
Chapter 11
Critical Boundary Refinement in a Group
Sequential Trial When the Primary
Endpoint Data Accumulate Faster
Than the Secondary Endpoint

Jiangtao Gou and Oliver Y. Chén

11.1 Introduction

In classical clinical trial studies, a clinical endpoint is defined as the time point at
which a disease or symptom occurs. An individual reaching an endpoint during a
clinical trial indicates either the conclusion of the trial, or there is strong evidence
rendering the subject withdraws from the trial. To allow for early diagnosis,
personalized treatment, and timely drug development, modern clinical trials are
designed with customized endpoints. Consequently, the assessment time available to
statistical analysis for each endpoint varies. For example, in oncology clinical trials,
depending on the centering focus, the endpoints can be categorized into patient-
centered endpoints and tumor-centered endpoints. An example of a patient-centered
endpoint is the overall survival (OS), defined as the cumulative days a patient has
lived, counting beginning from the date on which the disease is diagnosed or the
date on which treatment is initiated; an example of a tumor-centered endpoint is
progression-free survival (PFS), defined as cumulative days a patient has lived
with cancer since the treatment and that the disease has not progressed (Fiteni
et al. 2014). While OS is more reliable (since it covers a longer period) than PFS,
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the latter is usually used in practice as a surrogate for OS, when an accelerated
evaluation is demanded, for example, during a drug test. However, we cannot at
present ascribe such a replacement to any well-defined statistical theory, owning, in
part, to the genuine differences between the two types of endpoints, and, in part, to
the intellectual discovery of only modest correlation between PFS and OS (Amir
et al. 2012; Michiels et al. 2017). By probing into the hierarchical basis of these two
types of endpoints, statistical science can help us uncover the utility underlying each
endpoint in addressing problems in clinical trials and improve statistical power. A
beginning in this direction can be made by considering a hierarchical test embedded
in a group sequentially design (Hung et al. 2007).

A group sequential design is a framework that allows statistical analysis during
longitudinally ordered stages, defined as interim stages followed by a final stage
(Jennison and Turnbull 2000). During each interim stage, a statistic (e.g. the
estimated logarithm of the hazard ratio) is computed on data hitherto collected
to determine whether or not to reject a null hypothesis (e.g. whether or not a
treatment is more effective than the standard treatment), based upon a stopping
criterion (called a critical boundary). Specifically, if the statistic exceeds the critical
boundary, the null hypothesis is rejected, and the trial is subsequently terminated
prior to the next interim stage. If a trial reaches the final stage, all data are utilized
to test the null hypothesis.

Chief to a group sequential design is the critical boundary for early stopping.
Pocock (1977) and O’Brien and Fleming (1979) individually proposed two now
widely used critical boundaries for group sequential trials. Attributing to their
contribution, these boundaries are commonly referred to as the Pocock (POC)
boundary and the O’Brein-Fleming (OBF) boundary today, respectively. However,
the POC and OBF boundaries require that the total number of decision times
specified in advance. When this condition is not met, Lan and DeMets (1983)
utilized a family of error spending functions to approximate the POC and the OBF
boundaries. All of these approaches consider group sequential trials with a single
primary endpoint. To address issues in group sequential trials involving multiple
primary endpoints, Jennison and Turnbull (1993), Tang and Geller (1999), Maurer
and Bretz (2013), Ye et al. (2013) and Xi and Tamhane (2015) provided various
suggestions.

To raise any clinical finding related to an endpoint to the rank of science, one
has to construct statistical hypotheses test for each endpoint. In a randomized trial
consisting multiple endpoints, the endpoints often present a hierarchical structure.
Statistical testing can be conducted serially for each ordered endpoint, or in parallel
for all endpoints by applying the gatekeeping procedure (Dmitrienko and Tamhane
2007; Dmitrienko et al. 2009). A more flexible framework is the graph-theoretic-
based procedure introduced by Bretz et al. (2009) and Burman et al. (2009), wherein
nodes are used to represent hypothesis tests, coupled by directed and weighted
edges indicating multiple test procedures. The above approaches were initially
employed in single-stage designs with neither interim analysis nor trial extension.
To extend these methods to multi-stage designs, Hung et al. (2007) first considered
hierarchically testing multiple endpoints in a group sequential design.
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The theoretical basis of group sequential designs involving multiple endpoints
with complex hierarchical structure, one of the common practice in modern clinical
trials, however, is not as-of-yet well-charted in statistical science. For instance, in an
oncology trial, when the primary endpoint is PFS and the secondary endpoint is OS
with the partially hierarchical design, can we improve upon the simple Bonferroni-
based split between the primary and the secondary endpoint (which is the current
practice), in a group sequential design? Prior work has built a reliable and useful
repertoire that has offered us much insight, with which we build our theory. For
example, Hung et al. (2007), Tamhane et al. (2010), Glimm et al. (2010), and
Tamhane et al. (2018) considered the group sequential procedures for a primary
and a secondary hypothesis with the same information fractions at interim analyses.
In the light of their knowledge, in this article we attempt to address a few core issues
in clinical trails when multiple objectives with hierarchical structures are present in
group sequential designs.

