010), but it was not possible to know

exactly which CNS organs group together, as their annotation was simplified to

“brain + nerve”. The only other system reported in Zheng-Bradley et al. (2010)

combines heart and muscle. In their PCA results heart and muscle formed two

distinguishable units, which were then grouped by the authors. Here, we found

heart and muscle in a single co-module with the PPA run on data matched by ortho-

logous genes, and in two separate co-modules with the PPA run on data matched

by homologous organs. In the latter case the gene scores were higher (figure 2.2),
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which suggests that heart and skeletal muscle, although similar, compose two

distinct units of expression.

In addition to system-specific co-modules, we also found organ-specific co-

modules. Thus with the PPA it is possible to simultaneously detect genes specific

for a certain organ and genes shared between organs which form a system. On

average, in mouse, there were less organ-specific genes than system-specific genes.

No significant difference was found for human genes. All co-modules contained

genes whose function was clearly related to the respective organs, justifying our

notion of organ/system-specificity for the co-modules. This also confirms that an

overexpressed gene has an important role in a given organ or organ system, in

agreement with common expectations.

We explored the cause of organ-specific patterns of expression. One possible

explanation was proposed by Nagae et al. (2011). They discovered that genes

with CpG-poor regulatory regions hypomethylated in an organ-specific manner

tend to be expressed in an organ-specific manner. Indeed, for all but one of the

organs that were included in their study we found that a significant fraction of the

genes from our corresponding organ-specific co-module was hypomethylated. The

only exceptions were testis-specific genes, for which we did not find evidence of

hypomethylation in their promoter regions. However, genes that are specifically hy-

pomethylated in testis tend to have CpG-rich promoters (Nagae et al., 2011). Thus,

further work is needed to understand the regulation of testis-specific expression.

Our analysis of protein-coding gene sequences shows that the selection pressure

on gene sequence is organ-specific. In particular, genes of CNS-related co-modules

evolve slower in sequence, and genes from the co-modules related to lymph node,

liver, and testis evolve faster, than expected by chance. These results are consistent

with other reports that compared sequence evolutionary rate between human and
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chimpanzee (Khaitovich et al., 2005), and between human and mouse (Gu and Su,

2007). A possible explanation for slower evolution of neural related genes was given

by Drummond and Wilke (2008). These authors suggested that the structure and

lifetime of tissues composed of neurons make them extremely sensitive to protein

misfolding, and thus selection against protein sequence mutations is higher in

these tissues. Possibly, the conserved protein sequence might be also related to the

higher duplication rate of the genes expressed in CNS. However, this hypothesis

needs to be addressed by a more specifically tailored study.

We found that co-module-specific genes are often orthologous between mam-

mals. On average about 20% of the genes present in a given co-module had their

orthologs in the same co-module. Note that the co-module-specific gene expression

conservation rate (γ) from our analysis is rather underestimated, because of the

noise present in the data. Even for human and mouse replicates only 55% and

86% of the genes present in a co-module had their replicate in the same co-module.

The latter figures indicate that higher quality data (e.g., RNA-seq) are needed to

improve our knowledge of gene expression evolution in mammals (e.g., Brawand

et al., 2011; preferably with more organs).

Interestingly, we discovered two organ-specific co-modules with no detectable

signs of expression conservation (γ= 0), i.e., the ovary-specific and the olfactory-

specific co-module. The observed lack of expression conservation between mouse

and human ovaries might simply be the effect of differences in sampling from two

species: the mouse samples came from young, sexually mature individuals, whereas

human samples were mostly taken from elderly people (Su et al., 2004). Ovary

function varies strongly with age, independently of evolutionary conservation.

For the olfactory bulb co-module such an explanation is less likely (even though

olfactory sensitivity decreases with age). Rather, the absence of any detectable
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sign of expression conservation in this co-module suggests that different genes are

involved in olfactory function in mouse and human. Indeed, it has been reported

that the olfactory sense genes were shaped by different evolutionary processes in

rodents and primates (Young et al., 2002; Zhang and Firestein, 2002; Niimura and

Nei, 2007). This shows that with the modular approach it is not only possible to

discover “natural” modules of expression, but also to address questions about their

evolutionary history since the divergence of two species.

To further study the extent of gene expression conservation, we contrasted

the mammalian conserved genes with the expression data from zebrafish. We

found that genes expressed in the brains of both mammals were also expressed

in the brain of zebrafish. Similarly, genes expressed in mammalian heart or liver

were found to be expressed also in their zebrafish homologs. This is a remarkable

result indicating that indeed organ/system-specific gene expression evolution is

rather slow. The exception was that zebrafish genes orthologous to mammalian

testis-specific genes appear to be expressed in a wider variety of organs. This is

consistent with previous reports of fast evolution of genes expressed in testis (Xu

et al., 2002; Gu and Su, 2007; Voolstra et al., 2007; Brawand et al., 2011).

Our comparative study of homologous organs between mouse and human has

several advantages, relative to previous approaches (Yanai et al., 2004; Jordan et al.,

2005; Yang et al., 2005; Liao and Zhang, 2006a; Xing et al., 2007; Zheng-Bradley

et al., 2010; McCall et al., 2011). First, we analyzed a larger data set than most

previous studies, with 27 homologous organs of mouse and human. Second, using

the PPA instead of hierarchical clustering of organs, we were able to distinguish

homologous modules at different levels of resolution — single organ or organ

systems. Third, it is straightforward from our analysis to identify organ-specific or

system-specific genes and to further analyze their features, while in most studies
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only the Pearson’s correlation coefficient between organs is reported. Fourth, in

all studies concerning the comparison of orthologous genes or homologous organs

expression profiles, one had to decide how to represent gene expression values if a

gene is targeted by more than one probe set. Because it is not possible to say which

probe set most accurately measures the real expression level of a given gene, some

arbitrary choice must be made [e.g., calculating the mean over all probe sets (Yang

et al., 2005; Pereira et al., 2009), picking a random probe set (Liao and Zhang,

2006a; Xing et al., 2007), taking the probe set with the highest expression level

(Jordan et al., 2005; Gu and Su, 2007), or removing genes covered by multiple probe

sets (Yanai et al., 2004; Wang and Rekaya, 2009)]. In the case of the PPA on data

sets with organs on a common dimension all probe sets are used. Thus, if at least

one of the multiple probe sets mapped to a gene carries an informative signal, the

PPA can detect it and automatically find the group of similar probes representing

other genes. This is impossible with any of the methods of probe sets pre-processing

mentioned before. Notably, as many as 34.9% of human genes and 8.4% of mouse

genes were mapped to multiple probe sets. And around half of the multiple probe

sets mapped to a given gene were not together in the same co-module (48.6% of

human genes and 52% of mouse genes had half or less probe sets together in the

same co-module), which is a strong indication that these probe sets do not all

correctly represent a gene, or possibly that they represent alternatively spliced

forms, which code for different protein isoforms in different organs.

Two recent studies also applied modularization as a mean for cross-species

comparative analysis of gene expression data. Yang and Su (2010) used our

Iterative Signature Algorithm (ISA; Bergmann et al., 2003; a precursor of the PPA)

to identify and compare organ-related modules in human and mouse. Contrary

to the PPA, the ISA discovers modules for a single species only. To conduct an
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inter-species study, Yang and Su compared modules from two independent ISA

runs. They found fewer and smaller modules than we did with the PPA. This may

have been a consequence of using only a single threshold for genes and organs.

Importantly, they observed little cross-species overlap between the modules both

in the organ and gene dimension. Consequently, they concluded that the content

of modules in mouse and human diverged extensively. However, they found that

modules with corresponding organs in mouse and human usually were enriched for

genes of the same biological function. Brawand et al. (2011) used the ISA to analyze

RNA-seq data from six tissues and ten species, limited to one-to-one orthologous

genes. This allowed the identification of several modules, which confirm the

correspondence between organ-specific expression and functional annotation of

genes. This study did not investigate the evolutionary conservation of organ-

specific gene expression, and the detection of functional systems was limited by

the few organs studied (i.e., brain and cerebellum, kidney and liver). On the other

hand, using ten species allowed the detection of changes of expression in amniote

evolution. These examples, and our analysis, illustrate the power of the modular

approach to answer diverse questions in evolutionary biology.

2.4 Conclusions

In conclusion, gene expression defines organ-specific or system-specific co-modules.

These co-modules contain functionally related genes that are conserved between

species. Thus there does exist a conserved modularity of gene expression in

vertebrates, and it is related to anatomical modularity (i.e., organs).



COMPARATIVE MODULAR ANALYSIS OF GENE EXPRESSION IN VERTEBRATES 59

2.5 Methods

2.5.1 Gene expression data

We used human and mouse gene expression data of Su et al. (2004). This study

was performed on the Affymetrix HG-U133A array as well as the custom array

GNF1H for human, and on the custom array GNF1M for mouse. In total, expres-

sion profiles from 79 human and 61 mouse organs were measured, with 44,928

probe sets for human and 36,182 probe sets for mouse. We only took into ac-

count organs belonging to the homologous organ groups (HOGs) defined in the

Bgee database (Bastian et al., 2008) (see http://bgee.unil.ch/bgee/bgee?page=

documentation#sectionHomologyRelationships). Using the mapping available

in the Bgee database we could map 36 human organs and 30 mouse organs to 27

HOGs. See Additional file 7 for the list of HOGs and their corresponding organs.

Microarray data were normalized with the gcrma package (Wu et al., 2004) of

Bioconductor (Gentleman et al., 2004).

Before we applied the PPA to the human–mouse data we merged human and

mouse organs into 27 HOGs. For every probe set in each HOG the arithmetic

mean of the gcrma normalized expression values was calculated (each HOGs was

represented by at least two microarrays).

To study if it is possible to recover the information about organ homology

based on the expression patterns of orthologous genes, we applied the PPA to the

data sets consisting of a subset of 8,942 one-to-one orthologous gene pairs (see

Mapping Probe sets to Ensembl genes in Methods) and their expression patterns

in 27 homologous organ groups in mouse and human. If a gene was matched by

more than one probe set on the microarray, we randomly picked one probe set to

represent that gene.

To study organ expression conservation between human and mouse we applied

http://bgee.unil.ch/bgee/bgee?page=documentation#sectionHomologyRelationships
http://bgee.unil.ch/bgee/bgee?page=documentation#sectionHomologyRelationships
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the PPA to the data consisting of expression values for 27 homologous organ groups,

44,928 probe sets for human and 36,182 probe sets for mouse. This time, the probe

sets were mapped to their corresponding Ensembl genes after the PPA run.

To estimate the expected values of co-module expression conservation (γ, equa-

tion 2.1) when the gene pairs show conserved expression patterns we used replic-

ated experiments as two different data sets, both for mouse and human. Therefore,

for each probe set in mouse data and for each probe set in human data we had

two vectors of values representing its expression over the organs. We applied the

PPA to the data sets that contained 36 organs and 44,928 replicated probe sets

for human and 30 organs and 36,182 replicated probe sets for mouse. We did not

merge the organs into HOGs, because it was straightforward to pair the organs

between replicated experiments.

2.5.2 Mapping probe sets to Ensembl genes

To assign the probe sets to their corresponding mouse or human genes we used

the mapping available in Bgee release 6, based on Ensembl release 55. We kept

only probe sets which matched to a unique Ensembl gene. A total of 15,123 probe

sets corresponding to 13,855 mouse genes, and 23,921 probe sets corresponding to

15,338 human genes, were taken into account in our analysis.

