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ABSTRACT In clinical bacteriology laboratories, reading and processing of sterile plates 
remain a significant part of the routine workload (30%–40% of the plates). Here, an 
algorithm was developed for bacterial growth detection starting with any type of 
specimens and using the most common media in bacteriology. The growth prediction 
performance of the algorithm for automatic processing of sterile plates was evaluated 
not only at 18–24 h and 48 h but also at earlier timepoints toward the development 
of an early growth monitoring system. A total of 3,844 plates inoculated with representa
tive clinical specimens were used. The plates were imaged 15 times, and two different 
microbiologists read the images randomly and independently, creating 99,944 human 
ground truths. The algorithm was able, at 48 h, to discriminate growth from no growth 
with a sensitivity of 99.80% (five false-negative [FN] plates out of 3,844) and a specificity 
of 91.97%. At 24 h, sensitivity and specificity reached 99.08% and 93.37%, respectively. 
Interestingly, during human truth reading, growth was reported as early as 4 h, while 
at 6 h, half of the positive plates were already showing some growth. In this context, 
automated early growth monitoring in case of normally sterile samples is envisioned to 
provide added value to the microbiologists, enabling them to prioritize reading and to 
communicate early detection of bacterial growth to the clinicians.
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C linical bacteriology laboratories have experienced a revolution with the introduction 
of fully automated systems (1–6). Inoculation, plate transport, and image digitaliza

tion were among the first innovations with the reading now performed on digital images 
where microbiologists select microbial colonies for subsequent follow-up actions (7, 8). 
Development of intelligent algorithms for plates reading linked to expert systems will 
further provide a fully automated approach to the bacteriology workflow. Although 
presumptive identification of microbial colonies on complex specimens remains a future 
but ongoing prospect (9), other simpler tasks were and would be automatized. Currently, 
the imaging applications available are mostly restricted to urine specimens as either 
stand-alone instrument or coupled to automated systems, such as the BD Kiestra TLA 
from Becton, Dickinson and Company (BD) and the WASPLab from Copan (10–16). These 
automated systems were developed on urine cultures only and to allow a semi-quantifi-
cation and the identification of sterile plates on a set of dedicated media. In addition, 
some algorithms were developed toward specific screens as, for example, to selectively 
detect group B Streptococcus (17, 18), vancomycin-resistant Enterococcus (VRE) (19, 20), 
methicillin-resistant Staphylococcus aureus (MRSA) (21, 22), or Streptococcus pyogenes 
pharyngitis (23).

Depending on the laboratory setting, sterile plates could account for a significant 
amount of the workload. Therefore, imaging applications dedicated to the identification 
of growth and the release of sterile plates on any type of specimens and media have the 
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potential to greatly improve laboratory productivity. The growth detection performance 
of the algorithm was therefore investigated on different specimens and on five different 
media. The developed artificial intelligence (AI) was not only investigated at the usual 
reading timepoints in microbiology (18–24 h and/or 48 h) but every 2 h starting from the 
inoculation step. This study evaluated the algorithm performance with the intent of (i) 
releasing sterile plates at pre-determined timepoints and (ii) monitoring early growth on 
specific specimen types.

MATERIALS AND METHODS

Laboratory automation environment

All samples were processed on the BD Kiestra Total Lab Automation (TLA) System (BD 
Kiestra, Drachten, the Netherlands) with the following modules: BD Kiestra SorterA, BD 
Kiestra BarcodA, BD Kiestra InoqulA+, BD Kiestra ProceedA conveyor, BD Kiestra ReadA 
Compact incubators, and seven BD Kiestra ErgonomicA working stations.

Specimen selection

A representative selection of clinical specimens (Table 1) from outpatients and hospital
ized patients at the University Hospital of Lausanne (CHUV, Switzerland) was used over a 
1-yr period (December 2019 to February 2021). Quotas of specimen types were defined 
at the beginning of the study without exclusion criteria. All specimens were irreversibly 
anonymized before entering the study. All subcultures originated from anonymized 
clinical specimens. For blood cultures, subcultures were performed directly from patient’s 
positive bottles and immediately anonymized. As per this study design, no ethical 
request was required.

