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Infection with Leishmania major parasites results in the development of cutaneous ulcerative lesions on the
skin. We investigated the protective potential of a single, recombinant histone H1 antigen against cutaneous
leishmaniasis in an outbred population of vervet monkeys, using Montanide adjuvant. Protection was assessed
by challenging the animals with a mixture of vector sand fly salivary-gland lysate and a low dose of in vitro–
derived parasites, thus more closely mimicking natural infection induced by L. major. The course of infection
in immunized monkeys was compared with that of animals that had healed from a primary infection and
were immune. The monkeys immunized with recombinant histone H1 showed a reduced development of
lesion size, compared with controls. Our study therefore illustrates the potential use of histone H1 as a vaccine
candidate against cutaneous leishmaniasis in humans.

Leishmaniasis is caused by the protozoan parasites of

the genus Leishmania, and it affects 12 million people

worldwide, with the number of cases rapidly spreading

because of Leishmania and human immunodeficiency

virus (HIV) coinfection in areas where Leishmania spe-

cies are endemic. There is, at present, no vaccine avail-

able for the prevention of leishmaniasis. However, vac-

cination campaigns in humans using material isolated

from active lesions, together with numerous experi-

mental animal trials, have provided evidence that vac-

cination against leishmaniasis is feasible (for a recent

review on vaccination against leishmaniasis, refer to

[1]). Among the different animal models, the suscep-
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tible versus resistant mouse model of cutaneous leish-

maniasis caused by infection with Leishmania major

parasites has provided much information about leish-

maniasis; however, the relevance of experiments in mice

to the human immune system remains speculative.

Therefore, the phylogenetic relationship in an animal

model for the study of leishmaniasis is of importance.

To this end, several groups have been using nonhuman

primates to carry out vaccine trials for human leish-

maniasis. There is an increasing consensus that resis-

tance to infection with Leishmania requires a com-

plexity of multiple host immune factors. In humans,

this involves the production of a strong cellular Th1-

type response associated with the production of inter-

feron (IFN)–g, which leads to lifelong protection after

exposure to and cure of natural infection [2]. Delayed-

type hypersensitivity (DTH) to leishmanial antigens has

been used in human trials to assess the level of host

protection to disease, but its significance as a measure

of protection is limited, because leishmanin skin-test

conversion does not always correlate with protection

[3, 4]. We have previously demonstrated, in an exper-

imental infection model of BALB/c mice, the protective

capacity of the nuclear protein histone H1 (H1) as a

recombinant protein, synthetic peptide, or partially pu-
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rified extract from Leishmania parasites [5]. The protection ob-

served from that study provided us with the initiative to carry

out a vaccine trial in an outbred population of African green

monkeys (Ceropithecus aethiops), more commonly known as ver-

vet monkeys. These monkeys are from an Old World primate

species [6] and are widely used for biomedical and behavioral

research because they share ∼92% of their DNA with humans

[7]. In the case of cutaneous leishmaniasis infection, vervets pro-

duce a self-healing type of infection that closely mimics disease

progression in humans. Furthermore, this classic course of dis-

ease progression has been successfully established using low num-

bers of in vitro–derived parasites mixed with a salivary-gland

lysate from the sand fly vector, thereby more closely representing

natural infection [6].

The choice of antigen and adjuvant are of paramount im-

portance when conducting a vaccine trial for end-point use in

humans, particularly for those vaccines based on the use of

recombinant polypeptides. A molecularly defined antigen with

no homology at the amino-acid level with human antigen and

that is inexpensive to produce is advantageous. Furthermore,

the antigen and adjuvant complex must be stable without in-

ducing any adverse effects. To this end, we used a single, re-

combinantly produced H1 antigen coadministered with the

Montanide ISA 720 (MISA720) adjuvant. This adjuvant has been

shown previously to be safe and to confer immunogenicity (an-

tibody and T cell proliferation and IFN-g production) in human

trials [8–11]. In an attempt to define an animal model and design

a molecularly defined vaccine that can be used in humans, we

assessed protection against cutaneous leishmaniasis in outbred

nonhuman primates using the H1 antigen and MISA720 adju-

vant formulation in the absence of stimulating cytokines and

with a challenge infection model that closely resembles that of

natural infection with phlebotomine sand flies.

MATERIALS AND METHODS

Leishmania vaccine antigens. Glutathione-S-transferase

(GST) and GST-H1 antigens were expressed in Escherichia coli

and purified using GST affinity resin (Pharmacia Biotech), as

described elsewhere [5].