2.5.3 Mouse–human orthologous genes

Homology information of mouse and human genes was retrieved from Ensembl

release 55 (Hubbard et al., 2009), using BioMart (Smedley et al., 2009). A total of

10,321 pairs of mouse–human orthologous genes had expression information in

the data sets we used (9,982 mouse genes and 9,883 human genes). One-to-one

orthologous pairs account for 86.6% (8,942/10,321) of all pairs.
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2.5.4 Ping-Pong Algorithm

A detailed description of the algorithm in the general case is given in Kutalik et al.

(2008). In this specific study, the algorithm starts with ten thousand candidate

seeds consisting of randomly chosen homologous organ groups (HOGs), for both

runs. Further steps are presented on figure 2.1. Here, we only detail the PPA

applied to the mouse–human data matched through HOGs: (step 1) the mouse

expression data are used to identify the genes that exhibit similar expression in

a given set of HOGs. (step 2): this set of genes is then used to refine the set of

HOGs by excluding those which have an incoherent expression profile and adding

others that behave similarly relative to genes. (step 3): in the next step the human

expression data are used to find human genes that exhibit similar expression in

a given set of organs. (step 4): similarly to step 2 the set of human genes is used

to further refine the set of HOGs. Finally, this refined set of HOGs is used to look

for mouse genes that are co-expressed in these HOGs (step 1). This procedure is

reiterated until it converges to stable sets of HOGs and mouse and human genes

(so-called co-modules). Every HOG and every mouse and human gene in a given

co-module have a score assigned (between 0 and 1). The closest the HOG/gene

score is to 1, the stronger the association between the HOG/gene and the rest of

the co-module.

The PPA was applied to the mouse–human data sets twice. First, the two

data sets shared the gene dimension. Second, the two data sets shared the organ

dimension. The second experiment was coupled with the control experiment, which

aimed to compare two matrices of replicated data within a species. The control

experiment was done both on mouse–mouse and human–human data, with organs

on the common dimension. We repeated this experiment ten times for each species.

In every run the two replicates for each organ were randomly distributed between
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the two matrices and a thousand seeds consisting of random HOGs were created.

In every run of the PPA (both types) we used various thresholds for genes and

organs, ranging from 2.5 to 6, and from 1 to 4.5, respectively. The thresholding

is done by calculating the mean and standard deviation of the gene/organ scores

vector and keeping only the elements that are t standard deviation above the mean,

where t correspond to the value of the threshold. If the gene threshold is high, then

the co-modules will have very similar genes. If it is low, then co-modules will be

bigger, with less similar genes. The same applies to the organ threshold and the

organs belonging to the co-modules (see http://www2.unil.ch/cbg/homepage/

downloads/ISA_tutorial.pdf for detailed explanation).

2.5.5 Post-processing of the PPA results

The procedure described below was applied to the co-modules resulting from the

PPA run on data matched through homologous organ groups. As we ran the PPA

with different sets of thresholds, redundant modules were obtained. Before further

analysis we eliminated this redundancy. For each pair of co-modules we calculated

the correlation ch between human gene scores in the first and in the second co-

module, and the correlation cm between mouse gene scores in the first and in the

second co-module. If ch · cm > 0.8, which implies that the pair of co-modules had a

very similar content for both species, the co-module with a higher sum of the two

thresholds for human and mouse genes was kept, and the other co-module was

disregarded. This procedure reduced the number of co-modules from 556 to 414.

Next, we eliminated co-modules that had less than 10 probe sets assigned for at

least one species. This procedure reduced the number of co-modules further, to 231.

Still, many sets of organs were represented by several overlapping co-modules.

Consider two co-modules containing H1 and H2 sets of human genes, respectively.

http://www2.unil.ch/cbg/homepage/downloads/ISA_tutorial.pdf
http://www2.unil.ch/cbg/homepage/downloads/ISA_tutorial.pdf
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We say that two modules have fully overlapping sets of human genes H1 and H2, if

either H1 ⊆ H2 or H2 ⊆ H1. For each set of co-modules with fully overlapping sets

of human genes the biggest co-module was chosen for the further analysis, and the

rest were disregarded. The size of a co-module was defined as the minimum of the

two values: 1) the number of human genes in a co-module and 2) the number of

mouse genes in a co-module. After this final step, there were 98 co-modules used

in further analysis.

In order to assess the rate of gene expression conservation we used only ortho-

logous gene pairs with corresponding probe sets present on both the human and

mouse microarrays. The rate of the expression conservation in a co-module was

calculated as

γ= nog

min(n f amh ,n f amm)
, (2.1)

where nog is the number of orthologous groups in a given co-module, n f amh is

the number of human gene families in a given co-module for which ortholog(s)

are present on the mouse microarray (but not necessarily in the same co-module)

and n f amm is the number of mouse gene families in a given co-module for which

ortholog(s) are present on the human microarray (but not necessarily in the same

co-module) (figure 2.5). The same procedure was applied to calculate the γ for

co-modules from mouse–mouse and human–human comparison, with nog being the

number of probe sets present in replicates in a given co-module, and n f amh , and

n f amm being the total number of probe sets from the first and second experiment

present in a given co-module.

To verify if the results of our analysis were different than expected by chance

we created lists of random pairs of mouse–human genes. This was done ten times

by reshuffling the list of 10,321 mouse–human orthologous pairs, in a way that
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kept the same number of one-to-one and many-to-many gene pairs. For every

co-module and every list of random gene pairs we recalculated the γ. Finally, for

every co-module the mean γ was calculated.

2.5.6 Enrichment analysis of hypomethylated regulatory re-
gions

To determine if hypomethylated regions are over-represented in genes belonging to

organ-specific co-modules we used data from the work of Nagae et al. (2011). They

provided the lists of genes specifically hypomethylated in: brain, tongue, liver, blood,

skeletal muscle, and testis. We used these sets of tissue-specific hypomethylated

genes, and intersected them with the genes from our organ-specific co-modules.

We performed the hypergeometric test to verify if the genes reported in Nagae

et al. (2011) were overrepresented in any of our co-modules. To correct for multiple

testing we applied the Bonferroni correction.

2.5.7 Gene sequence analysis

The one-to-one orthology relationship between mouse and human genes, and the

values of dN (rate of nonsynonymous substitution per codon) and dS (rate of syn-

onymous substitution per codon) were retrieved from Ensembl version 55 (Hubbard

et al., 2009), using BioMart (Smedley et al., 2009). We used the set of 12,248 hu-

man genes with dN , dS, and microarray expression data. To assess whether the

genes belonging to a given co-module have dN /dS ratios significantly different

than expected by chance, we performed a Wilcoxon rank sum test comparing the

median dN /dS from a co-module to the median dN /dS for all human genes. After

the Bonferroni correction the significance level was set at p = 0.0005. We repeated

the same procedure for 10,540 mouse genes.
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2.5.8 GO enrichment analysis

Gene ontology (GO) association for all genes mapped to mouse and human probe

sets were downloaded from Ensembl release 55, using BioMart. GO enrichment

was tested by Fisher’s exact test, using the Bioconductor package topGO (Alexa

et al., 2006) version 1.12.0. The reference set consisted of all Ensembl genes

mapped to probe sets of the microarray used. The “elim” algorithm of topGO was

used to eliminate the (tree-like) hierarchical dependency of the GO terms. To

correct for multiple testing (98 co-modules tested) the Bonferroni correction was

applied. For every co-module only GO categories with corrected P-value lower than

0.05 were reported.

2.5.9 Zebrafish–mouse orthologous genes

Homology information of zebrafish and mouse genes was retrieved from Ensembl

release 55 (Hubbard et al., 2009), using BioMart (Smedley et al., 2009). Only mouse

genes with expression conserved in mouse–human co-modules were used to find

their zebrafish orthologs. A total of 1,892 pairs of zebrafish–mouse orthologous

genes was found (1,560 zebrafish genes and 1,026 mouse genes).

2.5.10 Organ enrichment analysis

Associations of zebrafish genes to anatomical ontologies were downloaded from

the Bgee database, release 6. Association between genes and organs was based on

expression patterns detected in in situ hybridization experiments (see Bgee doc-

umentation at http://bgee.unil.ch/bgee/bgee?page=documentation for more

information). Enrichment of expression in organs was tested using a modified

version of the topGO package (Alexa et al., 2006; Roux and Robinson-Rechavi,

http://bgee.unil.ch/bgee/bgee?page=documentation
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unpublished). To correct for multiple testing (82 co-modules tested) the Bonferroni

correction was applied. For every co-module only zebrafish organs with corrected

P-value lower than 0.05 were reported.
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The hourglass and the early conservation models —

co-existing evolutionary patterns in vertebrate develop-

ment

Barbara Piasecka, Paweł Lichocki, Sven Bergmann,

Marc Robinson-Rechavi

Abstract

Developmental constraints have been postulated to limit the space of feasible phen-

otypes and thus shape animal evolution. These constraints have been suggested to

be the strongest during either early or mid-embryogenesis, which corresponds to

the early conservation model or to the hourglass model, respectively. Apparently

conflicting results have been reported, but in recent studies of vertebrate transcrip-

tomes the hourglass model has been favored. Studies usually report descriptive

statistics calculated for all genes over all developmental time points. This intro-

duces dependencies between the sets of compared genes, and may lead to biased

results. Here we overcome this problem using an alternative approach based on a

modular analysis. We used the Iterative Signature Algorithm to identify distinct

sets of genes (modules) co-expressed specifically in consecutive stages of zebrafish

development. We then performed a detailed comparison of several gene properties
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between modules, allowing for a less biased and more powerful analysis. Notably,

our analysis corroborated the hourglass pattern only at the regulatory level, with

sequences of regulatory regions being most conserved for genes expressed in mid-

development, but not at the level of gene sequence, gene age or gene expression, in

contrast to some previous studies. The early conservation model was supported

at the level of gene family size evolution, with gene duplication and introduction

being most rare for genes expressed in early development. Finally, for all studied

gene properties we observed the least conservation for genes expressed in late

development or adult, consistent with both models. Overall, with the modular

approach, we showed that different levels of molecular evolution follow different

patterns of developmental constraints, and thus that neither the early conservation

nor the hourglass model is exclusively valid.

This article was submitted to PLOS Genetics.
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3.1 Introduction

Developmental constraints have been suggested to play an important role in shap-

ing the evolution of embryonic development in animals. Briefly, the concept of

developmental constraints assumes that the scope of developmental mechanisms

limits the set of phenotypes that may evolve. Thus, morphological similarities

between embryos of different species could reflect these underlying constraints (Poe

and Wake, 2004). Two main models of embryonic developmental constraints have

been put forward. The early conservation model predicts that the highest develop-

mental constraints occur at the beginning of embryogenesis. This corresponds to

von Baer’s third law (von Baer, 1828), postulating that embryos of different species

progressively diverge from one another during ontogeny. However, in modern times,

the highest morphological similarity between embryos of different species was

observed in the phylotypic stage (i.e., mid-embryogenesis) (Seidel, 1960; Sander,

1983; Elinson, 1987). Consequently, Duboule (1994) and Raff (1996) proposed

the so-called hourglass model, which has since become widely accepted (see, e.g.,

Prud’homme and Gompel, 2010; Kalinka and Tomancak, 2012). It predicts the

highest developmental constraints during mid-embryogenesis.

At the genomic level, the hourglass model was originally linked to the expres-

sion of HOX genes in vertebrates (Duboule, 1994). More recently, the emphasis

has shifted to the relation, if any, between developmental constraints and the

evolution and function of the genome (reviewed in Kalinka and Tomancak, 2012).