Plated media

BD CHROMagar Orientation (ORI), Columbia Agar with 5% Sheep Blood Plate (COL), BD 
Chocolate II Agar (CHOC), BD MacConkey Agar (MAC), and BD Columbia CNA Agar (CNA) 
media were used. The BD BBL Chocolate II Agar with Bacitracin (CHOC-B, abbreviated in 
the paper as CHOC) was used instead of the BD BBL Chocolate II Agar for all respiratory 
specimens.

Inoculation and incubation

Samples were inoculated with the BD Kiestra InoqulA+. Urine specimens were streaked 
using the 04 Zigzag 2.5-1 INOC5TREAK 5200 pattern, while all other specimens were 
streaked with the 20 Multizone 3 repeats. After automated inoculation, plates were 
immediately incubated at 37°C in normal or in 5% CO2 atmosphere incubators (BD 
Kiestra ReadA Compact).

TABLE 1 Description of the specimens and plates used for validationa

Specimen/plate CHOC ORI CNA COL MAC Sum

Blood culture 86 84 80 85 86 421
Respiratory 168 169 165 167 171 840
Tissue and pus 190 197 188 189 193 957
Superficial wound 32 28 31 31 28 150
ENT 21 17 20 19 19 96
Urine 193 191 196 195 195 970
Urogenital 82 80 84 83 81 410
Sum 772 766 764 769 773 3,844
aNo growth was found by the human on 36% of the plates investigated. ENT: ear, nose, and throat.
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Imaging acquisition

The image acquisition was performed with the BD Kiestra ReadA Compact using the 
OPTIS software (BD Kiestra, Drachten, the Netherlands). Images were captured at the 
following timepoints: 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 36, and 48 h.

Plate review

The images were reviewed using Kiestra CIS, a BD-developed software for petri dishes 
images annotation. Each timepoint was reviewed by two reviewers out of a pool of 
25 microbiologists. In case of discrepancies (3.2%), a third reviewer was involved for 
arbitration. The images were randomly and independently presented to the reviewers, 
but the reviewers could access all timepoints. Possible answers were growth or no 
growth.

Image analysis and software development

The growth monitoring AI algorithm (not available for clinical use) is an extension of 
BD Kiestra Urine Culture Application (UCA) and has been trained using seeded and 
urine samples, and 3, 12, and 24 h incubation images on BD BBL Columbia CNA Agar, 
BD BBL Columbia and Tryptic Soy Agar II, BD BBL CHROMagar Orientation, BD BBL 
MacConkey II Agar, BD BBL CLED Agar, and BD CHOC plates acquired prior to the study. 
Data acquired during this study have been solely used for AI performance investigation. 
For the algorithmic analysis, t = 1 h and t = 2 h were chosen as a reference for plate 
background calculation. Time series containing images failing AI image adequacy check 
were discarded (e.g., bead on the plate, insufficient image quality). The algorithm detects 
colony forming unit (CFU) candidates or artefacts in the image by looking for image 
areas that change over the incubation course.

Plate analysis

Four thousand one hundred fifty-one plates were analyzed by the growth/no growth 
monitoring AI. Forty-nine plates with incomplete time series, 214 plates with more 
than 2-h delay from the expected time of image acquisition (this exclusion criterion 
was not used for the plates imaged at 36 and 48 h), and 41 plates with incoherent 
(multiple discordances between microbiologists) and three incomplete truths (review 
was missing) were removed. Three thousand eight hundred forty-four plates were kept 
for final analysis. Thirty-eight plates with a non-monotonic human truth behavior (i.e., a 
growth followed by a no growth statement) were manually curated by the consensus of 
two additional reviewers to obtain a monotonic truth.

Statistical analyses

Data analyses were performed with R 4.0.2 using the following packages: epiR (2.0.57) for 
sensitivity, specificity, and negative and positive predictive value; ggplot2 (3.3.3), caret 
(6.0-92), and heatmap (1.0.12) for the plots, confusion, and time matrices, respectively. 
The function wilcox.test from the library stats (3.6.2) was used for Wilcoxon signed-rank 
tests.