11.2 Preliminaries

Consider a trial on a primary and a secondary endpoint hierarchically using a
group sequential design with two stages. In the following, we use X to denote
parameters and statistics that are related to the primary endpoint, and Y to denote
parameters and statistics for the secondary endpoint. The number of interim looks
at the secondary endpoint is permitted to be greater than the number of looks at the
primary, if it takes longer to collect the secondary endpoint data than the primary
endpoint data. We first consider a two-stage group sequential design that is applied
to the primary endpoint, and aK-stage design that is used for the secondary endpoint
(K ≥ 2). For simplicity, we call it [2|K]-stage design. As a natural extension, we
introduce the procedure with a KX-stage design for the primary hypothesis and a
KY -stage design for the secondary hypothesis. We denote this as a [KX|KY]-stage
design.

In a [2|K]-stage design, let n1,X and n2,X be the sample sizes for the two stages
of the primary endpoint HX, and n1,Y , n2,Y , . . . , nK,Y for the K stages of the
secondary endpoint HY . The total sample size is N , where N = n1,X + n2,X =∑K

i=1 ni,Y . The information time of the primary endpoint at the interim analysis
is denoted as tX = n1,X/N . For the secondary endpoint, there are K − 1 interim
analyses, and the information times are ti,Y = ∑i

j=1 nj,Y /N , i = 1, · · · ,K − 1.
The information time or information fraction is the proportion of subjects or
events already observed (Lan and DeMets 1989). The correlation between the two
endpoints is denoted as ρ.

Let (X1, X2) and (Y1, Y2, . . . , YK) denote the standardized sample mean test
statistics for the two endpoints at different stages, specified by a numeric subscript.
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The normal theory applies asymptotically in this case. The correlations between the
test statistics are shown as follows.

corr (X1, X2) = λ, corr
(
Yi, Yj

)
= γi/γj (i < j),

corr (X1, YK) = λρ, corr (X2, YK) = ρ,

corr (X1, Yi) = min {λ/γi , γi/λ} · ρ, corr (X2, Yi) = γiρ,

where λ = √
tX, γi =

√
ti,Y for i = 1, . . . , K − 1 and γK = 1.

Let
(
$1,X,$2,X

)
and

(
$1,Y ,$2,Y , . . . ,$K,Y

)
denote the standardized treat-

ment effects of the primary and the secondary endpoints at each stage. Noting that
$1,X = λ$2,X and $i,Y = γi$K,Y , we therefore simplify the notations by letting
$X = $2,X and $Y = $K,Y .

Denote HX and HY as the primary and the secondary null hypotheses. Let
(c1, c2) and (d1, d2, . . . , dK) denote the primary boundary and the secondary
boundary, respectively, in a group sequential procedure. Here, (c1, c2) correspond
to (X1, X2) and

(
$1,X,$2,X

)
; (d1, d2, . . . , dK) are with respect to (Y1, Y2, . . . , Yk)

and
(
$1,Y ,$2,Y , . . . ,$K,Y

)
. Examples of common boundaries are discussed in

Pocock (1977), O’Brien and Fleming (1979), and Lan and DeMets (1983).
In this article, we investigate three types of hierarchical testing scenarios:

stage-wise hierarchical, overall hierarchical, and partially hierarchical scenarios.
To conduct hypothesis testing with respect to each scenario, a scenario-specific
decision rule needs to be defined a priori. Following Glimm et al. (2010), these
decision rules are specified as below. Here, we define αS

Y , α
O
Y , and αP

Y , as the type
I errors for a stagewise (S), an overall (O), and a partially (P) hierarchical rule,
respectively, under the null hypothesis HY .

• Stagewise hierarchical rule PS . The primary hypothesis is tested sequentially.
The secondary hypothesis will be automatically accepted if the primary hypothe-
sis is not rejected. If the primary hypothesis is rejected, the secondary hypothesis
will be tested only once at the same stage. The associated type I error is

αS
Y = Pr (X1 > c1, Y1 > d1)+ Pr (X1 ≤ c1, X2 > c2, Y2 > d2) .

• Overall hierarchical rule PO . Besides PS , the secondary hypothesis can be tested
until its final stage if the primary hypothesis is rejected. The associated type I
error is

αO
Y = αS

Y +
K−1∑

i=1

Pr (X1 > c1, Y1 ≤ d1, · · · , Yi ≤ di, Yi+1 > di+1)

+
K−1∑

i=2

Pr (X1 ≤ c1, X2 > c2, Y2 ≤ d2, · · · , Yi ≤ di, Yi+1 > di+1) .
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• Partially hierarchical rule PP . Besides PO , the secondary hypothesis can be
tested from stage 2 to stageK if the primary hypothesis is failed to be rejected at
its interim and final stage. The associated type I error is

αP
Y = αO

Y + Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2)

+
K−1∑

i=2

Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , Yi ≤ di, Yi+1 > di+1) .

Glimm et al. (2010) also listed another hierarchical rule called the coequal rule PC ,
where the primary and the secondary hypotheses are tested independently without
any hierarchical structure. For a trial design using the coequal hierarchical rule,
Bonferroni-type methods have been well developed, such as Maurer and Bretz
(2013)’s method based on the graphical approach (Bretz et al. 2009, 2011), and
Ye et al. (2013)’s method based on the Holm (1979) procedure. Other distribution-
based or p-value-based tests can also be applied in trial designs using the coequal
hierarchical rule, such as the Dunnett and Tamhane (1992) test, the Simes (1986)
test, the generalized Simes test (Sarkar 2008; Gou and Tamhane 2014, 2018b), and
their corresponding multiple testing procedures, such as Hommel (1988), Hochberg
(1988), Rom (1990), and the hybrid Hochberg–Hommel procedure (Gou et al. 2014;
Gou and Tamhane 2018a; Tamhane and Gou 2018). Since the endpoints under
the coequal hierarchical rule are co-primary endpoints without a real hierarchical
structure, we focus on the stagewise (S), the overall (O), and the partially (P)
hierarchical rule in this article.