Adjuvant. MISA720 (Seppic) was used at an adjuvant:

solubilized antigen ratio of 7:3 in sterile PBS, as per the man-

ufacturer’s instructions.

Vervet monkeys and vaccination protocol. Animal acqui-

sition, care, and maintenance have been described elsewhere [12].

Institutional Animal Care and Use and Institutional Scientific

Resources and Evaluation Committee guidelines were strictly fol-

lowed. Adult vervet monkeys with a mean body weight of 3.8

kg were selected and divided into 4 groups: group 1, L. major–

infected and cured monkeys (positive controls) [13]; group 2,

monkeys immunized with recombinant GST-H1 and MISA720;

group 3, monkeys immunized with recombinant GST and

MISA720; and group 4, monkeys immunized with MISA720

adjuvant alone (negative control group). Monkeys in groups 2

and 3 were injected intradermally with 200 mg of antigen and

MISA720 for the first immunization and 100 mg of antigen and

MISA720 for 2 boosters that were 3 weeks apart. Monkeys in

group 4 were treated similarly but were given MISA720 adjuvant

mixed in PBS alone. Animals were challenged 6 weeks after the

final immunization.

L. major parasite for challenge and antigen preparation.

L. major strain NLB-144 was originally isolated from Phlebo-

tomus duboscqi in the Baringo District, Kenya, and maintained

in BALB/c mice by serial subcutaneous passage [14]. An aspirate

from the footpad of an infected BALB/c mouse was cultured

in Schneider’s Drosophila insect medium (Gibco) supplemented

with 20% fetal bovine serum (Flow Laboratories) and 100 mg/

mL gentamicin. Stationary-phase promastigotes were harvested

by centrifugation at 1500 g for 15 min at 4�C. The pellet was

washed 3 times in sterile PBS by centrifugation, and organisms

were enumerated. For DTH, promastigotes were fixed in 1%

formalin saline for 1 h and then washed 3 times in sterile PBS,

as described above. The parasites were then resuspended at a

concentration of parasites/mL in sterile PBS and stored85 � 10

at �70�C until use. Freeze-thawed L. major antigen for ELISA

was prepared as described elsewhere [15].

Assessment of DTH response. After the third vaccination,

animals were assessed for DTH responses to respective antigens.

A total of 200 mg of respective antigens in 100 mL of PBS was

injected intradermally, and skin indurations were measured 48

h later. This amount of recombinant antigen had been dem-

onstrated previously to induce strong DTH responses in pos-

itive control monkeys. A mean induration diameter 15 mm

was considered to be positive.

ELISA. Polystyrene Micro-ELISA plates (Nunc) were coated

overnight with 100 mL of recombinant GST, GST-H1, or freeze/

thaw antigen (10 mg/mL each, diluted in bicarbonate buffer [pH

9.6]; Sigma). Excess coating buffer was removed, and nonspecific

binding sites were blocked with 4% bovine serum albumin (BSA)

in PBS/0.05% Tween 20 buffer for 1 h at 37�C. Unbound BSA

was washed off 3 times with PBS/Tween 20 buffer. One hundred

microliters of the diluted serum (1:500 in blocking buffer) was

dispensed into the appropriate wells and incubated for 2 h at

room temperature. Unbound serum was washed off 4 times as

described above, and 100 mL of 1:10,000 biotin-conjugated goat

anti–monkey IgG (Rockland Immunochemicals), diluted in PBS/

Tween 20 buffer plus 1% BSA, was added, followed by an in-

cubation for 2 h at room temperature. Unbound conjugate was

washed off as described above, prior to the addition of strep-

tavidin peroxidase conjugate (Sigma) diluted 1:3000 in PBS/
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Figure 1. Anti-IgG response in vervet monkeys are shown. Serum from monkeys immunized with recombinant Leishmania histone H1 fused to
glutathione-S-transferase (rGST-H1) (A), recombinant GST (rGST) (B), adjuvant control (C), and cured monkeys (D) was collected and analyzed by ELISA,
as described in Materials and Methods. rGST-H1 and rGST were used as coating antigens in the experiments shown in panels A and B, and a freeze/
thaw antigen was used in the experiments shown in panels C and D. Preimmune serum is shown in the white bars, serum collected after the first
immunization in the dark gray bars, after the second immunization in the light gray bars, and after the third immunization in the black bars. Error
bars represent the of triplicate ELISA wells.mean � SD

Tween 20 buffer that contained 1% BSA for 45 min at room

temperature. Wells were washed as above, and 100 mL of TMB

substrate in citrate buffer (both Sigma) was then added. The

plates were incubated, obscured, at 37�C. Optical densities were

read at 450 nm in a microplate reader.