RESULTS

Performance of the AI algorithm

The growth or no growth monitoring AI algorithm was developed for (i) bacterial growth 
detection in the perspective of an automatic processing of sterile plates (i.e., identifica-
tion and discharge by the automated systems BD Kiestra TLA of the culture if negative) 
and for (ii) early growth detection. Performances of the algorithm were evaluated on 
3,844 plates (five media) inoculated with representative clinical specimens (Table 1; 
Fig. 1A). Plates were imaged 15 times (49,972 timepoints) and read by two different 
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microbiologists, creating 99,944 human truths used as gold standard for algorithm 
prediction (growth or no growth).

FIG 1 (A) Number of plates with no growth or growth (human truth at 48 h) among all specimens used in the study. (B and C) Overall, sensitivity increased over 

time while specificity remained constant. Error bars represent 95% CI. (D) Confusion matrix, compared at all timepoints, and the prediction of growth of the AI (x 

axis) against the human (y axis). The number of FP and FN prediction is respectively shown in orange and red plots. At 48 h, 2,451 plates showed a concordant 

growth prediction, while 5 were not predicted by the AI and 111 were FP calls. A reading at 20 h by the AI shows 2,334 perfect matches between the human and 

the AI, with 27 FN and 93 FP calls. Out of the 27 FN, 5 are later predicted at 22 h, 7 at 24 h, 5 at 36 h, and 1 at 48 h (red dashed lines). Conversely, out of the 93 

FP calls, 13 were stated as growth by the human at 22 h, 5 at 24 h, 8 at 36 h, and 2 at 48 h (orange dashed lines). A detailed explanation on how the matrix is 

generated is provided in Figure S1E through J.
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Without additional data curation, a sensitivity of 97.44% (97.25%–97.63%), a 
specificity of 92.89% (92.56%–93.21%), and an accuracy of 94.5% (confidence interval 
[CI] 94.2%–94.8%) was observed when the overall performance with all timepoints 
was compared. As expected, sensitivity increased over time, reaching 99.59% (95% CI: 
99.25%–99.81%) at 48 h (Fig. 1B; Table S1), while specificity remained relatively constant 
(91.97%, 95% CI: 90.41%–93.35% at 48 h) (Fig. 1C; Table S1). No significant difference 
was observed between the different agar plates except for the CHOC, which showed a 
lower specificity (Fig. S1A and B; Table S2). Similarly, specimen types showed comparable 
performances except for the urogenital specimens in which a lower specificity was 
observed (Fig. S1C and D; Table S3).

To further dissect the algorithmic predictions, a confusion matrix, in which every 
human truth was compared to its corresponding AI prediction, was generated (Fig. 1D; 
Fig. S1E through J). The diagonal represents perfect matches between the AI prediction 
and the human, while everything above or below represents respectively false-positive 
(FP) or false-negative (FN) AI predictions. At a given timepoint, an image could be 
predicted as an FN (below the diagonal) while being a true positive (TP) the next 
timepoint with therefore only a late algorithmic prediction. Conversely, the same holds 
true for an early FP prediction (above the diagonal). The FN (orange) and FP (red) plots 
represent the sum of all incorrect predictions of the AI at each timepoint.

The confusion matrix showed discrepancies at early timepoints corresponding to 
inconsistencies between the algorithm and the humans when the biomass is low and 
more difficult to discriminate. Accordingly, most of the FP calls were generated at an 
early timepoint (Fig. 1D, orange plot) and then remained constant with 111 FN plates 
generated at 48 h, while 2,451 plates were correctly predicted as growth. Importantly, 
the FN predictions decreased through time with only 10 FN plates at 48 h (Fig. 1D, red 
plot).

