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Astrocytes, the main glial population in
the CNS, have long been considered a type
of support cells that ensure an adequate
environment for the proper operation of
neurons. In recent years, novel experi-
mental approaches revealed that these
cells play an active role in the regulation of
neurophysiological functions (Hamilton
and Attwell, 2010). For example, astro-
cytes help to fine-tune blood and energy
supplies to the brain as neuronal activity
fluctuates and engage in bidirectional in-
teractions with neurons (Pellerin and
Magistretti, 2011).

Communication between astrocytes
and other cell types is mediated by activa-
tion of membrane receptors by a wide ar-
ray of signals. The subsequent induction
of Ca 2� transients induces release of in-
tercellular mediators. Some of those, such
as ATP, glutamate, and D-serine, act on
neurons to modulate excitability and sup-
port some forms of synaptic plasticity
(Hamilton and Attwell, 2010).

Astrocytes contact plasma via astro-
cytic endfeet that surround brain capillar-
ies, as well as in a set of specialized brain
structures devoid of blood– brain barrier,
thesensorycircumventricularorgans(CVOs).
This suggests that astrocytes could relay

information about the internal milieu to
neuronal networks. Indeed, recent data
have confirmed that astrocytes monitor
blood-born signals, such as electrolytes,
metabolites, hormones, and cytokines,
that reflect the homeostatic status of the
body, and that they communicate changes
in these parameters to neuronal centers
that regulate vital body functions (Marty
et al., 2005; Shimizu et al., 2007; Gourine
et al., 2010).

The nucleus of tractus solitarius (NTS)
is an important viscerosensory center in
the dorsal brainstem. It collects informa-
tion about the internal environment via
vagal afferents and from the area postrema
(AP), a CVO juxtaposed to the fourth ven-
tricle. The NTS regulates body homeostasis
by producing autonomic reflexes and mod-
ulating behavior. Interestingly, NTS has a
distinctive astrocytic organization. It has a
high density of classical GFAP-positive as-
trocytes as well as a more specialized popu-
lation of glial cells that acts as a diffusion
barrier at the AP/NTS border (Dallaporta et
al., 2010). The reasons for this high astro-
cytic density in NTS are unknown. How-
ever, NTS astrocytes respond to peripheral
chemical signals such as TNF� and throm-
bine (Hermann and Rogers, 2009; Her-
mann et al., 2009), and they participate in
homeostatic responses such as thrombin-
induced gastric stasis and �2-adrenergic
receptor-dependent cardiovascular re-
sponses (Bhuiyan et al., 2009; Hermann et
al., 2009). A recent paper published by Mc-
Dougal et al. (2011) in The Journal of Neu-
roscience showed that NTS astrocytes can be

activated directly by vagal afferents through
an atypical mechanism, suggesting that
these cells could participate in the modula-
tion of NTS integrative function in physio-
logical conditions.

McDougal et al. (2011) used Ca 2� im-
aging to probe astrocyte activation by af-
ferent stimulation of the tractus solitarius
(TS) in horizontal slices of rat NTS. Astro-
cytes were identified as cells retaining red
fluorescent marker sulforhodamine 101
(SR101). Astrocytes responded to TS stimu-
lation with large Ca2� transients that were
blocked by tetrodotoxin, indicating that
they resulted from fiber activation. This
does not rule out the participation of
second-order neurons, however.

Astrocytic response to TS stimulation
was mediated by glutamate, as expected
from the activation of vagal afferents to
NTS, and depended on AMPA receptors
(AMPARs), but not NMDA or group I
metabotropic glutamate receptors. The
presence of functional AMPARs on NTS
astrocytes was confirmed by detection of
AMPAR subunit GluR1 expression on
GFAP-labeled astrocytic processes. Interest-
ingly, the diffuse pattern of GluR1 staining
suggests that a substantial part of these re-
ceptors are located on distal processes where
astrocytes contact synapses rather than on
proximal GFAP� branches. Demonstra-
tion of a colocalization with markers present
on distal processes such as glial glutamate
transporters GLT-1 or GLAST would clarify
this point.

AMPA-mediated Ca 2� transients de-
pended both on extracellular Ca 2� and on
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internal stores, as shown by the effects of
Ca 2�-free medium and thapsigargin, re-
spectively. A decrease in Ca 2� response
produced by philanthotoxin (PhTx) indi-
cated that Ca 2� influx was partly medi-
ated by Ca 2�-permeable AMPARs. The
partial effect of PhTx suggests that other
modes of Ca 2� entry coexist. This might
include activation of the Na�/Ca2� ex-
changer in the reverse mode following Na�

influx through AMPARs (Verkhratsky et al.,
2011). Activation of voltage-gated Ca2�

channels by cell depolarization or of puri-
nergic P2X autoreceptors by ATP released
from stimulated astrocytes could also con-
tribute to the Ca2� rise. The release of Ca2�

from internal stores by Ca2�-gated ryano-
dine receptors shown in this paper would
serve as an amplification step to the AMPA-
dependent Ca2� influx.