Different studies have reported several characteristics supporting the hourglass

model in vertebrates on the genomic level, e.g.: higher protein sequence similarity

(Hazkani-Covo et al., 2005), higher expression conservation (Irie and Kuratani,

2011), and older age (Domazet-Lošo and Tautz, 2010) of genes expressed in the

mid-development when compared to the genes expressed early or late in the devel-
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opment. However, some of these results do not hold out under a detailed analyses

(see Box 3.1 and Supplementary Materials). For example, applying a standard

log-transformation (McDonald, 2009; Speed, 2000) to microarray signal intensities

used in Domazet-Lošo and Tautz (2010) changes the reported pattern such that

it no longer supports the hourglass model (figure 3.1). Moreover, other studies

have also found genetic patterns supporting an early conservation model (Roux

and Robinson-Rechavi, 2008; Comte et al., 2010).

In most of the studies of developmental constraints the authors compared

descriptive statistics of all genes across all developmental time points [e.g., median

expression (Roux and Robinson-Rechavi, 2008), weighted mean age (Domazet-

Lošo and Tautz, 2010), mean expression correlation (Irie and Kuratani, 2011)].

Such an approach introduces dependencies between the sets of genes which are

compared, and consequently can produce results biased by genes expressed at

many time points. For example, housekeeping genes contribute to the average

gene expression at all time points, and hence dilute trends. To overcome this

essential problem, we have used a modularization approach, which we applied to

the recently published transcriptome data of zebrafish development (Domazet-Lošo

and Tautz, 2010). We decomposed the genes into independent sets, i.e., modules,

that contained genes overexpressed solely in one of seven developmental stages:

cleavage/blastula, gastrula, segmentation, pharyngula, larva, juvenile and adult.

This decomposition allowed us to compare only sets of genes that have specific

functions during embryonic development. For each of the seven modules, we

studied five properties of its genes: 1) gene sequence conservation, 2) gene age, 3)

gene expression conservation, 4) gene orthology relationships, and 5) regulatory

elements conservation.

Here, we show that different levels of molecular evolution follow different
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patterns of developmental constraints. First, the regulatory elements are most

conserved for transcription factors expressed at mid-development, consistent with

the hourglass model. Contrary to what has been reported previously (Hazkani-

Covo et al., 2005; Domazet-Lošo and Tautz, 2010; Irie and Kuratani, 2011), we did

not detect the hourglass pattern for gene sequence, age and expression. Second,

constraints on gene duplication and on new gene introduction are the strongest

in early development, supporting the early conservation model (consistent with

Roux and Robinson-Rechavi, 2008). Finally, all gene properties displayed the least

conservation in late development and adult, which is in agreement with both

models of developmental constraints.
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Recent results of Domazet-Lošo and Tautz (2010) suggest that the oldest transcriptome set is

expressed at the phylotypic stage, and that younger sets are expressed during early and late devel-

opment, which supports the hourglass model. To study the relationship between gene expression,

ontogeny and phylogeny, the authors proposed a measure called the “transcriptome age index”,

or TAI. The TAI was defined as the mean of the phylogenetic ranks (“phylostrata”) across genes,

weighted by their microarray signal intensity values at each developmental stage. Note that the

microarray signal intensity values used in Domazet-Lošo and Tautz (2010) displayed a log-normal

distribution and spanned from 1 to 105 (Supplementary figure A.1). Using these values to calculate

TAI made the weights of phylogenetic ranks differ by five orders of magnitude between lowly and

highly expressed genes. Consequently, only the most expressed genes (Supplementary figure A.2),

and potentially outliers (Supplementary figure A.3), contributed to the hourglass pattern discovered

with TAI. We found that applying a standard log-transformation to the intensity values changes

the pattern, which then indicates older genes being expressed preferentially in early development

(figure 3.1). The use of log-transformed data for microarray intensities is generally encouraged

(McDonald, 2009; Speed, 2000) because it keeps the biological signal, while removing dependency

between variance and intensity of the analyzed signals. We present a more detailed re-analysis of

the study of Domazet-Lošo and Tautz (2010) in Supplementary Materials.
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Figure 3.1: Transcriptome age index (TAI) using raw and log-transformed expression
signal intensities. A higher TAI value implies that evolutionary younger genes are preferentially
expressed at the corresponding time point. The pink shaded area indicates the phylotypic stage.
Colors of the curves reflect the main developmental periods and correspond to the colors used in
Domazet-Lošo and Tautz (2010).

Box 3.1: Transcriptome Age Index
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3.2 Results

3.2.1 Modules

Our goal was to analyze the developmental constraints acting on different gene

properties. To this end we identified and analyzed groups of genes co-expressed

during distinct developmental stages. We applied the Iterative Signature Al-

gorithm (ISA; Bergmann et al., 2003; Ihmels and Bergmann, 2004) to the zebrafish

expression data published by Domazet-Lošo and Tautz (2010), which measured

the dynamics of the transcriptome during development with a resolution of 60

time points. The ISA is a modularization algorithm that finds genes with sim-

ilar expression profiles and groups them into so-called transcription modules. In

order to detect modules of genes with specific expression during the zebrafish

development, we initialized the ISA with seven idealized expression profiles that

corresponded to successive developmental stages (see Supplementary Materials

and Supplementary figure A.8).

We obtained seven modules, each containing genes overexpressed during one

of the following developmental stages: cleavage/blastula, gastrula, segmentation,
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Figure 3.2: Modules of genes with time-specific expression during zebrafish develop-
ment. A) Zebrafish ontogeny (drawings of the embryos are based upon sketches and photographs
from Kimmel et al., 1995). B) Median, 25th and 75th percentiles of expression value of genes in
modules. Red bars denote the condition scores assigned to developmental points by the ISA.
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pharyngula, larva, juvenile and adult (figure 3.2). Overall, the modules covered

the entire development. The phylotypic stage in which the hourglass model pre-

dicts the highest evolutionary constraints corresponds to the segmentation and

pharyngula modules. We will refer to these two modules as phylotypic modules.

The cleavage/blastula and gastrula modules will be referred to as early modules,

and larva, juvenile and adult modules as late modules.

The adjacent modules partially overlapped in their gene content. In order to

allow for unbiased cross-module comparisons, genes belonging to two modules were

kept in the one with the highest ISA gene score (see Methods); this concerned 534

genes in total. The seven modules, i.e., cleavage/blastula, gastrula, pharyngula,

segmention, larva, juvenile and adult, contained 444, 820, 487, 414, 415, 290

and 207 genes, respectively. Overall, 3,077 different genes were present in these

modules, which implies a significant reduction of the number of genes being

analyzed in comparison to the original data (14,293 genes on the microarray). In

particular, the ISA removed the bias related to the genes expressed uniformly

across development (i.e., housekeeping genes).

3.2.2 Functional annotation

We verified the function of genes in modules detected by the ISA by comparing them

to relevant known lists of genes. We found that the cleavage/blastula module was

significantly enriched in maternal genes identified in Aanes et al. (2011) (hypergeo-

metric test, p = 0.01, see Methods for details of this, and all other statistical tests),

and the gastrula module was highly significantly enriched in post-midblastula

transition (post-MBT) genes identified in Aanes et al. (2011) (hypergeometric test,

p = 2.8×10−18). We confirmed the relevance of the pharyngula and segmentation

modules by verifying that they were enriched in HOX genes, which is consist-
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ent with their role in mid-development (Krumlauf, 1994) (hypergeometric test,

p = 5.6×10−16 and 2.9×10−4, respectively). We did not have any gold standard

for genes expressed at the late stages of development. However, since the early

and phylotypic modules were enriched in genes with relevant functions, we are

confident that the same is true for the late modules.

Moreover, GO enrichment analysis confirmed that genes from the modules

were enriched in functions relevant to the respective developmental stages. For

example, the cleavage/blastula module was enriched in genes involved in protein

phosphorylation and dephosphorylation processes, which is consistent with kinase-

dependent control of cell cycle and regulation of mid-blastula transition (MBT)

in vertebrates (Hartley et al., 1996; Yarden and Geiger, 1996). The pharyngula

module was enriched in genes associated with cell differentiation, and anatomical

structure development. Finally, the adult module was enriched in genes involved

in responses to environment, although not significantly (Supplementary table A.2).

3.2.3 Sequence conservation

We checked whether the sequences of genes from different modules evolved under

different selective pressure. To this end, we calculated the non-synonymous to

synonymous substitution ratios (dN /dS) for genes in the modules and asked if the

ratio was significantly lower for any of them. With the early conservation model,

we would expect the lowest dN /dS values for genes from early modules. Whereas

with the hourglass model, we would expect the lowest dN /dS values for genes

from the phylotypic modules. In the first five modules, covering whole embryonic

development from zygote to larva, the median dN /dS was lower than the median

dN /dS for all genes, but the difference was significant only for the larva module

(figure 3.3A, randomization test, p < 7×10−4). In the juvenile module, the median
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dN /dS was higher than the median dN /dS for all genes, but the difference was not

significant. In the adult module, the median dN /dS was significantly higher than

the median dN /dS for all genes (randomization test, p = 4.2×10−3).

These results were consistent with the study by Roux and Robinson-Rechavi

(2008), who also reported equally low dN /dS values during the entire zebrafish

embryogenesis, and a small increase in mid-larva, juvenile and adult. In contrast,

Hazkani-Covo et al. (2005) reported an hourglass pattern for protein distance

between mouse and human genes expressed during development. However, the

trend was not significant. In Roux and Robinson-Rechavi (2008) some evidence for

early conservation was reported in mouse. Projecting the genes from zebrafish mod-

ules to mouse–human orthologs, we found equal conservation across development

(Supplementary figure A.9). Overall, data analyses support similar evolution-

ary constraints on sequences of genes expressed during whole embryogenesis of

zebrafish, while for mouse more developmental data is needed to be conclusive.

3.2.4 Gene age

The differences in age of genes expressed during different stages of the devel-

opment have been suggested to be a good indicator of evolutionary constraints

(Irie and Sehara-Fujisawa, 2007; Domazet-Lošo and Tautz, 2010). Thus, we in-

vestigated the age of genes belonging to different modules. We dated each gene

by its first appearance in the phylogeny and assigned it to one of the five age

groups: 1) Fungi/Metazoa, 2) Bilateria, 3) Coelomata+Chordata, 4) Euteleostomi

and 5) Clupeocephala+Danio rerio. Next, for each module we calculated the age

distribution of its genes, i.e., the number of genes belonging to each age group, and

compared it with the age distribution of all genes.

For all but the cleavage/blastula module we detected significant age variations
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(chi-square goodness of fit test, all p < 1.3×10−5), which differed across modules.

The oldest genes were overrepresented in the gastrula module, the Bilateria genes

were overrepresented in the phylotypic modules, and the youngest genes were

overrepresented in the late modules (figure 3.3B). In contrast, Domazet-Lošo and

Tautz (2010) reported that genes expressed in early and late development tend to

be younger than genes expressed in mid-development, supporting the hourglass

model. Yet, that result does not hold for log-transformed gene expression levels (Box

3.1), and is not recovered with measures of gene age other than the transcriptome

age index (see Supplementary Materials and Supplementary figure A.6). With

the modular approach we observed that the age of expressed genes decreased

throughout ontogeny. This pattern suggests that the oldest evolutionary stages

tend to express the oldest genes.

