MATHEMATICS ==

On Extremal Behavior of Gaussian Chaos

D. A. Korshunov^a, V. I. Piterbarg^b, and E. Hashorva^c

Presented by Academician A.N. Shiryaev March 6, 2013

Received March 22, 2013

DOI: 10.1134/S1064562413050220

Let $\xi = (\xi_1, \xi_2, ..., \xi_d)$ be a normally distributed random vector in \mathbb{R}^d with zero mean and covariance matrix B, $B_{ij} := \mathbb{E} \xi_i \xi_j$. A problem of great interest is to analyze the asymptotic behavior of the distribution tail

of the product $\prod_{i=1}^{u} \xi_i$. This problem arises in various

domains, for example in stochastic geometry, random difference equations, and risk theory.

Consider a more general case of functions of the vector ξ , namely, the so-called Gaussian chaos $h(\xi)$, where $h: \mathbb{R}^d \to \mathbb{R}$ is a continuous homogeneous function of order $\alpha > 0$; i.e., $h(x\mathbf{t}) = x^{\alpha}h(\mathbf{t})$ for all x > 0 and $\mathbf{t} \in \mathbb{R}^d$. Traditionally, in the literature, the term Gaussian chaos of order $\alpha \in \mathbb{N}$ is referred to the case where g is a homogeneous polynomial of degree α . This concept goes back to Wiener [14], who was the first to consider processes of polynomial chaos. We follow a broader treatment of the concept of Gaussian chaos.

The distribution of ξ is equal to the distribution of $\sqrt{B}\eta$ if the vector $\eta = (\eta_1, \eta_2, ..., \eta_d)$ has independent coordinates with a standard normal distribution. Then

$$\mathbb{P}\{h(\xi) > x\} = \mathbb{P}\{h(\sqrt{B}\eta) > x\}$$
$$= \mathbb{P}\{g(\eta) > x\},$$

where $g(\mathbf{u}) = h(\sqrt{B}\mathbf{u})$. The continuous function $g: \mathbb{R}^d \to \mathbb{R}$ is also homogeneous of order α like h. Thus, the problem is reduced to the case of a unit covariance matrix. For this reason, in what follows, we study $g(\mathbf{\eta})$. By virtue of homogeneity,

$$\mathbb{P}\left\{g(\mathbf{\eta}) > x\right\} = \mathbb{P}\left\{\left(g(x^{-1/\alpha}\mathbf{\eta}) > 1\right\}\right\}$$
$$= \frac{x^{d/\alpha}}{\left(2\pi\right)^{d/2}} \int\limits_{\{\mathbf{v}: g(\mathbf{v}) > 1\}} e^{-x^{2/\alpha}|\mathbf{v}|^2/2} d\mathbf{v}. \tag{1}$$

Therefore, the asymptotic behavior of probability (1) can be determined using a version of the Laplace asymptotic method (see, for example, [3]). Define

$$c^2 := \min\{ |\mathbf{u}|^2 : g(\mathbf{u}) \ge 1 \}$$

= $\min\{ |\mathbf{u}|^2 : g(\mathbf{u}) = 1 \},$

where the last equality follows from the homogeneity of g. Since g is continuous, we have $c^2 > 0$. To apply the Laplace method, we consider the set

$$\mathcal{C} := \arg\min\{|\mathbf{u}| : g(\mathbf{u}) = 1\}$$
$$= \{\mathbf{u} : |\mathbf{u}| = c \text{ and } g(\mathbf{u}) = 1\},$$

which lies on a sphere of radius c. Assume that this set is a smooth finitely connected manifold of dimension r and the structure of the function g near this manifold is typical of the Laplace method. Define $g(\mathbf{q}) := g(\mathbf{u}/|\mathbf{u}|)$, where $\mathbf{q} = (\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_{d-1}) \in \Pi := [0, \pi)^{d-2} \times [0, 2\pi)$ are the spherical coordinates of the vector $\mathbf{u}/|\mathbf{u}|$ on the unit sphere S_{d-1} . The manifold on the parallelepiped Π that corresponds to $\mathscr C$ is denoted by $\mathscr C_{\mathbf{q}}$. The Jacobian of the transition to spherical coordinates in $\mathbb R^d$ is designated as $J(r, \mathbf{q})$. Let $g''(\mathbf{q})$ denote the Hessian of a function $g(\mathbf{q})$, and let $\lambda(A)$ stand for the smallest (in absolute value) nonzero eigenvalue of a symmetric matrix A.