False-negative predictions

Re-examination of the 10 FN plates (Fig. S2) by two microbiologists showed that five 
were actual FN (Table S4). Indeed, the truth detected in the other plates was artefacts 
already present at the initial timepoints and misidentified by the human during the initial 
review. Therefore, the corrected sensitivity at 48 h reached 99.80% (99.53%–99.99%). 
Out of the 5 remaining FN plates, 3 contained one single colony, 1 two colonies, 
and 1 showed a faint monolayer of possible Lactobacillus species with poor contrast 
on the CHOC plate (Fig. 2A). Although clinically irrelevant here (urogenital specimen), 
Lactobacillus are known to be implicated, for example, in liver abscess. For the tissue 
and pus specimen in which any type of growth would be significant, a single small 
alpha-hemolytic colony next to a plate artefact was missed by the AI.

In routine clinical microbiology, plates are commonly examined twice, once at 18–24 
h and again at 36–48 h. However, depending on the clinical specimen, only one reading 
at 18–24 h could be performed. At the CHUV/Lausanne laboratory, urine specimens were 
inoculated on ORI only and imaged once at 18–24 h. Similarly, MAC plates, which support 
the growth of fast-growing Gram-negative bacilli, are also read only once at 18–24 h. 
For ORI plates, only eight FN or three FN results were predicted out of 836 plates at 18 
or 24 h, respectively (Fig. S3 and S4). For the MAC plates, only one FN was predicted at 
18 h and none at 24 h out of 834 plates (Fig. S5). Bacterial colonies were not identified as 
image acquisitions and human readings were distant from several months.

False-positive predictions

Interestingly, among the 1,681 FP calls out of the 49,972 timepoints, 405 (23.5%) and 87 
(4.9%) showed a difference of −2 and −4 h, respectively, between the prediction and the 
first human truth (Fig. S6A and B). This means that approximately one-third of the FP 
generated by the AI are likely early predictions that are later identified by the human. 
Re-examination of the 138 urogenital FP plates, which presented the highest rate of FP 
AI predictions, showed an over-representation of small bacterial growth that generated 
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discrepancies between the AI and the human truth. Most of the cases (63.2%) could be 
re-categorized by an additional human review as early detection of actual growth by the 
AI (Fig. S6C). For the CHOC media, re-examination of the 288 plates with FP predictions 
showed that, again, 48.3% of the FP corresponded to an early detection of growth by the 
algorithm while the remaining plates showed significant discrepancies with the human 
truth. Interestingly here, the FP plates presented significantly more small defects within 
the agar, suggesting that low-quality manufactured plates would negatively impact the 
prediction (Fig. S6D).

The AI is trained to classify candidates as CFU and to report a plate growth confidence 
from the identified CFUs with a threshold set at 0.5 (<0.5 no growth, ≥0.5 growth) 
(Fig. 2B). Although most of the TP prediction showed a probability GROWTH of 1, the 
FP showed a more dispersed distribution and the CHOC plates accumulated with a 
low probability growth (Fig. 2C and D). Here, adjusting the algorithm using specific 
probability thresholds would be possible and especially useful at early timepoints to 
minimize the FP calls.

Non-monotonic predictions

As growth is predicted independently at every timepoint, non-monotonic (a growth 
followed by a no growth statement) behavior of the predictions is possible especially 
for difficult-to-read plates when growth confidence fluctuates around the positivity 
threshold. Out of the 3,844 plates, 312 showed a non-monotonic behavior (Fig. S7). 

FIG 2 (A) Images showing the five FN plates at 48 h. Colonies misidentified by the AI are shown with white arrows. (B) Typical probability plot of TP and TN 

predictions by the AI. A probability higher than 0.5 is considered as growth. (C) Histogram showing the distribution of growth predictions by the AI (>0.5) for 