In a [KX|KY]-stage design, we use terminologies and notations similar to those
of a [2|K]-stage design. The sample sizes for HX and HY in each stage are denoted
as n1,X, . . . , nKX,X and n1,Y , . . . , nKY ,Y respectively, and the total sample size
N = ∑KX

i=1 ni,X = ∑KY
i=1 ni,Y . The cumulative sample sizes at stage i for HX

and HY are Ni,X = ∑i
j=1 nj,X and Ni,Y = ∑i

j=1 nj,Y . The information times
are calculated accordingly as ti,X = Ni,X/N and ti,Y = Ni,Y /N , where tKX,X =
tKY ,Y = 1. Let λi =

√
ti,X, γi =

√
ti,Y , and the correlation between XKX and YKY

be ρ. The correlations between the standardized test statistics (X1, · · · , XKX) and
(Y1, · · · , XKX) are

corr
(
Xi,Xj

)
= λi/λj (i < j), corr

(
Yi, Yj

)
= γi/γj (i < j),

corr
(
Xi, Yj

)
= min

{
λi/γj , γj /λi

}
· ρ, corr

(
XKX, YKY

)
= ρ .

The standardized effects for HX and HY at the final stage are denoted as $X and
$Y , so the effects at interim stage i are λi$X and γi$Y , respectively. The critical
boundaries for standardized test statistics of HX and HY are (c1, · · · , cKX) and
(d1, · · · , dKY ). When KX = KY , Tamhane et al. (2018) gave the expressions of
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type I error rates under HY for PS , PO , and PP . In a more general setting when
KX ̸= KY , the corresponding type I error rates under HY are

PS : αS
Y =

KX∧KY∑

i=1

Pr (X1 ≤ c1, . . . , Xi−1 ≤ ci−1, Xi > ci, Yi > di) ,

PO : αO
Y = αS

Y +
KX∧{KY−1}∑

i=1

KY∑

j=i+1

Pr
(
X1 ≤ c1, · · · , Xi−1 ≤ ci−1, Xi > ci,

Yi ≤ di, · · · , Yj−1 ≤ dj−1, Yj > dj
)
,

PP : αP
Y =

⎧
⎪⎪⎨

⎪⎪⎩

αO
Y + Pr

(
X1 ≤ c1, · · · , XKX ≤ cKX, YKY > dKY

)
, ifKX ≥ KY ,

αO
Y +∑KY

i=KX
Pr
(
X1 ≤ c1, · · · , XKX ≤ cKX, YKX ≤ dKX, . . . ,

Yi−1 ≤ di−1, Yi > di) , ifKX < KY ,

where KX ∧KY = min{KX,KY }.
Note that for a test on a primary and a secondary endpoint in a group sequential

design, the control of familywise error rate (FWER) (Hochberg and Tamhane
1987; Tamhane et al. 2010; Zhang and Gou 2019a) requires that FWER =
Pr (Reject at least one true H ∈ {HX,HY }) ≤ α. Following the closure principle
(Marcus et al. 1976), the control of type I error under primary hypothesis HX,
the control under secondary hypothesis HY and the control under their intersection
HX ∩HY are all at level α, leading to the control of the FWER at level α.

11.3 Stagewise Hierarchical Rule

The stagewise hierarchical rule PS and the overall hierarchical rule PO satisfy
the gatekeeping condition, In other words, the secondary endpoint is tested only
if the primary endpoint is significant (Dmitrienko and Tamhane 2007; Dmitrienko
et al. 2009). Under this condition, the event RY = {Reject HY } is a subset of the
event RX = {Reject HX}. It follows that Pr (RX ∪ RY |HX ∩HY ) = Pr (RX|HX).
This indicates that once the primary endpoint is tested using an α-level boundary,
then Pr (RX ∪ RY |HX ∩HY ) ≤ α (Tamhane et al. 2010). Consequently, for testing
procedures using the stagewise hierarchical rule PS or the overall hierarchical rule
PO , in order to control FWER at level α, the only requirement of type I error
control for the secondary hypothesis is Pr (RY |HY ) ≤ α, or more specifically,
Pr
(
RY |HX ∩HY

)
≤ α.

In a [2|K]-stage design, the primary hypothesis HX can be tested flexibly using
any α-level group sequential boundary (c1, c2). For example, the critical boundary
(c1, c2) satisfies αX = 1 − Pr (X1 ≤ c1, X2 ≤ c2) ≤ α. The marginal significance
level of the secondary hypothesis HY is defined as αY = 1 − Pr

(
∩K
i=1 {Yi ≤ di}

)
.
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We consider using a more liberal secondary boundary (d1, . . . , dK) where αY can
be greater than α with the control of FWER at level α.