Theorem 1. Let $g: \mathbb{R}^d \to \mathbb{R}$ be a continuous homogeneous function of order $\alpha > 0$, and let $\dim \mathscr{C}_{\varphi} = r \in [0, d-1]$. If the corresponding function $g(\varphi): \Pi \to \mathbb{R}$ is three times differentiable and

$$\operatorname{rank} g''(\varphi) \equiv d-1-r, \quad \inf_{\varphi \in \mathcal{C}_{\varphi}} \lambda(g''(\varphi)) > 0$$

(the Hessian is uniformly nonsingular on \mathscr{C}_{φ}), then

$$\mathbb{P}\{g(\mathbf{\eta}) > x\} = \mathcal{H}x^{(r-1)/\alpha} e^{-c^2 x^{2/\alpha}/2} (1 + O(x^{-2/\alpha}))$$
 (2)
 $as \ x \to \infty,$

^a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 4, Novosibirsk, 630090 Russia

^b Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119992 Russia

^c UNIL-Dorigny, 1015 Lausanne, Switzerland e-mail: korshunov@math.nsc.ru, piter@mech.math.msu.su, enkelejd.hashorva@unil.ch

$$\mathcal{H} := \frac{1}{(2\pi)^{(r+1)/2}} \frac{\alpha^{(d-1-r)/2}}{c^{1-r+\alpha(d-1-r)/2}}$$
$$\times \int_{\mathscr{C}_{o}} \frac{J(1, \boldsymbol{\varphi})}{\sqrt{\left|\det \mathbf{g}_{d-1-r}^{"}(\boldsymbol{\varphi})\right|}} dV_{\boldsymbol{\varphi}},$$

where dV_{φ} is the volume element of the manifold $\mathscr{C}_{\varphi} \subset \Pi$ and $\det g_{d-1-r}^{"}(\varphi)$ is any nonzero minor of the Hessian $g''(\varphi)$ of order d-1-r. Relation (2) can be differentiated, which gives asymptotics of the distribution density of the Gaussian chaos $g(\eta)$.

Note that, as in the classical case of the Laplace method [3], assuming that g has higher smoothness, we can obtain asymptotic expansions of the considered probability and density in powers of x. In the case r = 0, i.e., when $\mathscr{C} = \{\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_k\}$, where \mathbf{t}_i are isolated absolute minimizers of g in the integration domain, the theorem is proved by directly applying Theorem 4.2 from [3]. The integral in the expression for \mathcal{H} becomes a sum over the points $\varphi_i \in \Pi$ corresponding to the points \mathbf{t}_i . In the general case, we apply a version of the Laplace method for parameter-dependent functions, which are used to prove the possibility of integration. On each map of an atlas with sufficiently small maps on the manifold \mathscr{C}_{ω} , we construct a coordinate system with the first r coordinates being parameters. When they are fixed, the minimum of the amplitude (of the argument of the exponential) is reached at a unique point of a neighborhood of the map. Next, the standard Laplace method is applied and the maps of the atlas are integrated with respect to these parameters on all neighborhoods in Π .

