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Summary

This thesis is structured around a key question: To what extent are social protection
strategies (and complementary instruments such as insurance) effective in reducing
poverty? This work is composed of four articles that attempt to provide an answer to
our central question. These articles lie at the intersection of two scientific disciplines:
insurance mathematics and development economics.

The first article (Chapter 2) explores the benefits of collaboration between govern-
ments and private insurers by examining the effects of insurance (with and without
subsidies) on the probability of a household falling into the area of poverty (the
trapping probability). Applying concepts from ruin theory, a branch of insurance
mathematics, we study a risk process with random-valued losses that models a house-
hold’s capital over time. For this model, we derive explicit formulas for the trapping
probability and the cost of social protection incurred by the government, which is
defined in a way in which it incorporates premium subsidies, capital transfers needed
to close the poverty gap and an additional fixed cost that ensures, with a certain
level of confidence, that households will not return to poverty, should they fall into
it. Our analysis reveals the insufficiency of insurance alone (without subsidies) as
a means of poverty reduction for the vulnerable non-poor (those with capital levels
just above the poverty line), as premium payments can in fact heighten the risk of
falling into poverty. It therefore highlights the benefits of subsidising insurance for
both households and governments, as they experience a reduction in their trapping
probability and the incurred cost of social protection, respectively.

In the second article (Chapter 3), we adapt the risk process to consider random
proportional rather than random-valued capital losses. This adaptation changes the
approach to the analysis of the risk process, as traditional techniques commonly
used in ruin theory are no longer straightforward. Nevertheless, adopting alterna-
tive methods, we derive for the first time a closed-form solution for the trapping
probability of the risk process under the proportional configuration. In this article,
we also assess the impact of insurance (without subsidies) on the trapping proba-
bility. Our results suggest that insurance for proportional losses is more affordable
than coverage for random-valued losses, which aligns with the idea that premiums
are normalised to wealth under the proportional loss structure.

The contributions of the third article (Chapter 4) are mainly concerned with poverty
measurement, which is undoubtedly a key point in the monitoring and evaluating
phase of a social protection strategy. In this article, we derive an integral equation
for the Gerber-Shiu expected discounted penalty function, a mathematical function
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SUMMARY xvi

widely studied in ruin theory that gives information on three trapping-related quan-
tities: the trapping time (the point in time at which a household falls into the area
of poverty), the capital deficit at trapping and the capital surplus prior to trapping.
We then note the relationship between the capital deficit and an important group
of poverty measures, known as the Foster-Greer-Thorbecke (FGT) index. In addi-
tion, for a particular case of the risk process with proportional losses, we derive a
microeconomic foundation for the beta of the first kind (B1) as a suitable model
to describe the distribution of the capital deficit given that trapping occurs. In
particular, this finding allows to interpret the shape parameters of the theoretical
distribution, as well as to perform sensitivity analyses of poverty measures to vari-
ations in the shape parameters. To conclude this article, we exemplify this notion
using data from Burkina Faso’s Enquête Multisectorielle Continue (EMC) 2014, a
survey aimed at generating robust data to monitor the country’s sustainable devel-
opment.

The fourth article (Chapter 5) studies the role of cash transfer programmes in
poverty alleviation. In this article, we consider an omega risk process with pro-
portional losses; an extension of the risk process studied in previous articles that
now also incorporates direct transfers (capital cash transfers) provided by donors or
governments to only those households deemed eligible. This extension allows us to
introduce a new event: the event of extreme poverty (the event when a household
becomes extremely poor), which only depends on an extreme poverty rate that is a
function of the household’s current capital. Under this model, we derive closed-form
expressions for the trapping probability and then do the same for the probability
of extreme poverty (the probability that an event of extreme poverty occurs). Our
numerical illustrations expose the ability of cash transfer programmes to keep house-
holds out of poverty and extreme poverty. In particular, we outline the role of both
the intensity (or frequency) of the transfers and the eligibility threshold in achieving
lower probabilities.



Résumé

Cette thèse s’articule autour d’une question clé : Dans quelle mesure les stratégies
de protection sociale (et les instruments complémentaires tels que l’assurance) sont-
elles efficaces pour réduire la pauvreté ? Ce travail est composé de quatre articles
qui tentent d’apporter une réponse à cette question centrale. Ces articles se situent
à l’intersection de deux disciplines scientifiques : les mathématiques de l’assurance
et l’économie du développement.

Le premier article (Chapitre 2) explore les avantages de la collaboration entre les
gouvernements et les assureurs privés en examinant les effets de l’assurance (avec et
sans subventions) sur la probabilité qu’un ménage tombe dans une zone de pauvreté
(la probabilité de prise au piège). En appliquant les concepts de la théorie de la
ruine, une branche des mathématiques de l’assurance, nous étudions un processus
de risque avec des pertes à valeur aléatoire qui modélise le capital d’un ménage au fil
du temps. Pour ce modèle, nous dérivons des formules explicites pour la probabilité
de prise au piège et le coût de la protection sociale encouru par le gouvernement.
Ce coût est défini de manière à incorporer les subventions aux primes accordées aux
ménages, et, pour les cas où les ménagent tombent dans la pauvreté, les transferts de
capitaux nécessaires pour les aider à en sortir ainsi qu’un coût fixe supplémentaire
qui garantit, avec un certain niveau de confiance, que les ménages ne retomberont
pas dans la pauvreté. Notre analyse révèle l’insuffisance de l’assurance seule (sans
subvention) comme moyen de réduction de la pauvreté pour les non-pauvres vul-
nérables (ceux dont le niveau de capital se situe juste au-dessus du seuil de pauvreté),
car le paiement des primes peut accroître le risque de tomber dans la pauvreté. Nous
mettons donc en évidence les avantages de la subvention de l’assurance pour les mé-
nages et les gouvernements, ceux-ci bénéficiant d’une réduction de la probabilité de
pauvreté et du coût de la protection sociale, respectivement.

Dans le deuxième article (Chapitre 3), nous adaptons le processus de risque pour
considérer des pertes en capital proportionnelles aléatoires plutôt que des pertes
en capital à valeur aléatoire. Cette adaptation modifie l’approche de l’analyse du
processus de risque, car les techniques traditionnelles couramment utilisées dans la
théorie de la ruine ne sont plus directement applicables. Néanmoins, en adoptant
des méthodes alternatives, nous dérivons pour la première fois une expression de
forme fermée pour la probabilité de prise au piège du processus de risque avec une
configuration proportionnelle. Dans cet article, nous évaluons également l’impact
de l’assurance (sans subvention) sur la probabilité de prise au piège. Nos résultats
suggèrent que l’assurance pour les pertes proportionnelles est plus abordable que
la couverture pour les pertes à valeur aléatoire, ce qui correspond à l’idée que les
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primes sont normalisées en fonction de la richesse dans le cadre de la structure des
pertes proportionnelles.

La contribution du troisième article (Chapitre 4) concerne principalement la mesure
de la pauvreté, qui est sans aucun doute un point clé dans la phase de suivi et
d’évaluation d’une stratégie de protection sociale. Dans cet article, nous dérivons
une équation intégrale pour la fonction de pénalité escomptée de Gerber-Shiu, une
fonction mathématique largement étudiée dans la théorie de la ruine qui donne
des informations sur trois quantités liées à la prise au piège : le temps de la prise
au piège (le moment où un ménage tombe dans la zone de pauvreté), le déficit de
capital au moment de la prise au piège et l’excédent de capital avant la prise au piège.
Nous notons ensuite la relation entre le déficit de capital et un groupe important
de mesures de la pauvreté, connu sous le nom d’indice de Foster-Greer-Thorbecke
(FGT). En outre, pour un cas particulier de processus de risque avec des pertes
proportionnelles, nous déduisons un fondement microéconomique pour la loi bêta
de première espèce (B1) en tant que modèle approprié pour décrire la distribution
du déficit de capital étant donné que la prise au piège se produit. En particulier,
cette découverte permet d’interpréter les paramètres de forme de la distribution
théorique, ainsi que d’effectuer des analyses de sensibilité des mesures de pauvreté
aux variations des paramètres de forme. Pour conclure cet article, nous illustrons
cette notion en utilisant les données de l’Enquête Multisectorielle Continue (EMC)
2014 du Burkina Faso, une enquête visant à générer des données robustes pour
suivre le développement durable du pays.

Le quatrième article (Chapitre 5) étudie le rôle des programmes de transferts moné-
taires dans la réduction de la pauvreté. Dans cet article, nous considérons un pro-
cessus de risque oméga avec des pertes proportionnelles ; une extension du processus
de risque étudié dans les articles précédents qui incorpore maintenant des transferts
directs (transferts de capitaux en espèces) fournis par des donateurs ou des gouverne-
ments aux seuls ménages jugés éligibles. Cette extension nous permet d’introduire
un nouvel événement : l’événement d’extrême pauvreté (l’événement où un ménage
devient extrêmement pauvre), qui dépend uniquement d’un taux d’extrême pauvreté
qui lui-même dépend du capital actuel du ménage. Sous ce modèle, nous dérivons des
expressions de forme fermées pour la probabilité de prise au piège et nous faisons
de même pour la probabilité d’extrême pauvreté (la probabilité qu’un événement
d’extrême pauvreté se produise). Nos illustrations numériques mettent en évidence
la capacité des programmes de transferts monétaires à maintenir les ménages hors
de la pauvreté et de l’extrême pauvreté. En particulier, nous soulignons le rôle de
l’intensité (ou de la fréquence) des transferts et du seuil d’éligibilité dans l’obtention
de probabilités de pauvreté et d’extrême pauvreté plus faibles.
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Chapter 1

Introduction

In 2015, world leaders agreed on seventeen Sustainable Development Goals (SDGs)
which engage not only public and private sectors but also society in attaining a
better and more sustainable future for all. Among these goals, eradicating extreme
poverty by 2030 is at the top of the list of priorities, followed by other targets among
which the reduction of at least by half of the proportion of people living in poverty
and the implementation of appropriate social protection strategies stand out (SDG
1: End poverty in all its forms everywhere (United Nations, 2015)).

According to the World Bank (2018), the number of people living in extreme poverty
declined from 36% in 1990 to 10% of the world’s population in 2015. However, this
downward trend has been decelerating throughout the years. Indeed, recent research
published by the United Nations University World Institute for Development Eco-
nomics Research (UNU-WIDER) shows that, due to the COVID-19 crisis, global
poverty could increase for the first time since 1990 (Sumner et al., 2020), therefore
threatening one of the global public’s priorities: ending poverty.

Social protection strategies are seen as important mechanisms to contribute to the
achievement of SDG 1 by closing the gap of inequalities in income and access to
opportunities. The chapters of this thesis are structured around one key question:
To what extent are social protection strategies (and complementary instruments
such as insurance) effective in reducing poverty?

In addressing this question, Chapters 2 and 3 assess the efficiency of inclusive in-
surance (microinsurance) in reducing poverty. Specifically, in Chapter 2, the cost-
efficiency of government-sponsored inclusive insurance schemes is studied, while a
non-subsidised scheme in which the insured pays the full amount of the premium
is considered in Chapter 3. Similarly, Chapter 5 presents evidence on the impor-
tant role of unconditional cash transfer programmes in poverty and extreme poverty
alleviation. The contributions in Chapter 4 are mainly concerned with poverty mea-
surement, which is clearly a key point in the monitoring and evaluating phase of a
social protection strategy and therefore goes hand in hand with the other chapters
and with our aim of finding an answer to our key question.

This chapter provides some background literature and relevant mathematical prelim-
inaries that are used in the following chapters. In this regard, Section 1.1 provides a

1
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brief overview of poverty trapping, the main topic of interest in this thesis. Two key
instruments to fight against poverty, social protection strategies and inclusive insur-
ance, are discussed in Sections 1.1.1 and 1.1.2, respectively. In particular, Section
1.1.1 introduces unconditional cash transfer programmes more in detail. An overview
of poverty measurement and an introduction to the Foster–Greer–Thorbecke (FGT)
index, which is a family of poverty measures, is provided in Section 1.1.3. The value
of using parametric distributions to model personal income and their usefulness in
poverty measurement is discussed in Section 1.1.4. Section 1.2 introduces the math-
ematical foundations that will be used in subsequent chapters, with special emphasis
on ruin theory; the widely-studied risk process, the Cramér-Lundberg model, is dis-
cussed in Section 1.2.2. In addition, this section introduces two extensively studied
risk measures in ruin theory: the ruin probability and the Gerber-Shiu expected dis-
counted penalty function. Section 1.2.2 also presents classical examples illustrating
how these risk measures can be estimated for a particular Cramér-Lundberg model,
which will certainly facilitate the understanding of the following chapters. We end
our brief introduction to ruin theory by highlighting the fact that there are a large
number of variations of the Cramér-Lundberg model that have been studied in the
literature. This chapter concludes by providing the main contributions of this thesis
in Section 1.3.

1.1 Poverty Trapping

There are two main ways of looking at poverty: absolute poverty and relative
poverty. We say that an individual lives in absolute poverty when he or she subsists
below a minimum of socially accepted living conditions. These conditions may be
established with respect to certain nutritional requirements or other essential goods
which are considered necessary for a rewarding life. Relative poverty, on the other
hand, refers to the situation in which an individual is poor in comparison to other
people in the economy. Thus, a person can live in poverty from a relative perspective
even though he or she may not be poor in an absolute sense, as he or she might be
able to acquire the “basic needs”. In this thesis, we will focus on the study of abso-
lute poverty and we will therefore generally omit the term “absolute” when referring
to absolute poverty.

Within absolute poverty, there are different levels of poverty, which are usually
defined according to the degree of deprivation of an individual. For example, the
World Bank uses the International Poverty Line (IPL), set at USD 2.15 per person
per day, to measure extreme poverty1 (Jolliffe et al., 2022). The IPL is also the
most relevant poverty line to measure poverty in low-income countries, whereas in
other countries, other poverty lines are used to measure poverty. Extreme poverty
differs from other levels of poverty in that it has a higher degree of deprivation and
a longer duration over time. Moreover, individuals living in extreme poverty are
characterised by having greater deficiencies such as higher rates of illiteracy and
malnutrition, among others (Emran et al., 2014; Barrett et al., 2019).

1Some researchers have also used the term “ultrapoverty” to refer to extreme poverty or an even
greater degree of deprivation (see Barrett et al. (2019)).
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The depth and persistence of poverty give rise to the so-called poverty traps. A
poverty trap is a state of poverty from which it is difficult to escape without external
help. Individuals living in a poverty trap are characterised by behaviours, stemming
from their poverty situation, that perpetuate their low standard of living. Thus,
it is essential to differentiate between transitory poverty and persistent poverty in
order to identify individuals who have difficulties in escaping poverty and to design
appropriate anti-poverty policies that stimulate economic growth among the poor.
Poverty traps have been extensively studied in the development economics literature
(see, for example, Azariadis and Stachurski (2005), Bowles et al. (2006), Matsuyama
(2008), Kraay and McKenzie (2014), Barrett et al. (2016) and references therein).
This thesis uses the term “trapping” only to describe the event that an individual
(or household) falls into poverty and we will later assign the name trapping time to
the time at which this event occurs. As a matter of fact, all subsequent chapters
are concerned with studying the trapping time, which we will later see is a random
variable, since we do not know when, if ever, an individual will fall into poverty.

Poverty affects all of us and is therefore not an individualised condition. Indeed,
poverty entails high economic, social and psychological costs for both the poor and
the non-poor. Take the example of child poverty: children living in poverty are more
likely to commit crime as adults (see, for example, Bjerk (2007)). In turn, higher
crime rates mean higher correction costs and a rise in private spending on crime
prevention (e.g. in buying alarms and locks). Moreover, growing up in poverty can
also have a number of health repercussions in later life (Brooks-Gunn and Duncan,
1997; Case et al., 2002; Ravallion, 2016). This translates into higher spending on the
treatment of diseases that could have been avoided (Children’s Defense Fund (U.S.),
1994). Indeed, McLaughlin and Rank (2018) have recently estimated that, for every
dollar spent on reducing childhood poverty2, the United States of America would
save at least seven dollars with respect the economic costs of poverty. Ending poverty
must therefore be a common good, as stipulated in the SDGs, and is therefore the
main focus of this thesis.

1.1.1 Social Protection Strategies

For the purposes of this thesis and following Slater (2011), we will consider public
actions that seek to address risk, vulnerability and poverty as social protection
strategies. According to Slater (2011) (see also Harvey (2005), Department for
International Development (DFID) (2006) and Farrington and Slater (2006)), social
protection strategies can be subdivided into three groups:

(i) Social insurance: pooling of contributions paid by individuals to the state or
private organisations so that, if they suffer a loss, they receive financial support
(e.g. health and unemployment insurance);

(ii) Social assistance: non-contributory transfers to persons deemed eligible on the
basis of their vulnerability (e.g. cash transfer programmes) and;

2McLaughlin and Rank (2018) also estimated in 2018 that the aggregate annual cost of child
poverty in the United States of America amounts to USD 1.0298 trillion, representing 5.4% of the
country’s gross domestic product (GDP).
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(iii) Standards/regulation: establishment of minimum standards to protect citi-
zens.

Social protection strategies are an important tool for preventing poverty and pro-
viding a pathway out of poverty for the poor. We now introduce cash transfer
programmes and, in particular, unconditional cash transfer programmes, whose role
in the fight against poverty will be analysed in Chapter 5.

Cash Transfer Programmes

Cash transfer programmes are one of the main social protection strategies to reduce
poverty and inequality. In their simplest form, these programmes transfer cash,
whether in small, regular amounts, or as lump sums, to people living below the
poverty line and are generally funded by governments, international organisations,
donors or nongovernmental organisations (NGOs) (Garcia and Moore, 2012). In re-
cent years, cash transfer programmes have reached unprecedented levels of coverage.
For example, in 2020, in response to the COVID-19 pandemic, one out of six people
in the world received at least one cash transfer payment (Gentilini, 2022).

Entitlements to cash transfers can be unconditional (not requiring beneficiaries to
undertake any specific actions nor meet any conditions) or conditional (beneficiaries
need to have some specific behavioural conditions in exchange of the cash transfer
(Baird et al., 2014), such as enrolling children in school or taking them to regular
health check-ups (Handa and Davis, 2006)). Moreover, cash transfers can be uni-
versal (all people are entitled to them, although this does not mean that all people
will receive them) or targeted according to a specific level of vulnerability or social
category (e.g. age or gender).

The role of unconditional cash transfer programmes as a pathway out of extreme
poverty for households has been extensively studied under an empirical approach.
Handa et al. (2016) find that the Child Grant Programme (CGP) and the Multiple
Category Targeted Programme (MCP) in Zambia, in addition to protecting house-
hold food security and consumption, have a huge impact on household productive
capacity. Similarly, Ambler and De Brauw (2017) evidence how the Benazir Income
Support Program (BISP) has increased women empowerment in Pakistan. This is
certainly an important finding, as women empowerment has been frequently associ-
ated with economic growth (Duflo, 2012), which at the same time has been linked
with poverty reduction (Adams, 2003).

Undoubtedly, unconditional cash transfer programmes have recently gained pop-
ularity as a cost-effective social protection strategy to attain some public policy
objectives, including poverty alleviation (Aker, 2013; Baird et al., 2014; Blattman
and Niehaus, 2014; Haushofer and Shapiro, 2016; Jensen et al., 2017; Pega et al.,
2022).

As mentioned before, Chapter 5 will analyse the role of unconditional cash transfer
programmes in the fight against poverty and will complement the vast empirical lit-
erature with a comprehensive analysis based on a rigorous mathematical framework.
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1.1.2 New Approaches to Social Protection: Inclusive Insur-
ance (Microinsurance)

Churchill (2006) was one of the first to use the term “microinsurance”. His definition
of microinsurance, found in a compendium on the topic, reads as follows:

“Microinsurance is the protection of low-income people against specific perils in ex-
change for regular premium payments proportionate to the likelihood and the cost of
the risk involved. This definition is essentially the same as one might use for reg-
ular insurance except for the clearly prescribed target market: low-income people...
How poor do people have to be for their insurance protection to be considered micro?
The answer varies by country, but generally microinsurance is for persons ignored
by mainstream commercial and social insurance schemes, persons who have not had
access to appropriate products.”

Due to the rapid growth of the microinsurance market over the years and the need
for insurance authorities to adapt their regulations to facilitate the expansion of
insurance products for the poor, a year later, the International Association of In-
surance Supervisors (IAIS) published a paper that sought to identify the issues
and challenges in developing and enabling a regulatory framework to promote mi-
croinsurance in line with the IAIS Insurance Core Principles (ICPs)3 (International
Association of Insurance Supervisors (IAIS), 2007). In this paper, the definition of
microinsurance took on a more normative approach:

“Microinsurance is insurance that is accessed by low-income population, provided by
a variety of different entities, but run in accordance with generally accepted insur-
ance practices (which should include the Insurance Core Principles). Importantly
this means that the risk insured under a microinsurance policy is managed based
on insurance principles and funded by premiums. The microinsurance activity itself
should therefore fall within the purview of the relevant domestic insurance regula-
tor/supervisor or any other competent body under the national laws of any jurisdic-
tion.”

While both of the above are sound definitions and agree, above all, that microinsur-
ance is focused on providing protection to the poor, it is easy to realise that it can be
difficult to differentiate microinsurance from traditional insurance. For example, an
insurance company may find it difficult to assign tasks to its microinsurance depart-
ment. How would these tasks differ from those performed by departments focused
on traditional insurance products? Based on these two definitions of microinsurance,
this is certainly a difficult question to answer. This is one of the main reasons why,
years later, in a second volume of the compendium on microinsurance, Churchill
and Matul (2012) highlight the vagueness of the definition presented in the first
compendium and provide readers with four different ways to define microinsurance,
which facilitate its distinction from traditional insurance: (i) microinsurance targets
low-income people (target group); (ii) a microinsurance product is characterised by
a small sum assured and/or premium (product definition); (iii) apart from formal

3The IAIS Insurance Core Principles (ICPs) consist of Principle Statements, Standards and
Guidance that represent a globally accepted framework for insurance supervision (International
Association of Insurance Supervisors (IAIS), 2019).
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insurers, microinsurance is generally provided by burial or friendly societies, mutu-
als, cooperatives and community-based organisations (provider definition); and (iv)
microinsurance products are insurance products that are distributed by microfinance
institutions (MFIs), low-cost retailers or other organisations that serve low-income
individuals (distribution channel). Churchill and Matul (2012) stress the importance
of combining these four definitions and other possible characteristics (e.g. appropri-
ate product design and accessibility) to properly define microinsurance and thus
differentiate it from conventional insurance. Nevertheless, they also underline that
microinsurance should be defined in a way that responds to the national and corpo-
rate objectives of regulators and insurers, respectively, and therefore its definition
can vary.

In 2015, the IAIS defined a broader term: “inclusive insurance”. Inclusive insur-
ance refers to all the insurance products that offer protection to the excluded or
underserved market, not just the low-income population (International Association
of Insurance Supervisors (IAIS), 2015). Today, the term inclusive insurance is more
widely used than microinsurance. In fact, for example, the International Microinsur-
ance Conference, which is the most important event on the subject and has been held
since 2005, changed its name to the International Conference on Inclusive Insurance
(ICII) in 2015, demonstrating the relevance that this broader term has acquired.

At first glance, one might wonder what the difference between inclusive insurance
and social insurance is. In fact, one of the main objectives of inclusive insurance is
precisely to offer protection to those who are excluded by formal social protection
strategies (e.g. those in the informal economy and the rural workers). Hence, for
instance, an inclusive insurance scheme differs from social protection strategies that
offer statutory protection to formal workers (see, for instance, Churchill (2006) and
Churchill and Matul (2012), which discuss the potential roles of inclusive insurance
as a complement to social protection strategies). That is, inclusive insurance can
be viewed as a complement to the three groups listed in Section 1.1.1 and thus as a
component of social protection strategies.

In recent years, there has been an increase in public-private partnerships (PPPs)4
and the willingness of governments to subsidise insurance premiums for low-income
individuals (Churchill and Matul, 2012). For example, Chinese farmers receive sup-
port from central and provincial governments such that they end up paying only
about 20% of the premium amount (Wang et al., 2011; Ye et al., 2020). Similarly,
Indian farmers enrolled in the Pradhan Mantri Fasal Bima Yojana (PMFBY) crop
insurance scheme, pay a maximum premium ranging from 2% to 5% of the sum
insured (or the actuarial rate, whichever is lower), with the remaining part of the
premium paid on a 50/50 basis by the central and state governments (Kaur et al.,
2021). Hill et al. (2014) argue that insurance premium subsidies must be designed
with a clearly stated purpose. Moreover, they should target those in need and ad-
dress market deficiencies or consumer equity concerns. Subsidies that are properly
designed have shown to be a powerful and cost-effective tool to achieve public policy
objectives such as poverty alleviation. Conversely, poorly designed subsidies can be
inefficient and lead to significant economic costs.

4In this thesis, public-private partnerships (PPPs) are partnerships involving public- and
private-sector actors with complementary resources and functions.
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The role of inclusive insurance as an important actor in achieving poverty reduction
will be discussed in Chapters 2 and 3. Chapter 2 will examine the important role
of PPPs and highlight the value of designing appropriate premium subsidies, while
non-subsidised schemes will be explored in Chapter 3. For a collection of previous
studies analysing the role of insurance in the fight against poverty, interested readers
may wish to consult Dercon (2004).

1.1.3 A Class of Poverty Measures

One of the main tools to monitor and evaluate the performance of a social protection
strategy are poverty measures5. According to Haughton and Khandker (2009), there
are three main steps that need to be taken in measuring poverty:

(i) Set an indicator of welfare (e.g. income or consumption per capita that is
usually obtained from survey data);

(ii) Define a poverty line, representing a minimum acceptable level of this welfare
indicator to differentiate the poor from the non-poor (in Section 1.1, for in-
stance, we described it as a minimum of socially accepted living conditions)
and;

(iii) Generate a summary statistic that describes the distribution of this welfare
indicator relative to the poverty line.

In this thesis, we are particularly interested in the third step. Indeed, in Chapter 4
we will see that there is a connection between the Foster–Greer–Thorbecke (FGT)
index (Foster et al., 1984), a summary statistic that describes the distribution of
income relative to the poverty line, and the Gerber-Shiu expected discounted penalty
function (Gerber and Shiu, 1998), a risk measure that has been extensively studied in
the insurance mathematics literature (see Section 1.2.2 for more information about
this risk measure).

The FGT index has become the standard measure for international poverty assess-
ments and is regularly reported on by individual countries and international organ-
isations such as the World Bank. Economists James Eric Foster, Joel Greer and
Erik Thorbecke, then at Cornell University, introduced this type of poverty measure
in a 1984 paper. It emerged as an alternative to previously used measures such as
the head-count index, the poverty gap index and the Sen measure. The head-count
index calculates the proportion of the population living below the poverty line and
has been considered as one of the most common indices for measuring poverty since
the first studies of poverty were conducted (see, for example, Booth (1889) and
Rowntree (1901)). On the other hand, the poverty gap index represents the average
income short-fall (the absolute value of the difference between a poor household’s
income (or consumption) and some poverty line) with respect to the poverty line.
Although widely used, the head-count index ignores the depth of poverty, while the

5Sometimes also referred to as poverty metrics, poverty indicators or poverty indices in the
literature.
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poverty gap index ignores the distribution of income among the poor, making them
poor indicators of poverty (Sen, 1976). Seeking to overcome these limitations, Sen
(1976) introduced a “rank weighting” approach (see Theorem 1 from Sen (1976))
that accounts for the normalised gap and the rank order of a person in the group of
the poor. However, as Foster et al. (1984) argue, this Sen measure and its variants
(which are all based on a rank-weighted approach) may violate the natural condition
where subgroup and total poverty have to move in the same direction (see Footnote
6 from Foster et al. (1984) for a simple example). For all these reasons, Foster et al.
(1984) introduced their new class of poverty indicators, which we define now:

Definition 1.1.1 (Foster–Greer–Thorbecke (FGT) Index). Let FX(x) be the con-
tinuous distribution function of the income variable X from a population and fX(x)
its probability density function (p.d.f.). The FGT class of poverty measures indexed
by γ ≥ 0 is defined as

FGTγ =

∫ z

0

(
z − x
z

)γ
fX(x) dx, (1.1.1)

where z is the poverty line.

Particular cases of the FGT class of poverty measures include FGT0, which is simply
the head-count index. Other choices are γ = 1, which gives rise to the poverty gap
index6, and γ = 2, which is often referred to as the poverty severity index. Note
that a larger γ in (1.1.1) gives greater emphasis to the poorest poor. Hence, this
parameter is viewed as a measure of poverty aversion (Foster et al., 1984). For a
detailed review of the contributions of the FGT index over the 25 years since its
publication, see Foster et al. (2010).

1.1.4 Parametric Modelling of Personal Income

Parametric modelling of the empirical distribution of personal income has been one
of the main topics of study in economics since the work of the Italian economist
Wilfried Fritz Pareto, when he introduced his Pareto law in 1896 (Pareto, 1967).
Parametric modelling is a statistical approach that makes it possible to characterise
and reconstruct the distribution of personal income from a finite number of param-
eters and some limited information. Since Pareto’s law, several distributions for
modelling personal income have been proposed (see Hlasny (2021) for a recent sur-
vey). However, as Callealta Barroso et al. (2020) state, when looking for a suitable
model of the phenomenon of interest, one should choose the one that best describes
the characteristics of the phenomenon itself. Furthermore, Callealta Barroso et al.
(2020) also argue that one should base its selection on certain properties such as char-
acteristics of the observed income distribution (e.g. a light or heavy tailed model),
desirable mathematical properties (e.g. a model that satisfies some differentiability
properties) and economic properties (e.g. a model arising from an economic model
itself).

6Note that the poverty line z is in the denominator. That is, the poverty gap index is expressed
as a percentage of the poverty line.
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Poverty measurement has also been one of the main applications of parametric mod-
elling of the empirical distribution of personal income (see, for example, Kleiber and
Kotz (2003) and Chotikapanich (2008)). One of the main advantages of paramet-
ric estimation of income distributions is that explicit formulas, as functions of the
parameters of the theoretical income distribution, are available to measure poverty
and inequality (see, for example, Section 1.1.3). This allows, for example, to fur-
ther interpret the shape parameters of the theoretical income distribution, as well
as to carry out sensitivity analyses of poverty measures to variations in the shape
parameters (Graf and Nedyalkova, 2014).

In Chapter 4, we will focus on the parametric estimation of income short-fall dis-
tributions. Moreover, we also provide a compelling microeconomic foundation for
modelling the income short-fall distribution, which is derived from an economic
model representing a household’s capital over time.

1.2 Mathematical Preliminaries

In this section, we outline the main mathematical tools that will be used throughout
this thesis. We begin by defining Poisson processes (Section 1.2.1), a topic much
studied in probability theory, and then provide a concise introduction to ruin theory
(Section 1.2.2), a branch of insurance mathematics that will constitute the main
tool to address the key question presented at the beginning of this chapter.

1.2.1 The Poisson Process

Since the Poisson process takes its name from the Poisson distribution, we first
describe the properties of a Poisson random variable.

Definition 1.2.1 (Poisson Distribution). The Poisson distribution was introduced
by the French mathematician Siméon Denis Poisson in 1838. A random variable
N is said to follow a Poisson distribution with parameter λ > 0 and we write,
N ∼ Poisson (λ), if its probability mass function (p.m.f.) is given by:

P (N = n) =
λn

n!
e−λ, for n = 0, 1, 2, ...

The variance of a Poisson random variable is equal to its mean, that is, E [N ] =
Var [N ] = λ.

Definition 1.2.2 (Counting Process). A stochastic process {Nt}t≥0 is called a count-
ing process if it represents the number of events that occur in the time interval [0, t].
A counting process has the following properties:

(i) Nt is a discrete random variable whose only possible values are the non-
negative integers 0, 1, 2, ...;

(ii) If s < t, then Ns ≤ Nt and;
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(iii) For s < t, Nt −Ns is equal to the number of events that have occurred in the
time interval (s, t].

Definition 1.2.3 (Poisson Process). A counting process {Nt}t≥0 is called a Poisson
process with rate (or intensity) λ > 0 if:

(i) N0 = 0;

(ii) The process has independent increments. That is, for any ti, with i = 0, ..., n
and n ≥ 1 such that 0 = t0 < t1 < t2 < ... < tn, the increments Nti − Nti−1

,
i = 1, ...., n, are mutually independent and;

(iii) The number of events in any interval of length t is Poisson distributed with
mean λt. That is, for all s, t ≥ 0,

P (Nt+s −Ns = n) =
(λt)n

n!
e−λt for n = 0, 1, 2, ...

From Property (iii) above, we have that E [Nt] = λt, which is the reason why the
parameter λ is called the rate.

There are other equivalent definitions for the Poisson process (see, for example,
Ross (1995)). Nevertheless, for the purposes of this thesis, it is sufficient to stick to
the above definition. Moreover, we have so far defined the most popular case of a
Poisson process, which, as stated above, is characterised by having a constant rate λ
and a linear mean (E [Nt] = λt). In probability theory, this particular case is known
as the homogeneous Poisson process. It is possible to generalise this assumption to
allow the rate to be a function of t, in which case it is called inhomogeneous Poisson
process (see, for example, Ross (1995) and Mikosch (2006)). Throughout this thesis
only the homogeneous case is considered, and for the remainder of this thesis we
will omit the term “homogeneous” and only write Poisson process to refer to the
homogeneous case.

One of the most important features of the Poisson process is that the so-called
inter-arrival times are exponentially distributed with mean 1/λ. Indeed, consider
a Poisson process Nt with rate λ > 0 and denote the time of the first event with
T1. Furthermore, for i ≥ 1, let T̃i denote the time between the (i − 1)st and
the ith event. The sequence of random variables {T̃i}i∈N is called the sequence of
inter-arrival times. One can easily prove that T̃i ∼ Exp(λ) (see, for example, Ross
(1995)).

In insurance mathematics, the Poisson process is often used to model claim fre-
quency (the number of claims) in the time interval [0, t], since insurance companies
are concerned about the random number of claims that may occur. However, the
(random) severity of a claim is also of great interest to insurers. In particular, in-
surers are interested in estimating the aggregate claims of a portfolio of policies (the
total sum of all claims). This is often modelled by what is known as a compound
Poisson process, which we define below:
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Definition 1.2.4 (Compound Poisson Process). Let {Nt}t≥0 be a Poisson process
with rate λ > 0 and {Zi}i∈N a sequence of independent and identically distributed
(i.i.d.) random variables with common distribution function GZ that are also inde-
pendent of {Nt}t≥0. The stochastic process

St =
Nt∑

k=1

Zk,

is called a compound Poisson process. It is not difficult to show that the mean of St
is given by E [St] = λtµZ while its variance is Var [St] = λt (σ2

Z
+ µ2

Z
), with µZ and

σZ denoting the mean and variance of the random variable Zi, respectively.

The four definitions reviewed in this section will provide us with the necessary tools
to understand the Cramér-Lundberg model, which is the classical risk process in
ruin theory and has been widely-studied over the past century. Ruin theory and the
Cramér-Lundberg model are discussed more in detail in Section 1.2.2.

1.2.2 Ruin Theory

Ruin theory deals with stochastic processes and their fluctuations (Asmussen and
Albrecher, 2010). Its main objective is to build mathematical models for the financial
reserves of an insurance company, which are characterised by random fluctuations.
In insurance mathematics, ruin theory has been an active field of research from Lund-
berg’s time (Lundberg, 1903) to the present day. In general, the stochastic process
of interest is the Cramér-Lundberg model, originally introduced by the Swedish ac-
tuary and mathematician Filip Lundberg in his doctoral dissertation (Lundberg,
1903) and later studied by the Swedish statistician Harald Cramér (Cramér, 1930),
from which it derives its name. However, variations of this model have also been
widely studied in the actuarial science literature in the last century.

Insurance companies offer protection against certain risks (e.g. theft and loss of
property) to policyholders in exchange for premium payments. Typically, policy-
holders contribute to the insurer’s financial reserves by paying premiums in advance
at the inception of an insurance policy, while, in return, the insurer provides cov-
erage against losses that the insured may suffer during a defined period of time
clearly stated in the policy. Premiums paid by policyholders, generally settled by
the insurer, are intended to ensure the viability of the insurance business. In math-
ematical terms, this means that the expected premium for a given risk must be
higher than its expected loss. In other words, there should exist a positive safety
loading on the premiums, because without a positive safety loading on the premi-
ums, an insurance company would go bankrupt in the long run (Albrecher et al.,
2017). The Cramér-Lundberg model, which is a simple stochastic process, attempts
to describe the surplus process of an insurance company with these ideas in mind.
We now introduce this model, which is also the most intensively studied in ruin
theory (Mandjes and Boxma, 2023).
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The Cramér-Lundberg Model

In the classical Cramér-Lundberg model, we consider for an insurance portfolio a
non-negative initial capital U0 = u ≥ 0 at time t = 0. We further assume that
the insurer’s total premium inflow up to time t is given by an increasing stochastic
process, which we denote by Ct. In particular, in the Cramér-Lundberg model, Ct
is given by the increasing deterministic linear function

Ct = ct, (1.2.1)

for some constant premium rate c > 0.