Challenges of vaccinated monkeys and controls. Both vac-

cinated and control monkeys were challenged with a mixture of

virulent L. major promastigotes and P. duboscqi salivary-gland

lysate, as described elsewhere [14]. Three-day-old, unfed, female,

laboratory-bred P. duboscqi sand flies were dissected in 0.15 mol/

L NaCl solution. Five pairs of salivary glands were transferred

to sterile vials that contained 20 mL of PBS. The vials were then

vortexed, to achieve total disruption. The salivary gland lysate

was stored at �70�C until it was required. Stationary-phase pro-

mastigotes were prepared as described above and adjusted to

parasites/mL in PBS. Each monkey was inoculated in-62 � 10

tradermally on the right eyebrow ridge with the mixture of 50

mL of promastigotes and 20 mL of salivary-gland lysate. Lesion

development was monitored every 2 weeks, and mean lesion

sizes for the various groups were compared.

RESULTS

Specific antibody response of vervet monkeys. We immu-

nized monkeys with a recombinant Leishmania histone H1

fused to GST (rGST-H1) or with a recombinant GST (rGST)

mixed with MISA720 as the adjuvant. The negative control

group was immunized with the adjuvant formulation mixed

with PBS. Immunizations were not associated with any obvious

local or systemic side effects. Prior to immunization and 3

weeks after the first, second, and third immunizations, antibody

responses in all groups were detected by standard ELISA. Figure

1A and 1B illustrates the antigen-specific IgG response in mon-

keys immunized with either rGST-H1 or rGST, respectively. All

monkeys immunized with the rGST antigen showed an increase

in antibody levels that, in most animals, peaked after the third

vaccination (serum from monkey 1716 was not available after

the third injection) (figure 1B). Similarly, monkeys immunized

with rGST-H1 antigen had IgG levels that peaked either after

the second or third vaccination, with the response, as measured

by optical density units, being stronger overall for rGST-H1

than that for rGST. This is likely due to the additional epitopes

present in the H1 portion of the fusion protein. The positive

response seen in these 2 groups indicates the presence of cir-

culating immunizing antigen in the monkeys, as we had ex-

pected. For monkeys immunized with MISA720 adjuvant alone

(negative control group) and monkeys in the positive control

self-cure group, a freeze/thaw whole-parasite preparation was

used as the antigen. All 4 monkeys in the adjuvant-only group

(figure 1C) showed background levels of antibodies to freeze/

thaw antigen. This indicated that they had no prior or sub-

sequent exposure to Leishmania parasites or antigen through-
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Figure 2. The delayed-type hypersensitivity (DTH) reaction in vervet monkeys is shown. DTH responses were measured 48 h after an intradermal
injection in the lateral aspect of the thorax with antigen or PBS. Skin induration diameters were taken, and the mean skin induration is the DTH
response. Measurements !5 mm are considered to be negative. A, DTH response in monkeys immunized with recombinant Leishmania histone H1
fused to glutathione-S-transferase (rGST-H1), as tested with the rGST-H1 antigen, B, DTH response in monkeys immunized with recombinant GST
(rGST), as tested with the rGST antigen. The response with PBS was negative when tested in these monkeys.

out the course of vaccination. Monkeys in the positive control

group were bled at the same time points as the other groups

of monkeys that had been vaccinated. These monkeys that had

overcome a cutaneous leishmaniasis infection showed a positive

response to the freeze/thaw antigen (figure 1D) that peaked at

the time of the bleed for preimmune serum samples (no preim-

mune serum samples were available for monkey 1869). This

was expected, because the amount of circulating Leishmania

antigens in these cured monkeys would decrease over time after

recovery from disease.