both the FP (n = 1,681) and TP (n = 25,655) calls. (D) Zoom on the FP predictions only where the CHOC plates accumulate with a low prediction of growth.
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Importantly, most of them showed one non-monotonic event (69.8%, Table S5) and only 
one showed five. This corresponds to either a non-monotonic event at early timepoints 
corresponding to the detection of a low biomass close to the positivity threshold (96 
plates out of 312) (Fig. 3A) or FP calls linked to plate artefacts (216 plates out of 312) (Fig. 
3B). Here, the probability remains either slightly below or slightly above the positivity 
threshold of 0.5. As non-monotonic behavior will occur, an optional sanity check will 
be included in the final version of the product to prevent the algorithm from releasing 
a predicted sterile plate if a growth is detected at an earlier timepoint. However, out 
of the 96 plates with non-monotonic event(s) and a final human truth growth, only 
two plates showed puzzling behaviors (Fig. 3C, a and b; Table S6), while the remaining 
ones showed profiles equivalent to the example provided in Figure 3A, with a confident 
prediction of growth at 48 h (probability close to 1). Therefore, non-monotonic behaviors 
are not predicted to negatively impact the performance of the system as they will mostly 
represent FP calls.

FIG 3 (A and B) Typical profiles for a TP non-monotonic prediction and a FP prediction, respectively. (C) Probability matrix of the 96 non-monotonic predictions 

with a human truth growth. Most of the plates showed a typical TP non-monotonic prediction profile with a probability close to 1 at 48 h. Two plates, a and 

b, showed unexpected behaviors. (D and E) Probability plot of the prediction and images of the plate 3D-a showing a decrease of the probability despite the 

progressive appearance of three well-marked colonies. (F and G) Unexpected drop of the AI growth prediction at 24 h for the plate 3D-b. The swarming waves are 

not detected by the AI in the absence of a CFU.
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Unexpected predictions

As mentioned above, two plates showed unexpected non-monotonic behaviors. For the 
plate 3C-a, the probability plot showed that growth was consistently predicted from 14 
to 24 h but rather unexpectedly, the probability decreased at 36 and 48 h despite the 
progressive appearance of three well-defined alpha hemolytic colonies (Fig. 3D and E). 
This plate was not included in the FN at 48 h due to correct multiple predictions at earlier 
timepoints. Of relevance here, the AI has been trained using incubation durations up to 
24 h and illustrates that stretching the usage of an AI on significantly different context 
may lead to surprising results. The second surprising behavior involves a CHOC plate 
where a no growth was flanked by multiple growth predictions (Fig. 3F and G). This plate 
presented a swarming pattern that negatively impacted the detection of tiny objects on 
the plate. Indeed, the algorithm is trained to detect well-defined CFU and not diffuse 
growth pattern such as swarming. However, here, the swarming of the putative Proteus 
spp. without a CFU is rare, and additional plates restricting the swarming are typically 
present within a specimen.

Early growth monitoring

Early growth monitoring could be used to (i) prioritize the processing of samples by 
the microbiologists or to (ii) provide early warning to the clinicians that some bacterial 
growth is detected. This could be applied to the early detection of Gram-positive cocci 
in a joint puncture or any bacterial growth in a CSF, for example. Human monitoring 
of bacterial growth showed that the number of plates with growth reached a plateau 
several hours before the usual 18–24 h timepoint used in standard microbiology practice 
(Fig. 4A). Both human and AI could detect growth at early timepoints (Fig. 4B through 
D). Among the plates with bacterial growth, more than 70% were already detected at 
8 h (Fig. 4B; Table S7). By focusing only on the tissue and pus specimens, growth was 
detected as early as 6 h in 43% of the positive samples (Fig. 4C), while for positive blood 
cultures, 63% of the growth was detected as early as 4 h (Fig. 4D).

DISCUSSION

We evaluated an AI algorithm capable of detecting bacterial growth for the identifica-
tion and release of sterile plates processed by the automated systems BD Kiestra TLA. 
As this can be performed outside regular laboratory opening hours, it is expected to 
significantly reduce the turnaround time (TAT). Similarly, but not yet evaluated, Copan 
recently released the PhenoMATRIX PLUS, designed to automatically segregate positive 
plates and discard negative ones (24). Previous implementation of imaging applications 
within the WASPlab or the BD Kiestra TLA systems on either urine specimens or specific 
screening of bacteria (MRSA, VRE, etc.) already showed a reduction in the TAT and 
improved laboratory efficiency (15, 25–27).