Let Nt be a Poisson process with rate λ > 0 which counts the number of claims
(or losses) in the time interval [0, t] and {Ti}i∈N0 the set of arrival times of these
claims. Hence, we can write Nt = max{i ≥ 0 : Ti ≤ t} = min{i ≥ 0 : Ti+1 > t},
with T0 = 0. Then, the total claim amount up to time t is given by

St =
Nt∑

k=1

Zk, (1.2.2)

where Zi, for i ∈ N, denotes the size of the ith claim. The claim sizes {Zi}i∈N
represent a sequence of i.i.d. random variables having common distribution func-
tion GZ (z) = P(Zi ≤ z), with GZ (0) = 0, mean value E [Zi] = µZ and variance
Var[Zi] = σZ. The Poisson process {Nt}t≥0 and the claim sizes {Zi}i∈N are assumed
to be independent of each other. Therefore, the total claim amount up to time t
given by (1.2.2) is a compound Poisson process (see Section 1.2.1).

This gives rise to the classical Cramér-Lundberg model, which, through the previous
quantities, describes an insurer’s surplus process by

Ut = u+ Ct − St = u+ ct−
Nt∑

k=1

Zk. (1.2.3)

Clearly, due to the randomness of the variables {Ti}i∈N0 and {Zi}i∈N, the surplus
(1.2.3) represents a stochastic process.

The “profit” of the insurance business over the time interval (0, t] is given by the
difference: Ct − St = ct−∑Nt

k=1 Zk. This difference contains important information
about the credibility of the insurance company. In particular, we are usually inter-
ested in studying the so-called relative safety loading, which can be interpreted as
the expected profit of the insurance company per claim unit. This is given by the
following limit:

ρ = lim
t→∞

E [Ct − St]
E [St]

=
c− λµZ

λµZ

=
c

λµZ

− 1. (1.2.4)

The insurer’s surplus process (1.2.3) is said to have a positive relative safety loading
if ρ > 0. A positive relative safety loading means that the process has an increasing
tendency (or equivalently, that the stochastic process (1.2.3) has a drift to infinity).

One is particularly interested in the behaviour of the surplus process (1.2.3) over
time. Specifically, we observe whether this process ever becomes negative (when
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this happens, we say that ruin has occurred). Thus, we define the infinite-time ruin
probability as

ψ(u) = P

(
inf
t≥0

Ut < 0 | U0 = u

)
,

and the finite-time ruin probability up to time T is correspondingly

ψ(u, T ) = P

(
inf

0≤t≤T
Ut < 0 | U0 = u

)
.

The ruin probability quantifies the likelihood that the insurer will run out of money
in the time interval considered. Without a positive relative safety loading (1.2.4),
ruin would be certain (see, for example, Rolski et al. (1999)). Therefore, it is natural
to assume a positive relative safety loading: ρ > 0.

The ruin time is denoted by

τu = inf {t ≥ 0 : Ut < 0 | U0 = u} ,

hence we can rewrite the infinite-time ruin probability as

ψ(u) = P(τu <∞).

As mentioned previously, under the positive relative safety loading assumption, we
expect the surplus process (1.2.3) to go to infinity. Hence, it is possible that the
insurer will not experience ruin at all. In other words, the ruin time represents a
defective random variable and it can take the value infinity.

It is sometimes more convenient to work with the complement function

φ(u) = 1− ψ(u),

which is called the survival probability (or non-ruin probability) and has the form

φ(u) = P

(
inf
t≥0

Ut ≥ 0 | U0 = u

)
= P(τu =∞).

Throughout the chapters of this thesis, we will be mainly interested in studying
three concepts: the ruin probability, the ruin time and the deficit at ruin. Thus,
in the next two sections, we provide an introduction on how to estimate the ruin
probability in the Cramér-Lundberg model. In addition, we introduce the so-called
Gerber-Shiu expected discounted penalty function, a function that will allow us to
study other quantities of interest such as the ruin time and the deficit at ruin.

Figure 1.1 displays a sample path of the insurer’s surplus process (1.2.3) and portrays
some of the variables previously introduced.
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Figure 1.1: Trajectory of an insurer’s surplus process Ut with initial capital U0 = u.
In this particular example, ruin occurs at T4 = τu.

The Ruin Probability

We now present two main approaches to estimate an insurer’s infinite-time ruin prob-
ability when the surplus process is given by the Cramér-Lundberg model (1.2.3). We
first derive a functional equation for ψ(u) and we then present a classical example in
which the claim sizes follow a particular distribution. The two approaches presented
in this section will serve as the fundamental basis of the subsequent chapters, as they
will be applied when considering a different model.

The first approach is based on a somehow heuristic “differential” argument7 (see, for
instance, Cramér (1930)). We start by considering a sufficiently small h > 0 such
that in the time interval (0, h) there are four different possible outcomes:

(i) There is no claim in the time interval (0, h);

(ii) A claim occurs in the time interval (0, h) but its size is not large enough to
cause ruin;

(iii) A claim occurs in the time interval (0, h) and its size is large enough such that
it causes ruin and;

(iv) More than one claim occurs in the time interval (0, h).
7The formal framework of this approach are generators (see, for example, Chapter 2 of Asmussen

and Albrecher (2010)).
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Since the inter-arrival times of the claims are exponentially distributed, the prob-
ability that there is no claim up to time h is e−λh, while the probability that the
first claim occurs in the infinitesimal interval (t, t + dt) is e−λtλdt. Conversely, the
probability that there is more than one claim in the time interval (0, h) is negligible.
Hence, we obtain

φ(u) = e−λhφ(u+ ch) +

∫ h

0

[∫ u+ct

0

φ(u+ ct− z)dGZ(z)

]
e−λtλdt (1.2.5)

Differentiating (1.2.5) with respect to h and setting h = 0 yields the following
integro-differential equation (IDE)

φ′(u) =
λ

c

(
φ(u)−

∫ u

0

φ(u− z)dGZ(z)

)
. (1.2.6)

We will now derive the IDE (1.2.6) using a more rigorous argument. Following Feller
(1971), we know that the value of the surplus process at the time of the first claim
is given by UT1 = u + cT1 − Z1. Moreover, observing that ruin cannot occur in the
time interval (0, T1) and using the fact that Nt is a Poisson process we obtain

φ(u) = E [φ(u+ cT1 − Z1)] =

∫ ∞

0

(∫ u+ct

0

φ(u+ ct− z)dGZ(z)

)
λe−λtdt.

Then, doing the change of variable v = u+ ct yields

φ(u) =
λ

c

∫ ∞

u

(∫ v

0

φ(v − z)dGZ(z)

)
e−λ(v−u)/cdv, (1.2.7)

and differentiation of the integral equation (IE) (1.2.7) with respect to u gives again
(1.2.6).

Now, our aim is to solve the IDE (1.2.6). Integrating this IDE over (0, x) we obtain

φ(x)− φ(0) =
λ

c

(∫ x

0

φ(v)dv −
∫ x

0

[∫ v

0

φ(v − z)dGZ(z)

]
dv

)

=
λ

c

∫ x

0

φ(x− v) (1−GZ(v)) dv. (1.2.8)

Then, by monotone convergence, it follows from (1.2.8), as x→∞, that

φ(∞) = φ(0) +
λµZ

c
φ(∞). (1.2.9)

Under the assumption of a positive relative safety loading, i.e. ρ = c/ (λµZ)−1 > 0,
it follows from the law of large numbers that φ(∞) = 1 (see, for example Grandell
(1991) and Rolski et al. (1999)). Therefore, considering that φ(∞) = 1 and writing
(1.2.9) in the ruin probability notation yields to

ψ(0) =
λµZ

c
=

1

1 + ρ
, (1.2.10)

which, interestingly, only depends on the relative safety loading ρ. That is, the ruin
probability of an insurer with zero initial capital depends on the claims only through
their mean µZ.
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Example 1.2.1 (Cramér-Lundberg Model with Exponential Claims). If the claims
follow an exponential distribution with parameter α > 0, i.e. Zi ∼ Exp(α), (1.2.10)
yields ψ(0) = λ/ (αc). Then, substituting this in (1.2.8) leads to (using the ruin
probability notation):

ψ(u) =
λ

αc
− λ

c

∫ u

0

e−αvdv +
λ

c

∫ u

0

ψ(v)e−α(u−v)dv

=
λ

c

∫ ∞

0

e−αvdv − λ

c

∫ u

0

e−αvdv +
λ

c

∫ u

0

ψ(v)e−α(u−v)dv

=
λ

c

∫ ∞

u

e−αvdv +
λ

c
e−αu

∫ u

0

ψ(v)eαvdv

=
λ

αc
e−αu +

λ

c
e−αu

∫ u

0

ψ(v)eαvdv. (1.2.11)

There are several approaches to solve the IE (1.2.11), we present two of them. The
first approach consists of differentiating both sides of (1.2.11) with respect to u (see
Theorem 5.3.1 of Rolski et al. (1999), where they show that φ(u) is differentiable
everywhere except for the countable set where GZ(z) is not continuous), which yields

ψ′(u) = −αλ
c
e−αu

(∫ u

0

ψ(v)eαvdv +
1

α

)
+
λ

c
ψ(u)

= ψ(u)

(
λ

c
− α

)
. (1.2.12)

Then, integrating both sides of (1.2.12) leads to

ψ(u) = ψ(0)e−(α−λc )u =
λ

αc
e−(α−λc )u. (1.2.13)

The second approach to solve the IE (1.2.11) consists of applying Laplace transform
techniques. If we denote the Laplace transform of the ruin probability ψ(x) by

L{ψ(u)} = F (s) =

∫ ∞

0

ψ(u)e−sudu,

and we produce the Laplace transform on both sides of (1.2.11) yields

F (s) =
λ

c (α + s)
F (s) +

λ

αc (α + s)
,

where we used the fact that the Laplace transform of the exponential function is
L{eau} = 1/ (s− a). Then, solving for F (s) yields

F (s) =
λ

αc
(
α− λ

c
+ s
) . (1.2.14)

Finally, inverting the Laplace transform (1.2.14) gives us (1.2.13).

In Chapter 3, we will follow in particular the Laplace transform approach introduced
earlier in Example 1.2.1 to obtain a solution for the ruin probability.



17 CHAPTER 1. INTRODUCTION

The Gerber-Shiu Expected Discounted Penalty Function

We are now not only interested in the case of an insurer’s ruin, but also in the
conditions under which it occurs. The Gerber-Shiu expected discounted penalty
function (Gerber and Shiu, 1998), a concept commonly used in actuarial science,
provides us with information on the circumstances under which ruin occurs. Let
us assume an insurer’s surplus process is given by (1.2.3), such that with a force of
interest δ ≥ 0, the Gerber-Shiu expected discounted penalty function is defined as

mδ(u) = E
[
w(Uτ−u , | Uτu |)e

−δτu1{τu<∞}
]
, (1.2.15)

where 1{A} is the indicator function of a set A and w(u1, u2) for 0 ≤ u1 < ∞ and
0 ≤ u2 <∞, is a non-negative penalty function of u1, the surplus prior to the ruin
time, and u2, the surplus deficit at the ruin time. The function (1.2.15) is useful
for deriving results in connection with joint and marginal distributions of τu, Uτ−u
and

∣∣Uτu
∣∣. For example, when δ is serving as the argument, (1.2.15) can be viewed

in terms of a Laplace transform. Indeed, setting w(u1, u2) = 1, (1.2.15) becomes
the Laplace transform of the ruin time τu8. Another choice is w(u1, u2) = e−su1−zu2

for which (1.2.15) leads to the trivariate Laplace transform of the ruin time, the
surplus prior to ruin and the deficit at ruin. Similarly, setting w(u1, u2) = u1 + u2

in (1.2.15) for δ = 0 gives the expected claim size causing ruin. One observes that,
by appropriately choosing a penalty function w(u1, u2) and a force of interest δ,
various risk quantities can be modelled. He et al. (2023) provide a non-exhaustive
list of these quantities in their recent survey on the Gerber-Shiu expected discounted
penalty function. Interested readers may also consult Kyprianou (2013) for more
details on the so-called Gerber-Shiu risk theory. Figure 1.1 shows the three random
variables of interest: τu, Uτ−u and

∣∣Uτu
∣∣.

As was done for the ruin probability and following Gerber and Shiu (1998), our goal
is to derive a functional equation for mδ(u). We use a “differential” argument in
which we consider the time interval (0, h) for a sufficiently small h > 0. Hence, by
conditioning on the time and the size of the first claim and discounting the expected
values to time 0 at the force of interest δ, we obtain

mδ(u) = e−(δ+λ)hmδ(u+ ch) +

∫ h

0

[∫ ∞

u+ct

w (u+ ct, z − u− ct) dGZ(z)

]
e−(δ+λ)tλdt

+

∫ h

0

[∫ u+ct

0

mδ(u+ ct− z)dGZ(z)

]
e−(δ+λ)tλdt. (1.2.16)

Differentiating (1.2.16) with respect to h and setting h = 0 yields

cm′δ(u)− (δ + λ)mδ(u) + λ

∫ u

0

mδ(u− z)dGZ(z) = −λA(u), (1.2.17)

where A(u) :=
∫∞
u
w(u, z − u)dGZ(z).

8The Laplace transform of a positive random variable Y with p.d.f. fY is given by the expected
value L{fY } (s) = E

[
e−sY

]
.
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Example 1.2.2 (The Laplace Transform of the Ruin Time in the Cramér-Lundberg
Model with Exponential Claims). In this example, we consider the choice w(u1, u2) =
1 for which (1.2.15) leads to the Laplace transform of the ruin time. Moreover, as
in Example 1.2.1, we also assume that Zi ∼ Exp(α). Under these assumptions,
Equation (1.2.17) can be rewritten as follows:

cm′δ(u)− (δ + λ)mδ(u) + αλ

∫ u

0

mδ(u− z)e−αzdz = −λe−αu. (1.2.18)

Applying the operator
(
d
du

+ α
)
to both sides of (1.2.18), together with a number of

algebraic manipulations, yields the second order homogeneous differential equation

cm′′δ(u) + [αc− (δ + λ)]m′δ(u)− αδmδ(u) = 0,

which can be rewritten as follows:

m′′δ(u) + am′δ(u) + bmδ(u) = 0, (1.2.19)

for a = (αc− (δ + λ)) /c and b = − (αδ) /c. In physics, Equation (1.2.19) is called
an equation of damped vibrations (see, for example, Zaitsev and Polyanin (2003)).
A general solution of (1.2.19) is given by

mδ(u) = e−
1
2
au
[
A1e

1
2
κu + A2e

− 1
2
κu
]
, (1.2.20)

for arbitrary constants A1, A2 ∈ R and κ2 = a2−4b > 0. To determine the constants
A1 and A2 we consider the boundary conditions for mδ(u) at 0 and at infinity. For
u→∞, the first term of (1.2.20) is unbounded, while the second term tends to zero.
The boundary condition limu→∞mδ(u) = 0, by definition of mδ(u) in (1.2.15), thus
implies that A1 = 0. Letting u = 0 in (1.2.18) yields

m′δ(0) =
(δ + λ)mδ(0)− λ

c
,

which then by (1.2.20) leads to

−(a+ κ)A2

2
=

(δ + λ)A2 − λ
c

.

Lastly, solving for A2 we obtain

A2 =
2λ

2 (δ + λ) + (a+ κ) c
=

2λ

αc+ δ + λ+
√

(αc− (δ + λ))2 + 4αδc
.

Thus, the Laplace transform of the ruin time in the Cramér-Lundberg model with
exponential claims is given by

mδ(u) =
2λ

αc+ δ + λ+
√

(αc− (δ + λ))2 + 4αδc
e
− 1

2

(
αc−(δ+λ)

c
+ 1
c

√
(αc−(δ+λ))2+4αδc

)
u
.

(1.2.21)

In fact, the expression (1.2.21) has been obtained previously using other techniques,
such as integrating factors (see, for example, Gerber and Shiu (1997b) and Gerber
and Shiu (1998)).
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In Chapters 2, 4 and 5, we derive an IE for the Gerber-Shiu expected discounted
penalty function following the approach presented in Example 1.2.2.

Remark 1.2.1. The Laplace transform of the trapping time approaches the trapping
probability as δ tends to zero: limδ↓0mδ(u) = P(τu <∞) ≡ ψ(u). For instance, for
the Cramér-Lundberg model with exponential claims, we can observe that setting
δ = 0 in (1.2.21) yields (1.2.13).

Remark 1.2.2. As an application of the Laplace transform of the ruin time, one
quantity of interest is the expected ruin time, i.e. the expected time at which the
insurer will be ruined. This quantity can be obtained by taking the derivative of
mδ(u), such that

E [τu; τu <∞] = − d

dδ
mδ(u)

∣∣∣∣
δ=0

,

where E [τu; τu <∞] is analogous to E
[
τu1{τu<∞}

]
. Similarly, the expected ruin time

given that ruin occurs can be calculated by taking the following ratio: E [τu | τu <∞] =
E [τu; τu <∞] /ψ(u). In the Cramér-Lundberg model with exponential claims, this
is given by (see, for instance, Gerber and Shiu (1998)):

E [τu | τu <∞] =
λ

c (αc− λ)

( c
λ

+ u
)
.

Variations of the Cramér-Lundberg Model

It would be a mistake to think that the Cramér-Lundberg model is the only stochas-
tic process studied in ruin theory because, although it is a simple model that manages
to capture the main features of the behaviour over time of an insurer’s surplus, it
is certainly only a stylized description of reality (Mandjes and Boxma, 2023). This
is one of the main reasons why multiple variations of the classical risk model have
been proposed in the literature. For an overview of the variations of the Cramér-
Lundberg model, interested readers may wish to consult Asmussen and Albrecher
(2010) and Mandjes and Boxma (2023). In this section, we will briefly discuss some
of these.

Representing an insurer’s surplus as a spectrally negative Lévy process is perhaps
one of the best known generalisations. Lévy processes are stochastic processes with
stationary independent increments and, in particular, spectrally negative Lévy pro-
cesses are Lévy processes with negative jumps only (we refer readers interested in
the topic of Lévy processes to Bertoin (1996)). Clearly, the Cramér-Lundberg model
is a spectrally negative Lévy process. Other examples of Lévy processes include the
Brownian motion and the Gamma process. Over the years, Lévy processes have
been extensively studied as an alternative to the classical risk model. For instance,
Dufresne and Gerber (1991) considered a classical compound Poisson process per-
turbed by diffusion, which was years later studied by Gerber and Landry (1998).
Moreover, the surplus process has also been extended to a Gamma process and other
infinitly divisible process models (see, for example, Dufresne et al. (1991), Gerber
(1992) and Dufresne and Gerber (1993)). For more details on the ruin probabilities
of Lévy processes, see Asmussen and Albrecher (2010).



1.2. MATHEMATICAL PRELIMINARIES 20

Perhaps one of the most criticisable points of the Cramér-Lundberg model is that it
assumes that claims occur at a constant rate, i.e. it considers a homogeneous Poisson
process. This is not consistent with the seasonal behaviour of certain lines of busi-
ness. For instance, adverse weather conditions (e.g. during winter) and epidemics
increase the frequency of claims in motor and life insurance, respectively (Asmussen
and Albrecher, 2010). In response to this drawback, several alternatives have been
proposed, of which we will mention some of the most important. The most natural
step is to replace the homogeneous Poisson process with an inhomogeneous one.
In addition, one can consider an inhomogeneous Poisson process with an intensity
function coming from some stochastic mechanism, which gives rise to the so-called
Cox process9. Björk and Grandell (1988) model the insurer’s surplus under this
alternative case and derive some inequalities for ruin probabilities. Years earlier,
however, the Poisson process was replaced with a renewal process, which allows the
inter-arrival times to have any distribution in the positive numbers, i.e. it is not
necessary for them to have an exponential distribution as in the classical case. Un-
der the renewal process set up, one derives the so-called Sparre Andersen process10.
Finally, one can also consider a Markov-modulated Poisson process, which allows
for “explosive claims arrivals” (Asmussen and Albrecher, 2010).

Another limitation of the classical Cramér-Lundberg model is the independence
among claim sizes, claim inter-arrival times and between claim sizes and claim inter-
arrival times. Over the years, researchers have introduced variations of the classical
model to relax this assumption. For instance, Albrecher and Boxma (2004) derive
exact solutions for the survival probability for a generalisation of the classical model
in which the distribution of the time between two claim occurrences depends on the
previous claim size. Similarly, Albrecher and Teugels (2006) incorporate dependence
among the inter-arrival time and its subsequent claim size according to an arbitrary
copula structure. A few years later, Albrecher et al. (2011) provided a class of
dependence models for which explicit expressions for the ruin probability can be
obtained (for more examples of risk processes with a certain degree of dependence,
see Chapters 13 and 9 of Asmussen and Albrecher (2010) and Mandjes and Boxma
(2023), respectively).

Other extensions of the classical Cramér-Lundberg model include modifying the
premium process (1.2.1) to incorporate more realistic scenarios such as stochas-
tic premiums (see, for example, Boikov (2003)) and investments (see, for instance,
Segerdahl (1942)).

As we can see, extensions of the classical risk process (and in general, of mathe-
matical models) arise, among other reasons, to try to resemble as closely as possible
the surplus of an insurance company (or the reality of the phenomenon of interest).
Throughout the chapters of this thesis, and with the aim of obtaining an answer to
our key question, we will work with stochastic processes that attempt to portray a
household’s capital over time. Some of these models can be seen as particular cases
of other risk processes previously studied in ruin theory.

9This process is named after the British statistician David Roxbee Cox, who was the first to
introduce it (Cox, 1955).

10The Danish mathematician Erik Sparre Andersen was the first to consider the renewal process
in ruin theory in 1957 (Andersen, 1957).
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1.3 Main Contributions of this Thesis

The main contributions of this thesis lie at the intersection of ruin theory and
development economics. The results of Chapters 2 and 5 have already been published
in the North American Actuarial Journal and the Scandinavian Actuarial Journal,
respectively. On the other hand, results derived in Chapters 3 and 4 have been
submitted for publication and are currently under review.

Motivated by recent concerns among academics and practitioners about the role of
(inclusive) insurance in poverty alleviation (see, for example, Kovacevic and Pflug
(2011), Carter and Janzen (2018), Liao et al. (2020) and Janzen et al. (2021)),
Chapters 2 and 3 aim to attach a rigorous mathematical framework (ruin theory)
to previous literature analysing the role of inclusive insurance in poverty reduction.
In particular, due to the growing importance of cooperation between governments
and insurers (as highlighted in Section 1.1.2), Chapter 2 discusses the role of both
government-subsidised and non-subsidised inclusive insurance schemes, while Chap-
ter 3 considers a non-subsidised scheme. Furthermore, understanding the need for
“smart” subsidies, which provide maximum social benefits while minimising distor-
tions in the insurance market and the mis-targeting of clients (Hill et al., 2014),
Chapter 2 introduces a transparent method to estimate optimal subsidies. From
a ruin theory perspective, the main contributions of Chapters 2 and 3 lie in the
derivation of closed-form solutions for trapping probabilities11 of two variations of
the classical Cramér-Lundberg model, which describe the dynamics of a household’s
capital over time. As Asmussen and Albrecher (2010) point out, the ideal in ruin
theory is to find analytical expressions for ruin probabilities. In particular, Chapter
3 provides for the first time a closed-form solution for the trapping probability of
a household’s capital risk process with proportional capital losses12. Moreover, it
introduces a recursive method to obtain a solution under the assumption that the
household purchases insurance protection. In previous works on the risk process
considered in Chapter 3, the trapping probability was only estimated numerically,
without attempting to find an analytical solution for the probability (see, for in-
stance, Kovacevic and Pflug (2011) and Azaïs and Genadot (2015)). According
to Asmussen and Albrecher (2010), numerical approximations are the second best
alternative after a closed-form solution.

Using ruin theory, and, in particular, applying the concept of the Gerber-Shiu ex-
pected discounted penalty function to the risk process with proportional capital
losses also studied in Chapter 3, Chapter 4 derives a functional form to model
household income short-fall. This finding is important, as in economics it is well-
known that the processes of income generation and distribution must be connected,
underpinned by a microeconomic foundation, to the functional form of any model
that adequately represents the distribution of personal income (see Section 1.1.4).
Interestingly, we find that the obtained model belongs to a family of distributions
that has been widely studied in economics for modelling individual income: the Gen-

11In following chapters, we will define the concept of “trapping probability”, which is analogous
to the concept of an insurer’s ruin probability (see Section 1.2.2).

12In modelling the capital of a household, “capital losses” play a role analogous to that of claims
experienced by an insurer (see Section 1.2.2).
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eralised Beta (GB) Distribution family, which was introduced by McDonald and Xu
(1995). Chapter 4 also provides for the first time an integral equation (IE) for the
Gerber-Shiu expected discounted penalty function of the risk process with propor-
tional capital losses, which represents the main contribution of this chapter to the
field of ruin theory. As underlined in Section 1.2.2, the Gerber-Shiu expected dis-
counted penalty function is useful for deriving results in connection with joint and
marginal distributions of the trapping (ruin) time, the capital surplus prior to the
trapping time and the capital deficit at the trapping time. Thus, we further solve
the IE for two particular cases from which the Laplace transform of the trapping
time and the distribution of the capital deficit at trapping are derived. Chapter
4 concludes with a discussion about the connection between the capital deficit at
trapping and the Foster-Greer-Thorbecke (FGT) index, a class of poverty measures
that was introduced in Section 1.1.3. As mentioned in Section 1.1.4, one of the
main advantages of parametric estimation of income distributions is that explicit
formulas, as functions of the parameters of the theoretical income distribution, are
available to measure poverty and inequality. Thus, Chapter 4 also validates the
adequacy of the GB distribution to model household income short-fall by fitting
it to household microdata from Burkina Faso’s Enquête Multisectorielle Continue
(EMC) 2014 13. It further exemplifies how this allows us to interpret in more de-
tail the shape parameters of the theoretical income short-fall distribution, as well
as to conduct sensitivity analyses of poverty measures to variations in the shape
parameters.

The last chapter of this thesis focuses on social assistance (see Section 1.1.1) and, in
particular, it assesses the effectiveness of unconditional cash transfer programmes in
reducing poverty. In doing so, it applies concepts from ruin theory and examines a
variation of the capital risk process with proportional capital losses which incorpo-
rates capital cash transfers for those households that are deemed eligible. Indeed, in
Chapter 5, we consider the same capital risk process also studied in Chapters 3 and
4, but incorporate ideas from the Omega risk process. In classical ruin theory, the
Omega risk process distinguishes between ruin (negative surplus) and bankruptcy
(going out of business). Thus, it is assumed that, even with negative surplus levels,
an insurance company can do business as usual and continue until bankruptcy oc-
curs. The Omega model was first introduced in Albrecher et al. (2011) and has been
extensively studied during the last decade in the actuarial science literature, with
researchers incorporating the bankruptcy concept into the Cramér-Lundberg model
and its variations (see, for example, Gerber et al. (2012), Albrecher and Lautscham
(2013) and Wang et al. (2016)). In Chapter 5, we derive explicit formulas for both
the trapping probability and the probability of extreme poverty for a particular case
of the distribution of the remaining proportion of a household’s capital upon ex-
periencing a capital loss. Here, the event of extreme poverty only depends on the
current value of a household’s capital given by some extreme poverty rate function
and is analogous to the bankruptcy event from classical ruin theory. Numerical
examples presented in Chapter 5 are in line with previous empirical studies in de-
velopment economics, which indicate that unconditional cash transfer programmes
are an efficient social protection strategy to keep households out of poverty and ex-

13The main objective of the Continuous Multisectoral Survey (EMC) was to generate sound data
to monitor the country’s sustainable development.
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treme poverty, as their trapping probability and the probability of extreme poverty,
respectively, decrease when they are part of such a strategy.
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Chapter 2

Subsidising Inclusive Insurance to
Reduce Poverty

This chapter is based on the following article:

Flores-Contró, J. M., K. Henshaw, S. H. Loke, S. Arnold, and C. D. Constantinescu
(2024). Subsidising Inclusive Insurance to Reduce Poverty. Forthcoming in North
American Actuarial Journal.

Abstract. In this chapter, we assess the benefits of coordination and partnerships between
governments and private insurers, and provide further evidence for microinsurance products
as powerful and cost-effective tools for achieving poverty reduction. To explore these ideas,
we model the capital of a household from a ruin-theoretic perspective to measure the impact
of microinsurance on poverty dynamics and the governmental cost of social protection.
We analyse the model under four frameworks: uninsured, insured (without subsidies),
insured with subsidised constant premiums and insured with subsidised flexible premiums.
Although insurance alone (without subsidies) may not be sufficient to reduce the likelihood
of falling into the area of poverty for specific groups of households, since premium payments
constrain their capital growth, our analysis suggests that subsidised schemes can provide
maximum social benefits while reducing governmental costs.

25
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2.1 Introduction

In recent years, governments in developing countries have been increasingly involved
in the provision of insurance programmes. In countries such as China and India
for instance, the agricultural insurance sector has grown significantly thanks to
the support (and premium subsidies) provided by central and provincial govern-
ments (Kramer et al., 2022). While doubts about the role of insurers in alleviating
poverty exist among practitioners, adequate coordination between governments, pri-
vate insurance companies and other stakeholders (e.g. NGOs, international financial
institutions and other donors) has been shown to enhance the development of sus-
tainable, affordable and cost-effective insurance products (Linnerooth-Bayer and
Mechler, 2007; Auzzir et al., 2014).

The most common form of government support for insurance are premium subsidies.
The central and provincial governments provide Chinese farmers with subsidies ex-
ceeding 50% of the premium amount, of which farmers pay only about 20% (Wang
et al., 2011; Ye et al., 2020). Similarly, the Pradhan Mantri Fasal Bima Yojana
(PMFBY), a government-sponsored multi-stakeholder crop insurance scheme in In-
dia, charges farmers a maximum premium ranging from 2% to 5% of the sum insured
(or the actuarial rate, whichever is lower), with the remaining part of the premium
paid on a 50/50 basis by the central and state governments (Kaur et al., 2021).
Insurance premium subsidies must be designed with a clearly stated purpose. They
should target those in need and address market deficiencies or consumer equity con-
cerns (see Hill et al. (2014), which is a technical report from the United Nations’
International Labour Organization (ILO)). Experience shows that, when designed
properly, subsidised insurance schemes represent a powerful and cost-effective way
to achieve public policy objectives, while poorly designed insurance premium subsi-
dies can be inefficient and lead to significant economic costs (Hazell and Varangis,
2020).

Adopting the novel ruin-theoretic approach presented by Kovacevic and Pflug (2011),
this chapter studies the impact of insurance (both with and without subsidies) on
poverty dynamics and the governmental cost of social protection. Through this anal-
ysis, we seek to determine the benefits derived from coordination and partnerships
between governments and private insurers, and to highlight the cost-effectiveness
of government support for insurance. Previous studies have approached the same
problem from a dynamic stochastic programming perspective. Ikegami et al. (2018),
Carter and Janzen (2018) and Janzen et al. (2021) propose dynamic models of house-
hold consumption, investment and risk management, considering a social insurance-
type mechanism which first prioritises lending aid to the vulnerable non-poor, con-
tingent on their experience of negative shocks, then to those already below the
poverty line. Introduction of an index-based insurance market is found to outper-
form the asset-based vulnerability-targeted protection in poverty reduction, eco-
nomic growth and the cost of social protection. Although implementation of a
vulnerability-targeted strategy induces a short-term increase in poverty, rates are
lower than those associated with both in-kind and cash transfers in the medium-
and long-term.
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Carter and Janzen (2018) and Janzen et al. (2021) compare the impact of insur-
ance when all costs are paid by the policyholder and when targeted-subsidies are
provided to the vulnerable and already poor. In the latter study, those in the
neighbourhood of the poverty line do not optimally purchase insurance (without
subsidies), instead suppressing their consumption and mitigating the probability of
falling into poverty. Observing a greater reduction in poverty in comparison to pure
cash transfers, Jensen et al. (2017) provide empirical evidence for the benefits of
insurance-based social protection through analysis of safety net and drought-based
livestock insurance programmes in northern Kenya. Chantarat et al. (2017) con-
sider the welfare impacts of the same index-based insurance programme, using herd
size dynamics to address the vulnerability to poverty associated with covariate live-
stock mortality such that critical herd size mimics the poverty line. Here, targeted
premium subsides are optimised across various herd size groups such that given
measures of poverty reduction are maximised. Increases and decreases in house-
hold wealth and poverty, respectively, were greater under the optimal strategy than
under alternative needs-based subsidisation mechanisms and with no insurance. In
the presence of needs-based subsidisation which provides free protection to the most
poor, the number of poor continued to increase, thus highlighting the importance
of social protection strategies that target those still above but close to the poverty
line in addition to the already poor.

The insurance strategies considered in these studies are inclusive insurance mech-
anisms specifically designed to cater for the most vulnerable. Inclusive insurance,
commonly referred to as microinsurance, relates to the provision of insurance ser-
vices to low-income populations with limited, or no access to mainstream insurance
or alternative effective risk management strategies. Targeting low-income individu-
als living close to or below the poverty line, microinsurance aims to close the pro-
tection gap that exists between uninsured and insured losses to life, property and
health by providing protection to the poor. However, barriers to microinsurance
penetration exist due to constraints on product affordability resulting from funda-
mental features of the microinsurance environment. These distinct features include
the nature of low-income risks, limited consumer financial literacy and experience,
product accessibility and data availability. While novel solutions for the supply and
distribution of products in this environment exist (e.g. mobile-based business mod-
els (Kousky et al., 2021)), it is important to consider the viability of microinsurance
uptake for all sectors of the target population, particularly for the most vulnerable.

Premium payments can in fact heighten the risk of falling into poverty for the
proportion of the population living just above the poverty line, inducing a balance
between protection and loss as a result of insurance coverage which is dependent
on the entity’s level of capital (see, for example, Kovacevic and Pflug (2011) and
Liao et al. (2020), where the latter use a multiple-equilibrium framework to analyse
the impact of subsidised and unsubsidised agricultural insurance on poverty rates
in rural China). This insufficiency of microinsurance alone as a means for poverty
reduction for the most exposed necessitates an alternative solution. For this purpose,
as in the aforementioned studies, we consider microinsurance schemes which are
supported by social protection strategies, and more specifically, their potential in
minimising both the probability of a household falling below the poverty line and the
governmental cost of social protection. For thorough discussions of microinsurance,
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the challenges associated with adapting commercial insurance to serve the poor and
the insurability of risks in the market, the interested reader may refer to Dror (2019),
Churchill (2007) and Biener and Eling (2012).

Besides reducing the impact on household capital growth, the use of subsidies to
lower consumer premium payments has the potential to increase microinsurance up-
take, with wealth and product price positively and negatively influencing microin-
surance demand, respectively, see Eling et al. (2014) and Platteau et al. (2017).
However, this relationship is not transparent (see, for instance, Cole et al. (2013),
where the authors find that, in the city of Ahmedabad in India, more than half of
households in their sample do not purchase rainfall insurance even when premiums
are set significantly below actuarially fair values), with additional factors, includ-
ing financial education levels, insurer trust and logistical problems in the purchase
and renewal of coverage, having significant influence on a household’s decision to in-
sure. A comprehensive approach should therefore be adopted by insurance providers
such that low-cost subsidisation schemes are complemented by innovative activities
improving understanding of and access to insurance products. Focusing specifi-
cally on agricultural insurance, Hazell and Varangis (2020) present government and
donor incentives for subsidisation. As an example, temporary subsidies can enable
low-income farmers to bear the risk of adopting innovative technologies which may
bring them out of poverty. However, in addition to improving the economic circum-
stances of the insured, through the provision of insurance experience this strategy
mitigates the uncertainties surrounding insurance common among consumers in the
microinsurance environment, while improving the quality of consumer data. The
study additionally highlights how subsidisation schemes help to scale up insurance
products.

Although important for poverty alleviation, the behaviour of a household below the
poverty line is not considered in this study. Households that live or fall below the
poverty line are said to be in a poverty trap, where a poverty trap is a state of
poverty from which it is difficult to escape without external help. Poverty trapping
is a well-studied topic in development economics (the interested reader may refer to
Azariadis and Stachurski (2005), Bowles et al. (2006), Kraay and McKenzie (2014),
Barrett et al. (2016) and references therein for further discussion; see Matsuyama
(2008) for a detailed description of the mechanics of poverty traps), however, for the
purpose of this study, we use the term “trapping” only to describe the event that a
household falls into poverty, focusing our interest on low-income behaviours above
this critical line.

Our study complements the aforementioned studies that analyse the impact of in-
clusive insurance from both an empirical and dynamic stochastic programming per-
spective. We introduce a more formal and rigorous mathematical framework that
analytically demonstrates the benefits of partnerships between governments and
private insurers. For that purpose, we adapt the piecewise-deterministic Markov
process proposed by Kovacevic and Pflug (2011) such that households are subject
to shocks of random size and we consider a non-discretised capital process. In line
with the poverty trap ideology, we assume the area of poverty to be an absorbing
state and consider only the state of events above the poverty threshold. Obtaining
explicit solutions for the trapping probability and the governments’ cost of social
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protection using classical risk theory techniques (where this is considered the ideal
scenario (Asmussen and Albrecher, 2010)), we compare the influence of three struc-
tures of microinsurance on these quantities. Specifically, we consider a microinsur-
ance scheme with (i) unsubsidised premiums, (ii) subsidised constant premiums and
(iii) subsidised flexible premiums. Unlike previous studies, where the cost of social
protection is defined as the present value of government subsidies plus the transfers
needed to close the poverty gap for all poor households (see, for example, Ikegami
et al. (2018) and Janzen et al. (2021)), the ruin-theoretic perspective adopted in the
proposed model allows us to include a supplemental fixed cost that ensures, with a
certain level of confidence, that households will not return to poverty, should they
fall underneath the threshold. In this way, the likelihood that the government will
re-incur these costs for the same household is reduced.