DTH response in immunized vervet monkeys. After the

course of immunizations, cell-mediated immunity was deter-

mined by measuring DTH in the rGST-H1 and rGST monkey

groups. Cured monkeys were used as positive controls for skin

induration. Monkeys in groups rGST and rGST-H1 were in-

jected intradermally with 200 mg of the respective antigen. For

the rGST-H1 group, this quantity had been selected on the

basis of a prior titration and positive DTH reaction to rGST-

H1 antigen in the cured monkeys. The rGST antigen did not

titrate or titrated poorly in cured monkeys, which suggests that

these monkeys had no prior exposure to GST derived from

Schistosoma japonicum [16]. On the basis of the titration ob-

tained with rGST-H1, 200 mg of rGST was also used for the

DTH assay. As a negative control, PBS was injected in the same

monkeys but on the side of the lateral thorax opposite of where

the immunizing antigens were administered. Forty-eight hours

after injection, skin induration was measured on either the left

or right lateral thorax. The mean skin induration measurement

of 2 diameters is shown in figure 2A and 2B. Measurements

15 mm were considered to be positive. All monkeys tested for

either rGST-H1 or rGST antigen were positive for DTH. This

positive response indicates the presence of a specific cellular

type of immune reaction [17]. Positive skin induration was not

seen at the sites where PBS was injected (data not shown).

Cured monkeys that were tested with freeze/thaw antigen had

positive skin indurations 115 mm (data not shown).

Protection against cutaneous leishmaniasis challenge in ver-

vet monkeys. Six weeks after the third vaccination, all mon-

keys, including the positive and negative controls, were chal-

lenged, as described in Materials and Methods, and lesion de-

velopment was monitored every 2 weeks for 18 weeks (figure

3; table 1). Three of 7 monkeys in the rGST-H1 group (1824,

1828, and 1838) developed nodules that slowly progressed and

peaked in size 14 weeks after infection. At that point, only 1

of these 3 monkeys had developed a large, wet, ulcerative lesion

(monkey 1824) typical of cutaneous leishmaniasis. Of interest,

of the remaining 4 monkeys, 3 developed small lesions (!100

mm2) that did not ulcerate. The remaining monkey did not

develop any nodules, aside from a small satellite nodule at the

site of initial infection. Sixteen weeks after infection, all mon-

keys (except for 1824, with the large, wet, ulcerative lesion)

showed signs of healing, as was expected. Monkey 1824 also

healed (26 weeks after infection).

Monkeys in the rGST-immunized group started to develop

nodules 4 weeks after infection (figure 3B). Three of 6 monkeys

(1785, 1825, and 1831) developed nodules that rapidly pro-

gressed into large lesions (1100 mm2) that were wet and ul-

cerative. Of the remaining 3 monkeys, 2 (1716 and 1826) had

large lesions with a crust starting to form, and 1 (1818) had a

small lesion that did not ulcerate. To summarize, 5 of 6 monkeys

in the GST group showed the presence of large lesions that

progressed rapidly and developed an ulcerative pattern of cu-

taneous leishmaniasis and were therefore not protected.

Monkeys that were immunized with adjuvant alone (figure

3C) developed large, ulcerative lesions that rapidly increased in

size. One of the monkeys from this group (1841) died at 12

weeks after infection for unknown reasons. The other 3 monkeys

developed very large lesions, 2 of which produced a typical wet
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Figure 3. Lesion sizes after the infection of vervet monkeys immunized with recombinant Leishmania histone H1 fused to glutathione-S-transferase
(rGST-H1) (A), recombinant GST (rGST) (B), and adjuvant alone (C) and cured monkeys (D) are shown. Every 2 weeks, after infection with a mixture
of Leishmania major parasites and salivary-gland lysate from sand flies, lesion sizes in vervet monkeys was measured. The value for each monkey
is the mean lesion size in millimeters, as calculated from the average of 2 measured diameters. This value was then divided by 2, squared, and
multiplied by p, to represent the whole lesion area. Lesions !100 mm2 were considered to be small.

ulcer and the other a nodule with a crust at 12–14 weeks after

infection. Monkeys in the positive control group (cured mon-

keys) (figure 1D) developed small satellite nodules after infection

that were transient and disappeared after week 6 after challenge.

In conclusion, monkeys immunized with rGST-H1 showed a

reduced development of lesion size, compared with the control

group immunized with adjuvant only and the rGST-immunized

group. Furthermore, most monkeys developed only a small nod-

ule type of lesion and not the classic wet, ulcerative cutaneous

leishmaniasis lesion that was seen in the group immunized with

adjuvant only. Monkeys in the rGST-H1 group, therefore, showed

partial protection against leishmaniasis challenge infection in this

outbred population of nonhuman primates.