3.2.5 Gene family size

Both gene duplication and gene loss can impact phenotypic evolution (Ohno et al.,

1970; Zhang, 2003; Nei, 2007; Wang et al., 2006; Demuth and Hahn, 2009). The

outcome of these events can be summarized by the resulting gene family size.

Consequently, constrained developmental stages should display less changes in

gene family size than other stages. To test this hypothesis, for each zebrafish

module we calculated the number of its genes that were in 1) one-to-one, 2) one-

to-many, 3) many-to-many, and 4) no orthology relation to mouse genes (i.e., no

ortholog detectable by the criteria used in Ensembl Compara; Vilella et al., 2009).

We compared the observed distributions with the distribution of the ortholog

relationships for all genes. We detected significant variations of the ortholog rela-

tionship for the cleavage/blastula module and for all three late modules (chi-square

goodness of fit test, all p < 9×10−5). Moreover, the pattern of variation itself



80 CHAPTER 3

differed across different modules. The number of one-to-one orthologs decreased

throughout development, and was significantly higher than expected only in the

cleavage/blastula module (figure 3.3C). In contrast, the number of genes with

no orthologous relationship increased throughout development. It was signific-

antly higher than expected only in the juvenile and adult modules (figure 3.3C),

consistent with the excess of “young” genes. A similar pattern was observed for

many-to-many orthologs. Finally, the number of one-to-many orthologs was higher

than expected only in the larva module, and did not differ from expectation in all

other modules.

These results were consistent with Roux and Robinson-Rechavi (2008) in which

the genes retained in duplicates after the fish-specific whole genome duplication

were reported to have low expression early in the development. Here, we recovered

an analogous pattern with the modular approach, showing that the genes expressed

early in the development are retained in duplicates less often than genes expressed

later. Note that our observation is not limited to whole genome duplication. In

addition, we detected the highest number of novel genes amongst genes expressed

late in the development.

3.2.6 Expression conservation

Changes in gene expression are one of the main sources of morphological variation

(King and Wilson, 1975; Preuss et al., 2004; Carroll, 2005). The developmental

constraints on gene expression might differ from those on the gene sequence

(Jordan et al., 2004; Yanai et al., 2004; Jordan et al., 2005). Thus, for each module,

we compared the mean expression profile of its genes with the mean expression

profile of their one-to-one orthologs in mouse. We used two different data sets

(Wang et al., 2004; Irie and Kuratani, 2011) with expression values of mouse genes
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during the development. The use of two data sets was necessary, because there

does not exist a single experiment covering the entire mouse development. The

incompatibility of the two microarrays impaired the statistical strength of the

analysis. For this reasons the results reported here should be regarded rather as

qualitative than quantitative.

Since homology cannot be defined for individual developmental stages between

zebrafish and mouse, we first mapped every time point to its broad metastage

defined in Bgee (Bastian et al., 2008) (figure 3.4). Next, we calculated the mean

expression level in every metastage. This resulted in six expression values for each

gene during the development of mouse and zebrafish: zygote, cleavage, blastula,

neurula, organogenesis, and post-embryonic stage. Note that the mouse microar-

rays did not cover the gastrula stage at all. For each module we calculated the

Pearson’s correlation between the mean expression of its genes and their mouse or-

thologs across the six metastages. For the cleavage/blastula module no correlation

was detected, probably due to the incompatibility of the two mouse microarrays.

For other modules the correlation was positive (figure 3.3D), however due to the

low number of data points in the analysis, no correlation values were significant

(all p > 0.01).

These results stood in contrast with the report by Irie and Kuratani (2011) who

showed the highest conservation of gene expression in mid-development. However,

a re-analysis of their data suggested that this observation was not significant (see

Supplementary Materials and Supplementary figure A.7). Also, both their and our

studies shared problems related to the use of two data sets from different sources to

cover mouse development. This and the lack of a straightforward homology between

ontogenies of different species make it difficult to conclude on the conservation of

gene expression during vertebrate development.
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3.2.7 Regulatory regions

The cis-regulatory hypothesis asserts that most morphological evolution is due to

changes in cis-regulatory sequences (Stern, 2000; Wray, 2007; Carroll, 2008). A

reasonable prediction of this hypothesis is slower cis-element turnover in morpho-

logically conserved developmental periods. We examined the presence of highly

conserved non-coding elements (HCNEs; Engström et al., 2008) and of transposon-

free regions (TFRs; Simons et al., 2007) in the proximity of genes from each

module. In the analysis of HCNEs, we counted their number between zebrafish

and mouse (detected with 70% identity) in regions of 500 base pairs upstream

from the transcription start site. We found that only genes from the phylotypic

modules were significantly enriched in HCNEs (hypergeometric test, p = 8×10−6,

and p = 1.1×10−4 for segmentation and phayrngula modules, respectively). We

tested the sensitivity of the results by changing the analyzed regions’ length to

200 and 1,000 base pairs upstream from the transcription start site, by looking for

HCNEs in introns, and using HCNEs detected with identity of 90%. In all cases,

we obtained similar results (see Supplementary table A.1). In the analysis of TFRs,

we counted the number of genes from each module that have been associated with

TFRs in zebrafish. Importantly, these TFRs were reported to be conserved between

vertebrates as distant as zebrafish and human. We found that only genes from

the pharyngula module were significantly enriched in TFRs (hypergeometric test,

p = 5.7×10−7).

The highly conserved non-coding elements and transposon-free regions are often

associated with developmental regulatory genes, and with transcription factors

(TFs) in particular (Sandelin et al., 2004; Woolfe et al., 2005; Vavouri et al., 2007;

Engström et al., 2008; Simons et al., 2007). In order to confirm this association,

we calculated the fractions of genes with HCNEs or with TFRs in their proximity.
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the modules. The dash-dotted lines denote confidence interval for the median. B) Observed minus
expected age distribution of genes in modules. C) Observed minus expected distribution of orthology
type (between zebrafish and mouse) for genes in modules. D) Mean expression level of zebrafish
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We observed that for both features this fraction was higher for TFs than for all

genes. Importantly, we observed that only the phylotypic modules were enriched in

TFs (figure 3.3E). This partially explained the enrichment in HCNEs and TFRs for

genes expressed in mid-development. In addition, HCNEs were more often present

in the proximity of TFs from the pharyngula module than in the proximity of TFs

in general (figure 3.3E; 8.8% of TFs from the pharyngula module had at least one

HCNE in their proximity, and only 3.7% of all TFs had at least one HCNEs in

their proximity). Also TFRs were more often present in the proximity of TFs from

the phylotypic modules than in the proximity of TFs in general (figure 3.3E; 31%

and 45% of TFs from the segmentation and pharyngula modules, respectively, had

TFRs in their proximity, and only 26% of all TFs had TFRs in their proximity).

Consequently, the enrichment in HCNEs and TFRs for genes expressed in the

phylotypic stage seems to be related to the regulation of developmental processes.

In addition, we checked for genes that preserved their specific ancestral order

in the genome across metazoans (so called conserved ancestral microsyntenic pairs;

Irimia et al., 2012) and are known to be involved in the regulation of development.

We found that they were slightly overrepresented in the segmentation module, but
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only at the limit of statistical significance (see Supplementary Materials).

Finally, we checked for core developmental genes in each module (see Vavouri

et al., 2007 for the list of genes). These genes are known to be involved in the

regulation of development, and to have highly conserved regulatory regions within

different taxa, including, nematodes, insects and vertebrates (Vavouri et al., 2007).

We detected a significant enrichment in these genes only in the pharyngula module

(20 core genes; hypergeometric test, p = 6.9×10−19), supporting the hourglass

model.

3.3 Discussion

Our goal was to study developmental constraints acting on various gene properties.

To this end we identified distinct sets of genes with time-specific expression in

zebrafish development, i.e., genes expressed in one of the seven consecutive stages:

cleavage/blastula, gastrula, segmentation, pharyngula, larva, juvenile and adult.

Overall, we analyzed and compared five gene characteristics, namely the conser-

vation of gene sequence, gene expression, and regulatory elements, as well as age

and orthology relationships.

Several features do not show any significant pattern over embryonic devel-

opment, often in contradiction to previous reports. There is notably no evidence

for change in selective pressure acting on sequences of protein-coding genes (i.e.,

dN /dS) over development (in contrast to Hazkani-Covo et al., 2005). Unfortunately,

the available data does not allow a strong conclusion concerning the conserva-

tion of expression (in contrast to Irie and Kuratani, 2011), despite the probable

importance of this feature in the evolution of development. In this respect, the

situation in vertebrates stands in contrast to the relatively clear results in flies

(Kalinka et al., 2010), where the evolution of expression has been shown to be most
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constrained in mid-development.

Gene orthology relations support the early conservation model. We show that

early stages are less prone to tolerate both gene duplication (consistent with

Roux and Robinson-Rechavi, 2008) and gene introduction. The interpretation

of transcriptome age is less straightforward. Our observations suggest that the

oldest evolutionary stages tend to express of the oldest genes. It is possible that

early stages are evolutionarily oldest, and that this is why they are enriched

in oldest genes. Consequently, it is the presence of young genes in a module

that would mark relaxed developmental constraints during the corresponding

stage. However, neither early nor phylotypic modules are enriched in young

genes (Euteleostomi and Clupeocephala+Danio rerio), which suggests similar

developmental constraints in early and mid-ontogeny. In any case, we do not find

any support for the hypothesis that the phylotypic stage would be characterized by

the oldest transcriptome (in contrast to Domazet-Lošo and Tautz, 2010).

While the modularization approach does not support several previous hypo-

theses of genomic traces of the phylotypic stage, it allows us to distinguish a strong

signal of conservation of gene regulation in mid-development. While this had not

yet been reported in genomic studies, it is consistent with early descriptions of the

phylotypic stage as characterized by HOX genes body patterning activity (Duboule,

1994). We observed an excess of HCNEs only for genes expressed in the pharyn-

gula module, and an excess of TFRs only for genes expressed in the phylotypic

modules. The enrichment in HCNEs and TFRs has been related to developmental

regulatory genes, and to transcription factors (TFs) in particular (Sandelin et al.,

2004; Woolfe et al., 2005; Vavouri et al., 2007; Engström et al., 2008). Indeed, we

observed that more TFs were expressed in mid-development than in other stages.

Also, we showed that a significant proportion of TFs expressed in mid-development
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had conserved regulatory regions (i.e., HCNEs and TFRs), in contrast to TFs

expressed early or late. Consequently, the enrichment in HCNEs and TFRs for

genes expressed in mid-development can be explained by both a higher number

of TFs and a higher number of HCNEs and TFRs for these TFs, than for genes

expressed earlier or later. Moreover, the pharyngula module was associated with

core developmental genes. Overall, these results suggest that mid-developmental

processes have extremely high conservation of regulation. This conservation could

translate into observed common traits of the phylum expressed at the phenotypic

level during mid-development. In addition, core developmental genes are known

to be present in different taxa (e.g., nematodes, insects and vertebrates), in each

of which they have a conserved regulation that evolved in parallel (Vavouri et al.,

2007). This could explain why the phylotypic stage is observed not only in verteb-

rates (Kimmel et al., 1995), but also in other phyla, e.g., in arthropods (Sander,

1983; Kalinka et al., 2010).