The adopted capital models are special cases of well-studied risk theory models.
Therefore, a standard modelling approach with application to poverty trapping is
considered. Typically assumed to represent the surplus process of an insurer, our
alternative application enforces two key adaptations. First, unlike the barrier at
zero considered in the classical setting, where an insurer is deemed to be ruined if
their surplus falls below zero, a non-zero critical barrier reflecting the poverty line
is assumed. Second, in the classical case, insurers raise capital and rely on access
to reinsurance to avoid falling below the critical level. Thus, two mechanisms for
escaping ruin exist. On the other hand, the level of capital growth attained by
a household is the only mechanism protecting them from ruin in the absence of
insurance. In addition, while in the classical setting the initial surplus is typically
considered to be large enough to keep the insurer away from ruin, in this study we
focus on analysing households with initial capital just above the poverty line.

Under the first premium framework we assume premium payments are made by
households. We demonstrate that these payments can constrain households’ capital
growth and thus increase their trapping probability compared to that of uninsured
households, as previous studies have shown. Conversely, under such a scheme, the
cost of social protection remains lower than the corresponding uninsured cost. With
the need for an alternative solution to address the observed negative impact on
poverty dynamics, under the second premium framework we assume governments
provide insurance premium subsidies to all households. Reducing premium pay-
ments by means of subsidies has a positive impact on household capital growth and
their trapping probabilities. Furthermore, the results obtained allow us to estimate
optimal subsidies for households with varying degrees of capital such that they pre-
serve a trapping probability equal to that of when uninsured. The proposed subsidy
optimisation aligns with the idea of “smart” subsidies, which provide maximum
social benefits while minimising distortions in the insurance market and the mis-
targeting of clients (Hill et al., 2014). Here, the optimal subsidy seeks to reduce
the likelihood of a household falling into the area of poverty (clear objective), has a
mathematical foundation (transparent), intends to help those in need of assistance
(targeted), can be assessed over time (monitoring and evaluation), can be strate-
gically planned (exit strategy/long-term financing) and is capable of being costed
(costs contained). Our analysis shows that, under this subsidised microinsurance
scheme, while government support is not essential for privileged households, vul-
nerable households with capital levels close to the poverty line require assistance.
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Moreover, the cost of social protection is lower for the most vulnerable than in the
corresponding uninsured framework, but is higher for the most privileged.

Mimicking the well-known risk theory dividend barrier strategy, the third framework
considers a novel scheme where households pay premiums only when their capital
is above some pre-defined capital barrier, with the premium otherwise paid by the
government. Granting flexibility on premium payments allows households to attain
lower trapping probabilities, since they are assisted by the government when their
capital lies close to the poverty trap. Continuing with the idea of “smart” subsidies,
we optimise the capital barrier level at which governments should begin providing
support. As could be expected, those closest to the poverty line require immediate
aid, with optimal barriers lying above their initial capital, whereas those further
away from the poverty trap possess the ability to pay premiums themselves once
enrolled in the scheme, yielding to optimal barriers lying below their initial capital
levels. Under this framework, the cost of social protection remains lower than the
corresponding uninsured cost.

Premium subsidies are not phased out over time in the inclusive insurance schemes
considered here. Nevertheless, it is often necessary to assess the financial dependence
of subsidised inclusive insurance schemes on external support. That is, situations in
which governments decide to reduce or end the provision of subsidies, that may lead
to the need to raise premiums beyond the reach of their customers, should be taken
into account when evaluating the viability of a subsidised scheme, as they expose
concerns regarding the scheme’s sustainability.

Informal risk-sharing networks are highly prevalent in low-income economies (see,
for example, Townsend (1994), Bardhan and Udry (1999), De Weerdt and Der-
con (2006)). In particular, community-based networks in Ghana and South Africa
gather funds and other contributions to meet funeral expenses (Ramsay and Arcila,
2013). These networks help to mitigate the risk of idiosyncratic losses. Heavily
subsidising an insurance product would, however, lessen the need for such networks,
as policyholders would be protected from the occurrence of adverse events. Hence,
the strength of the networks could suffer as a result, leaving households exposed if
the subsidy is eventually removed. Although our definition of “insurance” covers all
forms of losses, in reality, an insurance policy typically covers a single peril. It is
therefore likely that, even with subsidised insurance, low-income households will still
participate in risk-sharing mechanisms to mitigate the losses that are not covered by
their insurance policies. Thus, considering the situation in which subsidies cease, the
informal networks could be rebuilt on the foundations that remain. Furthermore,
if phasing out subsidies, governments could undertake activities to encourage the
continuation of informal risk-sharing to prevent the crowding out of informal risk-
transfer mechanisms. Evidence does, however, suggest that insurance uptake drops
when a subsidy is removed (Platteau et al., 2017), implying that households re-
vert back to informal risk-sharing mechanisms rather than purchasing unsubsidised
coverage. Formal insurance and informal risk-sharing networks have, in fact, been
found to be complementary (see, for example, Will et al. (2021)).

Government subsidies may induce an increase in moral hazard, since the reduc-
tion in premiums diminishes policyholders’ sensitivity to the consequences of a loss.
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However, as described by Biener and Eling (2012) and Hill et al. (2014) among
others, reducing information asymmetries through government investment in data
collection can help to alleviate the increased risk by enabling better understanding
of a policyholder’s true risk exposure. This issue is of particular concern in the
health, agricultural and catastrophe insurance markets. Distribution through local
enterprises (Dercon et al., 2006), group-based products (Biener and Eling, 2012) and
financial education (Biener et al., 2014) have also been found to lessen information
asymmetries associated with moral hazard.

The remainder of the chapter is structured as follows. In Section 2.2, we intro-
duce the household capital model and its associated infinitesimal generator. The
(trapping) time at which a household falls into the area of poverty is defined in
Section 2.3, and subsequently the explicit trapping probability and the expected
trapping time are derived for the basic uninsured model. Links between classical
ruin models and the trapping model of this chapter are stated in Sections 2.2 and
2.3. Microinsurance is introduced in Section 2.4, where we assume a proportion
of household losses are covered by a microinsurance policy. The capital model is
redefined and the trapping probability is derived. Sections 2.5 and 2.6 consider the
case where households are proportionally insured through a government subsidised
microinsurance scheme, with the impact of subsidised flexible premiums discussed in
Section 2.6. Optimisation of the subsidy and capital barrier levels are presented in
Sections 2.5 and 2.6, alongside the associated governmental cost of social protection.
Concluding remarks are provided in Section 2.7.

2.2 The Capital Model

The fundamental dynamics of the model follow those of Kovacevic and Pflug (2011),
where the growth in accumulated capital {Xt} of an individual household is given
by

dXt

dt
= r · [Xt − x∗]+ , (2.2.1)

where [x]+ = max(x, 0). The capital growth rate r = (1− a) · b · c > 0 incorporates
household rates of consumption (0 < a < 1), income generation (0 < b) and invest-
ment or savings (0 < c < 1), while x∗ > 0 represents the threshold below which a
household lives in poverty. Reflecting the ability of a household to produce, accu-
mulated capital {Xt} is composed of land, property, physical and human capital,
with health as a form of capital in extreme cases where sufficient health services and
food accessibility are not guaranteed (Dasgupta, 1997). The notion of a household
in this model setting may be extended for consideration of poverty trapping within
economic units such as community groups, villages and tribes, in addition to the
traditional household structure.

The dynamical process in (2.2.1) is constructed such that consumption is assumed
to be an increasing function of wealth (for full details of the model construction see
Kovacevic and Pflug (2011)). The poverty threshold x∗ represents the amount of
capital required to forever attain a critical level of income, below which a household
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would not be able to sustain their basic needs, facing elementary problems relating to
health and food security. Throughout the chapter, we will refer to this threshold as
the critical capital or the poverty line. Since (2.2.1) is positive for all levels of capital
greater than the critical capital, points less than or equal to x∗ are stationary (capital
remains constant if the critical level is not met). In this basic model, stationary
points below the critical capital are not attractors of the system if the initial capital
exceeds x∗, in which case the capital process {Xt} grows exponentially with rate r.

Using capital as an indicator of financial stability over other commonly used mea-
sures such as income enables a more effective analysis of a household’s wealth and
well-being. Households with relatively high income, considerable debt and few assets
would be vulnerable if any loss of income was to occur, while low-income households
could live comfortably on assets acquired during more prosperous years for a long-
period of time (Gartner et al., 2004).

In line with Kovacevic and Pflug (2011), we expand the dynamics of (2.2.1) under
the assumption that households are susceptible to the occurrence of capital losses,
including severe illness, the death of a household member or breadwinner and catas-
trophic events such as floods and earthquakes. We assume occurrence of these events
follows a Poisson process with intensity λ, where the capital process follows the dy-
namics of (2.2.1) in between events. On the occurrence of a loss, the household’s
capital at the event time reduces by a random amount Zi. The sequence {Zi} is in-
dependent of the Poisson process and i.i.d. with common distribution function GZ .
In contrast to Kovacevic and Pflug (2011), we assume reduction by a given amount
rather than a random proportion of the capital itself. This adaptation enables anal-
ysis of a tractable mathematical model that provides, for instance, the possibility of
finding an analytical solution for the infinite-time trapping probability (defined in
Section 2.3). This differs from previous work in which numerical methods, consid-
ered by Asmussen and Albrecher (2010) as the second best alternative to calculating
trapping probabilities when closed-form expressions are not available, are employed
to estimate such a quantity (see, for example, Kovacevic and Pflug (2011) and Azaïs
and Genadot (2015)). The core objective of studying the probability of a household
falling into the area of poverty remains.

A household reaches the area of poverty if it suffers a loss large enough that the
remaining capital is attracted into the poverty trap. Since a household’s capital does
not grow beyond the critical capital x∗, households that fall into the area of poverty
will never escape without external help. Once below the critical capital, households
are exposed to the risk of falling deeper into poverty, with the dynamics of the
model allowing for the possibility of negative capital. A reduction in a household’s
capital below zero could represent a scenario where total debt exceeds total assets,
resulting in negative capital net worth. The experience of a household below the
critical capital is, however, out of the scope of this chapter.

We will now formally define the stochastic capital process, where the process for
the inter-event household capital (2.2.2) is derived through the solution of the first
order Ordinary Differential Equation (ODE) (2.2.1). This model is an adaptation
of the model proposed by Kovacevic and Pflug (2011).

Definition 2.2.1. Let Ti be the ith event time of a Poisson process {Nt}t≥0 with
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parameter λ, where T0 = 0. Let Zi ≥ 0 be a sequence of i.i.d. random variables with
distribution function GZ , independent of the process {Nt}. For Ti−1 ≤ t < Ti, the
stochastic growth process of the accumulated capital Xt is defined as

Xt =

{(
XTi−1

− x∗
)
er(t−Ti−1) + x∗ if XTi−1

> x∗,

XTi−1
otherwise.

(2.2.2)

At the jump times t = Ti, the process is given by

XTi =

{(
XTi−1

− x∗
)
er(Ti−Ti−1) + x∗ − Zi if XTi−1

> x∗,

XTi−1
− Zi otherwise.

(2.2.3)

The infinitesimal generator of the stochastic process {Xt}t≥0, which is a piecewise-
determinsitic Markov process (Davis, 1984), is given by

(Af)(x) = r(x− x∗)f ′(x) + λ

∫ ∞

0

[f(x− z)− f(x)] dGZ(z), x ≥ x∗.

The capital model as defined in (2.2.2) and (2.2.3) is in fact a topic well-studied
in ruin theory since the 1940s. As such, well-established techniques can be easily
applied to the poverty trapping context of this chapter. In ruin theory, modelling is
undertaken from the point of view of an insurance company. Consider the insurer’s
surplus process {Ut}t≥0 given by

Ut = u+ pt+ ν

∫ t

0

Us ds−
Nt∑

i=1

Zi, (2.2.4)

where u is the insurer’s initial capital, p is the constant premium rate, ν is the risk-
free interest rate, Nt is a Poisson process with parameter λ which counts the number
of claims in the time interval [0, t] and {Zi}∞i=1 is a sequence of i.i.d. claim sizes
with distribution function GZ . This model is also called the insurance risk model
with deterministic investment, first proposed by Segerdahl (1942) and subsequently
studied by Harrison (1977) and Sundt and Teugels (1995). For a detailed literature
review on this model prior to the turn of the century, readers may consult Paulsen
(1998).

Observe that when p = 0, the insurance model (2.2.4) for positive surplus is equiv-
alent to the capital model (2.2.2) and (2.2.3) above the poverty line x∗ = 0. Subse-
quently, the capital growth rate r in our model corresponds to the risk-free invest-
ment rate ν of the insurer’s surplus model. More connections between these two
models will be made in the next section following introduction of the trapping time.

2.3 The Trapping Time

Let

τx := inf {t ≥ 0 : Xt < x∗ | X0 = x}
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denote the time at which a household with initial capital x ≥ x∗ falls into the area of
poverty (the trapping time) and let ψ(x) = P(τx <∞) be the infinite-time trapping
probability. To study the distribution of the trapping time we apply the expected
discounted penalty function at ruin, a concept commonly used in actuarial science
(Gerber and Shiu, 1998), such that with a force of interest δ ≥ 0 and initial capital
x ≥ x∗, we consider

mδ(x) = E
[
w(Xτ−x

− x∗, | Xτx − x∗ |)e−δτx1{τx<∞}
]
, (2.3.1)

where 1{A} is the indicator function of a set A and w(x1, x2) for 0 ≤ x1, x2 <∞, is a
non-negative penalty function of x1, the capital surplus prior to the trapping time,
and x2, the capital deficit at the trapping time. For more details on the so-called
Gerber-Shiu risk theory, interested readers may wish to consult Kyprianou (2013).

The probabilistic properties of the trapping time are contained in its distribution
function. However, it is sometimes much easier to work with a transformation rather
than with the distribution function of a random variable itself. Here, we focus
on the Laplace transform, which is particularly useful for nonnegative, absolutely
continuous random variables such as the trapping time and is a powerful tool in
probability theory. Moreover, the Laplace transform characterises the probability
distribution1. For a continuous random variableX, with probability density function
fX , the Laplace transform of fX is given by the expected value L{fX} (s) = E

[
e−sX

]
.

Note that, specifying the penalty function such that w(x1, x2) = 1 in (2.3.1), mδ(x)
becomes the Laplace transform of the trapping time, also interpreted as the expected
present value of a unit payment due at the trapping time.

For simplicity, throughout the rest of the chapter we will assume that capital losses
are exponentially distributed (Zi ∼ Exp(α)).

Proposition 2.3.1. Consider a household capital process (as proposed in Definition
2.2.1) with initial capital x ≥ x∗, capital growth rate r, intensity λ > 0 and expo-
nentially distributed capital losses with parameter α > 0. The Laplace transform of
the trapping time is given by

mδ(x) =
λ

(λ+ δ)U
(
1− λ

r
, 1− λ+δ

r
; 0
)ey(x)U

(
1− λ

r
, 1− λ+ δ

r
;−y(x)

)
,

(2.3.2)

where δ ≥ 0 is the force of interest for valuation, y(x) = −α(x − x∗) and U(·) is
Tricomi’s Confluent Hypergeometric Function as defined in (2.A.6).

See Appendix 2.A.1 for proof of Proposition 2.3.1.

Remark 2.3.1. Figure 2.1a shows that the Laplace transform of the trapping time
(2.3.2) approaches the trapping probability as δ tends to zero, since

lim
δ↓0

mδ(x) = P(τx <∞) ≡ ψ(x).

1Only if it exists and is finite in a neighborhood of zero.
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As δ → 0, (2.3.2) yields

ψ(x) =
1

U
(
1− λ

r
, 1− λ

r
; 0
)ey(x)U

(
1− λ

r
, 1− λ

r
;−y(x)

)
.

We can further simplify the expression for the trapping probability using the upper
incomplete gamma function Γ(a; z) =

∫∞
z
e−tta−1dt. Applying the relation

Γ(a; z) = e−zU(1− a, 1− a; z)

(see Equation (13.6.28) of Abramowitz and Stegun (1972)) and the fact that Γ(a; 0) =
Γ(a) for R(a) > 0, we have

ψ(x) =
Γ
(
λ
r
;−y(x)

)

Γ
(
λ
r

) . (2.3.3)
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Figure 2.1: (a) Laplace transform mδ(x) of the trapping time when Zi ∼ Exp(1),
a = 0.1, b = 1.4, c = 0.4, λ = 1, x∗ = 1 for δ = 0, 1
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(b) Trapping probability

ψ(x) when Zi ∼ Exp(α), a = 0.1, b = 1.4, c = 0.4, λ = 1, x∗ = 1 for α = 0.8, 1, 1.5, 2.

Figure 2.1b displays the trapping probability ψ(x) for the stochastic capital process
Xt. Clearly, increasing the value of the parameter α of the exponential distribution
of the capital losses reduces the trapping probability for all households, since losses
will more likely take values close to zero and will therefore have less impact on
households’ capital.

Remark 2.3.2. As an application of the Laplace transform of the trapping time, one
quantity of interest is the expected trapping time, i.e. the expected time at which a
household will fall into the area of poverty. Reducing a household’s trapping prob-
ability is central to poverty alleviation. However, knowledge of the time at which a
household is expected to fall below the poverty line would allow insurers and gov-
ernments to better prepare for the potential need to lift a household out of poverty.
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It provides an alternative comparative measure for the performance analysis of dif-
ferent schemes, helping to inform insurance product design and financial education
for consumers. For example, a household with a low expected trapping time may
be encouraged to adopt certain risk mitigating behaviours to reduce the impact of
shock events and hence the likelihood of them falling below the poverty line. This
quantity can be obtained by taking the derivative of mδ(x), such that

E [τx; τx <∞] = − d

dδ
mδ(x)

∣∣∣∣
δ=0

, (2.3.4)

where E [τx; τx <∞] is analogous to E
[
τx1{τx<∞}

]
.

Corollary 2.3.1. The expected trapping time under the household capital model pro-
posed in Definition 2.2.1 with initial capital x ≥ x∗, capital growth rate r, intensity
λ > 0 and exponentially distributed capital losses with parameter α > 0 is given by

E [τx; τx <∞] =
Γ
(
λ
r
;−y(x)

)

λU
(
1− λ

r
, 1− λ

r
; 0
) − Γ

(
λ
r
;−y(x)

)
U (c)

(
1− λ

r
, 1− λ

r
; 0
)

r
[
U
(
1− λ

r
, 1− λ

r
; 0
)]2

+ ey(x)U
(c)
(
1− λ

r
, 1− λ

r
;−y(x)

)

rU
(
1− λ

r
, 1− λ

r
; 0
) ,

(2.3.5)

where y(x) = −α(x− x∗), U(·) is Tricomi’s Confluent Hypergeometric Function as
defined in (2.A.6) and U (c)(·) its derivative with respect to the second parameter as
presented in (2.A.10).

The mathematical proof of Corollary 2.3.1 is presented in Appendix 2.A.2. Note
that, the expected trapping time given that trapping occurs can be calculated by
taking the following ratio (see for example, Equation (4.37) of Gerber and Shiu
(1998)),

E [τx|τx <∞] =
E [τx; τx <∞]

ψ(x)
.

In line with intuition, the expected trapping time is an increasing function of both
the capital growth rate r and initial capital x. A number of expected trapping times
for varying values of r are displayed in Figure 2.2.
Remark 2.3.3. The ruin probability for the insurance model (2.2.4) given by

ξ(u) = P(Ut < 0 for some t > 0 | U0 = u),

is found by Sundt and Teugels (1995) to satisfy the Integro-Differential Equation
(IDE)

(νu+ p)ξ′(u)− λξ(u) + λ

∫ u

0

ξ(u− z) dGZ(z) + λ(1−GZ(u)) = 0, u ≥ 0.

(2.3.6)

Note that when p = 0, (2.3.6) coincides with the special case of (2.A.1) when x∗ = 0,
w(x1, x2) = 1 and δ = 0. Thus, the household trapping time can be thought of as
the insurer’s ruin time. Indeed, the ruin probability in the case of exponential claims
when p = 0, as shown in Section 6 of Sundt and Teugels (1995), is exactly the same
as the trapping probability (2.3.3) when x∗ = 0.
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Figure 2.2: Expected trapping time when Zi ∼ Exp(1), λ = 1 and x∗ = 1 for
r = 0.02, 0.03, 0.04.

2.4 Introducing Microinsurance

As in Kovacevic and Pflug (2011), we assume households have the option of en-
rolling in a microinsurance scheme that covers a certain proportion of the capital
losses they encounter. The microinsurance policy has proportionality factor 1 − κ,
where κ ∈ [0, 1], such that 100 · (1− κ) percent of the damage is covered by the mi-
croinsurance provider. The premium rate paid by households, calculated according
to the expected value principle, is given by

π(κ, θ) = (1 + θ) · (1− κ) · λ · E [Zi] , (2.4.1)

where θ is some loading factor. The expected value principle is popular due to its
simplicity and transparency. When θ = 0, one can consider π(κ, θ) to be the pure
risk premium (Albrecher et al., 2017).

The stochastic capital process of a household covered by a microinsurance policy
is denoted by X (κ)

t . We differentiate between all variables and parameters relating
to the original uninsured and the insured processes through use of the superscript
(κ) in the latter case. We assume the basic model parameters are unchanged by
the introduction of microinsurance coverage (parameters a, b and c of Kovacevic and
Pflug (2011), previously introduced in Section 2.2). Here, we only allow households
to select a fixed retention rate, while other studies look for an optimal retention rate
process that maximises the expected discounted capital by admitting adjustments
in the retention rate after each capital loss throughout the lifetime of the insurance
contract (see, for example, Kovacevic and Semmler (2021)).

Since premiums are paid from a household’s income, the capital growth rate r is
adjusted such that it reflects the lower rate of income generation resulting from
the need for premium payment. The premium rate is restricted to prevent certain
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poverty, which would occur should it exceed the rate of income generation. The cap-
ital growth rate of the insured household r(κ) = (1− a) · (b− π) · c > 0 is lower than
that of the uninsured household, while the critical capital is higher (see Kovacevic
and Pflug (2011) for further discussion). Note that, previous work such as that of
Janzen et al. (2021) allow households to choose optimal levels of consumption and
insurance coverage over time based on asset holdings and the probability distribu-
tion of future assets. Here, all households who can afford to buy insurance enrol
in a scheme; that is, as mentioned above, households whose income generation rate
is greater than the insurance premium are able to choose any affordable insurance
coverage, therefore admitting both optimal and suboptimal choices with respect to
the trapping probability. Although this feature aligns with the low levels of finan-
cial literacy that characterise the microinsurance environment (Churchill and Matul,
2012), it could initially be considered as a limitation of our model. However, one of
the core objectives of the subsidised schemes introduced in Sections 2.5 and 2.6 is
to diminish the adverse effects that arise with suboptimal choices and as such any
limitation is accounted for.

In between jumps, the insured stochastic growth process X (κ)

t behaves in the same
manner as (2.2.2), with parameters corresponding to the proportional insurance case
of this section. By enrolling in a microinsurance scheme a household’s capital losses
are reduced to Yi := κ·Zi. Considering the case in which losses follow an exponential
distribution with parameter α > 0, the structure of the IDE (2.A.1) remains the
same. However, acquisition of a proportional microinsurance policy changes the
parameter of the distribution GY of the random losses {Yi}. Namely, we have that
Yi ∼ Exp (α(κ)) for κ ∈ (0, 1], where α(κ) := α/κ.
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Figure 2.3: (a) Laplace transform m(κ)

δ (x) of the trapping time when Zi ∼ Exp(1),
a = 0.1, b = 1.4, c = 0.4, λ = 1, x(κ)∗ = 1, κ = 0.5 and θ = 0.5 for δ = 0, 1
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Trapping probability ψ(κ)(x) when Zi ∼ Exp(α), a = 0.1, b = 1.4, c = 0.4, λ = 1,
x(κ)∗ = 1, κ = 0.5 and θ = 0.5 for α = 0.8, 1, 1.5, 2.



39 CHAPTER 2. SUBSIDISING INCLUSIVE INSURANCE TO REDUCE POVERTY

Following a similar procedure to that in Proposition 2.3.1 (as presented in Appendix
2.A), one easily obtains the Laplace transform of the trapping time and thus the
trapping probability for the insured process.

Proposition 2.4.1. Consider the capital process of a household enrolled in a mi-
croinsurance scheme with proportionality factor 1− κ ∈ [0, 1] (as introduced in this
section). Assume the household has initial capital x ≥ x(κ)∗, capital growth rate r(κ),
intensity λ > 0 and exponentially distributed capital losses with parameter α(κ) > 0.
The Laplace transform of the trapping time is given by

m(κ)

δ (x) =
λ

(λ+ δ)U
(
1− λ

r(κ)
, 1− λ+δ

r(κ)
; 0
)ey(κ)(x)U

(
1− λ

r(κ)
, 1− λ+ δ

r(κ)
;−y(κ)(x)

)
,

(2.4.2)

where δ ≥ 0 is the force of interest for valuation and y(κ)(x) = −α(κ) (x− x(κ)∗).

Figure 2.3a displays the Laplace transform m(κ)

δ (x) for varying values of δ. As men-
tioned earlier, as δ → 0, the Laplace transform m(κ)

δ (x) converges to the trapping
probability ψ(κ)(x).

Remark 2.4.1. The trapping probability of the insured process ψ(κ)(x), displayed in
Figure 2.3b, is given by

ψ(κ)(x) =
Γ
(
λ
r(κ)

;−y(κ)(x)
)

Γ
(
λ
r(κ)

) .

As mentioned previously, increasing the value of the parameter α of the exponential
distribution of the capital losses reduces the trapping probability since capital losses
are likely to have a low impact on household capital. Moreover, note that as the
proportionality factor κ→ 0, the parameter α(κ) := α/κ of the new capital losses Yi
of the insured capital process increases, leading households to experience low impact
losses with a higher probability (Yi will likely have values close to zero), but to pay
higher premiums (2.4.1).

Remark 2.4.2. When κ = 0 the household has full microinsurance coverage, as the
microinsurance provider covers the total capital loss experienced by the household.
On the other hand, when κ = 1, no coverage is provided by the insurer, i.e. Xt = X (κ)

t .

Figure 2.4 presents a comparison between the trapping probabilities of the insured
and uninsured processes. As in Kovacevic and Pflug (2011), households with initial
capital close to the critical capital (here, the critical capital x∗ is 1), i.e. the most
vulnerable households, may not receive a real benefit from enrolling in a microinsur-
ance scheme. Although subscribing to a proportional microinsurance scheme reduces
capital losses, premium payments make such households more prone to falling into
the area of poverty. The intersection point of the two probabilities in Figure 2.4
corresponds to the boundary between households that benefit from the uptake of
microinsurance and those who are adversely affected.
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Figure 2.4: Trapping probabilities for the uninsured and insured capital processes
when Zi ∼ Exp(1), a = 0.1, b = 1.4, c = 0.4, λ = 1, κ = 0.5, θ = 0.5 and
x∗ = x(κ)∗ = 1.

2.5 Microinsurance with Subsidised Constant Pre-
miums

2.5.1 General Setting

The preliminary results suggest that microinsurance alone may not be enough to
reduce the likelihood of impoverishment for those closest to the poverty line, and so
additional aid is required. In this section, we study the cost-effectiveness of govern-
ment subsidised premiums, considering the case in which the government subsidises
an amount β = π − π∗, where π∗ is the premium after subsidisation, such that
π ≥ π∗ ≥ 0. As such, lower values of π∗ correspond to greater government support.
When π∗ = 0 the premium is fully subsidised, whereas when π = π∗ households do
not receive any subsidies. Note that, in contrast to previous work such as that of
Kovacevic and Pflug (2011), where the subsidy is limited to the loading factor, and
the self-targeted subsidy strategy of Janzen et al. (2021), where fixed subsidies are
provided uniformly to poor households who would anyway purchase insurance, here
we extend the possibility of households benefiting from greater subsidisation in line
with existing government supported microinsurance schemes, while adjusting for the
governmental cost. Some examples for varying levels of subsidisation are presented
in Figure 2.5a.

Naturally, we assume that governments are interested in optimising the subsidy
provided to households. Governments should provide subsidies to microinsurance
providers such that they enhance households’ benefits of enrolling in microinsurance
schemes, however, they also need to gauge the cost-effectiveness of subsidy provi-
sion. Households with capital very close to the critical capital will require additional
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aid, while government support is not necessarily essential for more privileged house-
holds. Since all non-zero values of π∗ below the optimal value will induce a trapping
probability lower than that of the uninsured process through a reduction in pre-
mium, one approach to determining the optimal subsidy for households that require
government aid is to find the solution of the equation

ψπ∗(κ,θ)(x) = ψ(x),

where ψπ∗(κ,θ)(x) and ψ(x) denote the trapping probabilities of the insured subsidised
and uninsured processes, respectively. The behaviours of these trapping probabili-
ties can be seen in Figure 2.5a, while the most privileged households do not need help
from the government since the non-subsidised insurance lowers their trapping prob-
ability below the uninsured, the poorest individuals may require further support.
Figure 2.5b illustrates the optimal value of π∗ for varying initial capital, verifying
that, from the point at which the yellow dashed line (insured household) intersects
the blue solid line (uninsured household) in Figure 2.5a, payment of the entire pre-
mium is affordable for the most privileged households, with the optimal premium
remaining constant at π∗ = π = 0.75 after this point (red dashed line in Figure
2.5b).
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Figure 2.5: (a) Trapping probabilities for the uninsured, insured and insured sub-
sidised capital processes when Zi ∼ Exp(1), a = 0.1, b = 1.4, c = 0.4, λ = 1,
x∗ = x(κ)∗ = xπ(κ,θ)∗ = 1, κ = 0.5, θ = 0.5 and π = 0.75 for π∗ = 0, 0.55 (b) Optimal
π∗ for varying initial capital when Zi ∼ Exp(1), a = 0.1, b = 1.4, c = 0.4, λ = 1,
xπ(κ,θ)∗ = 1, κ = 0.5, θ = 0.5 and π = 0.75.

2.5.2 Cost of Social Protection

Next, we assess government cost-effectiveness of the provision of microinsurance
premium subsidies to households. Let τ π∗(κ,θ)

x denote the trapping time of a household
covered by a subsidised microinsurance policy. Moreover, let δ ≥ 0 be the force of
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interest for valuation and let S denote the present value of all subsidies provided by
government until the trapping time such that

S = β

∫ τπ
∗(κ,θ)
x

0

e−δtdt = βā
τπ
∗(κ,θ)
x

.

We assume governments provide subsidies according to the strategy introduced in
Section 2.5.1, i.e. the government subsidises an amount β = π − π∗.

For x ≥ xπ∗(κ,θ)∗, where xπ∗(κ,θ)∗ denotes the critical capital of the insured subsidised
process, let V π∗(κ,θ)(x) be the expected discounted premium subsidies provided by the
government to a household with initial capital x until the trapping time, that is,

V π∗(κ,θ)(x) = E [S | X π∗(κ,θ)

0 = x] .

Proposition 2.5.1. Consider a household enrolled in a microinsurance scheme with
subsidised constant premiums in which the government subsidises an amount β =
π − π∗, where π ≥ π∗ ≥ 0 (as discussed in Section 2.5.1), with proportionality
factor 1 − κ ∈ [0, 1]. Assume an initial capital x ≥ xπ∗(κ,θ)∗, capital growth rate
rπ
∗(κ,θ), intensity λ > 0 and exponentially distributed capital losses with parameter

α(κ) > 0. The expected discounted premium subsidies provided by the government to
the household until the trapping time is given by

V π∗(κ,θ)(x) =
β

δ
[1−mπ∗(κ,θ)

δ (x)] , (2.5.1)

where mπ∗(κ,θ)

δ (x) is the Laplace transform of the trapping time with rate rπ∗(κ,θ) and
critical capital xπ∗(κ,θ)∗.

See Appendix 2.A.3 for proof of Proposition 2.5.1. We now formally define the
government’s cost of social protection.

Definition 2.5.1. Consider (2.3.1), the expected discounted penalty function at
trapping of a household enrolled in a subsidised microinsurance scheme with initial
capital x. Let w(x1, x2) = x2 + M (κ) − xπ∗(κ,θ)∗ be the penalty function, where M (κ) ≥
xπ∗(κ,θ)∗. Here,M (κ)−xπ∗(κ,θ)∗ is a constant representing the cost to lift households further
away from the area of poverty, while x2 accounts for the cost to lift households up to
the critical level xπ∗(κ,θ)∗. Thus, the expected discounted penalty function at trapping
mπ∗(κ,θ)

δ,w (x) is the expected present value of the capital deficit at trapping plus a cost
M (κ) − xπ∗(κ,θ)∗ due at the trapping time. We therefore define a government’s cost of
social protection as the expected discounted premium subsidies, given by (2.5.1),
plus the expected present value of the capital deficit and the amount M (κ) − xπ∗(κ,θ)∗.

Remark 2.5.1. The government does not provide subsidies for uninsured households.
We consider their expected discounted penalty function at trapping to be mδ,w(x)
with w(x1, x2) = x2 +M−x∗. The choice of this particular penalty function is based
on the idea that the government, in order to lift a household out of poverty, incurs
a cost equal to the household’s capital deficit at the moment they fall into poverty
plus a fixed cost M − x∗ that ensures, with a certain level of confidence, that the
household will not return to poverty. This differs from other approaches taken in
previous research in which the cost of social protection considers only the present
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value of the transfers needed to close the poverty gap (see, for example, Ikegami et al.
(2018) and Janzen et al. (2021)). In this way, the likelihood of re-incurring these
costs for the same household is reduced. Thus, the constant M could be defined
in such a way that the government ensures with some probability that households
will not fall into the area of poverty again. For instance, let us consider ε to be the
most admissible trapping probability for an uninsured household. We can therefore
define the statistic

M := inf {x ≥ x∗ : ψ(x) < ε} , (2.5.2)

where M is the Minimum Initial Capital (MIC) required to ensure a trapping prob-
ability of less than ε. This statistic has also been studied from the point of view of
an insurance company, where ε represents the most admissible probability that the
insurance company will become insolvent (Sattayatham et al., 2013; Constantinescu
et al., 2019). As such, the government determines an appropriate amount M such
that a household’s probability of re-entering the area of poverty is less than ε ∈ (0, 1).
Clearly, higher values of M will increase the certainty that households will not re-
turn to poverty. Also note that the value ofM will differ between uninsured, insured
and insured subsidised households due to the fact that their trapping probabilities
are distinct. However, in this study we assume that governments will consider an
amount M (κ) under all microinsurance schemes (with or without subsidies). That
is, we assume that households who are initially enrolled in a microinsurance scheme
(with or without subsidies) will be enrolled in a scheme without subsidies just after
being lifted away from the area of poverty. Figure 2.6 displays the cost incurred at
the trapping time when employing the penalty function w(x1, x2) = x2 +M −x∗ for
an uninsured household.

t

x∗

M

x

τx

Xt

|Xτx − x∗|

M − x∗

Xτ−
x
− x∗

Figure 2.6: The cost incurred by the government at the trapping time is given by
| Xτx − x∗ |, the capital deficit at the trapping time, plus M − x∗, the cost to lift
households further away from the area of poverty.

Remark 2.5.2. The government manages the selection of an appropriate force of
interest δ ≥ 0. For lower force of interest the government discounts future subsidies
more heavily, while for higher interest future subsidies almost vanish.
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Remark 2.5.3. When losses are exponentially distributed with parameter α(κ) > 0,
one can obtain a closed form expression for the cost of social protection. Given our
derivation of V π∗(κ,θ)(x) in (2.5.1), we determine an expression for mπ∗(κ,θ)

δ,w (x).

Proposition 2.5.2. Consider a household enrolled in a microinsurance scheme with
subsidised constant premiums in which the government subsidises an amount β =
π − π∗, where π ≥ π∗ ≥ 0, with proportionality factor 1 − κ ∈ [0, 1]. Assume an
initial capital x ≥ xπ∗(κ,θ)∗, capital growth rate rπ∗(κ,θ), intensity λ > 0 and exponentially
distributed capital losses with parameter α(κ) > 0. Furthermore, let M (κ)−xπ∗(κ,θ)∗, with
M (κ) ≥ xπ∗(κ,θ)∗, be the cost to lift households further away from the area of poverty.
The expected discounted cost incurred by the government at the trapping time is
given by

mπ∗(κ,θ)

δ,w (x) =

[
1

α(κ)
+M (κ) − xπ∗(κ,θ)∗

]
mπ∗(κ,θ)

δ (x), (2.5.3)

where mπ∗(κ,θ)

δ (x) is the Laplace transform of the trapping time with rate rπ∗(κ,θ) and
critical capital xπ∗(κ,θ)∗, and δ ≥ 0 is the force of interest for valuation.

See Appendix 2.A.4 for proof of Proposition 2.5.2.
Remark 2.5.4. Due to the lack-of-memory property of the exponential distribution
the deficit at trapping, given that trapping occurs, is exponentially distributed. One
can easily verify this by specifying the penalty function such that for any fixed u,
w(x1, x2) = 1{x2≤u} and δ = 0. Similar results to that of Proposition 2.5.2 have been
obtained for other risk processes (see, for instance, Example 3.2 of Albrecher et al.
(2005)).
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Figure 2.7: Cost of social protection for the uninsured, insured and insured sub-
sidised with π∗ = π∗

Optimal
, 0, 0.55 capital processes when Zi ∼ Exp(1), a = 0.1,

b = 1.4, c = 0.4, λ = 1, x∗ = x(κ)∗ = xπ(κ,θ)∗ = 1, κ = 0.5, θ = 0.5, δ = 0.1, ε = 0.01
and π = 0.75.