By Theorem 1, the Gaussian chaos is a subexponential random variable if $\alpha > 2$. The subexponentiality of random variables is an important concept in various applications (see, for example, [4]). The Gaussian chaos is subexponential under rather weak constraints on the function h. For example, let h be nonnegative. The d-dimensional centered Gaussian vector $\mathbf{\eta}$ with a unit covariance matrix can be represented as the product $\mathbf{\eta} \stackrel{d}{=} \chi \mathbf{\mu}$ of independent values χ

and μ , where $\chi^2 = \sum_{i=1}^d \eta_i^2$ has a chi-square distribution

 χ^2 with d degrees of freedom, while μ has a uniform distribution on the unit sphere $S_{d-1} \subset \mathbb{R}^d$. The Gaussian random vector $\boldsymbol{\xi} = \sqrt{B}\boldsymbol{\eta} = \chi\sqrt{B}\mu$ has the covariance matrix B. Therefore, since h is homogeneous for any x>0, we have

$$\mathbb{P}\{h(\xi) > x\} = \mathbb{P}\{\chi^{\alpha}h(\sqrt{B}\mu) > x\}. \tag{3}$$

If $h(\sqrt{B}\mu)$ is a positive bounded random variable, then, according to [2, Corollary 2.5], the random vari-

able $h(\xi)$ is subexponential for $\alpha > 2$, because the distribution γ^{α} then has a Weibull type density

$$\frac{1}{\alpha \cdot 2^{d/2-1} \Gamma(d/2)} x^{d/\alpha - 1} e^{-x^{2/\alpha}/2}$$

with $2/\alpha < 1$, which means subexponentiality.

It follows from (3) that, if h is bounded on the unit sphere S_{d-1} , i.e., $h^* := \max\{h(\mathbf{u}): |\mathbf{u}| = 1\} < \infty$, then estimates

$$\mathbb{P}\{h(\xi) > x\} \le \mathbb{P}\{\chi^{\alpha} > x/h^*\}$$

$$\le \frac{1}{\alpha \cdot 2^{d/2 - 1} \Gamma(d/2)} \int_{x/h^*}^{\infty} y^{d/\alpha - 1} e^{-y^{2/\alpha}/2} dy.$$

This explicit upper bound improves the one obtained in [10, Corollary 1]. In our conditions, it is better than the bound that can be derived from [1, Theorem 4.3].

Theorem 1 underlies a unified approach to different problems. Below are some examples.

Example 1. (Product of independent N(0, 1) random variables) Let $\mathbf{\eta} = (\eta_1, \eta_2, ..., \eta_d)$ be a standard Gaussian vector and $g(\mathbf{u}) = u_1 u_2 ... u_d$. We have $\alpha = d$, $c^2 = d$, and $\mathcal{C} = \{(\pm 1, ..., \pm 1) \text{ with an even number of negative coordinates}\}$ consists of 2^{d-1} points. Applying Theorem 1 yields the asymptotics

$$p_{\eta_1...\eta_d}(x) = \frac{2^{(d-1)/2}}{\sqrt{2\pi d}} x^{1/d-1} e^{-dx^{2/d}/2} (1 + O(x^{-2/d}))$$

This asymptotic relation can be intuitively interpreted as follows (see, e.g., [13]): the product takes the most probable large value when all the multipliers are roughly identical; therefore, $p_{\eta_1...\eta_d}(x)$ asymptotically resembles the product of d densities at the same point $x^{1/d}$.

For the product of the coordinates of an arbitrary Gaussian vector ξ with a covariance matrix B, we have a similar formula based on the representation $\xi = \sqrt{B}\eta$, but the computation of the constants encounters certain difficulties.