Finally, for all of the features which we have considered there is at least some

trend towards weaker evolutionary constraints in the latest stages: dN /dS is

significantly higher in adults; correlation of expression is lowest for maternal,

larval and adult genes; young genes and genes with duplications in fishes or other

vertebrates are overrepresented in late modules; and genes expressed in juveniles

and adults have the less HCNEs and TFRs. Although not all of these trends are

significant, no feature shows stronger conservation in late development or adult.

Thus, while different aspects of gene evolution show constraints at different times

of development, there appears to be a generally faster evolution of all aspects of

larval, juvenile and adult genes. Whether this is due to lower constraints (i.e., less

purifying selection) or to stronger involvement in adaptation (i.e., more diversifying

selection), remains an open question.
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In summary, we studied evidence for, or against, any particular pattern of

developmental constraints by considering sets of genes with time-specific expres-

sion patterns. Comparing such independent sets of genes with a clear function

during embryogenesis resulted in cleaner and more fine-grained characterization of

evolutionary patterns than previously reported. Notably, we showed that different

levels of molecular evolution follow different patterns of developmental constraints.

The sequence of regulatory regions is most conserved for genes expressed in mid-

development, consistent with the hourglass model. Gene duplication and new

gene introduction is most constrained during early development, supporting the

early conservation model. Whereas, all gene properties coherently show the least

conservation for the latest stages, consistent with both the early conservation and

the hourglass models.

3.4 Methods

3.4.1 Gene expression data

Microarray data of zebrafish development (GSE24616) were downloaded from

NCBI’s Gene Expression Omnibus (Edgar et al., 2002). This study was performed

on the Agilent Zebrafish (V2) Gene Expression Microarray. In total, expression

profiles for 60 developmental stages (from unfertilized egg to adults stages) were

measured. The last ten stages (55 days–1 year 6 months) were measured separ-

ately for male and female. Two replicates were made per time point, resulting in

(50+2×10)×2 = 140 microarrays in total. For each microarray, values of gProc-

cessedSignal were log10 transformed and normalized as follows. Separately for

each replicate, we equalized the expression signals between microarrays using the

spike-ins reference, to account for different amounts of RNA present throughout
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development. To this aim, we first quantile normalized the expression signal of all

spike-ins from all microarrays. Then, for each spike-in level we took the median

value of expression signal before and after quantile normalization. This resulted

in 10 pairs of expression signals (original signal vs. normalized signal). With

linear interpolation between these points, we obtained a piecewise linear curve

that defined a mapping from original to normalized expression signals, which we

used to equalize the expression signals from all microarrays. This was done by

projecting each expression signal onto the piecewise linear curve and calculating

the corresponding normalized value. Finally, we quantile normalized the data

within replicates and computed the mean value for each gene within replicates.

Expression values measured separately for males and females were averaged for

each time point.

Microarray data of mouse development were downloaded from Array Ex-

press (E-MEXP-51 and E-MTAB-368). The E-MEXP-51 study was performed

on (C57BL/6×CBA)F1 mice using Affymetrix GeneChip Murine Genome U74Av2.

In total, expression profiles for 10 early developmental stages (zygote, early 2-cell,

mid 2-cell, late 2-cell, 4 cell, 8 cell, 16 cell, early blastocyst, mid-blastocyst, late

blastocyst) were measured. 2–4 replicates were made per time point. The data

were normalized using gcRMA package.

The E-MTAB-368 study was performed on C57BL/6 mice using Affymetrix

GeneChip Mouse Genome 430 2.0. In total, expression profiles for 8 mid and late

developmental stages (E7.5, E8.5, E9.5, E10.5, E12.5, E14.5, E16.5, E18.5) were

measured. 2–3 replicates were made per time point. The data were normalized

using gcRMA package.
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3.4.2 Mapping probe sets to Ensembl genes

Agilent probe sets were mapped to their corresponding zebrafish genes (Ensembl

release 63; Hubbard et al., 2009) using BioMart (Smedley et al., 2009). Probe sets

which did not map unambiguously to an Ensembl gene were excluded from the

analysis. A total of 19,049 probe sets corresponding to 14,293 zebrafish genes were

taken into account in our analysis.

Affymetrix probe sets were mapped to their corresponding mouse genes (En-

sembl release 63; Hubbard et al., 2009) using BioMart (Smedley et al., 2009). Probe

sets which did not map unambiguously to an Ensembl gene were excluded from

the analysis. For genes that were mapped by several probe sets we used the signal

averaged across the probe sets. A total of 2,883 mouse genes mapped by probe sets

present on both mouse microarrays were taken into account in the gene expression

analysis.

3.4.3 Iterative Signature Algorithm (ISA)

The ISA identifies modules by an iterative procedure. A detailed description of the

algorithm in the general case is given in Bergmann et al. (2003) (see also http:

//www2.unil.ch/cbg/homepage/downloads/ISA_tutorial.pdf). In this specific

study, the algorithm was initialized with seven candidate seeds, each consisting of

one artificial expression profile corresponding to one of the zebrafish developmental

stages (see Supplementary Materials for details). Next, these seeds were refined

through iterations by adding or removing genes and developmental time points

until the processes converge to stable sets, which are referred to as (transcription)

modules. Each developmental time point and gene received a score indicating their

membership (if non-zero) and contribution to a given module. The closest the score

for a gene or developmental time point was to one, the stronger the association

http://www2.unil.ch/cbg/homepage/downloads/ISA_tutorial.pdf
http://www2.unil.ch/cbg/homepage/downloads/ISA_tutorial.pdf
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between the gene/developmental time point and the rest of the module.

The ISA was run twice with the following sets of thresholds: 1) tg = 1.8 and

tc = 1.2, and 2) tg = 1.8 and tc = 1.4, for genes and developmental time points,

respectively. We obtained the pharyngula module only in the case of tc = 1.2, and

all other modules with both tc = 1.2 and tc = 1.4. All the modules contained their

corresponding idealized profile. For further analysis, we kept a single module

per developmental stage. From the pair of modules, we chose the one in which

the idealized profile had a higher gene score. Overall, segmentation, pharyngula

and juvenile modules were obtained with tc = 1.2, and cleavage/blastula, gastrula,

larva, and adult modules were obtained with tc = 1.4.

3.4.4 GO enrichment analysis

Gene ontology (GO) association for all genes mapped by zebrafish probe sets were

downloaded from Ensembl release 63 (Hubbard et al., 2009), using BioMart (Smed-

ley et al., 2009). GO enrichment was tested by Fisher’s exact test, using the

Bioconductor package topGO (Alexa et al., 2006) version 2.2.0. The reference set

consisted of all Ensembl genes mapped by probe sets of the microarray used. The

“elim” algorithm of topGO was used to eliminate the (tree-like) hierarchical depend-

ency of the GO terms. To correct for multiple testing the Bonferroni correction was

applied. For every module GO categories with corrected P-value lower than 0.01

were reported, if less then ten GO categories were significant we reported the top

ten (see Supplementary table A.2).

3.4.5 Gene sequence analysis

The orthology relationships, and the values of dN (number of non-synonymous

substitutions per non-synonymous site) and dS (number of synonymous substi-
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tutions per synonymous site) were obtained from Ensembl version 63 (Hubbard

et al., 2009). We retrieved zebrafish genes with one-to-one orthologs in Tetraodon

nigroviridis and Takifugu rubripes (the estimated divergence time is 32 million

years ago (MYA) between the two pufferfish species and 150 MYA with Danio rerio;

Benton and Donoghue, 2007) and the pairwise dN and dS between Tetraodon and

Takifugu using Biomart (Smedley et al., 2009). We used the set of 7,854 genes

having dN and dS for Tetraodon–Fugu, and having the expression measured on the

zebrafish microarray. For every module we calculated the median dN /dS ratio of

its k genes, where k was the number of genes having one-to-one relationship with

Tetraodon and Fugu genes. Next, we generated 10,000 sets of k randomly chosen

genes. For each set we calculated the median dN /dS ratio. Thus, we constructed

a sampling distribution of the median dN /dS values for a set of k genes. Then

we calculated the probability that the median dN /dS of the original module was

sampled from the constructed distribution. It allowed us to assess if the observed

median dN /dS ratio was significantly different from the expected median value. To

correct for multiple testing we applied the Bonferroni correction. We used 0.01 as

a significance level. We repeated the same procedure for mouse–human genes (see

Supplementary Materials).

3.4.6 Gene age analysis

To study the age of genes belonging to different modules we dated the genes by

their first appearance in the phylogeny. This consisted of retrieving the age of the

oldest node of their Gene tree in Ensembl release 63 (Hubbard et al., 2009). Genes’

age was described with one of the following categories: Fungi/Metazoa, Bilateria,

Coelomata, Chordata, Eutelostomi, Clupeocephala, and Danio rerio. To fit the

chi-square test requirements (more than 5 elements in a group) we merged the
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genes into five age categories: Fungi/Metazoa, Bilateria, Coelomata + Chordata,

Eutelostomi, Clupeocephala + Danio rerio. Next, for every module we calculated

the age distribution of its genes. We performed chi-square goodness of fit test to

compare the observed and expected distributions of age classes in the modules.

The expected distribution was estimated by classifying all zebrafish genes into one

of the five age categories. To correct for multiple testing we applied the Bonferroni

correction. We used 0.01 as a significance level.

3.4.7 Zebrafish–mouse orthologous genes

Homology information of zebrafish and mouse genes was retrieved from Ensembl

release 63 (Hubbard et al., 2009), using BioMart (Smedley et al., 2009). A total of

17,482 pairs of zebrafish–mouse orthologous genes had expression information in

the zebrafish microarray data (14,293 zebrafish genes and 11,322 mouse genes).

Among them there were 6,441 one-to-one orthologous pairs, 5,048 one-to-many

orthologous pairs, and 2,993 many-to-many orthologous pairs. 2,901 zebrafish

genes showed no orthology relationship with mouse genome. From further analysis

we excluded 99 “apparent-one-to-one” gene pairs. For every module we calculated

the number of genes that were in one-to-one, one-to-many, many-to-many and no

orthology relation to mouse genes. Next, we performed chi-square goodness of fit

test to compare the observed and expected distributions of orthology classes in

the modules. The expected distribution was estimated by classifying all zebrafish

genes into one of the four orthology categories. To correct for multiple testing we

applied the Bonferroni correction. We used 0.01 as a significance level.
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3.4.8 Gene expression conservation

To study expression conservation between zebrafish genes assigned to the modules

and their mouse one-to-one orthologs, we used gene expression data for 2,883

orthologous gene pairs (the limiting factor being the mapping to both mouse mi-

croarrays). For genes that were mapped by several probe sets we averaged their

signal across the probe sets for both species. In order to compare gene expression

between two species, we first calculated the mean expression for zebrafish genes

present in the modules and their one-to-one mouse orthologs. Due to the incompat-

ibility of two mouse microarray data used it was difficult to provide a meaningful

comparison of expression for the two species. To calculate the correlation between

expression profiles between zebrafish and mouse we reduced their expression pro-

files to six metastages: zygote, cleavage, blastula, neurula, organogenesis, and

post-embryonic stage (see Bastian et al., 2008 for detailed definition of metastage).

For every module and every metastage we calculated the mean expression level for

zebrafish genes and their mouse one-to-one orthologs, and next we calculated the

Pearson correlation coefficient between them.

3.4.9 Highly conserved non-coding elements

Location data for highly conserved non-coding elements (HCNE) between zebrafish

and mouse (70% of identity) was retrieved from Ancora (Engström et al., 2008;

http://ancora.genereg.net/downloads/danRer7/vs_mouse).