Figure 2.7 displays the governmental cost of social protection for varying initial
capital. Here, the value ofM is given by (2.5.2). Note that, as mentioned previously,
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high values of δ hand a lower weight to future government subsidies, whereas high
values of M grant greater certainty that a household will not return to the area of
poverty once lifted out of it.

Governments do not benefit from subsidising insurance for the most privileged house-
holds since they will subsidise premiums indefinitely, almost surely. Hence, as also
illustrated in Figure 2.5b, it is favourable for governments to remove subsidies for
this particular household group since their cost of social protection in Figure 2.7 (red
dashed-dotted and gray dotted lines for highest values of initial capital) is higher
than when uninsured (blue solid line for highest values of initial capital). This is
largely due to the fact that governments are still obliged to subsidise a given amount
of the premium even though greater initial capital leads to lower trapping proba-
bilities and therefore a reduction in the likelihood of the government needing to lift
these households away from the area of poverty.

In addition, Figure 2.7 shows that when providing optimal subsidies, governments
can reduce the cost of social protection incurred. Here, the fully subsidised scheme
(when π∗ = 0) has a higher cost for all households relative to the scheme that
provides optimal subsidies (blue circular-marked line below the gray dotted line),
and the difference between the two increases as the initial capital increases, until the
moment at which the cost of social protection for the fully subsidised scheme and
the scheme that provides optimal subsidies converge to β/δ and zero, respectively.
Similarly, for more privileged households, a subsidised scheme (with π∗ = 0.55) has
a higher cost relative to the optimal case (blue circular-marked line below the red
dashed-dotted line for more privileged households). On the contrary, for the most
vulnerable, Figure 2.7 shows the cost of social protection of the scheme that provides
optimal subsidies is above the subsidised scheme (blue circular-marked line above
the red dashed-dotted line for most vulnerable households) as optimal subsidies for
this group provide greater support (i.e. the optimal values for π∗ are lower). Note
that the cost of social protection for the insured (yellow dashed line), non-optimal
insured subsidised (gray dotted and red dashed-dotted lines) for the most vulnerable
(for those with initial capital lower than x = 1.362 when π∗ = 0 and x = 2.719 when
π∗ = 0.55) and optimal insured subsidised households (blue circular-marked line)
is below that of the uninsured, thus highlighting the significance of insurance as
a tool for reducing the governmental cost of social protection. Moreover, it is not
surprising that the cost of social protection for the insured (yellow dashed line), is
lower than the cost of social protection for the rest of the microinsurance schemes,
since governments will not provide subsidies, but only an injection of capital in the
event of entering poverty.
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2.6 Microinsurance with Subsidised Flexible Premi-
ums

2.6.1 General Setting

Since microinsurance premiums are generally paid as soon as coverage is purchased,
a household’s capital growth could be constrained after joining a scheme, as observed
in the results of Sections 2.4 and 2.5. It is therefore interesting to consider alternative
premium payment mechanisms. From the point of view of microinsurance providers,
advance premium payments are preferred so that additional income can be generated
through investment, naturally leading to lower premium rates. Consumers on the
other hand may find it difficult to pay premiums up front. This is a common problem
in low-income populations, with research suggesting that consumers prefer to pay
smaller installments over time (Churchill and Matul, 2012). Collecting premiums
at a time that is inconvenient for households can be futile. Alternative insurance
designs in which premium payments are delayed until the insured’s income is realised
and any indemnities are paid have also been studied. Under such designs, insurance
take-up increases, since liquidity constraints are relaxed and concerns regarding
insurer default, also prevalent in low-income classes, reduce (Liu and Myers, 2016).

In this section, we introduce an alternative microinsurance subsidy scheme with
flexible premium payments. We denote the capital process of a household enrolled
in the alternative microinsurance subsidy scheme by X (A)

t . As in Section 2.4, we
differentiate between variables and parameters relating to the uninsured, insured and
alternative insured processes using the superscript (A). Under such an alternative
microinsurance subsidy scheme households pay premiums when their capital is above
some capital barrier B ≥ x(A)∗, with the premium otherwise paid by the government.
In other words, whenever the insured capital process is below the capital level B
premiums are entirely subsidised by the government, however, when a household’s
capital is above B the premium π is paid continuously by the household itself. This
method of premium collection may motivate households to maintain a level of capital
below B in order to avoid premium payments. Consequently, for the purpose of this
study, we assume that households always pursue capital growth. Our aim is to study
how this alternative microinsurance subsidy scheme could help households reduce
their probability of falling into the area of poverty. In addition, we measure the
cost-effectiveness of such a scheme from the point of view of the government.

The intangibility of microinsurance makes it difficult to attract potential consumers.
Most policyholders will never experience a claim and so cannot perceive the real value
of microinsurance, paying more to the scheme (in terms of premium payments) than
what they actually receive from it. It is only when claims are settled that microin-
surance becomes tangible. The alternative microinsurance subsidy scheme described
here could increase client value, since, for example, individuals below the barrier B
may submit claims, receive a payout and therefore perceive the value of microin-
surance when they suffer a loss, regardless of whether they have ever paid a single
premium. Further ways of increasing microinsurance client value include bundling
microinsurance with other products and introducing Value Added Services (VAS),
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which (for health schemes) are services such as telephone hotlines for consultation
with doctors or remote diagnosis services, offered to clients outside of the microin-
surance contract (Madhur and Saha, 2019).

Proposition 2.6.1. Consider a household enrolled in an alternative microinsurance
scheme with subsidised flexible premiums, capital barrier B ≥ x(A)∗ and proportion-
ality factor 1 − κ ∈ [0, 1]. Assume an initial capital x ≥ x(A)∗, capital growth rates
r(κ) and r above and below the barrier, respectively, intensity λ > 0 and exponen-
tially distributed capital losses with parameter α(κ) > 0. The Laplace transform of
the trapping time is given by

m(A)

δ (x) =

{
C1M

(
− δ
r
, 1− λ+δ

r
; y(A)(x)

)
+ C2ey

(A)(x)U
(

1− λ
r
, 1− λ+δ

r
;−y(A)(x)

)
for x(A)∗ ≤ x ≤ B,

C3M
(
− δ
r(κ)

, 1− λ+δ

r(κ)
; y(A)(x)

)
+ C4ey

(A)(x)U
(

1− λ
r(κ)

, 1− λ+δ

r(κ)
;−y(A)(x)

)
for x ≥ B,

(2.6.1)

where y(A)(x) = −α(κ)(x − x(A)∗) and the constants Ci for i = 1, 2, 3, 4 are given by
(2.A.13), (2.A.15), (2.A.12) and (2.A.14), respectively.

A detailed mathematical proof of Proposition 2.6.1 is provided in Appendix 2.A.5.
Remark 2.6.1. The trapping probability ψ(A)(x) for the alternative microinsurance
subsidy scheme is given by

ψ(A)(x) =





1− Γ(λr )−Γ(λr ;−y(A)(x))

(−y(A)(B))
λ( 1

r−
1
r(κ) )Γ( λ

r(κ) ;−y(A)(B))+Γ(λr )−Γ(λr ;−y(A)(B))
for x(A)∗ ≤ x ≤ B,

(−y(A)(B))
λ( 1

r−
1
r(κ) )Γ( λ

r(κ) ;−y(A)(x))

(−y(A)(B))
λ( 1

r−
1
r(κ) )Γ( λ

r(κ) ;−y(A)(B))+Γ(λr )−Γ(λr ;−y(A)(B))
for x ≥ B.

Similar to the subsidised case, the optimal barrier B can be found by determining
the solution of the equation

ψ(A)(x) = ψ(x),

where ψ(A)(x) and ψ(x) denote the trapping probabilities of the capital process under
the alternative microinsurance subsidy scheme and the uninsured capital process,
respectively. Some examples for varying initial capital are presented at the end of
this section.
Remark 2.6.2. When B → x(A)∗, the trapping probability for the alternative microin-
surance subsidy scheme is equal to the trapping probability obtained for the insured
case ψ(κ)(x):

lim
B→x(A)∗

ψ(A)(x) =
Γ
(
λ
r(κ)

;−y(κ)(x)
)

Γ
(
λ
r(κ)

) .

Moreover, when B →∞, the trapping probability is given by

lim
B→∞

ψ(A)(x) =
Γ
(
λ
r
;−y(κ)(x)

)

Γ
(
λ
r

) ,

which is exactly the trapping probability of the insured subsidised process ψπ∗(κ,θ)(x)
with π∗ = 0.
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Remark 2.6.3. Figure 2.8 displays the expected trapping time under the alternative
microinsurance subsidy scheme for varying initial capital. Again, in line with intu-
ition, the expected trapping time is an increasing function of both the capital level
B and initial capital x. Steps for obtaining the expected trapping time under the
alternative microinsurance subsidy scheme are very similar to those used to derive
Equation (2.3.5).
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Figure 2.8: Expected trapping time when Zi ∼ Exp(1), a = 0.8, b = 1.4, c = 0.4,
λ = 1, x(A)∗ = 1, κ = 0.5, and θ = 0.5 for B = 1.5, 2.5, 3.5.

Figure 2.9a presents the trapping probabilities for varying initial capital under the
uninsured, insured, insured subsidised and insured alternatively subsidised schemes.
As expected, increasing the value of the capital barrier B helps households to re-
duce their probability of falling into the area of poverty, since support from the
government is received when their capital resides in the region between the critical
capital x(A)∗ and the capital level B. Furthermore, as in the previous section, house-
holds with higher levels of initial capital do not need government support, insurance
without subsidies decreases their trapping probability to a level below the uninsured
(households with initial capital greater than or equal to the point at which the yel-
low short-dashed line intersects the blue solid line). The optimal barrier for these
households is in fact the critical capital, i.e. B = x(A)∗, this household group can
therefore afford to cover the costs of microinsurance coverage themselves.

Figure 2.9b shows that for the most vulnerable, governments should set the barrier
level B above their initial capital to remove capital growth constraints associated
with premium payments. This level should be selected until the household reaches a
capital level that is adequate in ensuring their trapping probability is equal to that
of an uninsured household. Conversely, for more privileged households (middle area
of Figure 2.9b), the government should establish barriers below their initial capi-
tal, with households paying premiums as soon as they enrol in the microinsurance
scheme. This behaviour of the optimal barrier is mainly due to the fact that the capi-
tal level of such households is distant from the critical capital x(A)∗. These households
are unlikely to fall into the area of poverty after suffering one (non-catastrophe) cap-
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ital loss, they are instead likely to fall into the region between the critical capital x(A)∗

and the barrier level B (the area within which the government pays microinsurance
premiums), before entering the area of poverty. Thus, the aforementioned region
acts as a “buffer”, with households in this region benefiting from coverage without
the need for premium payments. Increasing initial capital leads to a decrease in the
size of the “buffer” region until it disappears when the optimal barrier B = x(A)∗, as
shown by the red dashed line in the right area of Figure 2.9b.
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Figure 2.9: (a) Trapping probabilities for the uninsured, insured, insured sub-
sidised with π∗ = 0, 0.55 and insured alternatively subsidised with B = 2, 3.5
capital processes when Zi ∼ Exp(1), a = 0.1, b = 1.4, c = 0.4, λ = 1,
x∗ = x(κ)∗ = xπ(κ,θ)∗ = x(A)∗ = 1, κ = 0.5, θ = 0.5 and π = 0.75 (b) Difference
between the optimal barrier and the initial capital, i.e. B − x, for varying initial
capital, when Zi ∼ Exp(1), a = 0.1, b = 1.4, c = 0.4, λ = 1, x(A)∗ = 1, κ = 0.5,
θ = 0.5 and π = 0.75.

2.6.2 Cost of Social Protection

Similar to the previous section, it is reasonable to measure the governmental cost-
effectiveness of providing microinsurance premium subsidies to households under
the alternative microinsurance subsidy scheme. For this reason, we define τ (A)

x as the
trapping time of a household covered by the alternative subsidised microinsurance
scheme and V (A)(x) as the expectation of the present value of all subsidies provided
by the government to the household until the trapping time, that is

V (A)(x) := E
[∫ τ (A)

x

0

πe−δt1{X(A)

t <B}dt
∣∣∣∣X

(A)

0 = x

]
. (2.6.2)

In this chapter, estimates for V (A)(x) are produced via Monte Carlo simulation. See
Appendix 2.B.1 for an efficient algorithm that produces Monte Carlo estimates of
V (A)(x).
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Remark 2.6.4. As in Section 2.5.2, we can easily derive an expression for m(A)

δ,w(x),
the expected discounted cost incurred by the government at the trapping time under
the alternative microinsurance scheme.

Following a similar procedure to that in the proof of Proposition 2.5.2 (details of
which are shown in Appendix 2.A), but for the alternative microinsurance subsidy
scheme, one obtains the expected discounted cost incurred by the government at the
trapping time.

Proposition 2.6.2. Consider a household enrolled in an alternative microinsurance
scheme with subsidised flexible premiums, capital barrier B ≥ x(A)∗ and proportion-
ality factor 1 − κ ∈ [0, 1]. Assume an initial capital x ≥ x(A)∗, capital growth rates
r(κ) and r above and below the barrier, respectively, intensity λ > 0, exponentially
distributed capital losses with parameter α(κ) > 0 and a cost to lift households further
away from the area of poverty M (κ) − x(A)∗, with M (κ) ≥ x(A)∗. The expected discounted
cost incurred by the government at the trapping time is

m(A)

δ,w(x) =

[
1

α(κ)
+M (κ) − x(A)∗

]
m(A)

δ (x), (2.6.3)

where m(A)

δ (x) is given by (2.6.1).

As for the subsidised scheme, under the alternative scheme, we consider the cost of
social protection incurred by the government to be equal to the expected discounted
subsidies provided until trapping plus the expected discounted cost incurred at trap-
ping, here given by (2.6.2) and (2.6.3), respectively.

0
2

4
6

8

Initial Capital

C
o
st

o
f
S
o
ci
al

P
ro
te
ct
io
n

1 2 3 4 5 6 7 8

Uninsured Household (M = 7.61)
Insured Household (M (κ) = 6.24)
Insured Subsidised Household (Optimal Subsidy)
Insured Alternatively Subsidised Household (Optimal Barrier)
Insured Subsidised Household (π∗ = 0.55, β = 0.2)
Insured Alternatively Subsidised Household (B = 3.5)

Figure 2.10: Cost of social protection for the uninsured, insured, insured subsidised
with π∗ = π∗

Optimal
, 0.55 and insured alternatively subsidised capital processes with

B = B Optimal, 3.5 when Zi ∼ Exp(1), a = 0.1, b = 1.4, c = 0.4, λ = 1, x∗ = x(κ)∗ =
xπ(κ,θ)∗ = x(A)∗ = 1, κ = 0.5, θ = 0.5, δ = 0.1, ε = 0.01 and π = 0.75.

Figure 2.10 compares the cost of social protection for the uninsured, insured, insured
subsidised and insured alternatively subsidised households. Cost of social protec-
tion for the most vulnerable is reduced with all forms of microinsurance coverage
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(yellow dashed, red dashed-dotted, blue dashed-dashed, blue circular-marked and
red diamond-marked lines are all below the blue solid line for initial capitals close
to the critical capital x∗). This aligns with the high trapping probability associ-
ated with this portion of the population when uninsured, with governments almost
surely needing to lift households out of the area of poverty. Although already elim-
inated when providing optimal subsidies under the insured subsidised scheme (blue
circular-marked line below the red dashed-dotted line for the most privileged), the
aforementioned drawback of governments subsidising premiums indefinitely almost
surely under non-optimal subsidised schemes is also eliminated under both opti-
mal and non-optimal alternative subsidy schemes due to the ceasing of subsidies on
households reaching sufficient capital (red diamond-marked and blue dashed-dashed
lines below red dashed-dotted line for households with higher levels of capital).
Furthermore, as seen in Figure 2.9a, when the barrier level is sufficiently high all
households observe a decrease in their trapping probability, almost reaching the
trapping probability of a household enrolled in a fully subsidised insurance scheme
with π∗ = 0. However, even when high barrier levels are considered, under the
alternatively subsidised scheme governments are not required to subsidise premiums
indefinitely, since households will pay the entire premium once their capital reaches
a sufficient level. This scheme thus makes it possible to reduce the trapping proba-
bility for any household, while reducing the cost of social protection incurred by the
government, which highlights the cost-efficiency of this alternative scheme.

2.7 Conclusion

Comparing the impact of three microinsurance frameworks on the trapping proba-
bilities of low-income households, we provide evidence for the importance of govern-
mentally supported inclusive insurance in the strive towards poverty alleviation. The
results of Sections 2.4 and 2.5 support those of Kovacevic and Pflug (2011), high-
lighting a threshold below which insurance could increase the probability of trap-
ping. Motivated by the recent increased involvement of governments in the support
of insurance programmes and maintaining the idea of “smart” subsidies, we have
introduced a transparent method with a mathematical foundation for calculating
“optimal subsidies” that can strengthen government social protection programmes
while lowering the associated costs.

Numerical examples indicate that while the proposed insurance mechanisms (with
or without subsidies) reduce the cost of social protection for the most vulnerable,
they do not reduce their probability of trapping. This undermines the faculty of in-
clusive insurance as a cost-effective social protection strategy for poverty alleviation
and brings to light questions as to its capability in reducing both the probability of
households falling below the poverty line and the associated social protection costs.
However, our analysis of a subsidised microinsurance scheme with a premium pay-
ment barrier suggests that in general, the trapping probability of a household covered
by such a scheme is reduced in comparison to when covered by unsubsidised and
(for the most vulnerable) partially subsidised microinsurance schemes, in addition
to when uninsured, alleviating this limitation.
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More significant influence is observed in relation to the governmental cost of social
protection, with the cease of subsidy payments when household capital is sufficient
facilitating government savings and therefore increasing social protection efficiency,
thus evidencing the relevance of the alternative scheme as a cost-effective social pro-
tection strategy for poverty reduction. The cost of social protection for those closest
to the area of poverty remains lower than the corresponding uninsured cost in both
subsidised frameworks considered, achieving similar results to those obtained with
the targeted-subsidisy scheme proposed by Janzen et al. (2021). In our analysis, for
such households, governments must account for their support of premium payments,
the likely need for household removal from poverty and an extra capital injection to
ensure they will not return to poverty with some level of confidence. Nevertheless,
total subsidies paid by the government have a small weight within the cost of social
protection due to the fact that those closest to the poverty line will fall into the
area of poverty almost surely. The capital injection on trapping is also much lower
in comparison to that of uninsured households. Each of these factors enhances the
reduction in the cost of social protection for the most vulnerable.

Given the decrease in trapping probability and governmental cost of social protec-
tion under the barrier strategy scheme considered, this chapter advocates for the
development of public-private partnerships (PPPs) for the provision of affordable
insurance. Through well-designed subsidy schemes PPPs can reduce vulnerability
to poverty in a cost-effective manner. A key motivator for supporting the develop-
ment of insurance mechanisms is their ability to improve productivity and access
to resources. Insurance can improve access to new technologies, credit and hospi-
tal services, for example, smoothing the movement of low-income individuals along
the economic cycle and providing them with the capacity to move out of poverty
and to stay there. Insurance is therefore both productive and protective in pre-
venting poverty. By making insurance more accessible, subsidies improve access to
productive resources while providing protective cover.

In presenting the results of the analysis it is important to note the limitations of
the adopted approach. All types of insurance are captured in our “insurance” cover-
age, we therefore do not consider the susceptibility of households to losses of varying
severity which would align with the presence of different lines of business, i.e. health,
life and agricultural insurance. In addition, the subsidy schemes are assumed to be
continuous, with households receiving government subsidies forever in the constant
case and while below the barrier in the flexible case. This raises questions in regard
to the sustainability of such schemes. An alternative approach would be to phase
out subsidisation over time, enabling households to experience and therefore under-
stand the benefit of insurance such that they go on to purchase coverage once no
longer subsidised. The barrier strategy would be difficult to implement in practice,
requiring continuous tracking of a household’s capital over time. Future research
will involve adjusting the assumption of random-valued losses to consider random-
proportional losses, as in Kovacevic and Pflug (2011). Through the assumption of
random-valued losses, a household’s level of accumulated capital could fall below
zero. In this case, the household would lose more than what it has and would likely
continue to lose capital even after surpassing the capital level of zero. Under the
random-proportional losses assumption, the concept of trapping is better captured,
as once within the area of poverty it is impossible to escape from either side. More-



53 CHAPTER 2. SUBSIDISING INCLUSIVE INSURANCE TO REDUCE POVERTY

over, this assumption fits the idea that the amount of capital lost by a household
on experiencing an adverse event should depend on the amount of capital that the
household currently possesses, e.g. when a household has little capital, then we
would expect them to have less to lose.

The main takeaway from this analysis is the importance of the “missing middle”, i.e.
those close to but above the poverty line, for whom paying the premium is a risk in
itself. This takeaway is also applicable in traditional insurance markets. In compar-
ison to large international enterprises, small and medium-sized enterprises (SMEs)
with limited liquidity are more likely to require government support in the event of
a severe loss. For example, in the pandemic context, the COVID-19 pandemic saw
governments stepping in to cover the loss of jobs, wages and, in some cases, hospital-
isation costs. Without stakeholder capital injections or such governmental support,
SMEs would be extremely susceptible to insolvency. In addition, reinsurance pre-
miums for such an extreme loss would be more severe for smaller enterprises, while
larger enterprises are likely to be better posed to protect themselves against such
severe risks.

The “missing middle” exists in all fields of insurance, those closest to insolvency
have less capacity to protect themselves against the occurrence of a catastrophic
loss. Smart solutions supported by large organisations, including governments and
intergovernmental organisations, should therefore be designed to mitigate the in-
creased risk faced by the most vulnerable.
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2.A Appendix A: Mathematical Proofs

2.A.1 Proof of Proposition 2.3.1

Using standard arguments based on the infinitesimal generator, the expected dis-
counted penalty function at the trapping time mδ(x) as defined in (2.3.1), can be
characterised as the solution of the IDE

r(x− x∗)m′δ(x)− (λ+ δ)mδ(x) + λ

∫ x−x∗

0

mδ(x− z)dGZ(z) = −λA(x), x ≥ x∗,

(2.A.1)
where

A(x) :=

∫ ∞

x−x∗
w(x− x∗, z − (x− x∗))dGZ(z).

When Zi ∼ Exp(α) and w(x1, x2) = 1, Equation (2.A.1) can be written such that

r(x− x∗)m′δ(x)− (λ+ δ)mδ(x) + λ

∫ x−x∗

0

mδ(x− z)αe−αzdz = −λe−α(x−x∗), x ≥ x∗.

(2.A.2)

Applying the operator
(
d
dx

+ α
)
to both sides of (2.A.2), together with a number of

algebraic manipulations, yields the second order homogeneous differential equation

−(x− x∗)
α

m′′δ(x) +

[
(λ+ δ − r)

αr
− (x− x∗)

]
m′δ(x) +

δ

r
mδ(x) = 0, x ≥ x∗.

(2.A.3)

Letting f(y) := mδ(x), such that y is associated with the change of variable y :=
y(x) = −α(x− x∗), (2.A.3) reduces to Kummer’s Confluent Hypergeometric Equa-
tion (Slater, 1960)

y · f ′′(y) + (c− y)f ′(y)− af(y) = 0, y < 0, (2.A.4)

for a = −δ/r and c = 1−(λ+ δ) /r, with regular singular point at y = 0 and irregular
singular point at y = −∞ (corresponding to x = x∗ and x = ∞, respectively). A
general solution of (2.A.4) is given by

mδ(x) = f(y) =

{
1 x < x∗,

A1M
(
− δr , 1− λ+δ

r ; y(x)
)

+A2e
y(x)U

(
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r , 1− λ+δ
r ;−y(x)

)
x ≥ x∗,

(2.A.5)

for arbitrary constants A1, A2 ∈ R. Here,

M(a, c; z) = 1F1(a, c; z) =
∞∑

n=0

(a)n
(c)n

zn

n!
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is Kummer’s Confluent Hypergeometric Function (Kummer, 1837) and (a)n = Γ(a+
n)/Γ(n) denotes the Pochhammer symbol (Seaborn, 1991). In a similar manner,

U(a, c; z) =

{
Γ(1−c)

Γ(1+a−c)M(a, c; z) + Γ(c−1)
Γ(a)

z1−cM(1 + a− c, 2− c; z) c /∈ Z,
lim
θ→c

U(a, θ; z) c ∈ Z,

(2.A.6)

is Tricomi’s Confluent Hypergeometric Function (Tricomi, 1947). This function
is generally complex-valued when its argument z is negative, i.e. when x ≥ x∗

in the case of interest. We seek a real-valued solution of mδ(x) over the entire
domain, therefore an alternative independent pair of solutions, here, M(a, c; z) and
ezU(c− a, c;−z), to (2.A.4) are chosen for x ≥ x∗.

To determine the constants A1 and A2 we consider the boundary conditions for
mδ(x) at x∗ and at infinity. Applying Equation (13.1.27) of Abramowitz and Stegun
(1972), also known as Kummer’s Transformation M(a, c; z) = ezM(c− a, c;−z), we
write (2.A.5) such that

mδ(x) = ey(x)

[
A1M

(
1− λ

r
, 1− λ+ δ

r
;−y(x)

)
+A2U

(
1− λ

r
, 1− λ+ δ

r
;−y(x)

)]
,

(2.A.7)

for x ≥ x∗. For z →∞, it is well-known that

M(a, c; z) =
Γ(c)

Γ(a)
ezza−c

[
1 +O

(
|z|−1

)]

and

U(a, c; z) = z−a
[
1 +O

(
|z|−1

)]

(see for example, Equations (13.1.4) and (13.1.8) of Abramowitz and Stegun (1972)).
Asymptotic behaviours of the first and second terms of (2.A.7) as y(x) → −∞ are
therefore given by

Γ
(
1− λ+δ

r

)

Γ
(
1− λ

r

) (−y(x))
δ
r
(
1 +O

(
| − y(x)|−1

))
(2.A.8)

and

ey(x) (−y(x))
λ
r
−1 (1 +O

(
| − y(x)|−1

))
, (2.A.9)

respectively. For x → ∞, (2.A.8) is unbounded, while (2.A.9) tends to zero. The
boundary condition limx→∞mδ(x) = 0, by definition ofmδ(x) in (2.3.1), thus implies
that A1 = 0. Letting x = x∗ in (2.A.2) and (2.A.5) yields

λ

(λ+ δ)
= A2U

(
1− λ

r
, 1− λ+ δ

r
; 0

)
.

Hence, A2 = λ/ [(λ+ δ)U (1− λ/r, 1− (λ+ δ) /r; 0)] and the Laplace transform of
the trapping time for x ≥ x∗ is given by (2.3.2).
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2.A.2 Proof of Corollary 2.3.1

We differentiate Tricomi’s Confluent Hypergeometric Function (2.A.6) with respect
to its second parameter. Denote

U (c)(a, c; z) ≡ d

dc
U(a, c; z).

A closed form expression of the aforementioned derivative can be given in terms of
series expansions, such that

U (c)(a, c; z) = (η(a− c+ 1)− π cot(cπ))U(a, c; z)

− Γ(c− 1)z1−c log(z)

Γ(a)
M(a− c+ 1, 2− c; z)

− Γ(c− 1)z1−c

Γ(a)

∞∑

k=0

(a− c+ 1)k(η(a− c+ k + 1)− η(2− c+ k))zk

(2− c)kk!

− Γ(1− c)
Γ(a− c+ 1)

∞∑

k=0

η(c+ k)(a)kz
k

(c)kk!
, c /∈ Z,

(2.A.10)

where η(z) = d ln[Γ(z)]
dz

= Γ′(z)/Γ(z) corresponds to Equation (6.3.1) of Abramowitz
and Stegun (1972), also known as the digamma function. Calculating (2.3.4) and
using (2.A.10), one can derive the expected trapping time (2.3.5).

2.A.3 Proof of Proposition 2.5.1

Since

S =
β

δ

[
1− e−δτπ

∗(κ,θ)
x

]
,

then we consider mπ∗(κ,θ)

δ (x), the Laplace transform for the insured process obtained
in (2.4.2) with capital growth rπ

∗(κ,θ) to compute V π∗(κ,θ)(x) when capital losses are
exponentially distributed with parameter α(κ) > 0. This yields (2.5.1).

2.A.4 Proof of Proposition 2.5.2

Following a similar procedure to that in Proposition 2.3.1, consider the integral

A(x) :=

∫ ∞

x−xπ∗(κ,θ)∗
w(x− xπ∗(κ,θ)∗, z − (x− xπ∗(κ,θ)∗))dGZ(z)

=

∫ ∞

x−xπ∗(κ,θ)∗
[z − (x− xπ∗(κ,θ)∗) +M (κ) − xπ∗(κ,θ)∗]α(κ)e−α

(κ)zdz
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=

(
1

α(κ)
+M (κ) − xπ∗(κ,θ)∗

)
e−α

(κ)(x−xπ∗(κ,θ)∗),

which under the assumption w(x1, x2) = x2 +M (κ) − xπ∗(κ,θ)∗ yields a modified version
of the IDE (2.A.1) given by

rπ
∗(κ,θ)(x− xπ∗(κ,θ)∗)mπ∗(κ,θ)′

δ,w (x)− (λ+ δ)mπ∗(κ,θ)

δ,w (x) + λ

∫ x−xπ∗(κ,θ)∗

0

mπ∗(κ,θ)

δ,w (x− z)α(κ)e−α
(κ)zdz

= −λ
(

1

α(κ)
+M (κ) − xπ∗(κ,θ)∗

)
e−α

(κ)(x−xπ∗(κ,θ)∗), x ≥ xπ∗(κ,θ)∗.

(2.A.11)
Solving (2.A.11) in the same manner as (2.A.2) gives (2.5.3).

2.A.5 Proof of Proposition 2.6.1

Under the alternative microinsurance subsidy scheme, the Laplace transform of the
trapping time satisfies the following differential equations:

0 =




− (x−x(A)∗)

α(κ) m(A)′′
δ (x) +

[
(λ+δ−r)
α(κ)r

− (x− x(A)∗)
]
m(A)′
δ (x) + δ

rm
(A)

δ (x) for x(A)∗ ≤ x ≤ B,

− (x−x(A)∗)
α(κ) m(A)′′

δ (x) +
[
(λ+δ−r(κ))
α(κ)r(κ)

− (x− x(A)∗)
]
m(A)′
δ (x) + δ

r(κ)
m(A)

δ (x) for x ≥ B.

As in Proposition 2.3.1, use of the change of variable y(A) := y(A)(x) = −α(κ)(x− x(A)∗)
leads to Kummer’s Confluent Hypergeometric Equation, thus Equation (2.6.1) is
obtained for arbitrary constants C1, C2, C3, C4 ∈ R. Under the boundary condition
limx→∞m

(A)

δ (x) = 0 with asymptotic behaviour of the Kummer function M(a, c; z)
as presented in Proposition 2.3.1, we deduce that

C3 = 0. (2.A.12)

Then, since m(A)

δ (x(A)∗) = λ/ (λ+ δ), we obtain

C1 =
λ

λ+ δ
− C2U

(
1− λ

r
, 1− λ+ δ

r
; 0

)
. (2.A.13)

Due to the continuity of the functions m(A)

δ (x) and m(A)′
δ (x) at x = B and the differ-

ential properties of the Confluent Hypergeometric Functions:

d

dz
M(a, c; z) =

a

c
M(a+ 1, c+ 1; z),

d

dz
U(a, c; z) = −aU(a+ 1, c+ 1; z),

upon simplification,

C4 =

[
λ
λ+δ
− C2U

(
1− λ

r
, 1− λ+δ

r
; 0
)]
M
(
− δ
r
, 1− λ+δ

r
; y(A)(B)

)
+ C2ey

(A)(B)U
(

1− λ
r
, 1− λ+δ

r
;−y(A)(B)

)
ey

(A)(B)U
(

1− λ
r(κ)

, 1− λ+δ

r(κ)
;−y(A)(B)

)
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(2.A.14)

and

C2 =

λ
λ+δ

[
δα(κ)

(r−λ−δ)M
(
1− δ

r
, 2− λ+δ

r
; y(A)(B)

)
+M

(
− δ
r
, 1− λ+δ

r
; y(A)(B)

)
(α(κ) −D)

]

K
,

(2.A.15)

where

D :=
α(κ)
(
λ
r(κ)
− 1
)
U
(
2− λ

r(κ)
, 2− λ+δ

r(κ)
;−y(A)(B)

)

U
(
1− λ

r(κ)
, 1− λ+δ

r(κ)
;−y(A)(B)

)

and

K : = M

(
−δ
r
, 1− λ+ δ

r
; y(A)(B)

)
U

(
1− λ

r
, 1− λ+ δ

r
; 0

)
(α(κ) −D)

+Dey
(A)(B)U

(
1− λ

r
, 1− λ+ δ

r
;−y(A)(B)

)

+
δα(κ)

(r − λ− δ)M
(

1− δ

r
, 2− λ+ δ

r
; y(A)(B)

)
U

(
1− λ

r
, 1− λ+ δ

r
; 0

)

− α(κ)ey
(A)(B)

(
λ

r
− 1

)
U

(
2− λ

r
, 2− λ+ δ

r
;−y(A)(B)

)
.
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2.B Appendix B: Monte Carlo Algorithms

2.B.1 Efficient Algorithm for Producing Monte Carlo Esti-
mates of V (A)(x)

To set up an efficient algorithm for producing Monte Carlo estimates of V (A)(x), we
observe the following:

• X (A)

t can only drop below the critical capital x(A)∗ when a capital loss occurs,
hence we only have to check the capital at the times when capital losses occur
to see when to stop the process.

• In between any two arrival times of capital losses, the capital process grows
exponentially at rates r and r(κ), depending if the capital process is below or
above the barrier level B, respectively.

In the implementation, we generate jump times and jump sizes for this process.
The pair Yi = (Ti, Z̃i) reflects the arrival times Ti of the capital losses and the
corresponding sizes of the capital losses Z̃i.

We realise that, over the time interval in between two arrival times of capital losses
(Ti−1, Ti] either no subsidies are paid when the capital lies above the barrier level B
or, otherwise, subsidies are paid from Ti−1 to a certain time T in

i . Furthermore, we
note that for T in

i ≤ Ti, one can write

∫ T in
i

Ti−1

πe−δsds =
π

δ

[
e−δTi−1 − e−δT in

i

]
.

For x ≤ B, let τB = τB (x) be the solution to hr (t, x) = (x − x(A)∗)ert + x(A)∗ = B.
Namely, τB = τB (x) = ln [(B − x(A)∗) / (x− x(A)∗)] /r, which is the time when the
capital returns to the barrier level B if no loss occurs prior to time τB. Thus,
conditioning on the arrival times and the sizes of the capital losses leads to

V (A)(x) = E
[∫ τ (A)

x

0

πe−δt1{X(A)

t <B}dt
∣∣∣∣X

(A)

0 = x

]

= E

[
n∑

i=1

π

δ

(
e−δTi−1 − e−δT in

i

)∣∣∣∣∣T0 = 0, Tn = τ (A)

x , {Yi}i≥1

]

with subsidy payments finalising at times

T in
i = min

{
τB

(
X (A)

Ti−1

)
+ Ti−1, Ti

}
· 1{

x∗≤X(A)

Ti−1
<B
} + Ti−1 · 1{X(A)

Ti−1
≥B
}

and

X (A)

Ti
=
(
X (A)

Ti−1
− x∗

)
er(T

in
i −Ti−1) · 1{T in

i =Ti}
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+ (B − x∗) er(κ)(Ti−T in
i ) · 1{

T in
i =τB

(
X

(A)

Ti−1

)
+Ti−1

}
+
(
X (A)

Ti−1
− x∗

)
er

(κ)(Ti−T in
i ) · 1{T in

i =Ti−1} + x∗ − κ · Z̃i.

