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Target audience: Researchers interested in dynamic aspects of brain resting state activity and structure-function relationship. 
Purpose: Magnetic resonance imaging allows inferring overall brain structural (SC) and functional (FC) networks. These connectivity measures are plausibly inter-
related1. A growing body of recent literature suggests that a static description of functional connectivity (e.g. with simple correlation measures) might by over 
simplistic, and reproducible dynamic brain states have been shown with sliding window or single-volume co-activation approaches2. It is nonetheless unclear which 
dynamic FC formalism is more appropriate and how the anatomical substrate might be considered. In the present methodology, we aim at going further in the mapping 
of spatio-temporal resting state functional sub-networks through considering nodes that are simultaneously close in space (the space of the anatomical connectivity 
substrate (SC)) and time (temporally co-active). Our detection of functional units relies on the representation of the structural and functional data as a spatio-temporal 
graph. First, (i) we describe the construction of such spatio-temporal graph and functional sub-networks extraction. We then (ii) identify representative spatio-temporal 
patterns by k-means clustering detected functional sub-networks in a suitable feature space, and (iii) compare representative patterns with intrinsic connectivity 
networks (ICNs) extracted from a task-based functional database3. Importantly, we (iv) investigate the impact of the anatomical information on the resulting dynamic 
functional sub-network by comparing the anatomically informed spatio-temporal graph with a simpler functional co-activation mapping.   
Methods: s=75 healthy subjects (46M/29F, 29+/-9yo) underwent an MRI session composed by MPRAGE, diffusion spectrum imaging (DSI) and resting state 
functional MRI (rs-fMRI; TA 9min, TR 1920ms) sequences. MPRAGE volumes were segmented into n=488 cortical regions (nodes)4. Subject-wise binary structural 
connectivity matrices were generated combining cortical segmentation, DSI reconstruction and streamline tractography. A group-wise representative structural 
connectivity graph S was estimated by considering anatomical edges present in at least 50% of the subjects. Thorough rs-fMRI pre-processing included motion 
correction, regression of motion signals and average WM and CSF signals, linear detrending, spatial TV-denoising, temporal filtering (0.01-0.1 Hz), z-transformation. 
Average node-wise rs-fMRI time series were temporally concatenated across subjects (for a total of t=20'700 time points) and reduced to binary point processes by 
signal thresholding (τ=2std; different τ were tested)5. (i) For dynamic spatio-temporal networks mapping and multi-modal integration, we propose to build a spatio-
temporal graph G. The graph is composed of t temporal layers, each one composed of n nodes representing the brain functional configuration at each time point. We 
define two nodes to be connected in G if (1)both nodes are active (i.e. bear a supra-threshold point process value) at the same or one-step following time steps (i.e. are 
causal neighbors), and (2)are anatomically connected according to S (fig.a). Each connected component CC of the spatio-temporal graph defines a spatio-temporal sub-
network of dynamic functional activity. (ii) Representative patterns of spatio-temporal activity were investigated by clustering the detected CCs in a suitable feature 
space. Each CC was reduced to a feature vector v of length n, where each element of v represents the normalized number of occurrences of the corresponding brain 
nodes in the CC. The feature vectors were classified into k=12 clusters using the k-means algorithm (different k were tested). (iii) The centroids ('median sub-networks') 
of the 12 clusters depict representative patterns of spatio-temporal activation, and were spatially compared with ICNs extracted from the BrainMap task-based 
neuroimaging database3. (iv) In order to investigate the role of the SC graph on the spatio-temporal networks structure, we compared G with a simpler co-activation 
mapping graph M. As G, M is composed of t layers, each one composed of n nodes. The nodes are connected if they are active at the same or one-step following time 
points (no anatomical information is taken into account). Reproducibility of edges eGM in M common to G (i.e. with anatomical substrate), and of edges eM in M with no 
anatomical substrate were evaluated by counting their relative number of occurrence across subjects (histograms in fig.c). 

Results: The spatio-temporal graph G generated from the 75 subjects 
rs-fMRI recordings and group structural graph S included 2768 
connected components, i.e. 37 CCs per subject on average, with mean 
duration 11 s, and 29 active brain regions on average. Figure b shows 
a sub-set of 4 out of 12 cluster centroids from CCs k-means. The 
colormap represents the normalized temporal persistence of 
individual nodes within individual CCs. Each one of the 12 centroids 
could be associated with a known functional circuit as fronto-medial, 
sensorimotor, fronto-parietal, visual, auditory or temporal areas, and 
spatially overlapped a restricted subset of the 20 ICNs of the 
BrainMap database3 (average best overlap between CC and single 
ICN 70%+/-9%)(fig.b: fronto-medial, ventral visual stream, dorsal 
visual stream and sensorimotor). The 12 clusters were represented in 
each one of the 75 subjects, suggesting CCs reproducibility across 
subjects. We then considered the role of the structural connectivity 
graph S within our framework. By construction, the edges eGM in G 
are a subset of the edges eM in M; CCs of G  (violet in fig.c) are a 
sub-set of the CCs in M (light blue in fig.c), and each CC in M 
contains one or more CCs identified in G (schematic representation in 
fig.c). eGM were consistently reproducible across subjects (mean 
144+/-102), compared to poorly reproducible eM (mean 8+/-7) (fig.c).  

Discussion: In this work we isolated in time and space reproducible spatio-temporal sub-networks of resting state activity. Differently from other approaches2, our 
method does not require any windowing of the signals. The 12 centroids of CCs clusters are anatomically well delineated and consistently overlap known functional 
circuits. The edges eGM  of the spatio-temporal graph are reproducible across subjects and draw links between nodes that are topologically close structurally and 
temporally. The integration of the structural information is fundamental to separate functional co-activation sub-network which are not anatomically linked and can 
potentially represent different functional phenomena. Moreover, the integration of SC allows the denoising of patterns detection by excluding the poorly reproducible 
edges eM (fig.c).  
Conclusion: The spatio-temporal graph layout, connected components detection and clustering constitute a mathematically sound and flexible methodology for the 
extraction of spatio-temporal networks of dynamic functional activity. This original framework can be exploited to investigate functional patterns dynamics (CCs 
recurrence), patterns of signals propagation along the cortex (within-cluster dynamics), nodal dynamics, and structure-function interplay. The investigation of these 
dimensions  is potentially useful for the uncovering of dynamic functional connectivity mechanisms, in health and diseases.  
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