DISCUSSION

In humans, recovery from Leishmania infection usually results

in long-lasting immunity, thus indicating that vaccines against

leishmaniasis are achievable. We used a nonhuman primate

model to assess the safety, immunogenicity, and protective ca-

pacity of a vaccine that uniquely combines a single defined,

recombinant, L. major–derived antigen, [5]—namely, the nu-

clear protein histone H1 together with the adjuvant MISA720.

We have previously shown, in a BALB/c mouse model [5],

that the recombinant GST-H1 antigen was protective against

cutaneous leishmaniasis infection. This protection was observed

in the presence or absence of incomplete Freund’s adjuvant or

interleukin–12. On the basis of these observations, we decided

to perform a vaccine trial in monkeys whose close phylogeny

to humans might better predict the human immune response

to our candidate vaccine antigen and adjuvant combination.

There is considerable interest in evaluating the safety of ad-

juvants planned for use in humans. To our knowledge, Mon-

tanide has never previously been tested for use in any type of

vaccine trial against Leishmania. MISA720 has been approved

for experimental use in humans as an alternative adjuvant to

aluminium hydroxide. To date, there have been several studies

that have tested the safety and immune response of MISA720 in

humans [8–11]. Furthermore, the reports on Montanide trials

done with HIV- and malaria-derived antigens have reached a

general consensus that it is a safe and immunogenic adjuvant

for use in humans, inducing both Th1-type cellular and humoral

immune responses. In the case of Leishmania infection, the use

of Montanide avoids problems that have been encountered with

other adjuvants, such as bacillus Calmette-Guérin, which have

batch-to-batch variability and antigenic cross-reactivity (Myco-

bacteria) with Leishmania species [18, 19]. We monitored the

monkeys in our study subsequent to each immunization and

throughout the course of the vaccine trial and observed no lo-

cal or systemic adverse reactions attributed to the MISA720 and

rGST-H1 or rGST vaccine formulation.

We confirmed immune recognition with the detection of an
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Table 1. Summary of lesion development and ulceration pattern in vervet monkeys.

Group
No

lesion

Small
lesion

(!100 mm2)

Large lesion
(�100
mm2)

Large
ulcerative

lesion

Cured (positive control) 4 0 0 0

Immunized

Adjuvant (negative control) 0 0 0 4

GST 0 1 2 3

GST-H1 1 3 2 1

NOTE. Data are no. of monkeys from a single group that had no lesion, a small lesion, a large lesion,
or a large ulcerative lesion after infection challenge. GST, glutathione-S-transferase; GST-H1, GST with
nuclear protein histone H1.

antigen-specific antibody response. Antibody levels increased

over preimmune levels after the first immunization, with most

monkeys immunized with rGST-H1 having a peak in antibody

levels after the second vaccination. We had previously observed

a similar pattern of IgG response in mice immunized with a

rGST-H1 antigen and MISA720 adjuvant in which there was no

difference on comparison of serum titrations between the second

and third immunizations (data not shown). The response seen

with the rGST-H1 fusion was generally stronger than that for

rGST alone, which demonstrates the antigen-specific nature of

the H1 portion of the recombinant protein. This may serve to

indicate that 2 immunizations with this antigen and adjuvant

combination could be sufficient to induce sustainable antibody

levels. A similar pattern of peak antibody response after the sec-

ond immunization using leishmanial recombinant antigens in

monkeys has been reported elsewhere [20].

The rGST sequence we used was based on GST originally

derived from S. japonicum [16]. S. japonicum and L. major par-

asites are not coendemic; therefore, the risk of coinfection would

be rare. However L. major and S. mansoni are coendemic, and

a recent report [21] described that mice preinfected with S. man-

soni delayed the development and resolution of cutaneous L.

major lesions and parasitemia in coinfected mice, whereas the

course of schistosomiasis disease progression was not altered.

Furthermore, we tested (by ELISA) whether there was any cross-

reaction between our rGST antigen and serum obtained from

patients infected with S. japonicum, S. mansoni, and S. haema-

tobium (20 patients in total). In all cases, only background levels

of total IgG in all serums tested was detected (data not shown).

Therefore, it is a reasonable approach to use GST as a fusion

protein in a human vaccine against leishmaniasis.

A correlation could not be made between individual monkeys

and the levels of antibody, DTH, and protection after challenge.