The file HCNE_danRer7_mm9_70pc_50col.bed.gz was downloaded and used in the

analysis. For each of the 14,293 Ensembl genes considered in our analysis, we

calculated the number of HCNE in regions of 500 base pairs upstream from the

transcription start site. Next, for every module we performed a hypergeometric

test to assess if they were significantly enriched in genes with HCNE. To correct

http://ancora.genereg.net/downloads/danRer7/vs_mouse
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for multiple testing we applied the Bonferroni correction. We used 0.01 as a

significance level. In additional analyses, we calculated the number of HCNE in

regions of 200 and 1000 base pairs upstream from the transcription start site, as

well as in introns. Also, we repeated the analysis with HCNEs of 90% identity (see

Supplementary Materials).

3.4.10 Transposon-free regions

Location data for transposon-free regions (TFRs) in zebrafish was retrieved from

(Simons et al., 2007; http://www.biomedcentral.com/content/supplementary/

1471-2164-8-470-S1.txt). First, each TFR was associated with Ensembl ID of

its closest transcript from genome assembly Zv6. Then for each Ensembl transcript

ID we retrieved an Ensembl gene ID from genome assembly Zv9 (Ensembl release

63; Hubbard et al., 2009). For every module we performed a hypergeometric test to

asses if they were significantly enriched in genes with TFRs in their proximity. To

correct for multiple testing we applied the Bonferroni correction. We used 0.01 as

a significance level.

3.4.11 Transcription factors

The set of transcription factors was defined based on GO category annotation: GO:

0006355, regulation of transcription, DNA-dependent. Among 14,293 Ensembl

genes, 957 were annotated as transcription factors. For every module we performed

a hypergeometric test to asses if they were significantly enriched in TFs. Next,

we performed a hypergeometric test to asses if the TFs present in the modules

were enriched in HCNEs and TFRs. To correct for multiple testing we applied the

Bonferroni correction. We used 0.01 as a significance level.

http://www.biomedcentral.com/content/supplementary/1471-2164-8-470-S1.txt
http://www.biomedcentral.com/content/supplementary/1471-2164-8-470-S1.txt
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Figure A1. Total distribution of signal intensity from all 140 microar-

rays.

Figure A2. TAI hourglass pattern is driven by the subset of most ex-

pressed genes. TAI calculated using untransformed (black) and log10-transformed

(red) gene expression intensities across zebrafish development. In both cases, TAI

is calculated using the entire data sets (dotted line), or using the 25% highest

partial concentrations1 chosen separately for each stage (solid line).
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Figure A3. Sensitivity to outliers. (A) Raw expression signal of probe

A_15_P161596 across zebrafish development. (B) TAI calculated on non-transformed

data across zebrafish development without this probe (red) and the effect of this

probe on TAI pattern (grey). (C) TAI calculated on log10-transformed data across

zebrafish development without this probe (red) and the effect of this probe on TAI

pattern (grey).

Figure A4. TAI calculated using expression intensities of genes, in-

stead of probes, across zebrafish development. For each gene we averaged

the signal intensity from all corresponding probes. After this process 16,188 probes’

intensities values were reduced to 12,892 genes’ intensities values, which were

used to weight the phylogenetic ranks of genes (if two different phylostrata were

assigned to the same gene, the older one was chosen). (A) non-transformed data

was used. (B) log10-transformed data was used.

Figure A5. TAI calculated using genes recoded as present–absent across

zebrafish development. At a given stage of development, if the log10-intensity

value of a gene is above one (LeProust, 2008), its expression is set to 1, otherwise it

is set to 0. Other notations as in figure 3.1.

Figure A6. Alternative measures of transcriptome age. (A) Mean age of

genes expressed across zebrafish development; age estimated with the TimeTree

database (www.timetree.org). A gene is considered expressed at a given stage of

development if its log10-intensity is above one (LeProust, 2008). (B) Difference

between median expression profiles of old genes and young genes across zebrafish

development. Here, the genes that have emerged before the evolution of Metazoa

are considered old and the genes that have emerged since the ancestor of Eutele-

ostomi are considered young. The difference between the two groups is always

positive, reflecting that old genes tend to be more expressed than young genes

www.timetree.org
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(Wolf et al., 2009). The results are robust to the choice of cutoffs used to define old

and young genes (data not shown). Red dashed line — female data, blue dashed

line — male data. Other notations as in figure 3.1.

Figure A7. Correlation between expression levels of genes across de-

velopmental time points of mouse, chicken and zebrafish. Field A denotes

the early stages, field B denotes the phylotypic stages, and field C denotes the late

stages of development.

Figure A8. Artificial expression profiles used to initialize the ISA: pre-

MBT, post-MBT, “middle”, pharyngula, larva, “late”, adult. These profiles resulted

in modules containing genes expressed specifically in: cleavage/blastula, gastrula,

segmentation, pharyngula, larva, juvenile, and adult, respectively.

Figure A9. dN /dS ratio for human–mouse one-to-one orthologs. The

orthologs were obtained by projecting the genes expressed in the zebrafish modules

to their one-to-one orthologs in mouse and human.

Table A1. P-values from HCNE enrichment analyses.

Table A2. The list of modules and their enriched GO categories (biolo-

gical process).



Outlook

I trust that I have convinced the reader that the modular approach is a very fruitful

method of data analysis when applied to evolutionary studies. Here, I would like

to briefly summarize my results and discuss possible extension of my work in the

field of evo-devo.

In chapter 1, I showed how to improve standard, non-modular approach to

study gene expression evolution. While I overcame some of the previous limitations,

there are still some to be resolved. First, the proposed new method to estimate

the rate of neutral divergence is not time-dependent. One can safely assume that

it does not pose a problem for the analysis of distant species (e.g., mouse and

human, as suggested by Jordan et al., 2005), but it certainly biases the calculations

when two closely related species are being compared (e.g., human and chimpanzee).

Second, the use of the Euclidean distance as a measure of expression similarity,

although encouraged, does not totally eliminate the dependence of the metric on the

expression specificity. Thus, the question raised in several studies (Liao and Zhang,

2006b; Liao et al., 2010; Movahedi et al., 2011), whether the broadly or narrowly

expressed genes tend to be more conserved in evolution, remains unanswered with

this methodology. Both of these limitations should be kept in mind, when gene

expression conservation is evaluated with the standard metrics.

In chapter 2, I used a comparative modular approach to study gene expression

in vertebrate organs. I found that organs form “natural” modules of expression in

mouse and human. Thanks to the PPA I could directly identify organ-specific or

system-specific genes and further analyze their features. In contrast, in typical
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studies only the Pearson’s correlation coefficient between organs is reported. I

found that organ-specific and system-specific genes are often orthologous between

mammals. Having identified the mammalian modules of expression, I then con-

firmed their evolutionary conservation also in zebrafish. As discussed in chapter 2,

the detected level of gene expression conservation between mammals was rather

underestimated due to the high level of noise present in the data. It will be worth-

while in the future to re-evaluate the expression conservation in vertebrates using

more and better quality data. Fast development of RNA-Seq technology should

allow this in a near future. My results are already partly confirmed by the study

of Brawand et al. (2011), where the authors used such data and detected some

modules of organ-specific genes conserved across ten species (9 mammals and 1

bird). It will be also of interest to extend the study to vertebrate outgroup species,

such as Drosophila, to look for evolutionary ancient modules of expression.

Another interesting perspective to look at the evolution of gene expression is to

study it in relation to the development of an organism. The hourglass and the early

conservation models have been proposed to describe patterns of developmental

constraints acting on evolution. Recently, the hourglass model has been clearly

favored (Domazet-Lošo and Tautz, 2010; Irie and Kuratani, 2011; Kalinka and

Tomancak, 2012). To verify this hypothesis I studied gene expression data from

zebrafish development. I identified distinct modules of genes expressed in consec-

utive stages of zebrafish development and compared their properties. I found that

each of the two models explains in part developmental constraints, thus none of

them is exclusively valid. In particular, I detected the hourglass pattern only in

the conserved regulatory regions, and the early conservation pattern in events

of gene duplication and birth. These patterns would have been difficult, if not

impossible, to observe without the modular analysis. Other studies that aimed at
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discovering patterns of developmental constraints compared descriptive statistics

of all genes across all developmental time points. This introduced dependencies

between the sets of compared genes, and might resulted in biases due to genes

expressed at many time points. While the modular approach gave an interesting

and fresh insight into the important evo-devo question, I could only apply it to

one vertebrate species, zebrafish. It would be of great interest to compare these

results with analogous studies of developmental data of other vertebrates. Only

then one could confidently say that my findings refer to vertebrates in general.

Both, microarray and RNA-Seq data would be of great use to deepen this study. I

hope that such data will be available soon.

I would like to conclude with a comment on the theme that runs through the

entire thesis. In all three chapters, I faced methodological issues related to large

scale data analysis. In chapter 1, I showed that in the analysis of large scale

data many nuances of the common measures of similarity escaped the attention of

the researchers. For example, Pearson’s correlation coefficient yields zero for two

broadly expressed genes (thus similar), contrary to naive expectation. With small

scale data, this discrepancy would have been easily noticed with a glance over the

results, which is virtually impossible in the case of the analysis of thousands of

genes. Consequently, large scale data analysis requires a good understanding of

the methodology which is being applied. In chapter 2, I was forced to rely on the

GNF human and mouse expression data Su et al. (2004), which consisted of only

two replicates (many of them being technical replicates of pooled RNA samples).

The low number of replicates potentially limited the number of significant patterns

which I could observe with the modular analysis. Of note, the GNF gene atlas is the

only publicly available data set of human and mouse expression measured in many

organs. Thus, despite the low number of replicates, it has been widely used in
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many different studies (out of 1,803 citations of the Su et al., 2004 study, 538 refer

directly to the GNF expression data; retrieved from Google Scholar on 27th August

2012). In chapter 3 and appendix A, I discussed the work that was published

in Nature (Domazet-Lošo and Tautz, 2010) even though it dismissed the most

standard procedure in microarray data analysis, which is the log-transformation of

the signal. I demonstrated the large impact of this omission on the final conclusions

— the title hourglass pattern disappeared when log-transformed data were being

analyzed. I also showed that the presented pattern was highly influenced by an

outlier probe, whose effect was enormous with non-transformed data. The lack of

appreciation for rigorous statistical analysis displayed by a journal such as Nature

is a bit surprising, since the importance of good experimental design and applying

adequate statistical tools have been discussed many times (Fisher, 1971; Nadon

and Shoemaker, 2002; Yang et al., 2002a; Kathleen Kerr, 2003; Allison et al., 2006).

There is no doubt that high-throughput transcriptomic studies have a great

potential to deepen our understanding of evolutionary processes. Nevertheless, it

will not be fully exploited as long as the co-operation between biologists, bioinform-

aticians, and statisticians is not well established.
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Supporting Materials: The hourglass and the early con-

servation models — co-existing evolutionary patterns

in vertebrate development

Barbara Piasecka, Paweł Lichocki, Sven Bergmann,

Marc Robinson-Rechavi

Re-analysis of previous studies

Domazet-Lošo and Tautz (2010)

In a recent paper, Domazet-Lošo and Tautz (2010) suggested that “the phylotypic

stage does express the oldest transcriptome set and that younger sets are expressed

during early and late development”. To study the relationship between gene

expression, ontogeny and phylogeny, the authors proposed a measure called the

“transcriptome age index” (TAI). In Box 3.1 we show that the transcriptome age

measured with TAI (Domazet-Lošo and Tautz, 2010) differs strongly if the log10-

transformation of the data is applied. Here, we first discuss the advantages of

log-transformation, and next we show that also applying several other measures

and transformations of the data never reproduces the results reported by Domazet-

Lošo and Tautz (2010). On the contrary, we find always that the age of the
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transcriptome decreases during development.