Assume that the test statistics follow the multivariate normal distribution, which
applies asymptotically to a wide range of test statistics. Namely,

⎛

⎜⎜⎝

X1

Y1
X2

Y2

⎞

⎟⎟⎠ ∼ N

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎝

λ$X

γ1$Y

$X

γ2$Y

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎜⎝

1 min{λ,γ1}
max{λ,γ1}ρ λ min{λ,γ2}

max{λ,γ2}ρ
min{λ,γ1}
max{λ,γ1}ρ 1 γ1ρ γ1/γ2

λ γ1ρ 1 γ2ρ
min{λ,γ2}
max{λ,γ2}ρ γ1/γ2 γ2ρ 1

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠
. (11.1)

In the following, Theorem 1 gives an upper bound of type I error of stagewise
hierarchical rule PS . Unlike the results where the primary and the secondary
endpoint have the same information fractions (Tamhane et al. 2010; Glimm et al.
2010; Tamhane et al. 2018) or the results with only one interim analysis for the
secondary hypothesis HY where γ2 = 1 (Gou and Xi 2019), the upper bound we
provided for multiple interim stages with different information fractions is not sharp.
In other words, the following theorem guarantees a more liberal secondary boundary
unconditionally.

Theorem 1 (Upper Bound for Type I Error) When using a stagewise hierarchi-
cal rule PS under HY , the type I error αS

Y is bounded from above by

αS
Y < 1− Pr (Y1 ≤ d1, Y2 ≤ d2) .

When 0 < γ1 < γ2 < 1, this upper bound cannot be achieved.

Specifically, when the primary hypothesis data are obtained earlier than the
secondary hypothesis data, at stage 1 we have n1,X > n1,Y . It follows that
the information fraction of the primary hypothesis at stage 1 is greater than the
corresponding information fraction of the secondary hypothesis. Starting from
Theorem 1 along with the assumption that tX > t1,Y and the correlation ρ between
X2 and YK is positive, we show in Theorem 2 below that the type I error rate for a
stagewise hierarchical test under the secondary hypothesis HY , or αS

Y , is uniformly
monotonous.

Theorem 2 (Uniform Monotonicity of Type I Error) Consider two group
sequential designs using PS , one with the square roots of information fractions
(λ, γ ′1, γ2) and boundaries (c1, c2, d

′
1, d

′
2), and the other with (λ, γ ′′1 , γ2) and

(c1, c2, d
′′
1 , d

′′
2 ). Denote the corresponding type I errors under HY by αS

Y

′
and

αS
Y

′′
, respectively. Suppose that these two designs share the same boundary for

the primary hypothesis (c1, c2), and the same information fraction tX = λ2 at the
interim analysis of the primary hypothesis and the information fraction t2,Y = γ 2

2
at the second stage of the secondary hypothesis. If γ ′1 ≤ γ ′′1 ≤ λ, d ′1 ≥ d ′′1 and
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d ′2 ≥ d ′′2 , then for any ρ ∈ [0, 1]and for any $X,

αS
Y

′ ≤ αS
Y

′′
.

In order to apply Theorem 2 to the OBF-POC design, where an OBF boundary
is used for the primary endpoint and a POC boundary is used for the secondary
endpoint, we need the following result. The OBF-POC design in the stagewise
hierarchical rule is recommended by Tamhane et al. (2010, 2018) and Zhang and
Gou (2019b).

Lemma 1 Consider two trials that use the Pocock test with two stages under the
same significance level. In one trial, the interim analysis is performed at information
time t ′, and the corresponding Pocock boundary is d ′. In the other trial, the interim
analysis is performed at t ′′ with Pocock boundary d ′′. If t ′ < t ′′, then d ′ > d ′′.

An immediate consequence of Theorem 2 and Lemma 1 is that, when the
information fraction of the secondary hypothesis at the interim analysis is small
compared to the information fraction of the primary hypothesis, the statistical
power of group sequential design using the stagewise hierarchical rule will benefit
greatly from the secondary boundary refinement. Formally, this means that the OBF-
POC design with unrefined boundaries becomes more conservative for testing the
secondary hypothesis HY when the information time at the first stage t1,Y becomes
smaller.

Figure 11.1 shows that the error rate αS
Y under HY of an OBF-POC design,

where the α-level boundaries (c1, c2) and (d1, d2) are used, say, α = 1 −
Pr (X1 ≤ c1, X2 ≤ c2) = 1−Pr (Y1 ≤ d1, Y2 ≤ d2). Figure 11.1 confirms the result
in Theorem 1 that the error rate αS

Y is strictly less than α. It also confirms that the
uniform monotonicity of αS

Y as a function of t1,Y in Theorem 2. The error rate αS
Y

of an OBF-OBF design, where both primary and secondary boundary are OBF, is
also bounded by α, and is uniformly monotonic of t1,Y , as shown in Fig. 11.2. The
boundary values (d1, d2) can be refined to allow αS

Y to achieve α.
The secondary boundary can be refined without knowing the correlation ρ

between two hypotheses by assuming the least favorable situation where ρ = 1. If
ρ is known or can be estimated (Tamhane et al. 2012a,b), we can further refine the
boundary for the secondary hypothesis. Table 11.1 gives an example of the refined
boundary (d ′1, d

′
2) of the secondary hypothesis using OBF-POC and OBF-OBF

designs, where ρ = 1, 0.8, 0.5. The error rate αS
Y equals the level of significance

α exactly with the boundary refinement of the secondary hypothesis.
Since lim$X→+∞ αS