For a set of samples
{
y

(k)
i

}
k≥1

of {Yi}i≥1, 1 ≤ k ≤ N , we compute the Monte Carlo

estimate of V (A)(x) as

V (A)(x) =
1

N

N∑

k=1

[
n∑

i=1

π

δ

(
e−δTi−1 − e−δT in

i

)∣∣∣∣∣{Yi}i≥1 =
{
y

(k)
i

}
i≥1

]
.
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2.C Appendix C: Effects of Underlying Factors on
the Trapping Probability

Reference setup: Zi ∼ Exp(1), a = 0.1, b = 1.4, c = 0.4, λ = 1, x∗ = x(κ)∗ = xπ(κ,θ)∗ = x(A)∗ = 1,
κ = 0.5 and θ = 0.5.
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Uninsured Household
Insured Household
Insured Subsidised Household (π∗ = 0)
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Insured Alternatively Subsidised Household (B = 2)
Insured Alternatively Subsidised Household (B = 3.5)

Figure 2.11: Effects of the rate of consumption (0 < a < 1), income generation (0 <
b), investment or savings (0 < c < 1), the parameter of the exponential distribution
(α > 0) (i.e., expected capital loss size), the expected capital loss frequency (λ > 0),
the critical capital (x ≥ x∗), the proportionality factor κ ∈ [0, 1] and the loading
factor (θ ≥ 0) for initial capital x = 1.4.
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Figure 2.12: Effects of the rate of consumption (0 < a < 1), income generation (0 <
b), investment or savings (0 < c < 1), the parameter of the exponential distribution
(α > 0) (i.e., expected capital loss size), the expected capital loss frequency (λ > 0),
the critical capital (x ≥ x∗), the proportionality factor κ ∈ [0, 1] and the loading
factor (θ ≥ 0) for initial capital x = 4.
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Figure 2.13: Effects of the rate of consumption (0 < a < 1), income generation (0 <
b), investment or savings (0 < c < 1), the parameter of the exponential distribution
(α > 0) (i.e., expected capital loss size), the expected capital loss frequency (λ > 0),
the critical capital (x ≥ x∗), the proportionality factor κ ∈ [0, 1] and the loading
factor (θ ≥ 0) for initial capital x = 8.
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2.D Appendix D: Effects of Underlying Factors on
the Cost of Social Protection

Reference setup: Zi ∼ Exp(1), a = 0.1, b = 1.4, c = 0.4, λ = 1, x∗ = x(κ)∗ = xπ(κ,θ)∗ = x(A)∗ = 1,
κ = 0.5, θ = 0.5, δ = 0.1 and ε = 0.01.
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Figure 2.14: Effects of the rate of consumption (0 < a < 1), income generation (0 <
b), investment or savings (0 < c < 1), the parameter of the exponential distribution
(α > 0) (i.e., expected capital loss size), the expected capital loss frequency (λ > 0),
the critical capital (x ≥ x∗), the proportionality factor κ ∈ [0, 1], the loading factor
(θ ≥ 0), the force of interest (δ ≥ 0) and the most admissible trapping probability
ε ∈ [0, 1] for initial capital x = 1.4.
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Figure 2.15: Effects of the rate of consumption (0 < a < 1), income generation (0 <
b), investment or savings (0 < c < 1), the parameter of the exponential distribution
(α > 0) (i.e., expected capital loss size), the expected capital loss frequency (λ > 0),
the critical capital (x ≥ x∗), the proportionality factor κ ∈ [0, 1], the loading factor
(θ ≥ 0), the force of interest (δ ≥ 0) and the most admissible trapping probability
ε ∈ [0, 1] for initial capital x = 4.
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Insured Subsidised Household (π∗ = 0.55)
Insured Alternatively Subsidised Household (B = 2)
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Figure 2.16: Effects of the rate of consumption (0 < a < 1), income generation (0 <
b), investment or savings (0 < c < 1), the parameter of the exponential distribution
(α > 0) (i.e., expected capital loss size), the expected capital loss frequency (λ > 0),
the critical capital (x ≥ x∗), the proportionality factor κ ∈ [0, 1], the loading factor
(θ ≥ 0), the force of interest (δ ≥ 0) and the most admissible trapping probability
ε ∈ [0, 1] for initial capital x = 8.



Chapter 3

On the Impact of Insurance on
Households Susceptible to Random
Proportional Losses: An Analysis of
Poverty Trapping

This chapter is based on the following article:

Henshaw, K., J. M. Ramirez, J. M. Flores-Contró, E. A. Thomann, S. H. Loke, and
C. D. Constantinescu (2023). On the Impact of Insurance on Households Suscepti-
ble to Random Proportional Losses: An Analysis of Poverty Trapping. Submitted.

Abstract. In this chapter, we consider a risk process with deterministic growth and
multiplicative jumps to model the capital of a household. Unlike in other well-studied
risk processes, capital losses are assumed to be proportional to the level of accumulated
capital at the time of a capital loss event. We seek to derive the probability that a
household falls below the poverty line, i.e. the trapping probability, where “trapping”
occurs when the level of capital of a household falls below the poverty line, to an area
from which it is difficult to escape without external help. Considering the remaining
proportion of capital after a capital loss event to be distributed as a particular case of
the beta distribution, closed-form expressions for the trapping probability are obtained via
analysis of the Laplace transform of the infinitesimal generator of the risk process. To
study the impact of insurance on this probability, introduction of an insurance product
offering proportional coverage is presented. The infinitesimal generator of the insured
risk process gives rise to non-local differential equations that are not easy to solve using
techniques commonly used in risk theory. To overcome this, we propose a recursive method
for deriving a closed-form solution of the integro-differential equation associated with the
infinitesimal generator of the insured risk process and provide a numerical method for
estimating the trapping probability. Constraints on parameters of the risk process that
prevent certain trapping are also derived in both the uninsured and insured cases using
classical results from risk theory.
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3.1 Introduction

Vulnerable non-poor households (those living just above the poverty line) are ex-
tremely susceptible to entering poverty, particularly in the event of a financial loss.
This problem, and the true nature of the loss experience of vulnerable non-poor
households, must be studied in order to attain poverty reduction. An indicator that
can be used to assess financial stability is capital, which in the vulnerable non-poor
household environment, where monetary wealth is often limited, the concept of cap-
ital should reflect all forms of capital that enable production, whether for trade or
self-sustaining purposes. This may include land, property, physical and human cap-
ital, with health a form of capital in extreme cases where sufficient health services
and food accessibility are not guaranteed (Dasgupta, 1997). The threat of catas-
trophic loss events is of great concern, particularly under this broad definition of
capital. For example, vulnerable non-poor households are predominantly engaged
in agricultural work and are exposed, among many other things, to natural disasters
in the form of floods and droughts. In contrast to losses relating to health, life or
death, agricultural losses can immediately eliminate a high proportion of a house-
hold’s ability to produce through loss of land and livestock, irrespective of their level
of capital.

In this chapter, we study the behaviour of households’ capital under the assumption
of proportional capital loss experience. Proportionality in loss experience captures
the exposure of households of all capital levels to both catastrophic and low severity
loss events. This is particularly relevant in the vulnerable non-poor household set-
ting, where, in addition to infrequent but serious events such as natural disasters,
more common events such as hospital admissions and household deaths, can be detri-
mental. To do this, we adopt the ruin-theoretic approach proposed in Kovacevic and
Pflug (2011), by using a risk process with deterministic growth and multiplicative
losses to model the capital of a household. At capital loss events, accumulated capi-
tal is reduced by a random proportion of itself, rather than by an amount of random
value, as in Flores-Contró et al. (2021). Processes of this structure are typically
referred to as a growth-fragmentation or growth-collapse processes, characterised
by their growth in between the random collapse times at which downwards jumps
occur. In these models, the randomly occurring jumps have a random size which is
dependent on the state of the process immediately before the jump.

Our aim is to derive the probability that a household falls below the poverty line,
where this probability mimics an insurer’s ruin probability. To the best of our
knowledge, only Kovacevic and Pflug (2011), and Flores-Contró et al. (2021) have,
so far, studied this problem in the ruin-theoretic setting. As in this earlier work,
in this chapter, we consider the probability under two frameworks, one in which
the household has no insurance coverage, and the other in which they are propor-
tionally insured. We introduce insurance to assess its effectiveness as a measure of
poverty reduction. Aligning with the low-income environment, proportional cover-
age is assumed to be provided through an inclusive insurance product, specifically
designed to cater for those excluded from traditional insurance services or without
access to alternative effective risk management strategies. This type of product,
targeted towards low-income populations, is commonly referred to as microinsur-
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ance. In Flores-Contró et al. (2021), the risk process with deterministic growth and
random-value losses is instead used to assess the impact of government premium
subsidy schemes on the probability of falling below the poverty line.

Although important, we do not consider the behaviour of a household’s capital
below the poverty line. Households that live or fall below the poverty line are said
to be in a poverty trap, where a poverty trap is a state of poverty from which it is
difficult to escape without external help. Poverty trapping is a well-studied topic in
development economics (the interested reader may refer to Azariadis and Stachurski
(2005), Bowles et al. (2006), Kraay and McKenzie (2014), Barrett et al. (2016)
and references therein for further discussion; see Matsuyama (2008) for a detailed
description of the mechanics of poverty traps), however, for the purpose of this
study, we use the term “trapping” only to describe the event that a household falls
into poverty, focusing our interest on vulnerable non-poor households with capital
levels above the poverty line.

In Kovacevic and Pflug (2011), estimates of the infinite-time trapping probability
of a discretised version of the capital process adopted in this chapter are obtained
through numerical simulation. Azaïs and Genadot (2015) perform further numerical
analysis on the same model, discussing applications to the capital setting of Kovace-
vic and Pflug (2011) and to population dynamics, where the poverty line denotes
extinction. In both cases, derivation of analytical solutions of infinitesimal generator
equations is not attempted. Our main contribution is therefore in the derivation of
closed-form solutions of the infinitesimal generator equations associated with risk
processes of this type and, in the case of proportional insurance, in the proposition
of a novel approach to estimate the trapping probability recursively.

Due to the proportionality of the capital losses, generators of the capital process
no longer directly align with those of classical models used to describe the surplus
process of an insurer. Obtaining the solution of the infinitesimal generator equation
is therefore non-trivial. Indeed, random absolute losses are serially correlated with
one another and with the inter-arrival times of capital loss events, in contrast to the
random losses considered in traditional risk models. In addition, only the surplus of
a household’s capital above the poverty line grows exponentially. To ensure that the
Lundberg equation is well-defined, and thus prevent certain trapping, constraints on
the parameters of the capital growth processes are derived. Laplace transform and
derivative operators are then used to obtain the associated trapping probabilities,
under no insurance coverage and proportional insurance coverage, respectively.

Research on growth-collapse processes with applications outside the field of actuar-
ial science includes Altman et al. (2002) and Löpker and Van Leeuwaarden (2008)
for congestion control in data networks, Eliazar and Klafter (2004) and Eliazar and
Klafter (2006) for phenomena in physical systems, Derfel et al. (2012) for cell growth
and division, and Peckham et al. (2018) in a model of persistence of populations
subject to random shocks. Aligning with the Laplace transform approach adopted
in the case of no insurance, Löpker and Van Leeuwaarden (2008) obtain the Laplace
transform of the transient moments of a growth-collapse process, while Eliazar and
Klafter (2004) consider the state of a growth-collapse process at equilibrium, com-
puting Laplace transforms of the system and of the high- and low-levels of the
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growth-collapse cycle.

Previous research on the impact of microinsurance mechanisms on the probability
of falling below the poverty line from a non-ruin perspective has been undertaken
through application of multi-equilibrium models and dynamic stochastic program-
ming (Chantarat et al., 2017; Ikegami et al., 2018; Carter and Janzen, 2018; Liao
et al., 2020; Janzen et al., 2021; Kovacevic and Semmler, 2021). With the exception
of the latter, each of these studies considers the impact of subsidisation and the
associated cost to the subsidy provider. Will et al. (2021) and Henshaw et al. (2023)
extend the problem to the group-setting, assessing the impact of risk-sharing on
the trapping probability. Will et al. (2021) undertake a simulation-based study and
Henshaw et al. (2023) propose a Markov modulated stochastic dissemination model
of group wealth interactions, using a bivariate normal approximation to calculate
the trapping probability.

Notably, Kovacevic and Pflug (2011), Liao et al. (2020) and Flores-Contró et al.
(2021) suggest that purchase of insurance and the associated need for premium pay-
ment increases the risk of falling below the poverty line for the most vulnerable.
Barriers to microinsurance penetration that exist due to constraints on product af-
fordability resulting from fundamental features of the microinsurance environment
likely contribute to such observations. Limited consumer financial literacy and ex-
perience, product accessibility and data availability, are examples of the unique
characteristics that must be accounted for when designing effective and affordable
microinsurance products. Through our analysis, we further investigate the case of
proportional loss experience to assess the associated implications on the affordability
of insurance.

Janzen et al. (2021) optimise the level of insurance coverage across the population,
observing that those in the neighbourhood of the poverty line do not optimally
purchase insurance (without subsidies), instead suppressing their consumption and
mitigating the probability of falling into poverty. This aligns with the increase in
the trapping probability observed in the aforementioned studies, when those closest
to the poverty line purchase insurance. Similarly, Kovacevic and Semmler (2021)
derive the retention rate process that maximises the expected discounted capital,
by allowing adjustments in the retention rate of the policyholder after each capital
loss throughout the lifetime of the insurance contract. In this chapter, however,
the proportion of insurance coverage and the choice to insure is fixed across the
population, as in Kovacevic and Pflug (2011), Chantarat et al. (2017) and Flores-
Contró et al. (2021).

The remainder of this chapter is structured as follows. Section 3.2 introduces
the capital growth model and its alignment with the classical Crámer-Lundberg
model. This connection enables derivation of constraints on the parameters of
the risk process that ensure the Lundberg equation is well-defined, thus prevent-
ing certain trapping. Derivation of the trapping probability for uninsured losses and
Beta(α, 1)−distributed remaining proportions of capital is presented in Section 3.3.
The trapping probability for households covered by proportional insurance coverage
is derived in Section 3.4 for Beta(1, 1)−distributed remaining proportions of capital.
The non-locality of the differential equations associated with the infinitesimal gener-
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ator of the insured process is highlighted and a recursive method for estimating the
trapping probability is proposed. Uninsured and insured trapping probabilities are
compared in Section 3.5 and are presented alongside additional findings of interest.
Concluding remarks are provided in Section 5.6.

Throughout the chapter, we use the term “insurance” to refer to any form of mi-
croinsurance product. Our analysis does not consider a specific type of product but
can be tailored through the selection of appropriate parameters.

3.2 The Capital Model

Construction of the capital model follows that of Kovacevic and Pflug (2011). Con-
sider a household with accumulated capital {Xt}t≥0. Under the basic assumption
that the household has no loss experience, their growth in accumulated capital is
given by

dXt

dt
= r · [Xt − x∗]+ , (3.2.1)

where [x]+ = max(x, 0). The dynamics in (3.2.1) are built on the assumption that
a household’s income It is split into consumption Ct and savings or investments St,
such that at time t,

It = Ct + St, (3.2.2)

where consumption is an increasing function of income, given by

Ct =

{
It if It ≤ I∗,

I∗ + a (It − I∗) if It > I∗,
(3.2.3)

for 0 < a < 1. The critical point below which a household consumes all of its
income, with no facility for savings or investment, is denoted by I∗. Accumulated
capital is assumed to grow proportionally to the level of savings, such that

dXt

dt
= cSt, (3.2.4)

for 0 < c < 1, and income is generated through the accumulated capital, such that

It = bXt, (3.2.5)

for b > 0.

Combining (3.2.2), (3.2.3), (3.2.4) and (3.2.5) gives exactly the dynamics in (3.2.1),
where the capital growth rate r = (1 − a) · b · c > 0 incorporates household rates
of consumption (0 < a < 1), income generation (b > 0) and investment or savings
(0 < c < 1), while x∗ = I∗/b > 0 denotes the threshold below which a household
lives in poverty. The notion of a household in this model setting may be extended for
consideration of poverty trapping within economic units such as community groups,
villages and tribes, in addition to the traditional household structure.
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Reflecting the ability of a household to produce, the level of accumulated capital
of a household Xt is composed of land, property, physical and human capital. The
poverty threshold x∗ represents the amount of capital required to forever attain a
critical level of income below which a household would not be able to sustain its
basic needs, facing elementary problems relating to health and food security. We
refer to this threshold as the critical capital or the poverty line. Since (3.2.1) is
positive for all levels of capital greater than the critical capital, all points less than
or equal to x∗ are stationary, the level of capital remains constant if the critical
capital is not met. In this basic model, stationary points below the critical capital
are not attractors of the system if the initial capital exceeds x∗, in which case the
capital process grows exponentially with rate r.

In line with Kovacevic and Pflug (2011), we expand the dynamics of (3.2.1) under
the assumption that households are susceptible to the occurrence of capital losses
such as those highlighted in Section 3.1, including severe illness, the death of a
household member or breadwinner and catastrophic events such as droughts, floods
and earthquakes. The occurrence of loss events is assumed to follow a Poisson process
with intensity λ, where the capital process follows the dynamics of (3.2.1) in between
events. On the occurrence of the ith capital loss, the capital process experiences a
downwards jump to XTi ·Zi, where Zi ∈ [0, 1] is the random proportion determining
the remaining capital after loss i and XTi the level of accumulated capital at the loss
time. The sequence {Zi}∞i=1 is a sequence of i.i.d. random variables with common
distribution function GZ , independent of the Poisson process. In this chapter, it will
be assumed that the random proportion determining the remaining capital after each
loss event is Beta(α, β)−distributed (Zi ∼ Beta(α, β)).

A household reaches the area of poverty if it suffers a loss large enough that the
remaining capital is attracted into the poverty trap. Since a household’s capital does
not grow below the critical capital x∗, households that fall into the area of poverty
will never escape without external help. Once below the critical capital, households
are exposed to the risk of falling deeper into poverty. However, in contrast to Flores-
Contró et al. (2021) where random-valued losses are considered, the dynamics of the
model do not allow for the possibility of negative capital due to the proportionality
of loss experience.

The structure of the process in-between loss events is derived through solution of the
Ordinary Differential Equation (ODE) in (3.2.1). The stochastic capital process with
deterministic exponential growth and multiplicative losses is then formally defined
as follows:

Definition 3.2.1. Let Ti be the ith event time of a Poisson process {Nt}t≥0 with
parameter λ, where T0 = 0. Let 0 ≤ Zi ≤ 1 be a sequence of i.i.d. random variables
with distribution function GZ , independent of the process {Nt}. For Ti−1 ≤ t < Ti,
the stochastic growth process of the accumulated capital Xt is defined as

Xt =

{(
XTi−1

− x∗
)
er(t−Ti−1) + x∗ if XTi−1

> x∗,

XTi−1
otherwise.

(3.2.6)

At the jump times t = Ti, the capital process is given by
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XTi =

{[(
XTi−1

− x∗
)
er(Ti−Ti−1) + x∗

]
· Zi if XTi−1

> x∗,

XTi−1
· Zi otherwise.

As in Kovacevic and Pflug (2011) and Flores-Contró et al. (2021), the aim of this
chapter is to study the probability that a household falls below the poverty line,
i.e. the trapping probability. By Definition 3.2.1, the capital level of the household
follows a piecewise deterministic Markov process (Davis, 1984, 1993) of compound
Poisson-type, which is deterministic in-between the randomly occurring jump times
at which capital losses occur.

The infinite-time trapping probability describes the distribution of the time at which
a household becomes trapped, referred to as the trapping time. Given a household
has initial capital x, their trapping time, denoted τx, is given by

τx := inf {t ≥ 0 : Xt < x∗|X0 = x} ,

where τx is fixed at infinity if Xt ≥ x∗ for all t. It then follows that the trapping
probability, denoted as ψ(x), is given by

ψ (x) = P (τx <∞) .

Analysis of the trapping probability can be undertaken through study of the in-
finitesimal generator. The infinitesimal generator A of the stochastic process Xt as
in Definition 3.2.1 is given by

(Aψ) (x) = r(x− x∗)ψ′(x) + λ

∫ 1

0

[ψ(x · z)− ψ(x)]dGZ(z), (3.2.7)

for x ≥ x∗. The remainder of the chapter works towards solving (Aψ) (x) = 0,
in line with the classical theorem of Paulsen and Gjessing (1997). Intuitively, the
boundary conditions of the trapping probability are

lim
x→x∗+

ψ(x) = 1 and lim
x→∞

ψ(x) = 0, (3.2.8)

such that under the assumption that ψ(x) is a bounded and twice continuously
differentiable function on x ≥ x∗, with a bounded first derivative, and since we
consider only what happens above the critical capital x∗, the theorem of Paulsen
and Gjessing (1997) is applicable.

Closed-form expressions for Laplace transforms of ruin (trapping) probabilities are
often more easily obtained than for the probability itself. However, multiplication of
the initial capital by the random proportion in the integral function makes Laplace
transform methods typically used in risk theory no longer straightforward. Solution
of the Integro-Differential Equation (IDE) in (3.2.7) has so far only been under-
taken numerically (see, for example, Kovacevic and Pflug (2011)). In this chapter,
closed-form trapping probabilities are obtained through solution of (Aψ) (x) = 0
for particular cases of GZ , the distribution function of the remaining proportions of
capital.

First, note that there exists a relationship between the capital model of Definition
3.2.1 and the classical Crámer-Lundberg model. This enables specification of an
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upper bound on the trapping probability of the capital growth process Xt through
Lundberg’s inequality, derived in Lundberg (1926). Consider an adjustment of the
capital process that is discretised at loss event times such that X̃i = XTi , i.e. the
capital process studied in Kovacevic and Pflug (2011). Defining Li := log

(
X̃i

)
and

setting x∗ = 0 yields

Li = Li−1 + r(Ti − Ti−1) + log(Zi) = log x+ rTi +
i∑

k=1

log(Zk), (3.2.9)

where log(Zk) < 0. The model on the right-hand side of (3.2.9) is a version of the
classical Crámer-Lundberg model introduced by Lundberg (1903) and later studied
by Cramér (1930), which assumes an insurance company collects premiums contin-
uously and pays claims of random size at random times. The corresponding surplus
process is given by

Ut = u+ pt−
Pt∑

i=1

Yi,

where u = U0 ≥ 0 is the insurer’s initial capital, p is the constant premium rate,
{Pt}t≥0 is a Poisson process with intensity I which counts the number of claims in
the time interval [0, t] and {Yi}∞i=1 is a sequence of i.i.d. claim sizes with distribution
function GY .

The net profit condition is a constraint that ensures, on average, that the capital
gains of a household are superior to their losses. If this condition is not satisfied then
trapping is certain. It is well-known in risk theory that if the net profit condition
holds, the process Ut converges to infinity almost surely as t → ∞ and there is a
positive probability that Ut ≥ 0 for all t. As a consequence of the net profit condition,
it also holds that limu→∞ ψ

RUIN(u) = 0, where ψ RUIN(u) is the ruin probability under the
classical Crámer-Lundberg model. However, derivation of the net profit condition
from the drift of Ut to infinity is not always straightforward. The Lundberg equation
provides an alternative method for deriving the net profit condition. Assume that
there exists a constant R > 0 such that the process

(
e−RLi

)
i≥0

is a martingale. The
resulting equation is the Lundberg equation, and is given by

E[e−R log(Zi)]E[e−RrT̃i ] = E[e−R(log(Zi)+rT̃i)] = 1,

where T̃i = Ti− Ti−1 denotes the inter-arrival time and the unique solution R is the
adjustment coefficient. Thus, for R to exist, it must hold that E[log(Zi) + rT̃i] > 0.
In fact, for R to exist the net profit condition must hold. As such, the existence of
R ensures that limu→∞ ψ

RUIN(u) = 0.

Then, if E[log(Zi) + rT̃i] > 0, the logarithmic process in (3.2.9) converges to infinity
almost surely, and

lim
log x→∞

P(Li < 0|L0 = log x) = 0.

Since log x→∞ implies x→∞ it holds that

lim
x→∞

ψ(x) ∼ lim
x→∞

ψ(x|x∗ = 0) ≤ lim
x→∞

P(Xt < 1|X0 = x)
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= lim
log x→∞

P(Li < 0|L0 = log x) = 0,

where we have applied the equivalence of X̃i and Xt at loss event times and the
fact that asymptotically, the behaviour of the trapping probability ψ(x) remains
unchanged for any x∗. The upper boundary condition in (3.2.8) therefore holds if
E[log(Zi) + rT̃i] > 0.

In Sections 3.3 and 3.4, we use the net profit condition to derive constraints on the
parameters of the capital process for uninsured and proportionally insured house-
holds, respectively. The closed-form trapping probabilities are then derived through
consideration of the associated infinitesimal generators for uninsured losses with
Beta(α, 1)−distributed remaining proportions of capital (Section 3.3) and propor-
tionally insured losses with Beta(1, 1)−distributed remaining proportions of capital
(Section 3.4). Laplace transform methods are applied in Section 3.3 and a derivative
approach in Section 3.4, where a solution of the infinitesimal generator equation is
derived recursively.

3.3 Derivation of Trapping Probability Under No
Insurance Coverage

Under the assumption of remaining proportions of capital with distribution Zi ∼
Beta(α, 1), letting u = x ·z reduces the infinitesimal generator of the capital growth
process in (3.2.7) to

(Aψ) (x) = r(x− x∗)ψ′(x)− λψ(x) +
αλ

xα

∫ x

0

ψ(u)uα−1du, (3.3.1)

for x ≥ x∗.

Proposition 3.3.1. Consider a household capital process as proposed in Defini-
tion 3.2.1 with initial capital x ≥ x∗, capital growth rate r, loss intensity λ > 0
and remaining proportions of capital with distribution Beta(α, 1). The adjustment
coefficient of the corresponding Lundberg equation exists if

λ

r
< α. (3.3.2)

Proof. For Beta(α, 1)−distributed remaining proportions of capital, given that Zi
and T̃i are independent and since E[log(Zi)] = α

∫ 1

0
log(z)zα−1dz, E[log(Zi) + rT̃i]

holds if and only if (3.3.2) is satisfied, as required.

We now derive the trapping probability through solution of (Aψ) (x) = 0 in line
with the discussion of Section 3.2. Since households face certain trapping if the net
profit condition is violated, our analysis focuses only on the region for which (3.3.2)
holds.
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Proposition 3.3.2. Consider a household capital process as proposed in Defini-
tion 3.2.1 with initial capital x ≥ x∗, capital growth rate r, loss intensity λ > 0
and remaining proportions of capital with distribution Beta(α, 1). The closed-form
trapping probability is given by

ψ(x) =
Γ(α) · 2F1(α− λ

r
, 1− λ

r
; 1 + α− λ

r
; y(x)−1)(

α− λ
r

)
Γ
(
α− λ

r

)
Γ
(
λ
r

) y(x)
λ
r
−α, (3.3.3)

where y(x) = x
x∗

and 2F1 (·) is Gauss’s Hypergeometric Function, for α > λ
r
.

Proof. Setting H1(x) = ψ(x) · xα−1 and H2(x) = 1 in (3.3.1), we have

r(x− x∗)ψ′(x)− λψ(x) +
αλ

xα
(H1 ∗H2)(x) = 0, x ≥ x∗, (3.3.4)

where f ∗ g denotes the convolution of the functions f and g, i.e.

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ for f, g : [0,∞)→ R.

Let L{ψ(x)} = F (s) denote the Laplace transform of the trapping probability ψ(x),
i.e.

L{ψ(x)} = F (s) =

∫ ∞

0

ψ(x)e−sxdx, x ≥ 0.

Applying the Laplace transform to (3.3.4) yields

s2F (α+1)(s) + s

[
α + 1 +

λ

r
+ x∗s

]
F (α)(s) + α

[
λ

r
+ x∗s

]
F (α−1)(s) = 0,

(3.3.5)

where the Convolution Theorem (see, for example, Theorem 3.4 of Dyke (2001))
and the following elementary properties of Laplace transforms:

L{xnψ(x)} = (−1)nF (n)(s),

L{ψ′(x)} = sF (s)− ψ(0) and

L{xnψ′(x)} = (−1)nsF (n)(s)− n(−1)n−1F (n−1)(s),

were used. To address the higher order derivatives, we let y(s) := F (α−1)(s), such
that y′(s) := F (α)(s) and y′′(s) := F (α+1)(s). Then, (3.3.5) is equivalent to

s2y′′(s) + s

[
α + 1 +

λ

r
+ x∗s

]
y′(s) + α

[
λ

r
+ x∗s

]
y(s) = 0. (3.3.6)

The above is a second order ODE of the kind (139) from Zaitsev and Polyanin
(2003). Hence, letting y = skw, where k is a root of the quadratic equation k2 +
(α + λ/r) k + (αλ) /r = 0, i.e. k1 = −λ/r or k2 = −α (here, we take k2 = −α and
omit the case k1 = −λ/r in which a similar procedure must be followed), (3.3.6)
reduces to

sw′′(s) +

[
1 +

λ

r
− α + x∗s

]
w′(s) = 0,
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which has as solution

w(s) = C1

∫ s

0

e−x
∗tt−(1+λ

r
−α)dt+ C2.

Then, under the substitution u = x∗ · t,

y(s) = F (α−1)(s) = C1x
∗(λr−α)s−αγ

(
α− λ

r
;x∗s

)
+ C2s

−α for
λ

r
< α,

(3.3.7)

where γ(a;x) =
∫ x

0
e−tta−1dt for R(a) > 0 is the lower incomplete gamma function

(see, for example, Equation (6.5.2) of Abramowitz and Stegun (1972)). From Equa-
tion (2) of Section 3.10.1 of Prudnikov et al. (1992), which states that the Laplace
transform of the piecewise function

f(t) =





Γ(v)
Γ(µ)

tµ−1 0 < t < a,

avtµ−v−1

vΓ(µ−v) 2F1

(
v, v − µ+ 1; v + 1; a

t

)
a < t,

is L{f(t)} = s−µγ(v, as) for R(v − µ) < 1, R(µ, a), and R(s) > 0, inverting (3.3.7)
yields

ψ(x) =




C2

(−1)1−α

Γ(α)
+ C1x

∗(λr−α) Γ(α−λ
r

)

Γ(α)
(−1)1−α 0 < x < x∗,

C2
(−1)1−α

Γ(α)
+ C1

(−1)1−α

(α−λ
r

)Γ(λ
r

) 2F1

(
α− λ

r
, 1− λ

r
;α− λ

r
+ 1; x

∗

x

)
x
λ
r
−α x∗ < x,

where we have used the fact that d
ds
F (s) = −L{xψ(x)} to prove by induction that

dn

dsn
F (s) = (−1)nL{xnψ(x)}.

From the boundary conditions for ψ(x) in (3.2.8), we have

C2 = 0 and C1 =
Γ(α)

(−1)1−αΓ(α− λ
r
)
x∗(α−

λ
r

)

such that (3.3.3) holds.

Corollary 3.3.1. The closed-form trapping probability in (3.3.3) is equivalent to

ψ(x) = 1− Γ (α)

Γ
(
1 + λ

r

)
Γ
(
α− λ

r

)
(

1− y (x)−1
)λ
r

2F1

(
λ

r
, 1 +

λ

r
− α; 1 +

λ

r
; 1− y (x)−1

)
,

(3.3.8)

where y(x) = x
x∗

and 2F1 (·) is Gauss’s Hypergeometric Function, for α > λ
r
.

Proof. First, we apply the following hypergeometric transform

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)z

−a
2F1

(
a, a− c+ 1; a+ b− c+ 1; 1− 1

z

)
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+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−bza−c2F1

(
c− a, 1− a; c− a− b+ 1; 1− 1

z

)
,

which holds for | arg z| < π and | arg(1 − z)| < π (see, for instance, Equation
(15.3.9) from Abramowitz and Stegun (1972)), to (3.3.3), where we extend the
gamma function to negative non-integer values by the relation

Γ(x+ 1) = xΓ(x),

(see, for instance, Equation (6.1.15) from Abramowitz and Stegun (1972)) for x <
0, x /∈ Z. Then, applying the relation

2F1(a, b; c; z) = (1− z)c−a−b2F1 (c− a, c− b; c; z)

(see, for example, Equation (15.3.3) from Abramowitz and Stegun (1972)) and trans-
forming via the formula

2F1(a, b; c; z) = (1− z)−a2F1

(
a, c− b; c; z

z − 1

)
(3.3.9)

(see, for example, Equation (15.3.4) from Abramowitz and Stegun (1972)) yields
(3.3.8).

Remark 3.3.1. Substitution of α = 1 into (3.3.3), or equivalently (3.3.8), yields the
closed-form trapping probability under uniformly distributed remaining proportions
of capital, i.e. the case Zi ∼ Beta(1, 1).
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Figure 3.1: (a) Trapping probability ψ(x) when Zi ∼ Beta(α, 1), a = 0.1, b = 1.4,
c = 0.4, λ = 1 and x∗ = 1 for α = 2, 2.5, 3, 5, 10 (b) Trapping probability ψ(x) when
Zi ∼ Beta(1, 1), a = 0.1, b = 1.4, c = 0.4 and x∗ = 1 for λ = 0.1, 0.2, 0.3, 0.4, 0.5.

The closed-form trapping probability for households susceptible to proportional
losses with Beta(α, 1) distributed remaining proportions of capital, as derived in
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Proposition 3.3.2, is presented in Figure 3.1a for varying initial capital x and shape
parameter α. Note that the trapping probability tends to one as λ/r tends to α in
line with the constraint of Proposition 3.3.1. The low value of the rate parameter λ
reflects the vulnerability of low-income households to both high and low frequency
loss events, while aligning with the constraint in Proposition 3.3.1. Increasing α in-
creases the mean of the distribution of the remaining proportion of capital. Observa-
tion of a decreasing trapping probability with increasing α is therefore intuitive and
aligns with the reduction in loss. Figure 3.1b presents the same trapping probability
for varying loss frequency λ and fixed α = 1. In this case, remaining proportions of
capital are uniformly distributed as in Section 3.4. Increasing the frequency of loss
events increases the trapping probability, as is to be expected. Parameters a, b and
c are selected to correspond with those in Flores-Contró et al. (2021).

Particularly, high levels of accumulated capital are not relevant in the microinsurance
and poverty trapping context. However, the asymptotic behaviour of the analytic
trapping probability at infinity is interesting for understanding the behaviour of
the function. Since limz→0 2F1(a, b; c; z) = 1 (see, for example, Kristensson (2010)),
(3.3.3) behaves asymptotically like the power function

Γ (α)(
α− λ

r

)
Γ
(
α− λ

r

)
Γ
(
λ
r

)y (x)
λ
r
−α , (3.3.10)

such that the uninsured trapping probability has power-law asymptotic decay as
x→∞.

We now compare the decay of the household-level trapping probability under pro-
portional losses and no insurance coverage with that of the exponentially distributed
random-valued loss case of Flores-Contró et al. (2021). The equivalent uninsured
trapping probability under random-valued losses for x ≥ x∗ is given by

ψ EXPONENTIAL(x) =
Γ
(
λ
r
; g(x)

)

Γ
(
λ
r

) , (3.3.11)

where g(x) = µ(x−x∗), µ is the exponential loss parameter and Γ(a; z) is the upper
incomplete gamma function defined as Γ(a; z) :=

∫∞
z
e−tta−1dt. The probability in

(3.3.11) follows

g(x)
λ
r
−1e−g(x)(1 +O(|g(x)|−1)), (3.3.12)

asymptotically. The limiting behaviour of the ratio of (3.3.12) to (3.3.10) is

Cxα−
λ
r (x− x∗)λr−1 e−g(x)(1 +O(|g(x)|−1)),

for a constant C =
[
µ
λ
r
−1
(
α− λ

r

)
Γ
(
α− λ

r

)
Γ
(
λ
r

)
x∗

λ
r
−α
]
/Γ (α). The trapping

probability in the random-valued case therefore decays at a faster rate than when
a household experiences proportional losses, with the severity of this difference de-
pendent on the parameters of the loss distributions. This result is intuitive, since
proportional losses are riskier than random-valued losses at high capital levels due
to the non-zero probability of a household losing all (or a high proportion) of its
capital. This is particularly severe in the uniform case of Section 3.4, where high



3.3. TRAPPING PROBABILITY UNDER NO INSURANCE COVERAGE 80

and low levels of proportional losses are equally likely. When α = 1, the trap-
ping probability in the random-valued case decays exponentially faster than in the
proportional case. A comparison of the decay of the trapping probability under
proportional losses against that of random-valued losses is provided in Figure 3.2b,
where the probabilities are plotted on the logarithmic scale. Here, the slower rate
of decay under proportional losses is clearly observable.
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Figure 3.2: (a) Comparison between the trapping probability ψ EXPONENTIAL(x) in (3.3.11)
with Exp(µ)−distributed random-valued losses for µ = 1, 2, 6 and the trapping
probability ψ(x) in (3.3.3) with Beta(5, 1)−distributed proportional losses where
a = 0.1, b = 1.4, c = 0.4, x∗ = 1 and λ = 1 (b) The same curves as in Figure 3.2a
for α = 5 and µ = 1, 2, 3 on the logarithmic scale.

Figure 3.2 compares trapping probabilities under proportional (3.3.3) and random-
valued (3.3.11) losses for a given set of parameters. Trapping probabilities for a
number of exponential claim size distributions are compared with the trapping prob-
ability under proportional losses with an expected value of approximately 16.7% of
accumulated capital. For random-valued claim sizes with an expected value of 0.5
(µ = 2) the trapping probability is greater than for proportional losses for the most
vulnerable, however, as capital increases the trapping probability under proportional
losses exceeds the random-valued case. If the expected claim size increases to one
(µ = 1) the trapping probability for proportional losses is significantly lower than
in the random-valued case at all levels of initial capital. Compared to the mean loss
associated with Beta(5, 1)−distributed remaining proportions, an expected claim
size of one is low with respect to high levels of initial capital. For x = 6 the two
loss rates coincide. This therefore suggests that for equivalent loss size, the trap-
ping probability for proportional losses is reduced in comparison to random-valued
losses. However, for capital levels below this point random-valued losses account
for a greater proportion of capital than the proportional loss case selected for com-
parison and thus the increased trapping probability is intuitive. Further analysis
would be needed to validate the consistency in the reduction of the probability for
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equivalent losses.