Astrocytes are a heterogeneous popu-
lation (Matyash and Kettenmann, 2010).
Those recorded by McDougal et al. (2011)
displayed staining by GFAP, S100B, and
SR101, which are typical markers of clas-
sical astrocytes. In cortical regions, classi-
cal astrocytes have also been defined by a
linear current–voltage relationship, gap-
junctional coupling, the presence of glu-
tamate transporter currents, and the lack
of AMPARs, whereas complex astrocytes
have opposite characteristics (Matyash
and Kettenmann, 2010). Brainstem astro-
cytes seem to follow the same classifica-
tion scheme except that AMPARs are
expressed by all subpopulations (Grass et
al., 2004). It would be of great interest to
have a more detailed characterization of
TS-responsive astrocytes at electrophysio-
logical and molecular levels and to compare
them to other NTS astrocytes. Subspecial-
ization of brainstem astrocytes has been
shown to support different responses to ho-
meostatic signals (Erlichman et al., 2004).
Similarly, distinct subgroups of NTS as-
trocytes responding to different periph-
eral signals could participate in specific
homeostatic pathways.

McDougal et al. (2011) focused on
receptor-mediated astrocytic responses to
glutamate that could potentially lead to
modulation of neural circuits through the
release of gliotransmitters (Hermann et
al., 2009). However, glutamate from vagal
afferents could also affect neuronal net-
works via activation of astrocytic metab-
olism by a mechanism similar to that of
the astrocyte-to-neuron lactate shuttle
(ANLS) (Pellerin and Magistretti, 2011).
According to the ANLS theory, glutamate
is taken up by astrocytes together with
Na�, leading to an increase in intracellular
Na� and to the subsequent activation of

Na/K ATPase. The pump in turn stimu-
lates astrocytic glycolysis, resulting in the
production and release of lactate that is
then used as an energy substrate by neu-
rons. Recently, it appeared that lactate not
only fuels neurons but could also increase
their excitability by closing KATP channels
(Song and Routh, 2005; Parsons and Hi-
rasawa, 2010). In agreement with this obser-
vation, ANLS-like mechanisms were shown
to regulate homeostatic circuits such as
those in the Na�-sensitive subfornical or-
gan. In this CVO, astrocytes monitor sys-
temic Na� levels and proportionally
stimulate neighboring GABAergic in-
terneurons by the release of lactate (Shi-
mizu et al., 2007).

Lactate has also been shown to affect
neuronal responses in regions regulating
energy metabolism. In NTS, lactate blunted
the response of glucose-sensing neurons to
glucose and the counter-regulatory re-
sponse to hypoglycemia (Himmi et al.,
2001; Patil and Briski, 2005a,b). Similar ef-
fects were discovered in hypothalamic met-
abolic centers, such as ventromedial and
lateral areas, in which lactate appeared to
differentially regulate glucose-inhibited and
glucose-exited cells (Song and Routh, 2005;
Parsons and Hirasawa, 2010). This suggests
a general role for lactate as an indicator of
energy balance. Activation of lactate release
by vagal afferents would thus be especially
significant for the regulation of energy me-
tabolism and feeding behavior by NTS. Be-
cause astrocytes potentially also respond to
metabolism-related hormones, they could
act as integrators of homeostatic signals
driving NTS responses.

To summarize, the findings of McDou-
gal et al. (2011) confirm previous reports of
astrocyte activation by vagal primary affer-
ents (Ballanyi et al., 1993) and describe an
uncommon mechanism leading to direct
stimulation of Ca2� responses by AMPARs.
These experiments show that astrocytes in
NTS are positioned to control the first relay
in vago-vagal reflexes. Given that these as-
trocytes are also receptive to blood-born pe-
ripheral signals and can modulate neuronal
networks through neuroactive mediators
and neurometabolic coupling, they appear
to be integrators of organism homeostatic
state set to tune autonomic and behavioral
adaptive responses to varying internal con-
ditions. These astrocytes could also regulate
the plasticity of NTS microcircuits, via
mechanisms similar to those present in hy-
pothalamus, by the release of gliotransmit-
ters (Gordon et al., 2009), and through
modifications of astrocytic synaptic cover-
age during homeostatic challenges (Oliet et
al., 2006). It is also predictable that altera-

tions of NTS astrocytic physiology will be
involved in pathological conditions such as
metabolic disorders (Yi et al., 2011). Further
work is needed to better characterize NTS
astrocyte subpopulations, to investigate the
modulation of astrocytic function by chem-
ical peripheral signals, and to clarify the in-
teraction of these astrocytes with specific
neuronal subcategories driving homeostatic
responses.
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