Y (ρ,$X) = Pr (Y1 > d1), for any ρ, λ, γ1 and γ2, the
refined secondary boundary d1 in an OBF-POC design is at least zα , where zα is the
upper α critical point of the standard normal distribution. Note that the naïve strategy
in Hung et al. (2007), where the secondary boundary d1 = d2 = zα , has been
shown to be liberal when the information fractions for the primary and the secondary
endpoint are the same. Gou and Xi (2019) first observed that the naïve strategy in
Hung et al. (2007) actually control the FWER when the primary and the secondary
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Fig. 11.1 FWER plot for O’Brien-Fleming primary and Pocock secondary boundary under PS

with tX = 0.6, marginal level of significance α = 1 − Pr (X1 ≤ c1, X2 ≤ c2) = 1 −
Pr (Y1 ≤ d1, Y2 ≤ d2) = 0.025. Correlation ρ = 1 (top panels), ρ = 0.8 (bottom panels),
t2,Y = 0.9 (left panels), t2,Y = 0.7 (right panels)

hypothesis have different information fractions, but without further discussion. A
natural question here to ask is, when will the FWER inflation of the naïve strategy
in Hung et al. (2007) not happen? Under an OBF-POC design, where an α-size
OBF boundary (c1, c2) is chosen for the primary endpoint, and the boundary for
the secondary endpoint is d1 = d2 = zα , Fig. 11.3 shows the admissible region of
(t1,Y , t2,Y ) for controlling the FWER of the naïve strategy in Hung et al. (2007) for
different choices of the information fractions at the interim analysis of the primary
hypothesis. The feasible region of (t1,Y , t2,Y ) becomes larger when tX increases.
Generally speaking, when (t1,Y , t2,Y ) are small enough compared with tX, the naïve
strategy controls the FWER. For example, in a phase III trial in Baselga et al. (2012),
the primary endpoint is PFS with information fraction tX = (0.6, 1), and the key
secondary endpoint is OS with tY = (0.21, 0.44). If this trial follows the stagewise
hierarchical strategy to control the FWER at level α = 0.025 and uses an α-level
OBF boundary for the PFS endpoint, then the boundary d1 = d2 = zα = 1.960 for
the OS can be used since t1,Y = 0.21 and t2,Y = 0.44 fall into the admissible region
when tX = 0.6. This is shown in Fig. 11.3.

A simple empirical rule for properly using the naïve strategy in Hung et al. (2007)
is followed: when t21,Y ≤ tX, a group sequential design with an 0.025-level OBF
boundary for the primary hypothesis can directly apply d1 = d2 = z0.025 as its
boundary for the secondary hypothesis HY .
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Fig. 11.2 FWER plot for O’Brien-Fleming primary and O’Brien-Fleming secondary boundary
under PS with tX = 0.6, marginal level of significance α = 1 − Pr (X1 ≤ c1, X2 ≤ c2) = 1 −
Pr (Y1 ≤ d1, Y2 ≤ d2) = 0.025. Correlation ρ = 1 (top panels), ρ = 0.8 (bottom panels), t2,Y =
0.9 (left panels), t2,Y = 0.7 (right panels)

Table 11.1 Refined secondary boundaries for given correlation ρ under the
stagewise hierarchical rule

OBF-POC α-level boundary Refined boundary
ρ d1 d2 d ′1 d ′2 Marginal error of HY

1 2.169 2.169 2.032 2.032 0.0345
0.8 2.169 2.169 1.996 1.996 0.0375
0.5 2.169 2.169 1.973 1.973 0.0394

OBF-OBF α-level boundary Refined boundary
ρ d1 d2 d ′1 d ′2 Marginal error of HY

1 2.664 1.985 2.511 1.872 0.0328
0.8 2.664 1.985 2.386 1.778 0.0408
0.5 2.664 1.985 2.308 1.721 0.0465

tX = 0.6, t1,Y = 0.5, t2,Y = 0.9, the OBF boundary for the primary
hypothesis is c1 = 2.572, c2 = 1.992 at α = 0.025. The marginal error
rate of HY is 1− Pr

(
Y1 ≤ d ′1, Y2 ≤ d ′2

)

In a [KX|KY]-stage design following the stagewise hierarchical rule, similar
conclusions on type I error rate can be achieved. The type I error rate αS

Y is bounded
from above by 1 − Pr

(
Y1 ≤ d1, . . . , YKX∧KY ≤ dKX∧KY

)
, and this upper bound is
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Fig. 11.3 Feasible region of (t1,Y , t2,Y ) of the naïve strategy in Hung et al. (2007)

not sharp whenKX ̸= KY . Under some conditions, the power gain for the secondary
hypothesisHY by using the boundary refinement is significant when the information
times of HY are less than the information times of the primary hypothesis HX at
interim stages.

11.4 Overall Hierarchical Rule

Compared with the stagewise hierarchical rule PS , a trial design using the overall
hierarchical rule PO allows testing the secondary hypothesis HY more than
once if the primary hypothesis HX is rejected. Following a similar argument in
Tamhane et al. (2018), one cannot refine the secondary boundary unless there
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Fig. 11.4 FWER plot of an OBF-POC design using the overall hierarchical rule PO with α-level
boundary of the primary and the secondary hypothesis

is some prior information on $X and ρ, since the difference between 1 −
Pr (Y1 ≤ d1, · · · , YK ≤ dK) and αO

Y , which equals to

Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2)+ Pr (X1 ≤ c1, Y1 > c1, Y2 ≤ d2, · · · , YK ≤ dK)

+
K−1∑

i=2

Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , Yi ≤ di, Yi+1 > di+1) ,

in a [2|K]-stage design, goes to 0 when $X goes to positive infinity. Similarly, a
[KX|KY]-stage design using the overall hierarchical rule cannot be refined without
information on $X and ρ.