A positive DTH response against Leishmania-specific antigen

is seen in human populations that have been infected with L.

major but that only develop a localized, self-healing form of

the disease. This is indicative of a Th1-type cellular response,

because the cells that are seen to infiltrate these lesions are

mainly macrophages and CD4+ T cells [17]. Thus, the mea-

surement of DTH response is a parameter of significance in

identifying the presence or absence of a cellular immune re-

sponse. We observed a positive DTH to the rGST and rGST-

H1 immunizing antigens, compared with PBS mock antigen as

measured after the third vaccination. However, a positive DTH

response on its own is not always indicative of protection

against cutaneous leishmaniasis infection [3, 4, 13, 22]. There-

fore, considering that a Th1-type response characterized by the

production of IFN-g is widely accepted as an indicator of a

protective immune response in leishmaniasis, we measured in

vitro–lymphocyte proliferation and IFN-g production in the

monkeys prior to challenge. We were able to detect, for some

monkeys, an antigen-specific rGST-H1 and IFN-g response

from stimulated polymorphonuclear blood cells after the first

immunization only (data not shown). We are uncertain as to

why IFN-g was not detected after subsequent immunizations.

Initial studies with vervet monkeys [23, 24] observed positive

cell-mediated IFN-g responses. More recent data in monkey

models have suggested that IFN-g production is not sufficient

to confer resistance against cutaneous leishmaniasis challenge

[13, 25, 26]. Therefore, we made no additional effort to test

this parameter.

The ability to induce a protective immune response is the

principal test of a new vaccine and adjuvant combination. We

have demonstrated that we were able to generate a durable cel-

lular response that was sufficient to control infection in the ma-

jority of monkeys immunized with the combination of rGST-

H1 antigen and MISA720 adjuvant. Our challenge infection was

based on a natural infection model [6] whereby a low number

of in vitro–derived parasites are injected with a mixture of sal-

ivary-gland lysate from the vector sand fly. This model produces

a course of cutaneous leishmaniasis infection that closely mimics

the progression of disease in humans, beginning with satellite

nodules at the site of infection that develop central crusts and

eventually become ulcerative lesions [6]. In other models, such

as rhesus monkeys (Macacca mulata), a large number of in vitro–

derived parasites are required to achieve a course of infection



1256 • JID 2003:188 (15 October) • Masina et al.

that follows that of human disease [20, 25]. Furthermore, our

vaccine trial was conducted in an outbred population of mon-

keys. To our knowledge, this is the first report to describe the

immunization of outbred, genetically diverse monkeys with a

single defined recombinant antigen and adjuvant coadministra-

tion using the challenge model described above.

Our results show that the cutaneous lesions of vervets vacci-

nated with rGST-H1 were significantly smaller and had slower

progression, compared with those of monkeys vaccinated with

rGST alone or with MISA720 adjuvant alone. Furthermore, only

1 of 7 monkeys in the rGST-H1–immunized group produced a

typical wet, ulcerative, cutaneous leishmaniasis lesion, compared

with 3 of 6 monkeys in the rGST group. This further supports

the antigen-specific response of the H1 portion of the GST fusion

protein and demonstrates its ability to confer protection against

cutaneous leishmaniasis in a nonhuman primate model of the

disease. The genetic diversity in the monkeys may explain why

uniform lesion progression was not observed and is reflective of

the clinical situation of human cutaneous leishmaniasis, in which

a broad range of disease severity is presented [27].

When considering the production of a vaccine against cu-

taneous leishmaniasis, it would be desirable to produce a vac-

cine that produces a low-grade infection and sustainable im-

mune response that would prevent disease development. This

subclinical state is commonly presented in humans infected

with leishmaniasis and in resistant mice, where, after primary

infection and cure, small amounts of parasites remain at the

site of infection. These parasites, in combination with regula-

tory T cells, have a crucial role in sustaining immune memory

and preventing disease development on reinfection [28]. The

diverse major histocompatibility complex in a heterogeneous

human population [29] means that, for a globally widespread

disease such as leishmaniasis, there is always a limitation of

having nonresponders to a subunit vaccine, especially for small

proteins with a limited number of antigenic epitopes. Therefore,

we propose that, on the basis of the protection observed in the

present study in an outbred population of nonhuman primates,

the rGST-H1 antigen may serve as a candidate antigen for a

human clinical phase 1 trial in a cocktail vaccine that is possibly

composed of several molecularly defined Leishmania-derived

antigens. We further support the notion that MISA720 is a safe

and immunogenic adjuvant that should be considered for use

in human trials against leishmaniasis.
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