The microarray signal intensity values that were used in Domazet-Lošo and

Tautz (2010) display a log-normal distribution and span from 1 to 105 (figure A.1). If

one uses non-transformed data to calculate TAI, then the five orders of magnitude of

difference between expressions of highly and lowly expressed genes translates into

five orders of magnitude of difference of the weights of the phylogenetic ranks. In

practice, this means that highly expressed genes are given a very high importance,

whereas lowly expressed genes are given almost none (figure A.2). It is disputable

whether this is a correct interpretation of the biological reality, because even lowly

expressed genes (which are a large majority) do play a role in the development

and are shaped by evolutionary forces. Thus, one should not neglect them, if one

wishes to interpret the TAI profile in the context of evolutionary constraints or

evolutionary adaptation on the whole transcriptome, as in Domazet-Lošo and Tautz

(2010). It can also be legitimate to study only a subset of genes, but then this

should be done explicitly, and the properties of this subset should be well defined.

In order to take into account all genes having a function during development, the

data must be transformed, so that the weights of the phylogenetic ranks span a

more comparable range. Of note, X-fold difference in signal intensity does not

necessarily imply X-fold difference in RNA concentration (Kahn, 2008).

Moreover, non-log-transformed data are very sensitive to outliers. We identified

the probe A_15_P161596 as an outlier (figure A.3A) which strongly distorts the

TAI profile reported in Domazet-Lošo and Tautz (2010). If this single outlier is

removed, a TAI peak during gastrulation — which in Domazet-Lošo and Tautz

(2010) was given an evolutionary interpretation and linked to the action of the

group of genes that emerged in Metazoa — disappears and leaves the gastrulation

trend less marked (figure A.3B). In contrast, the presence of the outlier has little, if
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any, influence on the TAI profile calculated on log-transformed data (figure A.3C),

showing how the log-transformation leads to a more robust analysis.

Also, in Domazet-Lošo and Tautz (2010), the authors used all 16 188 probes

to calculate TAI. Since some of them map to the same gene, this results in signal

multiplication for some phylostrata. To overcome this problem, we calculated

TAI on data with averaged signal from probes mapped to the same gene. This

changes the TAI pattern observed by the authors (Domazet-Lošo and Tautz): the

oldest transcriptome now seem to be expressed in mid-larval stage, instead of

the phylotypic stage (figure A.4A). In contrast, the TAI profile calculated on log-

transformed data is more robust, as the pattern remains unchanged and does not

depend on mapping to probes or genes (figure A.4B).

Another approach to reduce the effect of highly expressed genes is to treat all

expressed genes as equally important, i.e., recode as present–absent. This recovers

the same pattern as log-transformation (figure A.5). Of note, this approach was

suggested in Domazet-Lošo and Tautz (2010), without discussion of the results.

Finally, we searched for alternative measures of the evolutionary age of the

transcriptome over ontogeny. We computed: (i) the difference in median expression

profile of old genes vs. young genes (figure A.6A; similar to Roux and Robinson-

Rechavi, 2008); and (ii) the mean age of expressed genes (figure A.6B). Both meas-

ures recover the decreasing trend over ontogeny. Moreover, measure (i) confirms

that the male transcriptome is younger than the female one, consistent with the

known fast evolution of male-specific genes (Ellegren and Parsch, 2007), whereas

the original analysis (Domazet-Lošo and Tautz, 2010) indicated the opposite —

younger female transcriptome.

Overall, it seems that the transcriptomic hourglass pattern reported previously

(Domazet-Lošo and Tautz, 2010) is not robust to different methods of analysis.
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Irie and Kuratani (2011)

Another analysis suggested that expression diverges less between vertebrate spe-

cies in the phylotypic stage (Irie and Kuratani, 2011). The authors calculated

Spearman correlations between expression profiles of genes of four species: mouse,

zebrafish, chicken and frog. They calculated these correlations for all possible pairs

of stages, because it was not obvious how to map developmental stages between

species. The correlations between expression profiles of genes were reported to be

strongest on average at mid-development, supporting the hourglass model.

Here, we reproduced these results for three species: mouse, zebrafish and

chicken. We did not re-analyze the frog data, because the expression was measured

for tetraploid Xenophus laevis, whereas genome annotation available in Ensembl

comes from diploid Xenophus tropicalis.

We first divided the development of three species into three general stages:

early, middle and late (figure A.7). The middle stage contained the time points

from the phylotypic stage. The early stage contained the time points preceding

the phylotypic stage. And, the late stage contained the time points following the

phylotypic stage. We excluded from the analysis the first time point of mouse and

zebrafish development, as they had no corresponding time point in the chicken

development.

We verified if the middle stage displayed a higher expression similarity than

the early stage. To this aim, for each pair of species, we compared the Spearman

correlation values between all time points from the early stages of the two species

with the Spearman correlation values between all time points from the middle

stages of the two species (field A vs. field B on figure A.7). We detected a statistically

significant difference only for mouse and chicken (Mann–Whitney U test, p = 0.018).

However, because the time points from mid and late mouse stages displayed high
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correlation with almost any chicken time point, we performed a randomization test

to confirm the significance of our observation. We permuted the order of chicken

time points and compared again the correlation values between early and middle

stages. Notably, among the 100 randomizations as many as 43 comparisons had

P-value lower than the previously observed p = 0.018. Overall, the pattern of

presumably conserved gene expression in middle development, reported in Irie and

Kuratani (2011), was not significant for any pair of species.

Supplementary materials and methods

Artificial expression profiles for the ISA

We initialized the ISA with seven artificial expression profiles corresponding to

consecutive developmental stages. Our main goal was to compare genes expressed

in early, mid and late development. The early genes are known to divide into

maternal genes (pre-MBT) and zygotic genes (post-MBT) (Aanes et al., 2011).

Consequently, we originally envisioned four artificial expression profiles: pre-

MBT, post-MBT, middle and late. During the ISA run, these profiles resulted

in four modules containing genes with expression limited to cleaveage/blastula,

gastrula, segmentation and juvenile stages, respectively. To cover the entire

development we added three other artificial profiles corresponding to the missing

stages (pharyngula, larva and adult) and we run ISA again. The seven profiles

used to run the ISA are shown on the figure A.8.

Sequence conservation between mouse and human

In the main text, we investigated the conservation level of sequences of protein-

coding genes in fishes. Here, we repeated this analysis by projecting the genes
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expressed in the seven modules to mouse–human orthologs. The orthology relation-

ships, and the dN and dS values were obtained from Ensembl version 63 (Hubbard

et al., 2009). We retrieved 6,039 zebrafish genes with one-to-one orthologs in

mouse and human (the estimated divergence time is 61.5 MYA between the two

mammalian species and 416 MYA with Danio rerio; Benton and Donoghue, 2007),

and the pairwise dN /dS between mouse and human genes using Biomart (Smedley

et al., 2009). Other settings and the statistical analysis were the same as in the

main text (see Methods). We found a good agreement between results reported in

the main text and for mouse–human orthologs (compare figure 3.3A with figure

A.9).

Highly conserved non-coding elements

We tested the sensitivity of the observed enrichment of HCNEs for genes expressed

in mid-development, reported in the main text. To this aim, for each of the

14 293 Ensembl genes considered in our analysis, we calculated the number of

HCNEs (70% identity) in regions of 200, and 1000 base pairs upstream from

the transcription start site (TSS), as well as in the intronic regions. Also, we

repeated the analysis looking for HCNEs in regions of 500 bp upstream from the

transcription start site (as in the main text), but for HCNEs of 90% identity. To this

aim we downloaded and used the file HCNE_danRer7_mm9_90pc_50col.bed.gz.

Other settings and the statistical analysis were the same as in the main text (see

Methods). The results of all four additional analyses are in a good agreement with

the results reported in the main text (table A.1).
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Table A.1: P-values from HCNE enrichment analyses.

200bp 500bp 1000bp intron 500bp(90%)
segmentation module 4.0e-3 8.0e-6 2.2e-7 2.5e-5 7.9e-1
pharyngula module 1.4e-3 1.1e-4 2.3e-7 2.0e-4 6.5e-4

The column in bold corresponds to the case reported in the main text.

Microsynteny conservation

We checked for modules’ enrichment in genes belonging to conserved ancestral

microsyntenic pairs (CAMPs; Irimia et al., 2012. From the list of 260 zebrafish

CAMPs (Irimia, private communication) we selected 75 gene pairs involved in

developmental regulation, i.e., “bystander gene + trans-dev gene”. Both, bystander

and trans-dev genes were reported to have conserved introns sequences. Thus,

the trans-dev genes could potentially overlap with genes for which we detected

enrichment in HCNEs in introns, as well as in the regions 1000 bp upstream

from the TSS (CAMPs were shown to have very short intergenic regions, in some

cases < 1kb). We crossed the list of trans-dev genes with the list of genes from

each module. We performed hypergeometric test to assess if the overlap between

genes was significant. To correct for multiple testing we applied the Bonferroni

correction. The number of CAMP-trans-dev genes in the seven modules were the

following: 1,n.s.;6,n.s.;7, p = 0.018;4,n.s.;2,n.s.;1,n.s.;0,n.s. The overrepresent-

ation of trans-dev genes in the segmentation module stays in agreement with

enrichment in HCNE detected in introns and in regions 1000 bp upstream from

the TSS for genes belonging to this module. We also checked for enrichment in the

remaining 185 CAMPs. Although they were reported to often be co-expressed, we

did not find any such pair in our modules.
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Figure A.1: Total distribution of signal intensity from all 140 microarrays.

0.5

1

1.5

2

2.5

3

developmental time

T
A

I

 

 

All genes (raw)

25% top (raw)

All genes (log)

25% top (log)

Figure A.2: TAI hourglass pattern is driven by the subset of most expressed genes. TAI
calculated using untransformed (black) and log10-transformed (red) gene expression intensities
across zebrafish development. In both cases, TAI is calculated using the entire data sets (dotted
line), or using the 25% highest partial concentrations1 chosen separately for each stage (solid line).
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Figure A.3: Sensitivity to outliers. (A) Raw expression signal of probe A_15_P161596 across
zebrafish development. (B) TAI calculated on non-transformed data across zebrafish development
without this probe (red) and the effect of this probe on TAI pattern (grey). (C) TAI calculated on
log10-transformed data across zebrafish development without this probe (red) and the effect of this
probe on TAI pattern (grey).