Here and when available, the AI will report growth or no growth classification along 
with the growth probability based on 0.5 growth probability threshold. The system 
will automatically send results to the Laboratory Information System (LIS) either for a 
specific plate at a specific timepoint or for the specimen when all plates are found sterile 
at the end of the incubation process. The user will be able to set custom probability 
thresholds for growth or no growth classification depending on the specimen type or 
reading timepoint. Lower than 0.5 probability threshold can be used to increase growth 
detection sensitivity at the expense of decreasing specificity and vice versa. For example, 
samples subjected to an early growth monitoring with multiple images at low biomass 
timepoints might be affected by non-monotonic predictions. Increasing the probability 
threshold could mitigate the problem but at the expense of sensitivity.

Overall, we observed an excellent performance of the AI with a sensitivity of 99.80% 
(95% CI: 99.53%–99.99%) with five FN plates generated out of 3,844. FP calls (1,681) 
were generated by the AI out of 49,972 timepoints, but a significant fraction (30%) 
could rather be attributed to early growth predictions of the AI. Although we have 
not manually re-evaluated all the FP calls, the reported specificity of 92.89% is likely 
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FIG 4 (A) Dynamic of growth (human truth) over time according to media type. growth is stably 

observed several hours before the usual reading timepoints of 18–24 h. (B–D) The AI efficiently detected 

growth at early timepoints. Graphs represent the first growth detection by either the human or the AI in 

(B) all plates, (C) tissue and pus specimens, and (D) blood culture specimens.
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an underestimate as illustrated by the additional review of the urogenital specimens. 
Overall, no differences were observed between the different agar plates except for the 
CHOC, which, despite the revision of some truths, showed a lower specificity. This is 
probably due to the smaller CHOC training data set in the original UCA. The current 
version of the AI appears to have some difficulties detecting faint monolayers or non-
classical CFU pattern as these were likely not abundant on the training set composed of 
urine specimen. In one situation, we observed a decrease of the growth prediction after 
24 h despite the presence of growing colonies. The AI was trained using incubation 
durations up to 24 h and this illustrates that stretching the usage of a trained AI on 
significantly different context (such as hemolysis pattern and/or media color/opacity 
change over incubation duration) may lead to unexpected results. This can, however, be 
improved using dedicated training sets for each identified situation. This also highlights 
that robust and comprehensive validation of AI is required (28, 29). As the evaluation of 
the AI is dependent on the quality and exhaustivity of the validation set, we cannot claim 
here to have comprehensively assessed all situations, and therefore a close supervision of 
the AI post-implementation is recommended.

In addition, the ability of the AI toward an automated early growth monitoring was 
investigated. Here, the system could provide not only alert messages to the clinician 
when growth is detected, but more importantly could allow the microbiologists to 
prioritize the processing of such samples (25, 30, 31). In addition, bacterial growth 
from subcultures could also be monitored with such method as illustrated in the blood 
cultures. However, the present algorithm only detects growth but does not assess if 
the biomass present would be sufficient to start an antimicrobial susceptibility testing 
(AST) or perform an identification by matrix-assisted desorption definition time of flight 
(MALDI-ToF). On the other hand, early growth monitoring might not be relevant to 
all specimen types, as monitoring of respiratory specimens, for example, might be of 
limited use. Here, incubation must be long enough to identify, mingled within the flora, 
potential slow-growing pathogens.

In conclusion, an automated method for (i) identification and release of sterile plate 
at any pre-defined timepoints and for (ii) an early monitoring of bacterial growth was 
evaluated. Release of sterile plates has obvious advantages and is clearly anticipated to 
have an important impact on the TAT; however, the value of an early growth monitor
ing remains to be investigated. Currently, the bacteriology workflow is a day-to-day 
sequential process with long overnight incubations. Automation has already reduced 
the culture reading time, but it could open the possibility to move from this sequential 
process to a more continuous process in which plates are analyzed as soon as growth is 
detected.
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