Example 2. (Quadratic forms of independent N(0, 1)

random variables.) Let
$$g(\mathbf{\eta}) = \sum_{i=1}^{d} a_i \eta_i^2$$
, where the

constants $a_i \in \mathbb{R}$ are such that $a_1 \le a_2 \le ... \le a_{d-r} < a_{d-r+1} = ... = a_d = a, a > 0.$

Since

$$g(\mathbf{u}) = \sum_{i=1}^{d-r} a_i u_i^2 + a \sum_{i=d-r+1}^{d} u_i^2$$

and $a_i < a$ for $i \le d - r$, the minimum of $|\mathbf{u}|^2$ on the set $g(\mathbf{u}) = 1$ is reached at points \mathbf{u} satisfying $u_{d-r+1}^2 + \ldots + u_d^2 = \frac{1}{a}$ and $u_1 = u_2 = \ldots = u_{d-r} = 0$, so that $c^2 = \frac{1}{a}$. If

r=1, the set \mathscr{C}_{φ} consists of two points $\left(\frac{\pi}{2},...,\frac{\pi}{2},\frac{\pi}{2}\right)$ and $\left(\frac{\pi}{2},...,\frac{\pi}{2},\frac{3\pi}{2}\right)$. By using Theorem 1, we can find

that

$$\mathbb{P}\left\{\sum_{i=1}^{d} a_i \eta_i^2 > x\right\}$$

$$= \frac{1}{2^{r/2-1}\Gamma(r/2)} \prod_{i=1}^{d-r} \frac{1}{\sqrt{1-a_i/a}} (x/a)^{r/2-1} e^{-x/2a} (1+O(1/x))$$

as $x \to \infty$, which agrees (up to the first-order asymptotics) with the results of [6] (see also [11, 12] or [7, Theorem 1]). This also supplements the upper bounds obtained in [5, 9].

Example 3. (Scalar product) The quadratic forms in Example 2 are closely related to $g(\eta, \eta^*) = \int_0^d$

 $\sum_{i=1}^{n} a_i \eta_i \eta_i^*$, where η_i and η_i^* , $i \le d$, are independent

N(0, 1) random variables and $a_i \in \mathbb{R}^+$. Indeed, since $\eta_i \eta_i^*$ coincides in distribution with

$$\frac{\eta_i + \eta_i^*}{\sqrt{2}} \frac{\eta_i - \eta_i^*}{\sqrt{2}} = \frac{\eta_i^2 - \eta_i^{*2}}{2},$$

we have the distribution equality

$$g(\mathbf{\eta}, \mathbf{\eta}^*) \stackrel{d}{=} \frac{1}{2} \left(\sum_{i=1}^d a_i \eta_i^2 - \sum_{i=1}^d a_i \eta_i^{*2} \right),$$

and, to the quadratic form on the right, we can apply the result of Example 2, with the dimension replaced by 2d and with the parameter r replaced by the number of maximal a_i . Some results for scalar products can be found in [8].

REFERENCES

- M. Arcones and E. Giné, J. Theor. Probab. 6, 101–122 (1993).
- D. B. H. Cline and G. Samorodnitsky, Stoch. Process. Appl. 49, 75–98 (1994).
- 3. M. V. Fedoryuk, *Asymptotics: Integrals and Series* (Nauka, Moscow, 1987) [in Russian].
- S. Foss, D. Korshunov, and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions (Springer, New York, 2011).
- D. L. Hanson and F. T. Wright, Ann. Math. Stat. 42, 1079–1083 (1971).
- W. Hoeffding, Theory Probab. Appl. 9 (1), 89–91 (1964).
- J. Hüsler, R. Liu, and K. Singh, J. Multiv. Anal. 82, 422–430 (2002).
- 8. B. G. Ivanoff and N. C. Weber, Bull. Austral. Math. Soc. **58**, 239–244 (1998).
- 9. R. Latała, Stud. Math. 135, 39–53 (1999).
- 10. R. Latała, Ann. Probab. 34, 2315–2331 (2006).
- 11. M. A. Lifshits, *Lectures on Gaussian Processes* (Springer, Heidelberg, 2012).
- 12. V. I. Piterbarg, Stoch. Process. Appl. **53**, 307–337 (1994).
- 13. D. Sornette, Phys. Rev. E 57, 4811–4813 (1998).
- 14. N. Wiener, Am. J. Math. 60, 897-936 (1938).

Translated by I. Ruzanova