SUPPORTING INFORMATION 113

2.1

2.2

2.3

2.4

2.5

2.6

2.7

developmental time

T
A

I

A

 

 
TAI on probes

TAI on genes

2.4

2.5

2.6

2.7

2.8

2.9

3

developmental time

B

 

 
TAI on probes

TAI on genes

Figure A.4: TAI calculated using expression intensities of genes, instead of probes,
across zebrafish development. For each gene we averaged the signal intensity from all corres-
ponding probes. After this process 16 188 probes’ intensities values were reduced to 12 892 genes’
intensities values, which were used to weight the phylogenetic ranks of genes (if two different
phylostrata were assigned to the same gene, the older one was chosen). (A) non-transformed data
was used. (B) log10-transformed data was used.
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Figure A.5: TAI calculated using genes recoded as present–absent across zebrafish de-
velopment. At a given stage of development, if the log10-intensity value of a gene is above one
(LeProust, 2008), its expression is set to 1, otherwise it is set to 0. Other notations as in figure 3.1.
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Figure A.6: Alternative measures of transcriptome age. (A) Mean age of genes expressed
across zebrafish development; age estimated with the TimeTree database (www.timetree.org).
A gene is considered expressed at a given stage of development if its log10-intensity is above
one (LeProust, 2008). (B) Difference between median expression profiles of old genes and young
genes across zebrafish development. Here, the genes that have emerged before the evolution of
Metazoa are considered old and the genes that have emerged since the ancestor of Euteleostomi
are considered young. The difference between the two groups is always positive, reflecting that old
genes tend to be more expressed than young genes (Wolf et al., 2009). The results are robust to the
choice of cutoffs used to define old and young genes (data not shown). Red dashed line — female
data, blue dashed line — male data. Other notations as in figure 3.1.
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Figure A.7: Correlation between expression levels of genes across developmental time
points of mouse, chicken and zebrafish. Field A denotes the early stages, field B denotes the
phylotypic stages, and field C denotes the late stages of development.
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Figure A.8: Artificial expression profiles used to initialize the ISA: pre-MBT, post-MBT,
“middle”, pharyngula, larva, “late”, adult. These profiles resulted in modules containing genes
expressed specifically in: cleavage/blastula, gastrula, segmentation, pharyngula, larva, juvenile,
and adult, respectively.
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Figure A.9: dN /dS ratio for human–mouse one-to-one orthologs. The orthologs were ob-
tained by projecting the genes expressed in the zebrafish modules to their one-to-one orthologs in
mouse and human.
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Table A.2: The list of modules and their enriched GO categories (biological process).

GO ID Term Annot. Sign. Expect. elim p bonf p

Module 1

GO:0006468 protein amino acid phosphorylation 446 29 13.7 1.00E-04 7.00E-04

GO:0090244 Wnt receptor signaling pathway involved in somitogenesis 2 2 0.06 9.40E-04 6.58E-03

GO:0006470 protein amino acid dephosphorylation 98 9 3.01 3.09E-03 2.16E-02

GO:0031290 retinal ganglion cell axon guidance 24 4 0.74 5.70E-03 3.99E-02

GO:0043149 stress fiber assembly 5 2 0.15 8.84E-03 6.19E-02

GO:0090090 negative regulation of canonical Wnt receptor signaling pathway 5 2 0.15 8.84E-03 6.19E-02

GO:0021915 neural tube development 31 4 0.95 1.43E-02 9.98E-02

GO:0042451 purine nucleoside biosynthetic process 8 2 0.25 2.33E-02 1.63E-01

GO:0042455 ribonucleoside biosynthetic process 8 2 0.25 2.33E-02 1.63E-01

GO:0046129 purine ribonucleoside biosynthetic process 8 2 0.25 2.33E-02 1.63E-01

Module 2

GO:0016055 Wnt receptor signaling pathway 80 14 4.43 1.10E-04 7.70E-04

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 6 4 0.33 1.30E-04 9.10E-04

GO:0042664 negative regulation of endodermal cell fate specification 6 4 0.33 1.30E-04 9.10E-04

GO:0035468 positive regulation of signaling pathway 30 8 1.66 1.70E-04 1.19E-03

GO:0010159 specification of organ position 3 3 0.17 1.70E-04 1.19E-03

Continued on next page
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Table A.2 – continued from previous page

GO ID Term Annot. Sign. Expect. elim p bonf p

GO:0035050 embryonic heart tube development 70 21 3.88 2.00E-04 1.40E-03

GO:0001706 endoderm formation 18 9 1 2.80E-04 1.96E-03

GO:0060218 hemopoietic stem cell differentiation 7 4 0.39 2.90E-04 2.03E-03

GO:0007420 brain development 149 21 8.26 4.10E-04 2.87E-03

GO:0030903 notochord development 31 10 1.72 5.00E-04 3.50E-03

GO:0014028 notochord formation 4 3 0.22 6.50E-04 4.55E-03

GO:0001522 pseudouridine synthesis 9 4 0.5 9.40E-04 6.58E-03

GO:0045893 positive regulation of transcription, DNA-dependent 47 9 2.6 9.50E-04 6.65E-03

Module 3

GO:0009952 anterior/posterior pattern formation 91 19 3.45 1.10E-04 7.70E-04

GO:0048741 skeletal muscle fiber development 14 5 0.53 1.10E-04 7.70E-04

GO:0030510 regulation of BMP signaling pathway 15 5 0.57 1.70E-04 1.19E-03

GO:0043049 otic placode formation 15 5 0.57 1.70E-04 1.19E-03

GO:0030901 midbrain development 15 5 0.57 1.70E-04 1.19E-03

GO:0021523 somatic motor neuron differentiation 4 3 0.15 2.10E-04 1.47E-03

GO:0042694 muscle cell fate specification 4 3 0.15 2.10E-04 1.47E-03

GO:0021508 floor plate formation 9 4 0.34 2.20E-04 1.54E-03

GO:0033334 fin morphogenesis 57 9 2.16 2.60E-04 1.82E-03

Continued on next page
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Table A.2 – continued from previous page

GO ID Term Annot. Sign. Expect. elim p bonf p

GO:0007156 homophilic cell adhesion 58 9 2.2 3.00E-04 2.10E-03

GO:0007517 muscle organ development 59 16 2.23 3.00E-04 2.10E-03

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 71 10 2.69 3.10E-04 2.17E-03

GO:0009888 tissue development 329 41 12.46 3.40E-04 2.38E-03

GO:0031016 pancreas development 39 7 1.48 5.70E-04 3.99E-03

GO:0030182 neuron differentiation 156 27 5.91 5.90E-04 4.13E-03

GO:0009953 dorsal/ventral pattern formation 65 9 2.46 7.10E-04 4.97E-03

GO:0007399 nervous system development 326 60 12.34 8.40E-04 5.88E-03

GO:0007223 Wnt receptor signaling pathway, calcium modulating pathway 21 5 0.8 9.30E-04 6.51E-03

GO:0021984 adenohypophysis development 9 5 0.34 9.70E-04 6.79E-03

GO:0001708 cell fate specification 36 9 1.36 1.06E-03 7.42E-03

Module 4

GO:0030154 cell differentiation 422 39 13.18 1.20E-04 8.40E-04

GO:0030902 hindbrain development 57 11 1.78 2.30E-04 1.61E-03

GO:0050769 positive regulation of neurogenesis 12 4 0.37 3.80E-04 2.66E-03

GO:0048663 neuron fate commitment 13 4 0.41 5.30E-04 3.71E-03

GO:0048593 camera-type eye morphogenesis 47 9 1.47 8.60E-04 6.02E-03

GO:0030900 forebrain development 51 7 1.59 9.60E-04 6.72E-03

Continued on next page
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Table A.2 – continued from previous page

GO ID Term Annot. Sign. Expect. elim p bonf p

GO:0051091 positive regulation of transcription factor activity 7 3 0.22 9.60E-04 6.72E-03

GO:0030901 midbrain development 15 4 0.47 9.70E-04 6.79E-03

GO:0021915 neural tube development 31 5 0.97 2.50E-03 1.75E-02

GO:0002043 blood vessel endothelial cell proliferation involved in sprouting angiogenesis 3 2 0.09 2.86E-03 2.00E-02

Module 5

GO:0007602 phototransduction 10 4 0.28 1.10E-04 7.70E-04

GO:0006813 potassium ion transport 79 9 2.18 3.10E-04 2.17E-03

GO:0018298 protein-chromophore linkage 13 4 0.36 3.40E-04 2.38E-03

GO:0007156 homophilic cell adhesion 58 7 1.6 1.03E-03 7.21E-03

GO:0006836 neurotransmitter transport 36 8 1 1.62E-03 1.13E-02

GO:0006814 sodium ion transport 52 6 1.44 2.96E-03 2.07E-02

GO:0007267 cell-cell signaling 41 8 1.13 3.14E-03 2.20E-02

GO:0007194 negative regulation of adenylate cyclase activity 5 2 0.14 7.21E-03 5.05E-02

GO:0007268 synaptic transmission 21 6 0.58 1.04E-02 7.25E-02

GO:0006208 pyrimidine base catabolic process 6 2 0.17 1.06E-02 7.43E-02

Module 6

GO:0006805 xenobiotic metabolic process 3 2 0.05 9.20E-04 6.44E-03

GO:0006584 catecholamine metabolic process 6 2 0.11 4.44E-03 3.11E-02

Continued on next page
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Table A.2 – continued from previous page

GO ID Term Annot. Sign. Expect. elim p bonf p

GO:0019882 antigen processing and presentation 20 3 0.35 4.95E-03 3.47E-02

GO:0006022 aminoglycan metabolic process 22 3 0.39 6.52E-03 4.56E-02

GO:0046686 response to cadmium ion 8 2 0.14 8.10E-03 5.67E-02

GO:0009607 response to biotic stimulus 47 4 0.83 9.29E-03 6.50E-02

GO:0000272 polysaccharide catabolic process 9 2 0.16 1.03E-02 7.21E-02

GO:0006026 aminoglycan catabolic process 9 2 0.16 1.03E-02 7.21E-02

GO:0055114 oxidation reduction 409 14 7.23 1.35E-02 9.42E-02

GO:0006144 purine base metabolic process 11 2 0.19 1.54E-02 1.08E-01

Module 7

GO:0043687 post-translational protein modification 748 16 8.26 7.70E-03 5.39E-02

GO:0050896 response to stimulus 622 16 6.87 9.40E-03 6.58E-02

GO:0051707 response to other organism 40 3 0.44 9.60E-03 6.72E-02

GO:0006950 response to stress 329 9 3.63 1.04E-02 7.28E-02

GO:0006508 proteolysis 391 10 4.32 1.10E-02 7.70E-02

GO:0051715 cytolysis of cells of another organism 1 1 0.01 1.10E-02 7.70E-02

GO:0044403 symbiosis, encompassing mutualism through parasitism 1 1 0.01 1.10E-02 7.70E-02

GO:0051801 cytolysis of cells in other organism involved in symbiotic interaction 1 1 0.01 1.10E-02 7.70E-02

GO:0031640 killing of cells of another organism 1 1 0.01 1.10E-02 7.70E-02

Continued on next page
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Table A.2 – continued from previous page

GO ID Term Annot. Sign. Expect. elim p bonf p

GO:0070193 synaptonemal complex organization 1 1 0.01 1.10E-02 7.70E-02

Annot. — total number of genes annotated with a given GO category; Sign. — number of (significant) genes in the module annotated with a given GO

category; Expect. — expected number of genes in the module annotated with a given GO category; elim p — P-value from “elim” algorithm of topGO,

bonf p — P-value after Bonferroni correction.
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So, let's compare statistics of all expressed 

genes over all developmental time-points? 

No, it's a common approach, BUT It’s biased  

by House-keeping genes. We should decompose 

 the genes into modules according to when 

 the genes are expressed. and then 

 compare genes from these modules. 
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It seems the gene sequence 

is less conserved in  
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Ok, I checked the genes’ age. Older genes are 
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early conservation? 
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the genes that have orthologs in Mouse 
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   on gene duplication which  
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“Two main hypothesis of the evolution of embryonic development have been put forward 
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embryos of different species progressively diverge from one another during ontogeny. 
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accepted, although its molecular signature has been elusive.” 
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