Figure 11.4 shows the type I error under HY of an OBF-POC design with α =
0.025. Refinement of the secondary boundary is possible only when an upper bound
on $X is known. If a reliable estimate of $X is available, the refinement of the
boundary of the secondary hypothesis will be relatively noticeable when the time
fraction of the secondary hypothesis tY is small or when the correlation ρ is small.

11.5 Partially Hierarchical Rule

The partially hierarchical rule PP allows continued testing of the secondary
hypothesis when the primary hypothesis has been confirmed to be non-significant.
Thus, besides controlling of type I error underHY , one needs to also control the type
I error under HX ∩ HY . Since Pr (RX|HX) ≤ Pr (RX ∪ RY |HX ∩HY ), in general
we cannot use an α-level significance for the primary endpoint in a design under the
partially hierarchical rule.

A Bonferroni-based design splits the significance level α for HX and HY

whereby α = αX + αY , where αX = 1 − Pr (X1 ≤ c1, X2 ≤ c2) and αY =
1 − Pr (Y1 ≤ d1, · · · , YK ≤ dK) in a [2|K]-stage design. This design controls the
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FWER. When the correlation ρ is known or can be estimated, the boundary for the
secondary hypothesis can be refined. The following theorem provides a refinement
when ρ is known to be non-negative.

Theorem 3 (Improved Boundary in a [2|K]-Stage Design) Consider a group
sequential design using the partially hierarchical rule PP , where αX =
Pr (RX|HX) < α. A necessary and sufficient condition for Pr (RX ∪ RY |HX ∩HY ) ≤
α for any non-negative ρ is that Pr

(
∩K
i=2 {Yi ≤ di}

)
≥ (1− α)/(1− αX).

Based on Theorem 3, a simple design is followed when ρ ≥ 0 is satisfied, where
the boundary of the secondary hypothesis is refined.

1. αX = 1− Pr (X1 ≤ c1, X2 ≤ c2) ≤ α,
2. αY = 1− Pr (Y1 ≤ d1, · · · , YK ≤ dK) ≤ α,
3. 1− Pr

(
∩K
i=2 {Yi ≤ di}

)
≤ α−αX

1−αX
.

Denote α
(−1)
Y = 1− Pr

(
∩K
i=2 {Yi ≤ di}

)
, which is the type I error of (K − 1)-stage

group sequential design for HY . Comparing the original K-stage group sequential
design for HY , this (K − 1)-stage design skips the first stage. Therefore, the
conditions can be rewritten as

αX ≤ α, αY ≤ α, α
(−1)
Y ≤ α − αX

1− αX
.

Theorem 3 can be easily generalized to a [KX|KY]-stage design where the trial
of the primary endpoint has more than two stages. The refined method maintains the
FWER control across both endpoints.

Corollary 1 (Improved Boundary in a[KX|KY]-Stage Design) Consider a group
sequential design with KX stages for the primary hypothesis and KY stages
for the secondary hypothesis, using the partially hierarchical rule PP , where

KX ≤ KY . Let α
(−(KX−1))
Y = 1 − Pr

(
∩KY
i=KX

{Yi ≤ di}
)
be the type I error of a

(KY −KX + 1)-stage group sequential design for HY . This procedure controls the
FWER for arbitrary ρ ≥ 0 if and only if: αX ≤ α, αY ≤ α, and α

(−(KX−1))
Y ≤

(α − αX)/(1− αX).

The Lan-DeMets error spending function is widely used in clinical trials to
approximate OBF and POC boundary (Lan and DeMets 1983). Using the Lan-
DeMets boundaries, Table 11.2 shows the refined boundary for the secondary
hypothesis under various values of ρ compared with the boundary based on
Bonferroni split. The refined boundary for ρ = 0 can be used for any ρ ≥ 0, based
on Theorem 3. Even without the knowledge of the sign of ρ, the refined boundary
for ρ = 0 is still approximately valid for endpoints with any correlation ρ, as shown
in Table 11.2.



218 J. Gou and O. Y. Chén

Table 11.2 Refined Lan-DeMets boundaries for the secondary hypothesis for given correla-
tion ρ under the partially hierarchical rule PP , α = 0.025, αX = 0.0125, tX = (0.6, 1), tY =
(0.5, 0.9, 1), Lan-DeMets OBF boundary for the primary hypothesis (c1, c2) = (3.021, 2.254)

Lan-DeMets POC for the secondary Lan-DeMets OBF for the secondary
ρ d1 d2 d3 αY d1 d2 d3 αY

1 2.157 2.242 2.373 0.0250 2.963 2.105 2.057 0.0250
0.5 2.184 2.270 2.402 0.0234 3.237 2.313 2.249 0.0153
0 2.230 2.319 2.452 0.0208 3.304 2.363 2.295 0.0135

−0.5 2.235 2.324 2.457 0.0205 3.310 2.368 2.299 0.0133
Bonferroni 2.420 2.530 2.656 0.0125 3.345 2.394 2.323 0.0125

11.6 Power Analysis

In order to evaluate the performance of boundary refinement for the secondary
hypothesis, we compare the secondary power Pr

(
RY |HY

)
under the partially

hierarchical rule PP between the OBF-POC design and OBF-OBF design. Here,
we only consider the O’Brien-Fleming boundary for the primary endpoint, since it
is more powerful than the POC boundary for the primary hypothesis (Tamhane et al.
2018). For the power analysis, the assumption of multivariate normal distribution
is satisfied asymptotically, so we incorporate the distribution information into the
analysis. In general, if the distribution information is unknown, the power analysis
models based on the Dirac function (Finner et al. 2009) or the step function (Zhang
and Gou 2016) can be considered.