3.4 Derivation of Trapping Probability Under Pro-
portional Insurance Coverage

In line with Kovacevic and Pflug (2011) and Flores-Contró et al. (2021), in this
section, we extend the model under the assumption that capital losses are covered
by a proportional insurance product. Consider the presence of a fixed premium
insurance product that covers 100 · (1 − κ) percent of all household losses, where
1− κ for κ ∈ (0, 1] is the proportionality factor. Assume that coverage is purchased
by all households. Under proportional insurance coverage, the critical capital (or
poverty line) and capital growth rate associated with an insured household must
account for the need for premium payments. As such, define

r(κ) = (1− a) · (b− π(κ, θ)) · c and x(κ)∗ =
I∗

b− π(κ, θ)
, (3.4.1)

where π(κ, θ) is the premium rate and is calculated according to the expected value
principle,

π(κ, θ) = (1 + θ) · (1− κ) · λ · E [1− Zi] .
Parameters a, b and c are household rates of consumption, income generation and
investment or savings as defined in Section 3.2 and the parameter θ is the loading
factor specified by the insurer. We assume that these parameters, and the critical
income I∗, are not changed by the introduction of insurance. However, due to the
need for premium payments, the critical capital in the insured case is greater than
that of an uninsured household, while the capital growth rate is reduced.

The associated capital risk process covered by an insurance policy is denoted by
X (κ)

t and has an analogous structure to that of Definition 3.2.1, with the remaining
proportion of capital after each loss event instead denoted Yi, where Yi = 1− κ(1−
Zi) ∈ [1 − κ, 1]. As such, in between loss events, where Ti−1 ≤ t < Ti, the capital
growth process follows (3.2.6). At event times t = Ti, the process is given by

X (κ)

t =

{[(
X (κ)

Ti−1
− x(κ)∗

)
er

(κ)(Ti−Ti−1) + x(κ)∗

]
· Yi if X (κ)

Ti−1
> x(κ)∗,

X (κ)

Ti−1
· Yi otherwise.

(3.4.2)

Note that for κ = 1, the capital model in (3.4.2) and the parameters r(κ) and x(κ)∗

exactly correspond to those of an uninsured household, as discussed in Section 3.3.

Proposition 3.4.1. Consider a household capital process defined by (3.2.6) in be-
tween loss events and by (3.4.2) at loss event times, with coverage proportionality
factor 1− κ ∈ (0, 1]. For initial capital x ≥ x(κ)∗, capital growth rate r(κ), loss inten-
sity λ > 0 and remaining proportions of capital Zi with distribution Beta(α, 1), the
adjustment coefficient of the corresponding Lundberg equation exists if

r(κ)

λ
>

κ

(α + 1)(1− κ)
2F1

(
1, α + 1;α + 2;− κ

1− κ

)
, (3.4.3)

where 2F1(·) is Gauss’s Hypergeometric Function.
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Proof. The condition that must hold for the adjustment coefficient R to exist under
proportional insurance coverage, and thus for the net profit condition to be satisfied,
is

E[r(κ)T̃i + log(1− κ(1− Zi))] > 0 ⇐⇒ E[log(1− κ(1− Zi))] > −
r(κ)

λ
.

For Zi ∼ Beta(α, 1), using integration by parts,

E[log(1− κ(1− Zi))] = −κ
∫ 1

0

(1− κ+ κz)−1zαdz,

the right-hand side of which is the integral representation of Gauss’s Hypergeometric
Function (see, for instance, Equation (15.3.1) from Abramowitz and Stegun (1972)),
giving exactly (3.4.3), as required.
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Figure 3.3: Upper boundary of the region defined by the constraint on λ
r(κ)

in (3.4.4)
for a = 0.1, b = 1.4, c = 0.4 with (a) fixed α = 1 and different values of θ and (b)
fixed θ = 0.5 and different values of α.

Remark 3.4.1. For Zi ∼ Beta(1, 1), the constraint for existence of the adjustment
coefficient reduces to

r(κ)

λ
> 1 +

1− κ
κ

log(1− κ). (3.4.4)

The constraint on λ in (3.4.4) is presented in Figure 3.3a for varying θ and Figure
3.3b for varying α. Note that the sensitivity of the constraint to the loading factor θ
increases for decreasing κ and thus increasing insurance coverage. In the experiments
considered in Figure 3.3b, the constraint is bounded above by the uniform case,
where α = 1. This indicates that the parameter region in which certain trapping is
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prevented is greater for uniformly distributed remaining proportions of capital. In
a similar manner, Figure 3.3a implies that lowering the loading factor θ increases
the region in which certain trapping is prevented when remaining proportions are
uniformly distributed.
Remark 3.4.2. For κ = 1, since

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , (c 6= 0,−1,−2, ...,R (c− a− b) > 0) ,

(see, for example, Equation (15.1.20) of Abramowitz and Stegun (1972)), applying
the identity (3.3.9) reduces (3.4.3) to the uninsured constraint in (3.3.2).

We approach the derivation of the trapping probability of the insured process in a
manner analogous to that described in Section 3.3, noting the adjustment in the
domain of the random variable capturing the remaining proportion of capital. The
infinitesimal generator corresponding to the capital process in (3.2.6) and (3.4.2) is
given by

(Aψ(κ)) (x) = r(κ)(x− x(κ)∗)ψ′(κ)(x) + λ

∫ 1

1−κ
[ψ(κ)(x · y)− ψ(κ)(x)]dGY (y), (3.4.5)

where ψ(κ)(x) is the trapping probability under proportional insurance coverage and
GY (y) = GZ (1− (1− y) /κ) is the distribution function of Yi. To derive ψ(κ)(x) we
consider only the case α = 1, i.e. Zi ∼ Beta(1, 1), where remaining proportions of
capital are uniformly distributed and dGY (y) = dy

κ
.

Solution of (Aψ(κ)) (x) = 0 is again sought to obtain the trapping probability of the
insured process, where ψ(κ)(x) is assumed to be a bounded and twice continuously
differentiable function on x ≥ x(κ)∗ with a bounded first derivative and boundary con-
ditions as in (3.2.8). Using equivalent arguments to those presented in the discussion
of the net profit condition in Section 3.2, if (3.4.4) is satisfied the boundary condition
limx→∞ ψ

(κ)(x) = 0 holds. Households face certain trapping if the net profit condi-
tion is violated, therefore our analysis focuses only on the region in which (3.4.4)
holds.

Taking the derivative of the infinitesimal generator (3.4.5) with dGY (y) = dy
κ
, yields

r(κ)
(
x2 − x(κ)∗x

)
ψ′′(κ) (x) + [(2r(κ) − λ)x− rx(κ)∗]ψ′(κ)(x)

+
λ (1− κ)

κ
ψ(κ)(x)− λ(1− κ)

κ
ψ(κ) ((1− κ)x) = 0.

(3.4.6)

As such, even in the simple case of uniformly distributed remaining proportions of
capital, application of the differential operator induces a non-local term in the result-
ing differential equation (3.4.6). When taking the Laplace transform of (Aψ(κ)) (x) =
0, as in Section 3.3, a non-local differential equation is also obtained. Derivation
of the trapping probability is therefore highly intractable when adopting classical
approaches.

The non-locality is caused by the lower integral limit in (3.4.5). To overcome this,
consider the following. If y is such that x · y ≤ x(κ)∗ then ψ(κ)(x · y) is known.
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In fact, for all y ∈ [1 − κ, x(κ)∗/x] trapping occurs with the first loss, such that
ψ(κ)(x · y) = 1. For y in this interval, the integral in (3.4.5) is trivial. Exploiting
this observation, we redefine the infinitesimal generator as a piecewise function with
boundary at x = x(κ)∗/ (1− κ), where 1−κ is the lower bound of Yi. In this way, for
x(1−κ) > x(κ)∗ a household cannot become trapped by the first loss for any realisation
of Yi. We therefore obtain a piecewise IDE that can be solved in a standard manner
for x(1−κ) < x(κ)∗, but for x(1−κ) > x(κ)∗ the problem of non-locality remains. Our
approach, as described below, partitions the domain of ψ(κ)(x) into subintervals such
that the solution of (Aψ(κ)) (x) = 0 for x in any given subinterval is informed by the
solution in the previous subinterval. We begin by considering the two fundamental
subintervals, divided where x = x(κ)∗/ (1− κ).

The behaviour of the capital process above the critical capital x(κ)∗ determines a
household’s trapping probability, with only surplus capital above the critical capital
growing exponentially. Thus, additionally consider the change of variable h(x) =
ψ(κ)(x + x(κ)∗) for x > 0. Then, for x̃ = x − x(κ)∗ > 0, the piecewise infinitesimal
generator (Ah) (x̃) is given by





r(κ)(x̃+ x(κ)∗)x̃h′(x̃)− λ(x̃+ x(κ)∗)h(x̃) + λ
κ

∫ x̃+x(κ)∗

(x̃+x(κ)∗)(1−κ) h(u− x(κ)∗)du x̃ > x(κ)∗κ
1−κ ,

r(κ)(x̃+ x(κ)∗)x̃h′(x̃)− λ(x̃+ x(κ)∗)h(x̃) + λ
κ

∫ x̃+x(κ)∗

x(κ)∗ h(u− x(κ)∗)du+ λx(κ)∗ − λx̃(1−κ)
κ x̃ < x(κ)∗κ

1−κ ,

(3.4.7)

where the subintervals on the domain of x̃ have interface at x = x(κ)∗/ (1− κ). Under
this change of variable and assuming r(κ)/λ satisfies (3.4.4), the trapping probability
satisfies (Ah) (x̃) = 0, with boundary conditions,

lim
x̃→0

h(x̃) = 1 and lim
x̃→∞

h(x̃) = 0.

For this purpose, we consider the derivative of the piecewise IDE in (3.4.7). Fixing
(Ah) (x̃) = 0 and taking the derivative with respect to x̃ yields

x̃(x̃+ x(κ)∗)h′′(x̃) +

[(
2− λ

r(κ)

)
x̃+ x(κ)∗

(
1− λ

r(κ)

)]
h′(x̃)

+
λ(1− κ)

r(κ)κ
h(x̃) =

λ(1− κ)

r(κ)κ
h((1− κ)x̃− x(κ)∗κ), (3.4.8)

for x̃ > (x(κ)∗κ) / (1− κ) and

x̃(x̃+ x(κ)∗)h′′(x̃) +

[(
2− λ

r(κ)

)
x̃+ x(κ)∗

(
1− λ

r(κ)

)]
h′(x̃) +

λ(1− κ)

r(κ)κ
h(x̃) =

λ(1− κ)

r(κ)κ

(3.4.9)

for x̃ < (x(κ)∗κ) / (1− κ), where, as mentioned, we observe the non-local term h((1−
κ)x̃− x(κ)∗κ) for x̃ > (x(κ)∗κ) / (1− κ).

First consider the homogeneous parts of (3.4.8) and (3.4.9), noting their equiva-
lence. Letting f(z) := h(x̃), such that z is associated with the change of variable



85 CHAPTER 3. INSURANCE’S ROLE ON HOUSEHOLDS FACING PROPORTIONAL LOSSES

z := z (x̃) = −x̃/x(κ)∗, the homogeneous differential equation reduces to Gauss’s
Hypergeometric Differential Equation (Slater, 1960)

z(1− z) · f ′′(z) + [c1 − (1 + a1 + b1)z]f ′(z)− a1b1f(z) = 0, (3.4.10)

for a1 = 1
2

(
1− λ

r(κ)

)
− 1

2

√(
1 + λ

r(κ)

)2 − 4λ
r(κ)κ

, b1 = 1
2

(
1− λ

r(κ)

)
+ 1

2

√(
1 + λ

r(κ)

)2 − 4λ
r(κ)κ

and c1 = 1 − λ/r(κ), with regular singular points at z = 0, 1,∞ (corresponding to
x̃ = 0,−x(κ)∗

,−∞, respectively). A general solution of (3.4.10) in the neighborhood
of the singular point z = 0 is given by

f(z) := h(x̃) =C1 (1− z)−a1 2F1

(
a1, c1 − b1; c1;

z

z − 1

)

+ C2z
1−c1 (1− z)c1−a1−1

2F1

(
1 + a1 − c1, 1− b1; 2− c1;

z

z − 1

)
,

for arbitrary constants C1, C2 ∈ R (see for example, Equations (15.5.9) and (15.5.10)
of Abramowitz and Stegun (1972)), where 2F1(·) is Gauss’s Hypergeometric Func-
tion.

Returning to the inhomogeneous differential equations in (3.4.8) and (3.4.9), let

L = r(x̃)
d2

dx̃2
+ p(x̃)

d

dx̃
+ q(x̃),

where r(x̃) = x̃ (x̃+ x(κ)∗), p(x̃) = (2− λ/r(κ)) x̃+x(κ)∗ (1− λ/r(κ)) and q(x̃) = [λ(1− κ)]
/ (r(κ)κ), denote the linear, second order operator for which

u(x̃) =

(
1 +

x̃

x(κ)∗

)−a1
2F1

(
a1, a1; 1− λ

r(κ)
;

x̃

x̃+ x(κ)∗

)
,

v(x̃) =

(
x̃

x̃+ x(κ)∗

) λ
r(κ)

(
1 +

x̃

x(κ)∗

)−a1
2F1

(
λ

r(κ)
+ a1,

λ

r(κ)
+ a1; 1 +

λ

r(κ)
;

x̃

x̃+ x(κ)∗

)
,

(3.4.11)

forms the fundamental solution set, and let

G(x̃, x′) =
u(x′)v(x̃)− u(x̃)v(x′)

r(x′)W (x′)
, (3.4.12)

be the Green’s function corresponding to L , where W (x) = u(x)v′(x)−u′(x)v(x) is
the Wronskian of u and v. The system in (3.4.7) that is to be solved can therefore
be characterised as follows

(L h) (x̃) =





λ(1−κ)
r(κ)κ

h((1− κ)x̃− x(κ)∗κ) x̃ > x(κ)∗κ
1−κ ,

λ(1−κ)
r(κ)κ

x̃ < x(κ)∗κ
1−κ .

(3.4.13)

Now, let the surplus of capital above the critical capital x̃ ∈ [0,∞) be separated into
subintervals Ij = [x̃j, x̃j+1], where {x̃j}j∈N0 is an increasing sequence and x̃0 = 0.
Moreover, defining a set of recursive kernels by





g1(x, s1) = G(x, s1),

gj+1(x, s1, ..., sj+1) = G(x, sj+1)gj(`(sj+1), s1, ..., sj),
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for j ≥ 1. Then, the following theorem holds, where the proposition of a solution of
the type (3.4.14) is informed by the solution of (3.4.9).

Theorem 3.4.1. Consider a household capital process defined by (3.2.6) in between
loss events and by (3.4.2) at loss event times, with coverage proportionality factor
1 − κ ∈ (0, 1]. Assume initial capital x such that x̃ ≥ 0, capital growth rate r(κ)

and loss intensity λ > 0 such that λ/r(κ) satisfies (3.4.4), and remaining proportions
of capital with distribution Beta(1, 1). Then, a solution of (Ah) (x̃) = 0 for the
infinitesimal generator (Ah) (x̃) in (3.4.7), that satisfies limx̃→0 h(x̃) = 1, is given
by the piecewise function

h(x̃) = 1 + Ayj(x̃), x̃ ∈ Ij, (3.4.14)

for any constant A, where the functions yj(x̃) are defined for x̃ ≥ x̃j and are given
by the recursion




y0(x̃) = v(x̃),

yj+1(x̃) = yj(x̃) + cj+1
∫ x̃
x̃j+1

∫ `(sj+1)

x̃j
· · ·
∫ `(s2)

x̃1
gj+1(x̃, s1, .., sj+1)v(`(s1))ds1 · · · dsj+1,

(3.4.15)

where c = [λ(1− κ)] / (r(κ)κ), x̃j+1 = (x̃j + x(κ)∗κ) / (1− κ) and `(x) = (1−κ)x−x(κ)∗κ.

Proof. First consider the IDE for the solution in the first interval I0 = [x̃0, x̃1]
given in (3.4.7) for x̃ < (x(κ)∗κ) / (1− κ), where we define x̃0 and x̃1 to be the lower
and upper limits of the first interval, namely 0 and (x(κ)∗κ) / (1− κ), respectively.
Proposing an Ansatz hp(x̃) = C for the particular solution yields C = 1, such that
the general solution of h(x̃) for x̃ ∈ I0 is exactly

h(x̃) =C1u(x̃) + C2v(x̃) + 1.

The lower boundary condition for h(x̃) in this interval, given by limx̃→0 h(x̃) = 1,
then holds if and only if C1 = 0. Letting A = C2 and y0(x̃) = v(x̃), h(x̃) = 1+Ay0(x̃)
for x̃ ∈ I0, as required.

To solve in the upper part of the infinitesimal generator IDE, i.e. for intervals
Ij = [x̃j, x̃j+1] where j ≥ 1, consider (3.4.7) for x̃ > (x(κ)∗κ) / (1− κ). By the
solution in the interval I0, h((1− κ)x̃− x(κ)∗κ) is known where

x̃0 < (1− κ)x̃− x(κ)∗κ < x̃1 ⇐⇒ x̃1 < x̃ <
x̃1 + x(κ)∗κ

1− κ .

As such, letting x̃2 := (x̃1 + x(κ)∗κ) / (1− κ), a solution for (3.4.7) for x̃ > (x(κ)∗κ) /
(1− κ) can be obtained in the interval I1 = [x̃1, x̃2]. In fact, for any interval Ij+1,
a solution can be determined by observing the value of the function in the previous
interval, since h((1 − κ)x̃ − x(κ)∗κ) for x̃ > x̃j+1 is known, up to a point, by the
solution in Ij. It is simple to prove by induction that the upper limit of the j-th
interval is given by

x̃j+1 =
x̃j + x(κ)∗κ

1− κ . (3.4.16)
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Suppose that for all x̃ ∈ Ij for j ≥ 1, ỹj(x̃) = h(x̃) = 1 + Ayj(x̃). Then, by (3.4.13)
for x̃ > (x(κ)∗κ) / (1− κ), it must hold that

(L ỹj+1) (x̃) =
λ(1− κ)

r(κ)κ
ỹj((1− κ)x̃− x(κ)∗κ) ⇐⇒ (L yj+1) (x̃) = cyj(`(x̃)),

(3.4.17)

for all x̃ ≥ x̃j+1, denoting c = [λ(1− κ)] / (r(κ)κ) and `(x) = (1 − κ)x − x(κ)∗κ. It
therefore remains to prove that (3.4.17) holds when yj+1(x̃) is given by the recursion
in (3.4.15). To prove by induction, consider the case j = 0,

(L y1) (x̃) = L

[
y0(x̃) + c

∫ x̃

x̃1

G(x̃, s1)v(`(s1))ds1

]
.

By definition, (L y0) (x̃) = 0 when y0 is in the solution set and L
[∫ x̃

G(x̃, s)φ(s)ds
]

=

φ(x̃). As such,

(L y1) (x̃) = cv(`(x̃)) = cy0(`(x̃)),

as required. Assume (3.4.17) holds for j = k − 1. Then, (L yk) (x̃) = cyk−1(`(x̃))
for x̃ ≥ x̃k. Finally, consider the case j = k. By (3.4.15),

(L yk+1) (x̃) = cyk−1(`(x̃))

+ ck+1L

[∫ x̃

x̃k+1

G(x̃, sk+1)

∫ `(sk+1)

x̃k

· · ·
∫ `(s2)

x̃1

gk(`(sk+1), s1, .., sk)v(`(s1))ds1 · · · dsk+1

]
,

which, by definition of the Green’s function, is equivalent to

(L yk+1) (x̃) = cyk−1(`(x̃))

+ ck+1

∫ `(x̃)

x̃k

· · ·
∫ `(s2)

x̃1

gk(`(x̃), s1, .., sk)v(`(s1))ds1 · · · dsk = cyk(`(x̃)),

as required.

Remark 3.4.3. For κ = 1, since limκ→1 (x(κ)∗κ) / (1− κ) = ∞, the upper limit of
the first subinterval x̃1 = ∞. The IDE in (3.4.7) for x̃ < (x(κ)∗κ) / (1− κ) therefore
holds over the whole domain x̃ > 0 and the solution in Theorem 3.4.1 reduces to
h(x̃) = 1 + Av(x̃), the solution in the first interval I0. In this case, the constant A
can be derived analytically such that the upper boundary condition on the trapping
probability, given by limx̃→∞ h(x̃) = 0, holds. The resulting trapping probability is
exactly that of the uninsured case in (3.3.3) of Proposition 3.3.2 (or equivalently, in
(3.3.8) of Corollary 3.3.1).

The characterisation of the trapping probability ψ(κ)(x) satisfying (3.4.5) in the case
of Beta(1, 1)− distributed proportional losses will follow from Theorem 3.4.1 if it
can be shown that a solution of the form (3.4.14) tends to zero as x̃ → ∞, in line
with the upper boundary condition. Specifically, we define the piecewise function

y(x) = yj(x− x(κ)∗), where x− x(κ)∗ ∈ Ij, (3.4.18)

with yj and Ij as in Theorem 3.4.1, and pose the following conjecture
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Conjecture 3.4.1. The limit L := lim
x→∞

y(x) exists and is different from zero.
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(b)

Figure 3.4: (a) Comparison between the trapping probability estimated via ψ(κ)(x) in
(3.4.19) and simulations of the capital process Xt. Each simulation point is obtained
from an ensemble of 2, 000 realisations of {Xt : 0 ≤ t ≤ 500} for different values of
the initial capitalX0 = x. The vertical lines mark the subintervals x(κ)∗+Ij, 0 ≤ j ≤ 3

used in the construction of y in Theorem 3.4.1 (b) The estimate Â = −3.556 is
obtained by fitting 1+Av(x+x(κ)∗) to the simulated data for x in the first subinterval.
Parameters used are λ = 1 and κ = 0.3. The values of r(κ) and x(κ)∗ are computed via
(3.4.1) with a = 0.1, b = 1.4, c = 0.4, x∗ = 1 and θ = 0.5.

If Conjecture 3.4.1 holds, then (3.4.14) yields that

ψ(κ)(x) = 1− y(x)

L
, (3.4.19)

is the unique solution to (Aψ(κ)) (x) = 0, ψ(κ)(x(κ)∗+) = 1, and limx→∞ ψ
(κ)(x) = 0,

as desired. Numerical computation of y(x) in (3.4.18) for large x is not a trivial
matter, as the functions v and G in (3.4.11) and (3.4.12), respectively, are highly
oscillatory for large values of x̃. Nevertheless, our numerical experiments appear to
indicate that Conjecture 3.4.1 holds. Moreover, if Conjecture 3.4.1 is assumed to
hold, there exists a practical method for estimating the true value of A in (3.4.14)
and for obtaining a very good approximation to ψ(κ)(x).

Note that, by (3.4.15)

ψ(κ)(x) = 1 + Av(x+ x(κ)∗), x ∈
[
x(κ)∗,

x(κ)∗

1− κ

]
, (3.4.20)

which is easily computed for any value of A. In addition, the process Xt can be
simulated to obtain estimates of the trapping probability for any initial capital
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x ∈ [x(κ)∗, x(κ)∗/ (1− κ)]. As such, an estimate Â for the conjectured value of A
can be estimated by fitting ψ(κ)(x) to the simulated data. A comparison between the
trapping probability estimated via ψ(κ)(x) in (3.4.19) and simulated data is presented
in Figure 3.4 for a given set of parameters.
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Figure 3.5: Estimation of the trapping probability ψ(κ)(x) via (3.4.19) assuming
Conjecture 3.4.1 for (a) λ = 1 for different values of κ and (b) κ = 0.5 for different
values of λ. Each curve is computed with the first three iterates of (3.4.15) via
numerical integration, the value of A is then estimated as explained in Figure 3.4.
For each case, the values of r(κ) and x(κ)∗ are computed via (3.4.1) with a = 0.1,
b = 1.4, c = 0.4, x∗ = 1 and θ = 0.5 and λ is selected such that (3.4.4) holds.

The trapping probability for proportionally insured households susceptible to pro-
portional losses with Beta(1, 1)−distributed remaining proportions of capital, es-
timated via (3.4.19), is presented in Figure 3.5a for varying initial capital x and
proportionality factor κ. For small values of κ and at higher subintervals, calcula-
tion of the trapping probability is highly computationally intensive. In Figures 3.5a
and 3.5b, trapping probabilities are estimated for the first four subintervals, i.e. Ij
for 0 ≤ j ≤ 3. The limits of Ij in (3.4.16) are functions of κ. As such, changing the
value of κ causes the trapping probability curves to terminate at different points,
determined by the upper limit of I3, as can be observed in Figure 3.5a.

Note that, in Figure 3.5a, as κ tends to zero the trapping probability tends towards
a step function. This is indicative of the fact that for κ = 0 households have full
insurance coverage and do not experience loss events, inducing a trapping probability
that is zero-valued for all levels of capital above the critical capital due to the
restriction on the premium that ensures positive capital growth. Increasing κ and
thus decreasing the level of insurance coverage intuitively causes an increase in the
trapping probability. Figure 3.5b presents the same trapping probability for varying
loss frequency λ and fixed κ, where half of every loss is insured. Increasing the
frequency of loss events increases the trapping probability. For λ = 0.5, under the
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parameter set considered in this figure, λ/r is extremely close to one. Therefore,
in the case of no insurance, households exhibiting this loss behaviour would be
close to certain ruin. As presented in Figure 3.3, purchase of insurance eases this
constraint, significantly reducing the probability of trapping. The fact that both
figures presenting the estimated trapping probability are intuitive, provides further
evidence for Conjecture 3.4.1.

3.5 Discussion

Figure 3.6 presents a comparison of trapping probabilities for the uninsured and
insured capital processes as derived in (3.3.3) and (3.4.19), respectively, for two
values of the parameter λ. For λ = 0.25, the insured trapping probability lies below
the uninsured at almost all levels of initial capital, decaying at a much faster rate.
Only for initial capital extremely close to the critical capital does the uninsured
probability lie below the insured. At the higher loss frequency of λ = 0.5, the
uninsured trapping probability lies close to one throughout the range of initial capital
considered, significantly higher than the equivalent probability for insured losses at
all capital levels. Note that in this case, λ/r lies close to the uninsured constraint
preventing certain trapping in (3.3.2).

Sensitivity analysis on the trapping probabilities in (3.3.3) and (3.4.19) is presented
in Figure 3.7 for low levels of initial capital and varying κ and λ. Specifically, trap-
ping probabilities for households with capital between x = x∗, the uninsured poverty
line, and x = x(κ)∗/ (1− κ), the upper limit of the first subinterval I0, corresponding
to the trapping probability in I0 given in (3.4.20), are presented. At this more gran-
ular level, the intersection point of the curves can be observed more clearly. This
intersection point indicates when proportional insurance coverage is beneficial for
reducing poverty trapping. In the estimation of the insured trapping probability,
the increase in critical capital associated with the need for premium payment is
accounted for through specification of x(κ)∗, where an insured household is deemed to
be trapped when their capital falls below I∗/ (b− π(κ, θ)), where the critical income
I∗ = b under the assumption of no change in the basic model parameters due to
the purchase of insurance. Thus, in the insured case, households with initial capital
slightly above x∗ have already become trapped.

As in Kovacevic and Pflug (2011) and Flores-Contró et al. (2021) the increase in the
trapping probabilities of the most vulnerable households when proportionally in-
sured is observed in all cases considered. However, importantly, this increase occurs
for a much smaller proportion of the low-income sample. Denoting the intersection
point of the uninsured and insured trapping probabilities by xc, the significance of
the distance between the intersection point and the critical capital x∗ is presented
in Figure 3.8 for varying κ and λ. Considering four levels of the loading factor θ,
the distance is positive under all sets of parameters tested. The depiction of xc−x∗
in these figures highlights that the level of capital at which insurance becomes ben-
eficial lies much closer to the poverty line than for more extreme (Kovacevic and
Pflug, 2011) and random-valued losses (Flores-Contró et al., 2021), with only small
distances between the intersection point and the critical capital observed. These
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results suggest that purchase of proportional insurance for proportional losses is
beneficial for a larger proportion of those closest to the poverty line. In particu-
lar, proportional coverage appears to be more affordable than classical coverage for
random-valued losses.
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Figure 3.6: Comparison between the trapping probabilities of uninsured and insured
households for κ = 0.5 and two different values of λ. Dashed curves are computed
via (3.4.19) assuming Conjecture 3.4.1 and solid curves via (3.3.3). For each case,
the values of r(κ) and x(κ)∗ are computed via (3.4.1) with a = 0.1, b = 1.4, c = 0.4,
x∗ = 1 and θ = 0.5. Recall that for uninsured losses, by (3.3.2) it must hold that
λ
r
< 1.

Our consideration of a poverty line that varies with the level of insurance coverage
accounts for the fact that premium payments limit a household’s level of capital.
We therefore consider “extreme poverty” at an individualised level. In Kovacevic
and Pflug (2011) and Flores-Contró et al. (2021) the uninsured trapping probability
is instead compared with the insured trapping probability for a fixed critical capital
x∗, irrespective of the parameters κ, λ and θ. Such a specification could be used to
consider trapping with respect to an international poverty line, which is fixed for
all households. Under this alternative assumption, the trapping probability under
proportional insurance coverage of Section 3.4 lies below the uninsured probability
of Section 3.3 at all capital levels. In this case, the purchase of insurance therefore
does not increase the probability of trapping for any household above the poverty
line.
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Figure 3.7: Comparison of the trapping probabilities of uninsured and insured house-
holds for small values of initial capital, x ∈ [1, x(κ)∗/ (1− κ)] and different values of
κ and λ, showing the existence of a level xc > x∗ such that for 1 < x < xc it is
better for households not to insure. Dashed curves are computed as in Figure 3.5b
and solid curves using expression (3.3.3). For each case, the values of r(κ) and x(κ)∗

are computed via (3.4.1) with a = 0.1, b = 1.4, c = 0.4, x∗ = 1 and θ = 0.5.

Mathematical differences between the uninsured and insured capital processes and
the associated parameter constraints may also provide indications of the impact
of insurance. In Figure 3.3, the constraint that ensures existence of the Lundberg
equation is presented. For uninsured losses with uniformly distributed remaining
proportions of capital (Zi ∼ Beta(1, 1)), by (3.3.2), an equivalent figure would
display a horizontal line at λ = r. For the case considered in Figure 3.3, r = 0.504.
As such, for all levels of θ, there exists a region in which the uninsured constraint in
(3.3.2) is violated, while the insured constraint in (3.4.4) is not. This indicates that
for households without insurance, the Lundberg equation fails to be well-defined in
more cases. Increasing the level of insurance coverage therefore increases the loss
frequency for which the net profit condition is satisfied. As a result, certain trapping
is avoided in more cases.
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Figure 3.8: Estimated distance between xc and x∗, i.e. xc − x∗, for different values
of λ and κ for which λ

r
< 1 and (a) θ = 0.1, (b) θ = 0.5, (c) θ = 0.7 and (d)

θ = 1, where xc is the intersection point of the uninsured and insured trapping
probabilities. For each case, the values of r(κ) and x(κ)∗ are computed via (3.4.1) with
a = 0.1, b = 1.4, c = 0.4 and x∗ = 1.

Due to the increasing complexity of (3.4.15) the constant A appears in an increas-
ingly convoluted manner throughout the subintervals Ij. As we move through Ij
for increasing x̃, estimation of the trapping probability under proportional insur-
ance coverage becomes computationally intensive, particularly for small values of
κ. However, analysis of the algebraic decay of the trapping probability can provide
further insight into the behaviour of the function at high capital levels. Solution of
the transcendental equation
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r(κ)γ − λ+
λα

κ

∫ 1

1−κ
yγ
(

1− 1− y
κ

)α−1

dy = 0, (3.5.1)

derived from (Aψ(κ)) (x) = 0 for (Aψ(κ)) (x) in (3.4.5) for Zi ∼ Beta(α, 1) under
the assumption of polynomial asymptotic decay to zero at infinity: ψ(κ)(x) ∼ (x −
x∗)γ as x → ∞ for constant γ, highlights that for Beta(1, 1) distributed remaining
proportions of capital, as in Section 3.4, as κ increases and households maintain
a higher risk level the trapping probability decays more slowly as initial capital x
approaches infinity. The same observation can be found with less significance for
fixed κ and decreasing λ/r(κ). Solution of the transcendental equation in (3.5.1)
for α > 0 and κ = 1 yields that the trapping probability decays only if λ/r < α,
providing exactly the Lundberg condition in the case of no insurance coverage.

3.6 Conclusion

We have considered an adjustment of the capital process of Flores-Contró et al.
(2021) in which low-income households are susceptible to losses proportional to their
accumulated capital level, as in Kovacevic and Pflug (2011). Under the assumption
of proportional losses we capture the exposure of households of all capital levels to
both catastrophic and low severity loss events, a feature particularly significant in
the low-income setting. Typically considered to be protected from capital losses,
households with higher levels of capital are still susceptible to large proportional
losses on the occurrence of extreme events, particularly in agriculturally rich areas.
In addition to high severity loss events, low-income households closest to the poverty
line experience large proportional losses due to events typically considered less severe
in the high-income setting, such as hospital admissions and household deaths.

Focusing on the probability that a household falls below the poverty line, referred
to as the trapping probability, in the analysis of this chapter we have solved, for the
first time analytically, infinitesimal generator equations associated with a capital
process with exponential growth and multiplicative jumps. We have considered two
cases: (i) households with no insurance coverage and (ii) households with propor-
tional insurance coverage. In both cases, closed-form solutions of the infinitesimal
generator equations associated with the trapping probability were derived alongside
constraints on the parameters of the model that prevent certain trapping. Through
the derivation of these probabilities we provide insights into the impact of propor-
tional insurance for proportional losses. Comparison between the proportional as-
sumption of this chapter and the random-valued assumption of Flores-Contró et al.
(2021) was additionally presented.

For households with no insurance coverage, explicit trapping probabilities for Beta(
α, 1)−distributed remaining proportions of capital were obtained using Laplace
transform methods. In comparison to the corresponding trapping probability for
random-valued losses, the proportional trapping probability exhibits a slower rate
of decay, in line with the non-zero probability of high-income households losing a
large proportion of their wealth.

Consideration of proportional insurance coverage requires redefinition of the in-
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finitesimal generator of the process. Even under the assumption of uniformly dis-
tributed remaining proportions of capital the structure of the proportional insurance
product induces non-local functional terms in the derivative and Laplace transform
of the infinitesimal generator. Classical methods for solving the infinitesimal genera-
tor to derive the trapping probability are therefore not applicable. To overcome this,
we propose a recursive method for deriving a solution of the IDE and estimate the
unique solution numerically through the conjecture of the existence of a limit. Al-
though only analytic up to a constant, the estimated trapping probability performs
well when compared with simulations of the capital process and provides intuitive
results under sensitivity analysis. Future work will involve deriving a mathematical
proof that this conjecture holds.

Comparing trapping probabilities under no insurance coverage and proportional in-
surance coverage suggests that the increase in trapping probability observed under
random-valued losses is less severe in this proportional case. This finding is in con-
trast to that of Kovacevic and Pflug (2011), where an increase in trapping probability
similar to that of Flores-Contró et al. (2021) is observed under the same propor-
tional model. However, this result is likely highly dependent on the specification of
parameters. It should be noted that the distribution of the remaining proportion of
capital considered in the numerical example of Kovacevic and Pflug (2011) is such
that losses have an expected value of 88%, an extremely high proportion given a loss
frequency parameter of λ = 1. In turn, the associated premium rates are high and
will constrain capital growth more significantly. The lower rate associated with the
distribution selected for presentation in the analysis of this chapter captures losses
of varying severity, as is the experience of a low-income population, and will neces-
sitate reduced premiums. Furthermore, when considering a critical capital that is
fixed as in Kovacevic and Pflug (2011), irrespective of a household’s insured status,
the increase in trapping probability associated with purchase of insurance is not
observed at any level of capital.

Ultimately, the findings of this chapter suggest that insurance for proportional losses
is more affordable than coverage for losses of random value. This aligns with the idea
that premiums are normalised to wealth under the proportional loss structure, thus
improving the variability in the affordability of premiums characteristic of insurance
for random-valued losses. As such, if the assumption of proportionality is correct, in
the context of subsidisation, the proportion of the low-income population requiring
full government support may be narrower than anticipated. Under consideration of
a universal poverty line, such as the international poverty line, insurance is beneficial
at all capital levels. However, when considering the impact of insurance at a more
granular level, where the critical level increases with increasing coverage, for those
with capital just above the critical capital, as in the findings of existing studies,
insurance and the associated need for premium payments increases their probability
of falling below the poverty line.
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Chapter 4

The Gerber-Shiu Expected
Discounted Penalty Function: An
Application to Poverty Trapping

This chapter is based on the following article:

Flores-Contró, J. M. (2024). The Gerber-Shiu Expected Discounted Penalty Func-
tion: An Application to Poverty Trapping. Submitted.