Table 11.3 displays the power comparisons between two designs (OBF-POC and
OBF-OBF) and between two boundaries (refined boundary for ρ ≥ 0 and unrefined
boundary based on Bonferroni split). We assume the significance level α = 0.025,
and the primary hypothesis is tested with a 0.0125-level Lan-DeMets OBF boundary
(c1, c2) = (3.021, 2.254), where the information fraction at the interim analysis
is 0.6. For the secondary hypothesis, we include the Lan-DeMets OBF and the
Lan-DeMets POC boundary. Two choices of information fractions of the secondary
endpoint show the impact of a fast data accumulation (tY = (0.5, 0.9, 1)) and slow
accumulation (tY = (0.2, 0.4, 1)) for the secondary hypothesis. We assume the true
correlation between the primary and the secondary hypothesis is 0.5. Note that we
do not need to know this correlation for boundary refinement. The standardized
treatment effect for the primary hypothesis $X is 3, and it ranges from 2 to 4 for the
secondary hypothesis.

From Table 11.3, we observe that the OBF-OBF design is better than the OBF-
POC design in a group sequential trial using the partially hierarchical rule PP . Note
that for a trial using the stagewise hierarchical rule PS , Tamhane et al. (2010),
Tamhane et al. (2018) and Gou and Xi (2019) have shown that the OBF-POC is
the better choice. For the OBF-OBF design using PP , the power gain over the
Bonferroni split method increases when the information fractions of the secondary
hypothesis become smaller.
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Table 11.3 Power (%) comparison between the refined the unrefined bound-
ary under the partially hierarchical rule

tX = (0.6, 1) Lan-DeMets OBF-POC Lan-DeMets OBF-OBF
tY $Y Refined Unrefined Refined Unrefined

2 39.1 31.7 40.7 39.5
(0.5, 0.9, 1) 3 75.4 68.6 77.5 76.6

4 95.2 92.8 96.0 95.7
2 38.5 34.1 44.8 40.4

(0.2, 0.4, 1) 3 75.5 71.7 80.7 77.6
4 95.4 94.1 96.9 96.1

11.7 Example and Extension

In practice, it is common that the attained sample sizes and the planned sample
sizes are different. Using the error spending function, we can update the boundaries
at each stage by considering the exact information fractions. The refined boundary
can be updated in a similar manner adaptively.

Consider a phase III placebo-controlled two-arm clinical trial evaluating the
efficacy of a treatment in patients with lymphoma. The primary objective is to
evaluate the efficacy with respect to the progression-free survival (PFS). The
secondary objective is to evaluate the efficacy with respect to the overall survival
(OS). Table 11.4 shows a 0.025-level test using the partially hierarchical rule with
a Lan-DeMets error spending function OBF-OBF design. The trial design includes
one interim analysis for the primary endpoint PFS, and two interim analyses for the
secondary endpoint OS. At stage 0, all sample sizes are planned. The sample size
per arm is planned to be 400. The planned cumulative sample size for the primary
objective is 240 at stage 1, and 400 at stage 2. For the secondary objective, the
planned cumulative sample size is 200 at stage 1320 at stage 2, and 400 at stage
3. The critical boundaries for the primary and the secondary hypothesis can be
calculated. At stage 1, n1,X and n1,Y are obtained, and the planned sample sizes
for other stages are modified accordingly. The observed sample sizes at stage 1 for
the primary and the secondary endpoint are 264 and 168, and the planned cumulative
sample sizes at stage 2 and 3 remain the same. The critical boundary (c1, c2) and
(d1, d2, d3) are recalculated, and c1 and d1 are compared with the test statistics to
make decisions. We further observe n2,X and n2,Y at stage 2, update the information
times by using the observed cumulative sample sizes, and calculate the boundary
c2, c3 and (d2, d3) by fixing the value of c1 and c2 in stage 1. Finally, n3,Y is
observed at stage 3, and the total sample size for OS is updated, and the boundary
d3 is recalculated based on updated information times. In this example, initially the
planned sample size is (n1,X, n2,X, n1,Y , n2,Y , n3,Y ) = (240, 160, 200, 120, 80).
At the final stage, the attained sample size becomes (n1,X, n2,X, n1,Y , n2,Y , n3,Y ) =
(264, 168, 168, 132, 108).
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Table 11.4 Boundary updates among stages in an OBF-OBF design using PP : a comparison
between the unrefined boundary (d1, d2, d3) and the refined boundary (d ′1, d

′
2, d

′
3)

Stage n1,X n2,X n1,Y n2,Y n3,Y c1 c2 d1 d2 d3 d ′1 d ′2 d ′3
0 240 160 200 120 80 3.0205 2.2543 3.3446 2.5694 2.2938 3.2314 2.4794 2.2148
1 264 136 168 152 80 2.8614 2.2625 3.6810 2.5629 2.2928 3.5651 2.4770 2.2180
2 264 168 168 132 100 2.8614 2.2672 3.6810 2.6625 2.2835 3.5651 2.6529 2.2754
3 264 168 168 132 108 2.8614 2.2672 3.6810 2.6625 2.3170 3.5651 2.6529 2.3136
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Appendix