Abstract. In this chapter, we consider a risk process with deterministic growth and pro-
rated losses to model the capital of a household. Our work focuses on the analysis of the
trapping time of such a process, where trapping occurs when a household’s capital level
falls into the poverty area, a region from which it is difficult to escape without exter-
nal help. A function analogous to the classical Gerber-Shiu expected discounted penalty
function is introduced, which incorporates information on the trapping time, the capital
surplus immediately before trapping and the capital deficit at trapping. Given that the
remaining proportion of capital upon experiencing a capital loss is Beta(α, 1)−distributed,
closed-form expressions are obtained for quantities typically studied in classical risk theory,
including the Laplace transform of the trapping time and the distribution of the capital
deficit at trapping. In particular, we derive a model belonging to the generalised beta
(GB) distribution family that describes the distribution of the capital deficit at trapping
given that trapping occurs. Affinities between the capital deficit at trapping and a class of
poverty measures, known as the Foster-Greer-Thorbecke (FGT) index, are presented. The
versatility of this model to estimate FGT indices is assessed using household microdata
from Burkina Faso’s Enquête Multisectorielle Continue (EMC) 2014.
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4.1 Introduction

Recently, risk theory has proven to be a powerful tool to analyse a household’s
infinite-time trapping probability (the probability of a household’s capital falling
into the area of poverty at some point in time) (see, for instance, Kovacevic and
Pflug (2011), Flores-Contró et al. (2021) and Henshaw et al. (2023)). The classical
risk process, also known as the Cramér-Lundberg model, which was introduced by
Cramér and Lundberg at the beginning of the last century (Lundberg, 1903, 1926;
Cramér, 1930), has been adapted to better portray the capital of a household. For
example, in Kovacevic and Pflug (2011), Flores-Contró et al. (2021) and Henshaw
et al. (2023), only the surplus of a household’s current capital above a critical capital
level (or poverty line) grows exponentially, unlike the linear premium income for an
insurer’s surplus in the Cramér-Lundberg model. Moreover, Kovacevic and Pflug
(2011) and Henshaw et al. (2023) consider household capital losses as a proportion
of the accumulated capital, yielding absolute losses that are serially correlated with
each other and with the inter-arrival times of loss events. In contrast, losses in
the Cramér-Lundberg model are given by a sequence of i.i.d. claim sizes and are
subtracted from the insurer’s surplus rather than prorated. Similar models with
prorated jumps have been studied outside the actuarial science domain (see Altman
et al. (2002), Altman et al. (2005) and Löpker and Van Leeuwaarden (2008), for
an application of this type of model on data transmission over the internet; Eliazar
and Klafter (2004) and Eliazar and Klafter (2006) for their use in representing
the behaviour of physical systems with a growth-collapse pattern; and Derfel et al.
(2012) for the adoption of these processes to modelling the division and growth of
cell-populations).

This chapter examines the household capital process with proportional losses orig-
inally introduced in Kovacevic and Pflug (2011) and subsequently studied in Azaïs
and Genadot (2015) and Henshaw et al. (2023). Previous work on this capital
process focuses solely on studying the infinite-time trapping probability. Indeed,
Kovacevic and Pflug (2011) and Azaïs and Genadot (2015) use numerical methods
to estimate the trapping probability, without aiming to find an analytical solution
for the probability. However, as stated by Asmussen and Albrecher (2010), the ideal
situation in risk theory is to derive closed-form solutions for trapping probabilities.
To this end, Henshaw et al. (2023) apply Laplace transform techniques to solve the
infinitesimal generator of the household’s capital risk process and obtain a closed-
form expression for the infinite-time trapping probability under the assumption of
Beta(α, 1)−distributed remaining proportions of capital.

Although the infinite-time trapping probability is a very important indicator for
studying poverty dynamics, policy makers and other stakeholders may need addi-
tional information on other quantities to fully understand a household’s transition
into poverty. A clear example of a quantity of interest is the income short-fall (or
income gap), which is defined as the absolute value of the difference between a
poor household’s income (or consumption) and some poverty line. A household’s
income short-fall serves as key component in a number of poverty measures (see,
for instance, Sen (1976), where a simple poverty measure, the income-gap ratio,
assesses the percentage of household’s mean income short-fall from the poverty line
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and Foster et al. (1984), where the well-known Foster-Greer-Thorbecke (FGT) in-
dex weights the income gaps of the poor to estimate the aggregate poverty of an
economic entity). The primary objective of incorporating household levels of income
short-fall in poverty measures is the elimination of certain measurement issues. That
is, numerous poverty measures, such as the head-count index, which calculates the
proportion of the population living below the poverty line and has been considered
as one of the most common indices for measuring poverty since the first studies of
poverty were conducted (see, Booth (1889) and Rowntree (1901)), ignore the depth
of poverty and the distribution of income among the poor, making them deficient
as poverty indicators (Sen, 1976). Consequently, this underlines the importance of
exploring additional quantities such as a household’s income short-fall.

Apart from facilitating the study of the infinite-time trapping probability, classical
risk theory provides additional tools that allow the examination of other quantities
of interest, such as a household’s income short-fall at the trapping time (the time
at which a household’s capital falls into the area of poverty), thus granting a much
deeper understanding of a household’s transition into poverty. In particular, the
Gerber-Shiu expected discounted penalty function, which was originally introduced
by Gerber and Shiu (1998), gives information about three quantities: the time
of ruin, the deficit at ruin, and the surplus prior to ruin, corresponding to the
first time an insurer’s surplus becomes negative, the undershoot and the overshoot
of the insurer’s surplus at ruin, respectively. These three random variables play
an important role within the risk management strategy of an insurance company.
For instance, risk measures such as the Value-at-Risk and the Tail-Value-at-Risk
have a close link with the deficit at ruin, while from a monitoring perspective, the
surplus prior to ruin could be thought of as an early warning signal for the insurance
company. The (ruin) time at which any such event takes place is then of critical
importance (Landriault and Willmot, 2009). Extensive literature on these variables
exists for the Cramér-Lundberg model and its variations (see, for example, Gerber
and Shiu (1997a), Gerber and Shiu (1998), Lin and Willmot (1999), Lin and Willmot
(2000), Chiu and Yin (2003), Landriault and Willmot (2009) and references therein).

Certainly, a household’s trapping time can be thought of as the ruin time of an
insurer, while the capital surplus prior to trapping and the capital deficit at trap-
ping are analogous to the insurer’s surplus prior to ruin and the deficit at ruin,
respectively. Therefore, the Gerber-Shiu expected discounted penalty function can
be applied to study these quantities. Recently, for example, Flores-Contró et al.
(2021) employed the Gerber-Shiu expected discounted penalty function to study
the distribution of the trapping time of a household’s capital risk process with de-
terministic growth and Exp(α)−distributed losses. Using classical risk theory tech-
niques, Flores-Contró et al. (2021) also assess how the introduction of an insurance
policy alters the distribution of the trapping time. Kovacevic and Semmler (2021)
have also recently highlighted the importance of studying such trapping times to
optimise the retention rates of insurance policies purchased by households. In this
chapter, for the household capital process with proportional losses, we obtain closed-
form expressions for the Gerber-Shiu expected discounted penalty function under
the assumption of Beta(α, 1)−distributed remaining proportions of capital. Thus,
the first contribution of this chapter lies in the derivation of analytical equations
for the Gerber-Shiu expected discounted penalty function, which to the best of our
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knowledge, have not been previously obtained for this particular risk process.

Given the importance of the income short-fall and its key role in widely used poverty
measures, the second contribution of this chapter lies in obtaining a compelling mi-
croeconomic foundation, which emerges from the derivation of the Gerber-Shiu ex-
pected discounted penalty function for the household capital process, to model the
distribution of the income short-fall. This is particularly important as parametric
estimation of income distributions has long been used to model income since the
introduction of the Pareto (1967) law. One of the main advantages of parametric
estimation of income distributions is that explicit formulas, as functions of the pa-
rameters of the theoretical income distribution, are available to measure poverty
and inequality. This allows, for example, to further interpret the shape parameters
of the theoretical income distribution, as well as to carry out sensitivity analyses
of poverty measures to variations in the shape parameters (Graf and Nedyalkova,
2014). In economics, it is well-known that the processes of income generation and
distribution must be connected, underpinned by a microeconomic foundation, to the
functional form of any model that adequately represents the distribution of personal
income (Callealta Barroso et al., 2020). Our results reveal that the distribution of
a household’s income short-fall belongs to the generalised beta (GB) distribution
family, a group of models that have been widely used in economics for modelling
income.

To assess the validity of our results, we fit the derived GB model to household micro-
data from Burkina Faso’s Enquête Multisectorielle Continue (EMC) 2014. Poverty
measures are estimated using both the observed income short-fall data and the fit-
ted theoretical income short-fall distribution. Goodness-of-fit tests and comparisons
between theoretical and empirical poverty measures suggest that risk theory is a
promising theoretical framework for studying poverty dynamics. That is, by appro-
priately adapting the classical Cramér-Lundberg model to better portray a house-
hold’s capital, risk theory provides a vast framework with a diverse set of tools to
explore. The application of risk theory techniques to study poverty dynamics is just
beginning and its potential is yet to be discovered.

The remainder of the chapter is organised as follows. In Section 4.2, we introduce
the capital of a household and its connection with the Cramér-Lundberg model.
Section 4.3 provides a brief discussion on the GB distribution family and its appli-
cation in economics for modelling income. In Section 4.4, the trapping time and
the Gerber-Shiu expected discounted penalty function are defined. Moreover, an
Integro-Differential Equation (IDE) for the Gerber-Shiu expected discounted penalty
function is also derived. We obtain in Section 4.4.1 a closed-form expression for the
Laplace transform of the trapping time when the remaining proportion of capital
is Beta(α, 1)−distributed. Apart from characterising uniquely the probability dis-
tribution of the trapping time, Section 4.4.1 also shows how the Laplace transform
of the trapping time can be applied to estimate other quantities of interest such
as the expected trapping time. Likewise, Section 4.4.2 studies the capital deficit
at trapping by means of the Gerber-Shiu expected discounted penalty function for
Beta(α, 1)−distributed remaining proportions of capital and shows that the distri-
bution of the capital deficit at trapping given that trapping occurs is described by
a model belonging to the GB distribution family. Section 4.5 introduces the FGT
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index in more detail and discusses affinities between the index and the capital deficit
at trapping. Built on Sections 4.4.2 and 4.5, a GB distribution is fitted to household
microdata from Burkina Faso’s Enquête Multisectorielle Continue (EMC) 2014 in
Section 4.6. In addition, FGT indices are estimated using the fitted distribution.
To evaluate the adequacy of the model, empirical values of the poverty measures are
compared with theoretical estimates and goodness-of-fit tests are assessed. Lastly,
concluding remarks are discussed in Section 4.7.

4.2 The Capital of a Household

In classical risk theory, the insurance risk process with deterministic investment
{Ut}t≥0 is given by

Ut = u+ pt+ ν

∫ t

0

Us ds−
Pt∑

i=1

Yi, (4.2.1)

where u = U0 ≥ 0 is the insurer’s initial surplus, p is the incoming premium rate
per unit time, ν is the risk-free interest rate, {Pt}t≥0 is a Poisson process with
intensity I counting the number of claims in the time interval [0, t] and {Yi}∞i=1 is
a sequence of i.i.d. claim sizes with distribution function GY . Initially introduced
by Segerdahl (1942), this model was subsequently studied by Harrison (1977) and
Sundt and Teugels (1995). Readers may wish to consult Paulsen (1998) for a detailed
literature review on this model.

Adopting traditional risk theory techniques, this chapter examines ideas proposed
in Kovacevic and Pflug (2011). In particular, we study a household’s capital pro-
cess {Xt}t≥0 with a deterministic exponential growth and multiplicative capital loss
(collapse) structure. The process grows exponentially with a rate r > 0, which in-
corporates household rates of consumption (0 < a < 1), income generation (0 < b)
and investment or savings (0 < c < 1), above a critical capital (or poverty line)
x∗ > 0 whereas below this critical threshold it remains constant. At time Ti, the ith
capital loss event time of a Poisson process {Nt}t≥0 with parameter λ, the capital
process jumps (downwards) to Zi · XTi , where {Zi}∞i=1 is a sequence of i.i.d. ran-
dom variables with distribution function GZ supported in [0, 1], independent of the
process Nt, representing the proportions of remaining capital after each loss event.
Therefore, a household’s capital process in between jumps is given by

Xt =

{(
XTi−1

− x∗
)
er(t−Ti−1) + x∗ if XTi−1

> x∗,

XTi−1
otherwise,

(4.2.2)

for Ti−1 ≤ t < Ti and T0 = 0. On the other hand, at the jump times t = Ti, the
capital process is given by

XTi =

{[(
XTi−1

− x∗
)
er(Ti−Ti−1) + x∗

]
· Zi if XTi−1

> x∗,

XTi−1
· Zi otherwise.

(4.2.3)
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The stochastic process {Xt}t≥0 is a piecewise-determinsitic Markov process (Davis,
1984, 1993) and its infinitesimal generator is given by

(Af)(x) = r(x− x∗)f ′(x) + λ

∫ 1

0

[f(x · z)− f(x)] dGZ(z), x ≥ x∗.

There exist many similarities between the household capital process and other well-
known risk processes. For instance, observe that when p = 0, the insurance risk
process (4.2.1) is equivalent to the household capital process above the critical capital
x∗ = 0 with claim losses subtracted from the insurer’s surplus rather than prorated.
Furthermore, taking the logarithm of a discretised version of the household capital
process, that is, setting the critical capital x∗ = 0 and taking the logarithm of
(4.2.3), yields a version of the classical risk process (see, for instance, Kovacevic and
Pflug (2011) and Henshaw et al. (2023)), also known as the Cramér-Lundberg model,
introduced by Cramér and Lundberg at the beginning of the last century (Lundberg,
1903, 1926; Cramér, 1930). This model considers linear premium income for the
surplus of an insurance company with losses given by a sequence of i.i.d. claim
sizes. Clearly, the Cramér-Lundberg model could also be seen as a particular case
of the risk process (4.2.1) with ν = 0. Despite these resemblances, there are also a
number of discrepancies between the household capital process and those commonly
studied in the actuarial science literature. Firstly, only the surplus of a household’s
current capital above the critical capital grows exponentially. Secondly, household
losses are defined as a proportion of the accumulated capital, yielding absolute losses
that are serially correlated with each other and with the inter-arrival times of loss
events (Kovacevic and Pflug, 2011; Henshaw et al., 2023).

4.3 The Generalised Beta Distribution Family

The probability density function (p.d.f.) of the generalised beta (GB) distribution
family is given by

GB(y; a, b, c, p, q) =
|a|yap−1 (1− (1− c)(y/b)a)q−1

bap B(p, q) (1 + c(y/b)a)p+q
for 0 < ya <

ba

1− c,

(4.3.1)

and zero otherwise, where a 6= 0; 0 ≤ c ≤ 1; b, p, q > 0; and B(p, q) =
∫ 1

0
tp−1(1 −

t)q−1dt denotes the beta function (see, for instance, Equation (6.2.1) from Abramowitz
and Stegun (1972)). The GB includes other distributions as special or limiting cases
(see, for example, McDonald and Xu (1995)). In particular, the beta of the first
kind (B1), with p.d.f.

B1(y; b, p, q) := GB(y; a = 1, b, c = 0, p, q) =
yp−1(b− y)q−1

bp+q−1B(p, q)
for 0 < y < b,

(4.3.2)

arises as the model that describes the distribution of a household’s income short-
fall, for the particular case in which the remaining proportions of capital Zi are
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Beta(α, 1)−distributed. Indeed, the results obtained in Section 4.4.2 validate the
adequacy of the B1 distribution as a model of income distribution and, in partic-
ular, as a model for the distribution of the income short-fall. Thurow (1970) was
the first to adopt the standard beta distribution (Beta(p, q) := B1(y; b = 1, p, q))
to analyse factors contributing to income inequality among whites and blacks. One
of the main advantages of the beta distribution is that it includes the gamma dis-
tribution as a limiting case and therefore provides at least as good a fit as the
gamma. This is an important feature, especially since the gamma distribution has
also been considered to model income distribution (Salem and Mount, 1974). In the
1980s, seeking to improve the goodness of fit of the two-parameter standard beta
distribution, McDonald (1984) introduced the generalized beta of the first and sec-
ond kind (GB1 := GB(y; a, b, c = 0, p, q) and GB2 := GB(y; a, b, c = 1, p, q)), two
four-parameter distributions that nest most of the previously used models of two
and three parameters as special cases or limit distributions (e.g. the Singh-Maddala
distribution (Singh and Maddala, 1976)). Subsequently, McDonald and Xu (1995)
introduced (4.3.1), a five-parameter distribution that has clearly played an impor-
tant role for modelling income. In fact, many distributions (belonging or not to the
GB distribution family) with a varying number of parameters have been used in the
literature to model income (see Hlasny (2021) for a detailed survey).

4.4 When and How Households Become Poor?

Let

τx := inf {t ≥ 0 : Xt < x∗ | X0 = x}

denote the time at which a household with initial capital x ≥ x∗ falls into the area of
poverty (the trapping time), where ψ(x) = P(τx < ∞) is the infinite-time trapping
probability. To study the distribution of the trapping time, we apply the Gerber-
Shiu expected discounted penalty function at ruin, a concept commonly used in
actuarial science (Gerber and Shiu, 1998), such that with a force of interest δ ≥ 0
and initial capital x ≥ x∗, we consider

mδ(x) = E
[
w(Xτ−x

− x∗, | Xτx − x∗ |)e−δτx1{τx<∞}
]
, (4.4.1)

where 1{A} is the indicator function of a set A, and w(x1, x2), for 0 ≤ x1 < ∞
and 0 < x2 ≤ x∗, is a non-negative penalty function of x1, the capital surplus
prior to the trapping time, and x2, the capital deficit at the trapping time. For
more details on the so-called Gerber-Shiu risk theory, interested readers may wish
to consult Kyprianou (2013). The function mδ(x) is useful for deriving results in
connection with joint and marginal distributions of τx, Xτ−x

−x∗ and | Xτx−x∗ |. For
example, when δ is considered as the argument, (4.4.1) can be viewed in terms of
a Laplace transform. That is, (4.4.1) is the Laplace transform of the trapping time
τx if one sets w(x1, x2) = 11. Another choice, for any fixed y, is w(x1, x2) = 1{x2≤y}
for δ = 0, for which (4.4.1) leads to the distribution function of the capital deficit

1Recall that, for a continuous random variable Y , with p.d.f. fY , the Laplace transform of fY
is given by the expected value L{fY } (s) = E

[
e−sY

]
.
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at trapping. It is not difficult to realise that, by appropriately choosing a penalty
function w(x1, x2) and force of interest δ, various risk quantities can be modelled.
He et al. (2023) provide a non-exhaustive list of such risk quantities. In this chapter,
we are mainly interested in studying the Laplace transform of the trapping time and
the distribution of the capital deficit at trapping. Thus, we will focus our analysis
on the choices mentioned above. Following Gerber and Shiu (1998), our goal is to
derive a functional equation for mδ(x) by applying the law of iterated expectations
to the right-hand side of (4.4.1).

Theorem 4.4.1. The Gerber-Shiu expected discounted penalty function at trapping,
mδ(x), for x ≥ x∗, satisfies the following Integro-Differential Equation (IDE)

r(x− x∗)m′δ(x)− (δ + λ)mδ(x) + λ

∫ 1

x∗/x

mδ(x · z)dGZ(z) = −λA(x), (4.4.2)

where A(x) :=
∫ x∗/x

0
w(x− x∗, x∗ − x · z)dGZ(z), with boundary conditions

mδ(x
∗) =

λ

δ + λ
A(x∗) and lim

x→∞
mδ(x) = 0.

Proof. For h > 0, consider the time interval (0, h), and condition on the time t and
the proportion z of remaining capital after the first capital loss in this time interval.
Since the inter-arrival times of losses are exponentially distributed, the probability
that there is no loss up to time h is e−λh, and the probability that the first capital
loss occurs between time t and time t+ dt is e−λtλdt. If

z <
x∗

(x− x∗)ert + x∗
,

where 0 < x∗/ [(x− x∗)ert + x∗] ≤ 1, trapping has occurred with the first loss.
Hence,

mδ(x) = e−(δ+λ)hmδ((x− x∗)erh + x∗)

+

∫ h

0

[∫ x∗
(x−x∗)ert+x∗

0

w
(
(x− x∗)ert, x∗ − ((x− x∗)ert + x∗) · z

)
dGZ(z)

]
e−(δ+λ)tλdt

+

∫ h

0

[∫ 1

x∗
(x−x∗)ert+x∗

mδ(((x− x∗)ert + x∗) · z)dGZ(z)

]
e−(δ+λ)tλdt. (4.4.3)

Note that every part of the above integral equation (IE) is differentiable with respect
to h. Thus, by symmetry one can also establish the differentiability of mδ(x) with
respect to x (see, for example, Remark 1.11 in Asmussen and Albrecher (2010) where
a similar argument is presented for the ruin probability of risk processes with non-
proportional random-valued losses). Differentiating (4.4.3) with respect to h and
setting h = 0, (4.4.2) is obtained.
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4.4.1 The Trapping Time

As noted previously, specifying the penalty function such that w(x1, x2) = 1, (4.4.1)
becomes the Laplace transform of the trapping time, also interpreted as the expected
present value of a unit payment due at the trapping time. Thus, Equation (4.4.2)
can then be written such that

0 = r(x− x∗)m′δ(x)− (δ + λ)mδ(x) + λGZ

(
x∗

x

)
+ λ

∫ 1

x∗/x

mδ(x · z)dGZ(z).

(4.4.4)

Remark 4.4.1. In general, it is not straightforward to obtain the solution of (4.4.4)
for general distribution functions GZ . Hence, throughout this chapter, it will be
assumed that Zi ∼ Beta(α, 1), case for which the distribution function is GZ(z) = zα

and the p.d.f. is gZ(z) = αzα−1 for 0 < z < 1, where α > 0. Under this assumption,
one can derive a closed-form expression for the Laplace transform of the trapping
time.

Proposition 4.4.1. Consider a household capital process defined as in (4.2.2) and
(4.2.3), with initial capital x ≥ x∗, capital growth rate r, intensity λ > 0 and
remaining proportions of capital with distribution Beta(α, 1) where α > 0; that is,
Zi ∼ Beta(α, 1). The Laplace transform of the trapping time is given by

mδ(x) =
λ · 2F1 (b, b− c+ 1; b− a+ 1; y(x)−1)

(λ+ δ)2F1 (b, b− c+ 1; b− a+ 1; 1)
y(x)−b, (4.4.5)

where δ ≥ 0 is the force of interest for valuation, 2F1 (·) is Gauss’s Hypergeometric

Function as defined in (4.4.10), y(x) = x
x∗
, a =

−(δ+λ−αr)−
√

(δ+λ−αr)2+4rαδ

2r
, b =

−(δ+λ−αr)+
√

(δ+λ−αr)2+4rαδ

2r
and c = α.

Proof. Under the assumption Zi ∼ Beta(α, 1), the IDE (4.4.4) can be written such
that

0 = r(x− x∗)m′δ(x)− (δ + λ)mδ(x) + λ

(
x∗

x

)α
+ λ

∫ 1

x∗/x

mδ(x · z)αzα−1dz.

(4.4.6)

Applying the operator d
dx

to both sides of (4.4.6), together with a number of algebraic
manipulations, yields to the following second order Ordinary Differential Equation
(ODE)

0 = r(x2 − xx∗)m′′δ(x) + [(r(1 + α)− δ − λ)x− rαx∗]m′δ(x)− αδmδ(x).(4.4.7)

Letting f(y) := mδ(x), such that y is associated with the change of variable y :=
y(x) = x/x∗, Equation (4.4.7) reduces to Gauss’s Hypergeometric Differential Equa-
tion (Slater, 1960)

y(1− y) · f ′′(y) + [c− (1 + a+ b)y]f ′(y)− abf(y) = 0, (4.4.8)
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for a =
−(δ+λ−αr)−

√
(δ+λ−αr)2+4rαδ

2r
, b =

−(δ+λ−αr)+
√

(δ+λ−αr)2+4rαδ

2r
and c = α, with

regular singular points at y = 0, 1,∞ (corresponding to x = 0, x∗,∞, respectively).
A general solution of (4.4.8) in the neighborhood of the singular point y = ∞ is
given by

f(y) :=mδ(x) = A1y(x)−a2F1

(
a, a− c+ 1; a− b+ 1; y(x)−1)

+ A2y(x)−b2F1

(
b, b− c+ 1; b− a+ 1; y(x)−1) , (4.4.9)

for arbitrary constants A1, A2 ∈ R (see for example, Equations (15.5.7) and (15.5.8)
of Abramowitz and Stegun (1972)). Here,

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
(4.4.10)

is Gauss’s Hypergeometric Function (Gauss, 1866) and (a)n = Γ(a+n)/Γ(n) denotes
the Pochhammer symbol (Seaborn, 1991).

To determine the constants A1 and A2, we use the boundary conditions at x∗ and
at infinity. The boundary condition limx→∞mδ(x) = 0, thus implies that A1 = 0.
Letting x = x∗ in (4.4.6) and (4.4.9) yields

λ

λ+ δ
= A2 · 2F1 (b, b− c+ 1; b− a+ 1; 1) .

Hence, A2 = λ/ [(λ+ δ)2F1 (b, b− c+ 1; b− a+ 1; 1)] and the Laplace transform of
the trapping time is given by (4.4.5).

Remark 4.4.2. Figure 4.1a shows that the Laplace transform of the trapping time
approaches the trapping probability as δ tends to zero, i.e.

lim
δ↓0

mδ(x) = P(τx <∞) ≡ ψ(x).

As δ → 0, (4.4.5) yields

ψ(x) =
2F1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; y(x)−1

)

2F1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; 1
) y(x)

λ
r
−α, (4.4.11)

for α > λ/r. Indeed, (4.4.11) was recently derived in Henshaw et al. (2023) using
Laplace transform techniques. Figure 4.1b displays the trapping probability ψ(x)
for the capital process Xt. Note that, as mentioned in Henshaw et al. (2023), we can
further simplify the expression for the trapping probability using some properties of
Gauss’s Hypergeometric Function. Namely,

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , (c 6= 0,−1,−2, ...,R (c− a− b) > 0)
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(see, for example, Equation (15.1.20) of Abramowitz and Stegun (1972)). Applying
this relation, we obtain

ψ(x) =
Γ(α) · 2F1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; y(x)−1

)
(
α− λ

r

)
Γ
(
α− λ

r

)
Γ
(
λ
r

) y(x)
λ
r
−α.
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Figure 4.1: (a) Laplace transform mδ(x) of the trapping time when Zi ∼
Beta(1.25, 1), a = 0.1, b = 3, c = 0.4, λ = 1, x∗ = 1 for δ = 0, 1

8
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128
(b)

Trapping probability ψ(x) when Zi ∼ Beta(α, 1), a = 0.1, b = 3, c = 0.4, λ = 1,
x∗ = 1 for α = 1.25, 1.5, 1.75, 2.

Remark 4.4.3. As an application of the Laplace transform of the trapping time, one
particular quantity of interest is the expected trapping time; i.e. the expected time
at which a household will fall into the area of poverty. This can be obtained by
taking the derivative of mδ(x):

E [τx; τx <∞] = − d

dδ
mδ(x)

∣∣∣∣
δ=0

, (4.4.12)

where E [τx; τx <∞] is equivalent to E
[
τx1{τx<∞}

]
. As such, we differentiate Gauss’s

Hypergeometric Function with respect to its first, second and third parameters.
Denote

2F
(a)
1 (a, b; c; z) ≡ d

da
2F1(a, b; c; z),

2F
(b)
1 (a, b; c; z) ≡ d

db
2F1(a, b; c; z), and

2F
(c)
1 (a, b; c; z) ≡ d

dc
2F1(a, b; c; z).

A closed-form expression of the aforementioned derivatives is given in terms of the
Kampé de Fériet function (Appell and Kampé De Fériet, 1926):
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FA,B,DR,S,U

(
a1, . . . , aA; b1, . . . , bB ; d1, . . . , dD;
r1, . . . , rR; s1, . . . , sS ;u1, . . . , uU ;

x, y

)
=
∞∑
m=0

∞∑
n=0

A∏
j=1

(aj)m+n

B∏
j=1

(bj)m

D∏
j=1

(dj)n

R∏
j=1

(rj)m+n

S∏
j=1

(sj)m

U∏
j=1

(uj)n

xm

m!
yn

n! ,

such that (see, for example, Equations (9a) and (9b) of Ancarani and Gasaneo
(2009)),

2F
(a)
1 (a, b; c; z) =

zb

c
F 2,2,1

2,1,0

(
a+ 1, b+ 1; 1, a; 1;

2, c+ 1; a+ 1; ;
z, z

)
,

2F
(b)
1 (a, b; c; z) =

za

c
F 2,2,1

2,1,0

(
a+ 1, b+ 1; 1, b; 1;

2, c+ 1; b+ 1; ;
z, z

)
and

2F
(c)
1 (a, b; c; z) = −zab

c2
F 2,2,1

2,1,0

(
a+ 1, b+ 1; 1, c; 1;

2, c+ 1; c+ 1; ;
z, z

)
.

(4.4.13)

This is not the first time that the Kampé de Fériet function appears in ruin theory,
as it arises in the study of some risk processes that consider the payment of dividends
provided by the insurer (see, for example, Albrecher and Cani (2017)).

Corollary 4.4.1. The expected trapping time under the household capital process
defined as in (4.2.2) and (4.2.3), with initial capital x ≥ x∗, capital growth rate r,
intensity λ > 0 and remaining proportions of capital with distribution Beta(α, 1)
where α > 0; that is, Zi ∼ Beta(α, 1) is given by

E [τx; τx <∞] =
1

r(αr − λ)Γ
(
λ
r

)2
Γ
(
α− λ

r + 1
)2 Γ(α)y(x)

λ
r−α

[
Γ(α)2F1

(
1− λ

r
, α− λ

r
; 1 + α− λ

r
; y(x)−1

)(
(αr + λ)2F

(c)
1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; 1

)

+λ

(
2F

(a)
1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; 1

)
+ 2F

(b)
1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; 1

)))

+

(
1

λ

)
Γ

(
λ

r

)
Γ

(
1 + α− λ

r

)(
2F1

(
1− λ

r
, α− λ

r
; 1 + α− λ

r
; y(x)−1

)(
r(αr − λ) + λ2 ln [y(x)]

)

− λ
(

(αr + λ) 2F
(c)
1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; y(x)−1

)

+λ

(
2F

(a)
1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; y(x)−1

)
+ 2F

(b)
1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
; y(x)−1

))))]
,

(4.4.14)

where y(x) = x
x∗
, 2F1 (·) is Gauss’s Hypergeometric Function as defined in (4.4.10)

and 2F
(a)
1 (·), 2F

(b)
1 (·) and 2F

(c)
1 (·) its derivatives with respect to the first, second and

third parameters, respectively, as introduced in (4.4.13).

Proof. Calculating (4.4.12) and using (4.4.13), one can derive the expected trapping
time (4.4.14).
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Moreover, we can calculate the expected trapping time given that trapping occurs
by taking the following ratio (see for example, Equation (4.37) of Gerber and Shiu
(1998)),

E [τx|τx <∞] =
E [τx; τx <∞]

ψ(x)
.

A number of expected trapping times for varying values of the capital growth rate
r are displayed in Figure 4.2. One observes that the expected trapping time is, for
a fixed initial capital, typically higher when considering a lower capital growth rate
r, which at first sight may look counter-intuitive, as a higher capital growth rate r
means a faster exponential growth. Nevertheless, this indicates that for high capital
growth rates r, those trajectories that do not lead to trapping quickly, will very
likely avoid it later.
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Figure 4.2: Expected trapping time E [τx; τx <∞] when Zi ∼ Beta(1.5, 1), λ = 1
and x∗ = 1 for r = 1.0, 1.1, 1.2.

4.4.2 The Capital Deficit at Trapping

The capital deficit at trapping is the absolute value of the difference between a
household’s level of capital at the trapping time and the critical capital, i.e. the
amount | Xτx − x∗ |. Specifying the penalty function such that for any fixed y,
w(x1, x2) = 1{x2≤y}, (4.4.1) becomes the distribution function of the capital deficit
at the trapping time discounted at a force of interest δ ≥ 0. This choice leads to the
following proposition

Proposition 4.4.2. Consider a household capital process defined as in (4.2.2) and
(4.2.3), with initial capital x ≥ x∗, capital growth rate r, intensity λ > 0 and
remaining proportions of capital with distribution Beta(α, 1) where α > 0; that is,
Zi ∼ Beta(α, 1). The distribution function of the discounted capital deficit at the
trapping time is given by

Fδ(y; τx <∞|x) = mδ(x) ·
[
1−

(
1− y

x∗

)α]
for 0 ≤ y ≤ x∗, (4.4.15)
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where mδ(x) is the Laplace transform of the trapping time given by (4.4.5) and δ ≥ 0
is the force of interest for valuation.

Proof. The choice w(x1, x2) = 1{x2≤y} yields a modified version of the IDE (4.4.2),
with A(x) = y (x)−α− [(x∗ − y) /x]α for y(x) = x/x∗. Following a similar procedure
to that of Proposition 4.4.1 leads to (4.4.15).

Remark 4.4.4. One can easily obtain fδ(y; τx < ∞|x), the p.d.f. of the discounted
capital deficit at the trapping time, by differentiating Fδ(y; τx <∞|x) w.r.t. y. That
is,

fδ(y; τx <∞|x) :=
d

dy
Fδ(y; τx <∞|x) = mδ(x) · α

x∗

(
1− y

x∗

)α−1

for 0 < y < x∗,

where mδ(x) is the Laplace transform of the trapping time given by (4.4.5) and
δ ≥ 0 is the force of interest for valuation.
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Figure 4.3: (a) F (y|x, τx <∞) when Zi ∼ Beta(1.75, 1), r = 1.08, λ = 1, x = 1.25,
x∗ = 1 (b) f(y|x, τx < ∞) when Zi ∼ Beta(1.25, 1), r = 1.08, λ = 1, x = 1.25,
x∗ = 1.

Remark 4.4.5. Note that, setting δ = 0 yields F (y; τx < ∞|x), the distribution of
the capital deficit at trapping. Furthermore, we can calculate the distribution of the
capital deficit at trapping given that trapping has occurred. This is given by

F (y|x, τx <∞) :=
F (y; τx <∞|x)

ψ(x)
= 1−

(
1− y

x∗

)α
for 0 ≤ y ≤ x∗.

(4.4.16)

Moreover, differentiating F (y|x, τx < ∞) w.r.t. y leads to the p.d.f. of the capital
deficit at trapping given that trapping has occurred,

f(y|x, τx <∞) :=
d

dy
F (y|x, τx <∞) =

α

x∗

(
1− y

x∗

)α−1

for 0 < y < x∗.
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(4.4.17)

Figure 4.3 compares both, analytical and simulated, distribution and p.d.f. of the
capital deficit at trapping given that trapping occurs. Simulated quantities were gen-
erated using the Euler-Maruyama method, a well-known technique mainly used to
approximate numerical solutions of Stochastic Differential Equations (SDEs) (see,
for example, Kloeden and Eckhard (1995)). Not surprisingly, Figure 4.3a clearly
shows that the simulated quantities converge to the theoretical distribution (4.4.16)
as the number of simulations n increases, while Figure 4.3b displays how the theo-
retical p.d.f. given by (4.4.17) perfectly fits the simulated observations.

By comparing (4.3.2) with (4.4.17) one concludes that the capital deficit at trap-
ping given that trapping occurs follows the beta distribution of the first kind (B1).
Indeed, if we denote the random variable Y :=| Xτx − x∗ |

∣∣∣ τx < ∞, we have that

Y ∼ B1(y; b = x∗, p = 1, q = α). Similarly, one can write Y d
= x∗ · (1 − Zi), where

d
= denotes equality in distribution.

4.5 A Class of Poverty Measures and its Connection
with the Capital Deficit at Trapping

Poverty measures serve as the main tool for the evaluation of anti-poverty policies
(e.g. cash transfer programmes) and poverty itself. Since Sen (1976), following
his axiomatic approach, researchers have formulated numerous poverty measures
over the years. The Foster-Greer-Thorbecke (FGT) index (Foster et al., 1984) is
undoubtedly one of the most important of these poverty measures and has been
widely applied in empirical works. In fact, the FGT index has become the stan-
dard measure for international poverty assessments and is regularly reported on by
individual countries and international organisations such as the World Bank (for a
detailed review of the contributions of the FGT index over the 25 years since its
publication, see Foster et al. (2010)). The FGT index emerged as an alternative to
the “rank weighting” approach, which was originally applied in the “Sen measure”
(see Theorem 1 from Sen (1976)), and accounts for the normalised gap and the rank
order of a person in the group of the poor. The FGT index contemplates instead a
“short-fall weighting” method, which considers the income short-fall expressed as a
share of the poverty line.

Let FX(x) be the distribution function of the income variable X from a population
with continuous p.d.f. fX(x) at a given point x. The FGT class of poverty measures
indexed by γ ≥ 0 is defined as follows

FGTγ =

∫ z

0

(
z − x
z

)γ
fX(x) dx, (4.5.1)

where z is the poverty line. Particular cases of the FGT class of poverty measures
include FGT0, which is simply the head-count index and as mentioned in Section
4.1, calculates the proportion of households living below the poverty line. Another
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common measure is FGT1, a normalisation of the income-gap ratio originally intro-
duced by Sen (1976). This poverty measure is commonly referred to as the poverty
gap index. In contrast, the poverty severity index, FGT2, is a weighted sum of
income short-falls (as a proportion of the poverty line), where the weights are the
proportionate income short-falls themselves. Note that, a larger γ in (4.5.1) gives
greater emphasis to the poorest poor. Hence, this parameter is viewed as a measure
of poverty aversion (Foster et al., 1984).

From (4.5.1), one can write

FGTγ =
H(z)

zγ
Ex [D(z, x)|x < z] ,

where H(z) = FX(z) is the head-count index and D(z, x) = (z − x)γ is a function
that describes the level of deprivation suffered by an individual whose income x is
less than the poverty line z. Clearly, D(z, x) is in terms of an individual’s income
short-fall y := z − x.