Proof of Theorem 1 Note that 1−Pr (Y1 ≤ d1, Y2 ≤ d2)−αS
Y = Pr(X1 > c1, Y1 ≤

d1, Y2 > d2)+ Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2)+ Pr (X1 ≤ c1, Y1 > d1, Y2 ≤ d2).
All three terms on the right hand side are strictly positive when ρ < 1. When ρ = 1,
the probability Pr (X1 > c1, Y1 ≤ d1, Y2 > d2) and Pr (X1 ≤ c1, Y1 > d1, Y2 ≤ d2)

can be 0 if λ = γ1, and the probability Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2) can be 0 if
λ = γ2. Since γ1 < γ2, these three terms cannot be 0 at the same time. It follows
that 1− Pr (Y1 ≤ d1, Y2 ≤ d2) is strictly greater than αS

Y . ⊓/
Proof of Theorem 2 Under HX ∩HY , the standardized treatment effects at the final
stage for the secondary endpoint is zero, namely, $Y = 0. For simplicity, we denote
the non-centrality parameters for the primary endpoint by $ = $X under H 1 ∩H2.
The type I error rate with smaller information fraction at stage 1 of the secondary
hypothesis is

αS
Y

′ = Pr
(
X1 > c1, Y

′
1 > d1

)
+ Pr

(
X1 ≤ c1, X2 > c2, Y

′
2 > d2

)

= Pr
(
X1 − λ$ > c1 − λ$, Y ′1 > d1

)

+ Pr
(
X1 − λ$ ≤ c1 − λ$, X2 −$ > c2 −$, Y ′2 > d2

)
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For the first term, note that corr (X1, Y1) = γ1ρ/λ. Since γ ′1 < γ ′′1 and ρ ≥ 0, we
have corr

(
X1, Y

′
1

)
≤ corr

(
X1, Y

′′
1

)
. By Slepian’s inequality (Plackett 1954; Slepian

1962) and d ′1 > d ′′1 , it follows that

Pr
(
X1 − λ$ > c1 − λ$, Y ′1 > d ′1

)
≤ Pr

(
X1 − λ$ > c1 − λ$, Y ′′1 > d ′′1

)
.

For the second term, note that corr (X1, X2) = λ, corr (X2, Y2) = γ2ρ,
corr (X1, Y2) = ρ ·min{λ, γ2}/max{λ, γ2}, which are the same for the two designs.
Since d ′2 ≥ d ′′2 , we get

Pr
(
X1 − λ$ ≤ c1 − λ$, X2 −$ > c2 −$, Y2 > d ′2

)

≤ Pr
(
X1 − λ$ ≤ c1 − λ$, X2 −$ > c2 −$, Y2 > d ′′2

)
.

Thus αS
Y

′ ≤ αS
Y

′′
, for any 0 ≤ ρ ≤ 1. ⊓/

Proof of Lemma 1 Suppose that
(
Y ′1, Y

′
2

)
and

(
Y ′′1 , Y

′′
2

)
are the bivariate normal

distributed test statistics under the null hypothesis. The correlation between Y ′1 and
Y ′2 is

√
t ′, and the correlation between Y ′′1 and Y ′′2 is

√
t ′′. Since two trials have the

same significance level α, we have

Pr
(
Y ′1 ≤ d ′, Y ′2 ≤ d ′

)
= 1− α = Pr

(
Y ′′1 ≤ d ′′, Y ′′2 ≤ d ′′

)
.

Since
√
t ′ <

√
t ′′, by Slepian’s inequality, we get

Pr
(
Y ′1 ≤ d ′, Y ′2 ≤ d ′

)
< Pr

(
Y ′′1 ≤ d ′, Y ′′2 ≤ d ′

)
.

It follows that

Pr
(
Y ′′1 ≤ d ′, Y ′′2 ≤ d ′

)
> Pr

(
Y ′′1 ≤ d ′′, Y ′′2 ≤ d ′′

)
.

Clearly, we have

d ′ > d ′′.

⊓/
Proof of Theorem 3 For a design using the partially hierarchical rule PP , the error
rate
Pr (RX ∪ RY |HX ∩HY ) is greater than Pr (RX|HX). The difference is bounded by

Pr (RX ∪ RY |HX ∩HY )− Pr (RX|HX)

= Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2)
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+
K−1∑

i=2

Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , Yi ≤ di, Yi+1 > di+1)

= Pr (X1 ≤ c1, X2 ≤ c2)− Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , YK ≤ dK)

≤ Pr (X1 ≤ c1, X2 ≤ c2)− Pr (X1 ≤ c1, X2 ≤ c2)Pr
(
∩K
i=2 {Yi ≤ di}

)
,

where Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , YK ≤ dK) ≥ Pr (X1 ≤ c1, X2 ≤ c2)

Pr
(
∩K
i=2 {Yi ≤ di}

)
holds for any non-negative ρ, and two sides are equal when

ρ = 0. It follows that

Pr (RX ∪ RY |HX ∩HY )− αX ≤ (1− αX)
(
1− Pr

(
∩K
i=2 {Yi ≤ di}

))
.

Also note that if

(1− αX)
(
1− Pr

(
∩K
i=2 {Yi ≤ di}

))
≤ α − αX

the error rate control under intersection hypothesis, which is Pr (RX ∪ RY |
HX ∩HY ) ≤ α, is guaranteed. Thus, if

Pr
(
∩K
i=2 {Yi ≤ di}

)
≥ 1− α

1− αX
,

then Pr (RX ∪ RY |HX ∩HY ) ≤ α for any ρ ≥ 0. ⊓/
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