We now consider a household’s capital process as defined in Section 4.1. Under this
model, a household’s income is generated through capital: It = bXt, where b > 0
holds (see Equation (4) in Kovacevic and Pflug (2011)). Taking b = 1 leads to the
case for which a household’s income is equal to its capital. Thus, the results obtained
in Section 4.4 also apply to a household’s income. On this basis, from Section 4.4.2
yields that Y ∼ B1(y; b = x∗, p = 1, q = α), where the random variable Y denotes
the income short-fall (or income deficit) at trapping given that trapping occurs. In
this case, the FGTγ index is given in terms of the γth moment of Y ,

FGTγ =
H(z)

zγ
E [Y γ] = H(z)

(
x∗

z

)γ
B (1 + α, γ)

B (1, γ)
,

where we used the fact that the hth moment of a random variableW ∼ B1(w; b, p, q)
is given by

E
[
W h
]

=
bhB(p+ q, h)

B(p, h)
, (4.5.2)

(see, for instance, Table 1 from McDonald (1984)).
Remark 4.5.1. One can also compute the hth moment of the capital deficit at trap-
ping given that trapping occurs by means of the Gerber-Shiu expected discounted
penalty function. Indeed, choosing w(x1, x2) = xh2 yields a modified version of the
IDE (4.4.2), with A(x) = α ·x∗h ·B(α, h+1) ·y (x)−α for y(x) = x/x∗. Thus, solving
(4.4.2) as in Proposition 4.4.1 yields to the hth moment of the discounted capital
deficit at trapping,

E
[
| Xτx − x∗ |h e−δτx ; τx <∞

]
= α · x∗h ·B (α, h+ 1) ·mδ(x).

Setting δ = 0 yields E
[
| Xτx − x∗ |h; τx <∞

]
, the hth moment of the capital deficit

at trapping. Consequently, the hth moment of the capital deficit at trapping given
that trapping occurs is given by

E
[
Y h
]

:=
E
[
| Xτx − x∗ |h; τx <∞

]

ψ(x)
= α · x∗h ·B (α, h+ 1) =

α · x∗h · h ·B(α, h)

h+ α
,

(4.5.3)
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where we applied the property B(p, q + 1) = q·B(p,q)
p+q

of the beta function. Clearly,
(4.5.3) is equal to (4.5.2) for the case b = x∗, p = 1 and q = α.

4.6 An Application to Burkina Faso’s Household
Microdata

4.6.1 Context and Data

Burkina Faso is located in West Africa with an area of 274, 200 km2. In 2021, the
population was estimated at just over 20.3 million, with the capital Ouagadougou
being the country’s largest city. Historically, its economy has been largely based on
agriculture, which provides a living for more than 80% of the population. Burkina
Faso’s main subsistence crops are sorghum, millet, maize and rice, while the country
has been one of Africa’s leading producers of cotton and gold (Brugger and Zanetti,
2020; Engels, 2023).

The country’s climate is characterised by a dry tropical climate that alternates
a short rainy season with a long dry season. Due to its geographical location,
bordering the Sahara Desert, Burkina Faso’s climate is subject to seasonal and
annual variations. Furthermore, the country is divided into three different climatic
zones, the Sahelian zone in the north, the North-Sudanian zone in the centre and
the South-Sudanian zone in the south, which receive an average annual rainfall of
less than 600 mm, between 600 and 900 mm and more than 900 mm, respectively
(Alvar-Beltrán et al., 2020).

Household microdata from Burkina Faso’s Continuous Multisector Survey (Enquête
Multisectorielle Continue (EMC)) 20142 is used to evaluate the adequacy of the
B1(y; b = x∗, p = 1, q = α) model to describe income short-fall distribution. The
survey was conducted from 17 January 2014 to 24 November 2014 by the National
Institute of Statistics and Demography (Institut National de la Statistique et de la
Démographie (INSD)). The EMC had as main objective the generation of sound
data for poverty analyses. A total of 10, 411 households were interviewed, with a
96.4% of interviews accepted.

The main variable of interest generated in the survey is consumption, which in the
EMC is given in units of the West African CFA (Communauté financière en Afrique)
franc per person per day in average prices in Ouagadougou during the EMC field
work. To identify the poor, a minimum food basket of around thirty products was
defined. Determining the cost of this food basket and other basic needs, the absolute
poverty line was estimated at 153, 530 CFA. A person is poor if he/she lives in a poor
household and a household is poor if the annual per capita consumption is below
the absolute poverty line which is equivalent to 421 CFA per capita consumption
per day.

2For a detailed overview of the survey, interested readers may wish to consult the survey’s
official report (in French): Institut National de la Statistique et de la Démographie (INSD) (2015).
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4.6.2 Estimators for Parameters of the B1 Model

In this chapter, we use the method-of-moments (MoM) to estimate the parameters
α and x∗ of the B1 model. Assume that y1, y2, ..., yn is a random sample of income
short-fall of size n. Letting Mk = 1

n

∑n
i=1 y

k
i denote the kth sample moment yields

to the method-of-moments estimators (MMEs) for α and x∗, given by

α̂MME =
2 [M2 −M2

1 ]

2M2
1 −M2

and x̂∗MME =
M1 ·M2

2M2
1 −M2

,

respectively. These estimators are derived by equating the first two sample moments
(M1 and M2) with the theoretical moments (Equation (4.5.3) for h = 1, 2) and by
subsequently solving for the two parameters, α and x∗. Tables 4.1, 4.2 and 4.3 show
the MMEs for α and x∗ at a national level, by area of residence and by region,
respectively. In addition, the maps in Figure 4.4 display these estimates by region,
giving a comprehensive geographical overview of the parameters. These results will
be discussed more in detail in Section 4.6.4.

4.6.3 Evaluating the Goodness-of-Fit of the B1 Model

The non-parametric one-sample Kolmogorov-Smirnov (KS) test and the R2 coeffi-
cient are used to assess the goodness-of-fit of the B1 model. To conduct the KS test,
we calculate the KS statistic, which is given by

D = max
y
|Fn(y)− F (y)| , (4.6.1)

where Fn(y) is the empirical distribution function defined as Fn(y) = 1
n

∑n
i=1 1{yi≤y}

and F (y) is (4.4.16), the distribution function of the B1 model. The null (H0) and
alternative (H1) hypotheses of the KS goodness-of-fit test are:

H0: the household income short-fall data follows the B1 model and

H1: the household income short-fall data does not follows the B1 model.

The null hypothesis H0 is rejected at a significance level αKS if the p-value of the KS
statistic is less than αKS. The p-value is computed based on the limiting distribution
of the KS statistic (4.6.1) (Marsaglia et al., 2003),

lim
n→∞

P(
√
nD ≤ y) =

√
2π

y

∞∑

i=1

e−(2i−1)2π2/(8y2).

We further support the KS test by considering the R2 coefficient, which quantifies
the degree of correlation between the observed and predicted probabilities under an
assumed distribution. Here, a value of R2 that is close to one indicates that the B1
model is a good fit for the household income short-fall data. The R2 coefficient is
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computed as follows:

R2 =

n∑
i=1

[
F̂ (yi)− F̄ (y)

]2

n∑
i=1

[
F̂ (yi)− F̄ (y)

]2

+
n∑
i=1

[
Fn (yi)− F̂ (yi)

]2
,

where Fn(yi) is the empirical distribution function for the ith household income
short-fall, F̂ (yi) is the estimated distribution function for the ith household income
short-fall under the B1 model and F̄ (y) is the average of F̂ (yi).

To verify our assumptions and model specifications, we also consider graphical meth-
ods. We plot the distribution function (4.4.16) and the p.d.f. (4.4.17) against the
empirical distribution Fn(y) and the histogram of the observed income short-fall
data, respectively. In addition, we use the B1 model quantile-quantile (Q-Q) and
probability-probability (P-P) plots to support the assumption of a B1(y; b = x∗, p =
1, q = α) distribution. Appendices 4.A, 4.B and 4.C show these graphical methods
at a national level, by area of residence and by region, respectively.

4.6.4 Results and Discussion

The assumption of the B1 distribution can be investigated based on the p-value of
the Kolmogorov-Smirnov (KS) statistic and the R2 coefficient, which are shown in
Tables 4.1, 4.2 and 4.3. As shown in these tables, with the exception of the estimates
at a national level, all p-values of the KS test are higher than the significance level of
αKS = 0.05. This indicates that the B1 model significantly describes the household
income short-fall data by both area of residence and by region. This is borne out
by the estimated values for the R2 coefficient, which are found higher than 0.99 for
almost all the cases, suggesting that the B1 model explains more than 99% of the
variation in the data, but the remaining (less than 1%) variation is attributed to
errors and cannot be explained by the model. The Cascades region is the only case
attaining a lower value for the R2 coefficient: 0.9870, which is nevertheless still very
close to one, so that the model can still be considered to describe a large part of the
variation in the data.

Country Type α x∗ p-value (KS test) R2 Poverty Gap Index (FGT1) Poverty Severity Index (FGT2)
Burkina Faso Direct - - - - 0.096 0.032
Burkina Faso MME 1.50 87,209.01 0.02379 0.9983 0.091 0.029
*p-value> αKS = 0.05.

Table 4.1: B1 distribution fitted parameters and poverty measures for Burkina Faso.

Graphical methods displayed in Appendices 4.A, 4.B and 4.C provide an additional
tool to evaluate the assumption of the B1 distribution. Plot (a) in the appendices
shows a density plot in which are plotted the p.d.f. (4.4.17) of a B1 model and the
histogram of the observed income short-fall data. On the other hand, Plot (c) in the
appendices displays a distribution plot in which the B1 distribution function (4.4.16)
is plotted against the empirical distribution function Fn(y). From these plots, one
can observe that the B1 model fits the histogram and the empirical distribution well,
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respectively. Moreover, if the household income short-fall data is found to follow
the B1 model, observations on both the quantile-quantile (Q-Q) and probability-
probability (P-P) plots will appear to form almost a straight diagonal line. In
general, household income short-fall data is positioned in the diagonal by area of
residence and by region, suggesting the appropriateness of the B1 distribution3. In
particular, one cannot expect the observed income short-fall data points to follow
the reference diagonal line in the upper quantiles as income short-fall data is sparse
in the tails.

Area of Residence Type α x∗ p-value (KS test) R2 Poverty Gap Index (FGT1) Poverty Severity Index (FGT2)
Urban Direct - - - - 0.052 0.016
Urban MME 1.53 82,925.53 0.4103* 0.9961 0.051 0.016
Rural Direct - - - - 0.118 0.040
Rural MME 1.48 88,002.48 0.0754* 0.9985 0.111 0.036
*p-value> αKS = 0.05.

Table 4.2: B1 distribution fitted parameters and poverty measures by area of resi-
dence.

As underlined in Section 4.6.2, parameter estimates are based on the Method of
Moments (MoM) and are shown in Tables 4.1, 4.2 and 4.3. From Section 4.1, one
can realise that under the assumption of Beta(α, 1)−distributed remaining propor-
tions of capital, higher values of α yield to a greater expected remaining proportion
of capital upon experiencing a capital loss (i.e. the distribution is left-skewed or
equivalently, the remaining proportions of capital Zi ∈ [0, 1] are more likely to have
values close to one). On this basis, it is possible to assess the magnitude of cap-
ital losses experienced by households in Burkina Faso. For instance, Figure 4.4a
displays how households experience capital losses of varying magnitude depending
on the geographical area in which they reside. In fact, Figure 4.4a shows interest-
ingly that these magnitudes appear to be linked to or dependent on the different
climatic zones4. These findings are in line with previous research, which highlights
the country’s economy dependence on rain-fed agriculture and livestock husbandry,
which in turn makes it vulnerable to climate risks such as droughts and floods (see,
for example, Zampaligré et al. (2014)). In particular, Table 4.2 and Figure 4.4b
show that the estimates of the critical capital x∗ for Hauts-Bassins, Centre-Est,
Centre and Boucle du Mouhoun are higher (greater than 90,000 CFA), compared
to those for the rest of regions, suggesting that the country’s potentially poorest
households live in these regions. However, it is important to note that the poverty
gap index (FGT1) and the poverty severity index (FGT2) shown in Table 4.2 for
Boucle du Mouhoun attain higher values due to the fact that the head-count index
is higher (56%) compared to that of Hauts-Bassins (35%), Centre-Est (34%) and
Centre (17%). Similarly, households residing in the Nord region seem to experience
the most adverse capital losses, as its estimated value for α shown in Table 4.2 is
the lowest among all regions. Moreover, Nord’s high head-count index (65%) and its
uniform distribution shape are major contributors to the high poverty gap (FGT1)
and poverty severity (FGT2) index.

3This is also true at a national level. However, recall that the null hypothesis H0 for the KS
test was rejected.

4See Alvar-Beltrán et al. (2020) for a detailed map of Burkina Faso with the different climatic
zones.
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Region Type α x∗ p-value (KS test) R2 Poverty Gap Index (FGT1) Poverty Severity Index (FGT2)
Boucle du Mouhoun Direct - - - - 0.143 0.052
Boucle du Mouhoun MME 1.54 91,848.66 0.8662* 0.9986 0.131 0.044
Cascades Direct - - - - 0.038 0.011
Cascades MME 1.89 86,053.24 0.7089* 0.9870 0.038 0.011
Centre Direct - - - - 0.037 0.012
Centre MME 2.03 99,257.41 0.9487* 0.9974 0.037 0.012
Centre-Est Direct - - - - 0.096 0.036
Centre-Est MME 1.34 95,997.68 0.493* 0.9931 0.092 0.035
Centre-Nord Direct - - - - 0.082 0.026
Centre-Nord MME 1.55 81,599.65 0.8051* 0.9937 0.075 0.023
Centre-Ouest Direct - - - - 0.107 0.034
Centre-Ouest MME 1.60 84,363.89 0.3283* 0.9930 0.099 0.030
Centre-Sud Direct - - - - 0.095 0.030
Centre-Sud MME 1.37 79,048.83 0.9878* 0.9978 0.090 0.027
Est Direct - - - - 0.109 0.035
Est MME 1.39 82,056.03 0.9768* 0.9980 0.104 0.033
Hauts-Bassins Direct - - - - 0.076 0.025
Hauts-Bassins MME 2.27 102,924.19 0.7671* 0.9974 0.072 0.023
Nord Direct - - - - 0.176 0.063
Nord MME 0.99 79,977.12 0.1357* 0.9928 0.170 0.059
Plateau Central Direct - - - - 0.104 0.034
Plateau Central MME 1.22 75,536.12 0.7121* 0.9963 0.097 0.030
Sahel Direct - - - - 0.050 0.015
Sahel MME 1.98 86,059.27 0.9505* 0.9973 0.048 0.013
Sud-Ouest Direct - - - - 0.081 0.027
Sud-Ouest MME 1.39 85,579.68 0.4962* 0.9941 0.082 0.027
*p-value> αKS = 0.05.

Table 4.3: B1 distribution fitted parameters and poverty measures by region.

The robustness of the poverty gap index (FGT1) and the poverty severity index
(FGT2) at a national level, by area of residence and by region, when specifying the
B1 model as the income short-fall distribution can be evaluated in Tables 4.1, 4.2
and 4.3, respectively. Comparing the estimates using the B1 distribution assumption
with the direct (empirical) values of the poverty measures, one can see how close the
estimates are to the direct values of the FGT indices, thus reinforcing the assumption
of the B1 distribution for income short-fall data.
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Figure 4.4: Method of moment estimators (MMEs) by region: (a) α̂MME (b) x̂∗MME.

In Figure 4.5, we contrast the level of poverty and the changes that would have
occurred in the poverty level of selected regions. Both the poverty gap and the
poverty severity index show an enormous progress in poverty reduction for greater
expected remaining proportion of capital upon experiencing a capital loss (i.e. higher
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values of α). Higher values for α can be attained with risk mitigation strategies
such as subsidised insurance programmes (Flores-Contró et al., 2021). Similarly, as
expected, Figure 4.5 shows that for higher values of critical capital x∗, poverty level
increases.
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Figure 4.5: Sensitivity of the poverty gap and the poverty severity index to α and
x∗ for selected regions. Markers show the actual values of the poverty measures.

4.7 Conclusion

This chapter studies the Gerber-Shiu expected discounted penalty function for the
household capital process introduced in Kovacevic and Pflug (2011). The Gerber-
Shiu function incorporates information on the trapping time, the capital surplus
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immediately before trapping and the capital deficit at trapping. Recent work focuses
on only analysing the infinite-time trapping probability (Henshaw et al., 2023),
therefore overlooking quantities of particular interest such as the undershoot and
the overshoot of a household’s capital at trapping. To the best of our knowledge,
we derive for the first time a functional equation for the Gerber-Shiu function and
we solve it for the particular case in which the remaining proportions of capital
upon experiencing a capital loss are Beta(α, 1)−distributed. As a result, we obtain
closed-form expressions for important quantities such as the Laplace transform of
the trapping time and the distribution of the capital deficit at trapping. These
quantities are particularly important as they provide crucial information towards
understanding a household’s transition into poverty.

Using risk theory techniques, we derive a microeconomic foundation for the beta
of the first kind (B1) as a suitable model to represent the distribution of personal
income deficit (or income short-fall). It is indeed interesting that our findings are
in line with previous research in development economics, where the generalised beta
(GB) distribution family and its derivatives (including the B1 model) have shown
to be appropriate models to describe the distribution of personal income.

Affinities between the capital deficit at trapping and a class of poverty measures,
known as the Foster-Greer-Thorbecke (FGT) index, are also presented. In addition,
we provide empirical evidence of the suitability of the B1 distribution for modelling
Burkina Faso’s household income short-fall data from the Continuous Multisector
Survey (Enquête Multisectorielle Continue (EMC)) 2014. Indeed, in this chapter,
the B1 model is fitted to Burkina Faso’s household income short-fall data, and it is
found that the B1 distribution fitted to the data well, suggesting that this model
is appropriate for describing the income short-fall distribution. Moreover, we show
how the poverty gap index and the poverty severity index can be calculated from
the estimated B1 income short-fall distribution. One of the main advantages of
parametric distributions such as the B1 distribution is that (poverty) indicators
can be presented as functions of the parameters of the chosen distribution. Thus
parametric modelling allows to gain insight into the relationship between (poverty)
indicators and the distribution of the parameters.

Future research can consider other distributions supported in [0, 1] for the remaining
proportions of capital. In this way, one could arrive at other distributions for the
capital deficit at trapping that have also been used previously to model personal in-
come (e.g. the lognormal distribution and the power-law distribution). However, this
is not straightforward, as finding a closed-form solution for the Integro-Differential
Equation (IDE) derived in Theorem 4.4.1 when considering more general distribu-
tions for the remaining proportion of capital is challenging. In addition, it might
also be interesting to carry out the same analysis with household microdata from
other countries in order to verify the results obtained with Burkina Faso’s EMC.
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4.A Appendix A: Goodness-of-Fit Plots for Burkina
Faso
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4.B Appendix B: Goodness-of-Fit Plots by Area of
Residence
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4.C Appendix C: Goodness-of-Fit Plots by Region

Boucle du Mouhoun

y

f
(y
|x
,τ

x
<

∞
)

0.
00

00
00

0.
00

00
05

0.
0
00

0
10

0.
00

0
01

5
0.
00

0
02

0

0 40,000 80,000 120,000 160,000

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

60
,0
0
0

8
0,
00

0
1
00

,0
00

1
20

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0
.6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000 120,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0.
2

0.
4

0
.6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



4.C. APPENDIX C: GOODNESS-OF-FIT PLOTS BY REGION 124

Cascades

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000

0.
00
00

00
0.
00

00
05

0.
0
00

01
0

0.
0
00

01
5

0.
0
00

02
0

0.
0
00

02
5

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

6
0,
00

0
8
0,
00

0
1
00

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0.
2

0.
4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



125 CHAPTER 4. GERBER-SHIU FUNCTION: AN APPLICATION TO POVERTY TRAPPING

Centre

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000 120,000

0.
00
00

00
0.
00

00
05

0.
0
00

01
0

0.
0
00

01
5

0.
0
00

02
0

0.
0
00

02
5

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

6
0,
00

0
8
0,
00

0
1
00

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0.
4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



4.C. APPENDIX C: GOODNESS-OF-FIT PLOTS BY REGION 126

Centre-Est

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000 120,000

0.
00

00
0
0

0.
00

0
00

5
0.
00

00
10

0
.0
00

01
5

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
0
0

40
,0
0
0

60
,0
00

8
0,
00

0
10

0,
00

0
1
20

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000 120,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



127 CHAPTER 4. GERBER-SHIU FUNCTION: AN APPLICATION TO POVERTY TRAPPING

Centre-Nord

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000 120,000

0.
00

00
0
0

0.
00

0
00

5
0
.0
00

01
0

0
.0
00

01
5

0
.0
00

02
0

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

6
0,
00

0
8
0,
00

0
1
00

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



4.C. APPENDIX C: GOODNESS-OF-FIT PLOTS BY REGION 128

Centre-Ouest

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000 120,000

0.
00

00
0
0

0.
00

0
00

5
0
.0
00

01
0

0
.0
00

01
5

0
.0
00

02
0

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
0
0

40
,0
0
0

60
,0
00

8
0,
00

0
10

0,
00

0
1
20

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.2

0.
4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



129 CHAPTER 4. GERBER-SHIU FUNCTION: AN APPLICATION TO POVERTY TRAPPING

Centre-Sud

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000

0.
00

00
0
0

0.
00

0
00

5
0
.0
00

01
0

0
.0
00

01
5

0
.0
00

02
0

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

6
0,
00

0
8
0,
00

0
1
00

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



4.C. APPENDIX C: GOODNESS-OF-FIT PLOTS BY REGION 130

Est

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000 120,000

0.
00
00

00
0.
0
00

00
5

0.
0
00

01
0

0.
0
00

01
5

0.
0
00

02
0

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
0
0

40
,0
0
0

60
,0
00

8
0,
00

0
10

0,
00

0
1
20

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



131 CHAPTER 4. GERBER-SHIU FUNCTION: AN APPLICATION TO POVERTY TRAPPING

Hauts-Bassins

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000 120,000

0.
00
00

00
0.
00

00
05

0.
0
00

01
0

0.
0
00

01
5

0.
0
00

02
0

0.
0
00

02
5

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

6
0,
00

0
8
0,
00

0
1
00

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0.
2

0
.4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



4.C. APPENDIX C: GOODNESS-OF-FIT PLOTS BY REGION 132

Nord

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000 120,000

0.
00
00

00
0.
0
00

00
5

0.
0
00

01
0

0.
0
00

01
5

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
0
0

40
,0
0
0

60
,0
00

8
0,
00

0
10

0,
00

0
1
20

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.2

0
.4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



133 CHAPTER 4. GERBER-SHIU FUNCTION: AN APPLICATION TO POVERTY TRAPPING

Plateau Central

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000

0.
00
00

00
0.
0
00

00
5

0.
0
00

01
0

0.
0
00

01
5

0.
0
00

02
0

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

6
0,
00

0
8
0,
00

0
1
00

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



4.C. APPENDIX C: GOODNESS-OF-FIT PLOTS BY REGION 134

Sahel

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000

0.
00
00

00
0.
00

00
05

0.
0
00

01
0

0.
0
00

01
5

0.
0
00

02
0

0.
0
00

02
5

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

6
0,
00

0
8
0,
00

0
1
00

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



135 CHAPTER 4. GERBER-SHIU FUNCTION: AN APPLICATION TO POVERTY TRAPPING

Sud-Ouest

y

f
(y
|x
,τ

x
<

∞
)

0 20,000 40,000 60,000 80,000 100,000

0.
00
00

00
0.
0
00

00
5

0.
0
00

01
0

0.
0
00

01
5

0.
0
00

02
0

Empirical Data
Fitted Distribution

(a) Comparison of Probability Density

Theoretical Quantiles

E
m
p
ir
ic
a
l
Q
u
a
n
ti
le
s

0 20,000 40,000 60,000 80,000 100,000

0
20

,0
00

40
,0
00

6
0,
00

0
8
0,
00

0
1
00

,0
00

(b) Quantile-Quantile (Q-Q) Plot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F
(y
|x
,τ

x
<

∞
)

0 40,000 80,000

Empirical Data
Fitted Distribution

(c) Comparison of Probability Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0.
4

0.
6

0.
8

1.
0

Theoretical Probabilities

E
m
p
ir
ic
al

P
ro
b
ab

il
it
ie
s

(d) Probability-Probability (P-P) Plot



4.C. APPENDIX C: GOODNESS-OF-FIT PLOTS BY REGION 136



Chapter 5

The Role of Direct Capital Cash
Transfers Towards Poverty and
Extreme Poverty Alleviation - An
Omega Risk Process

This chapter is based on the following article:

Flores-Contró, J. M. and S. Arnold (2024). The Role of Direct Capital Cash
Transfers Towards Poverty and Extreme Poverty Alleviation - An Omega Risk Pro-
cess. Published in Scandinavian Actuarial Journal. https://doi.org/10.1080/
03461238.2024.2321574.

Abstract. Trapping refers to the event when a household falls into the area of poverty.
Households that live or fall into the area of poverty are said to be in a poverty trap, where
a poverty trap is a state of poverty from which it is difficult to escape without external
help. Similarly, extreme poverty is considered as the most severe type of poverty, in which
households experience severe deprivation of basic human needs. In this chapter, we consider
an Omega risk process with deterministic growth and a multiplicative jump (collapse)
structure to model the capital of a household. It is assumed that, when a household’s
capital level is above a certain capital barrier level that determines a household’s eligibility
for a capital cash transfer programme, its capital grows exponentially. As soon as its capital
falls below the capital barrier level, the capital dynamics incorporate external support in
the form of direct transfers (capital cash transfers) provided by donors or governments.
Otherwise, once trapped, the capital grows only due to the capital cash transfers. Under
this model, we first derive closed-form expressions for the trapping probability and then do
the same for the probability of extreme poverty, which only depends on the current value
of the capital given by some extreme poverty rate function. Numerical examples illustrate
the role of capital cash transfers on poverty and extreme poverty dynamics.
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5.1 Introduction

In development economics, households that live or fall below the poverty line are
said to be in a poverty trap, where a poverty trap is a state of poverty from which
it is difficult to escape without external help. Similarly, extreme poverty refers to
the most severe type of poverty, characterised by severe deprivation of basic human
needs, including food, safe drinking water, sanitation facilities, health, shelter, edu-
cation and information (United Nations and World Summit for Social Development,
1996).

According to the World Bank (2018), the number of people living in extreme poverty
declined from 36% in 1990 to 10% of the world’s population in 2015. However, this
downward trend has been decelerating throughout the years. Indeed, recent research
published by the United Nations University World Institute for Development Eco-
nomics Research (UNU-WIDER) shows that, due to the COVID-19 crisis, global
poverty could increase for the first time since 1990 (Sumner et al., 2020), therefore
threatening one of the global public’s priorities: ending poverty. In 2015, owing to
the importance of the topic, world leaders agreed on seventeen Sustainable Devel-
opment Goals (SDGs) which engage not only public and private sectors but also
society in attaining a better and more sustainable future for all. Among these goals,
eradicating extreme poverty by 2030 is at the top of the list of priorities, followed
by other targets among which, the reduction of at least by half of the proportion
of people living in poverty and the implementation of appropriate social protection
programmes, stand out (SDG 1: End poverty in all its forms everywhere) (United
Nations, 2015).

Poverty is not an individualised condition, as it does not affect only those who are
poor. That is, poverty causes enormous economic, social and psychological costs
to both the poor and the non-poor. Crime, access to and affordability of health
care and economic productivity are just a few examples of common global concerns
that are exacerbated by poverty (Rank et al., 2021). Child poverty is a clear ex-
ample of how poverty affects us all. For instance, children who grow up in poverty
are much more likely to commit crime as adults (Bjerk, 2007). More crime means
higher correction costs and a rise in private spending on crime prevention (e.g. in
buying alarms and locks). Similarly, growing up in poverty can have harmful effects
on a person’s health (Brooks-Gunn and Duncan, 1997; Case et al., 2002; Ravallion,
2016). This causes hospitals and health insurers to spend more on the treatment of
preventable diseases (Children’s Defense Fund (U.S.), 1994), jeopardising access to
and affordability of health care. Lastly, poor children are often less exposed to ed-
ucation (Rank et al., 2014) and they may therefore have fewer qualifications, which
in turn translates into lower paid and more unstable jobs. This results in lower
economic productivity in adulthood for poor children. Specifically, for the United
States of America, McLaughlin and Rank (2018) indicate the aggregate annual cost
of child poverty amounts to USD 1.0298 trillion, representing 5.4% of the country’s
gross domestic product (GDP). Moreover, McLaughlin and Rank (2018) also esti-
mate that, for every dollar spent on reducing childhood poverty, the country would
save at least seven dollars with respect the economic costs of poverty.
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Cash transfer programmes are one of the main social protection strategies to reduce
poverty and are therefore considered important mechanisms to help achieve SDG 1.
In their simplest form, these programmes transfer cash, whether in small, regular
amounts, or as lump sums, to people living below the poverty line and are gener-
ally funded by governments, international organisations, donors or nongovernmental
organisations (NGOs) (Garcia and Moore, 2012). Moreover, cash transfers are usu-
ally classified as unconditional (UCTs) or conditional (CCTs), with the former not
requiring beneficiaries to undertake any specific actions nor meet any conditions
whereas the latter needs them to have some specific behavioural conditions in ex-
change of the cash transfer (Baird et al., 2014), such as enrolling children in school
or taking them to regular health check-ups (Handa and Davis, 2006).

Adopting a ruin-theoretic approach, this chapter studies the impact of regular UCTs
on poverty and extreme poverty dynamics and, particularly, their effectiveness in
reducing the likelihood of a household living in poverty and extreme poverty. Pre-
vious research has addressed the role of UCTs as a pathway out of extreme poverty
for households. Handa et al. (2016) study two programmes, the Child Grant Pro-
gramme (CGP) and the Multiple Category Targeted Programme (MCP), which
were implemented in 2010 by the Ministry of Community Development, Mother
and Child Health (MCDMCH) of the Government of Zambia. The authors find
that both of these UCTs go far beyond their primary objective of protecting food
security and consumption, as they also have an enormous impact on households’
productive capacity. Although a flat transfer of USD 12 per month may not per-
manently lift households out of the poverty trap, their results suggest these pro-
grammes can help raise the standards of living of the country’s population. In the
same way, Ambler and De Brauw (2017) show that the Benazir Income Support
Program (BISP), an UCT initiative introduced in 2008 by the Government of Pak-
istan, has increased women empowerment in the country, frequently associated with
economic growth (Duflo, 2012), which at the same time has been linked with poverty
reduction (Adams, 2003). As a matter of fact, UCTs have recently gained popularity
as a cost-effective social protection strategy to attain some public policy objectives,
including poverty alleviation (Aker, 2013; Baird et al., 2014; Blattman and Niehaus,
2014; Haushofer and Shapiro, 2016; Jensen et al., 2017; Pega et al., 2022).

Despite the growing interest in studying the impact of UCTs on poverty dynamics
over the years, most studies have adopted an empirical approach. This chapter is
an attempt to attach a mathematically based theoretical framework to the vast em-
pirical literature. In this chapter, we extend the model proposed by Kovacevic and
Pflug (2011). Here, a household’s capital process X = {Xt}t≥0 grows exponentially
at a rate r > 0, which incorporates household rates of consumption, income genera-
tion and investment or savings, above a critical capital level (or poverty line) x∗ > 0,
whereas below a capital barrier level B > x∗, the capital also integrates external
support in the form of direct transfers (capital cash transfers) provided by donors
or governments at a rate cT > 0. At time Ti, the ith capital loss event time, the
capital process jumps (downwards) to Zi ·XTi , where {Zi}∞i=1 is a sequence of i.i.d.
random variables with distribution function GZ supported in (0, 1], representing the
proportions of remaining capital after each loss event (in the present chapter, it will
be regularly assumed the random variables are Beta(α, 1)−distributed). A more
comprehensive picture of this model is introduced in Section 5.2.
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The probability of falling (trapping probability) and the moment at which a house-
hold falls (trapping time) into the poverty trap have recently attracted the inter-
est of some researchers (see, for example, Kovacevic and Pflug (2011), Azaïs and
Genadot (2015), Flores-Contró et al. (2021), Henshaw et al. (2023) and Flores-
Contró (2024)). These studies focus on analysing the behaviour of a household’s
capital above the critical capital, hence overlooking its evolution below this thresh-
old. That is, under this set up, a household’s capital process is killed at the trapping
time τ P

x := inf {t ≥ 0 : Xt < x∗ | X0 = x}. In this chapter, we assume households
may escape from the poverty trap only due to external support received in the
form of capital cash transfers. Therefore, we define the random variable τ EP

x for
x ∈ (0,∞) as the time of extreme poverty i.e. the moment at which a household
becomes extremely poor and ψ EP (x) = P (τ EP

x <∞) as the probability of extreme
poverty. Hence, under this new set up, a household’s capital process is killed at the
time of extreme poverty. The approach taken here differs from the aforementioned
studies, where the area of poverty Λ = [0, x∗] was considered as an absorbing state
from which it was not possible to escape. To explore these ideas, we consider an
Omega risk process, which in classical risk theory, distinguishes between ruin (neg-
ative surplus) and bankruptcy (going out of business). Thus, it is assumed that,
even with negative surplus levels, an insurance company can do business as usual
and continue until bankruptcy occurs.

The Omega model was first introduced in Albrecher et al. (2011), where closed-form
formulas for the expected discounted dividends until bankruptcy under a dividend
barrier strategy are obtained for the case in which the surplus of an insurance com-
pany is modelled as a Brownian motion. Similarly, Gerber et al. (2012), Albrecher
and Lautscham (2013) and Wang et al. (2016) derive explicit expressions for the ex-
pected discounted penalty function at bankruptcy and the probability of bankruptcy
when the surplus of an insurance company is modelled as a Brownian motion, a com-
pound Poisson risk model with exponential claim sizes and an Ornstein-Uhlenbeck
process, respectively. Certainly, the Omega model has been extensively studied dur-
ing the last decade in the actuarial science literature, with researchers incorporating
the bankruptcy concept into traditional ruin models. A particular clear example of
this is in Cui and Nguyen (2016), where an Omega model with surplus-dependent
tax payments and capital injections in a time-homogeneous diffusion setting is stud-
ied. This work not only incorporates features from the Omega model (Albrecher
et al., 2011) but also from traditionally well-studied ruin models such as the risk
model with tax (Albrecher and Hipp, 2007) and the risk model with capital injec-
tions (Albrecher and Ivanovs, 2014). More recently, Gao and He (2019) and He
et al. (2019) obtain analytical results for the expected discounted penalty function
and the probability of bankruptcy for surplus processes under three- and two-step
premium rate settings, respectively. In like manner, Gao et al. (2022) also derive
results for the expected discounted dividends until bankruptcy for a jump-diffusion
surplus process with a two-step premium rate under a dividend barrier strategy.
Besides, alternative versions of the Omega model have also been considered. For
instance, Kaszubowski (2019) allows the surplus process to evolve below zero but
assumes it is killed once it falls below some fixed level −d < 0.

Under the classical risk theory set up, the probability of bankruptcy is quantified by a
bankruptcy rate function ω (x), where x represents the value of the negative surplus.



141 CHAPTER 5. THE ROLE OF CASH TRANSFERS TOWARDS POVERTY ALLEVIATION

The bankruptcy rate function is defined in such a way in which the probability of
bankruptcy increases when the deficit grows. Consequently, for the household capital
process, the bankruptcy event is swaped for the extreme poverty one and an extreme
poverty rate function ω (Xs), which is assumed to be locally bounded and dependent
on the capital level below the critical capital x∗, is defined on (0, x∗]. Namely, for
some capital Xs < x∗ and no prior extreme poverty event, the probability of extreme
poverty on the time interval [s, s+ dt) is given by ω (Xs) dt. Moreover, we assume
that ω (·) ≥ 0 and ω (x) ≥ ω (y) for 0 < x ≤ y to reflect the likelihood of extreme
poverty does not decrease as the capital approaches zero. Clearly, when ω (y) ≡ ∞
for all y < x∗, the probability of extreme poverty is equal to the trapping probability
ψ P (x) = P (τ P

x <∞).

In general, UCTs target the poor. However, in recent years, cash transfer pro-
grammes have reached unprecedented levels of coverage. For example, in 2020, in
response to the COVID-19 pandemic, one out of six people in the world received
at least one cash transfer payment (Gentilini, 2022). As a consequence of this ex-
pansion, it is now more common to encounter UCTs targeting other population
groups, such as the vulnerable non-poor (those living just above the poverty line).
One example is Ingreso Solidario, an UCT programme in Colombia that was imple-
mented in April 2020 as a response to the COVID-19 pandemic. Ingreso Solidario
provided monthly transfers of approximately USD 40 to eligible households: poor
households not covered by pre-existing social programmes and non-poor households
deemed vulnerable based on an assessment of their living conditions (Vera-Cossio
et al., 2023). The capital model considered in this chapter allows for the assessment
of targeted UCTs, either to the poor only (letting B → x∗+) or to both poor and
vulnerable non-poor households (when B > x∗), on poverty dynamics. Moreover,
the capital model is in line with the idea that spending on poverty reduction and
prevention can help save on the economic costs of poverty. As such, when capital
cash transfers target only the poor, the essential aim of the UCT programme is to
lift households out of poverty. On the other hand, when the UCT programme tar-
gets both the poor and the vulnerable non-poor, the programme hopes to prevent
the vulnerable non-poor from falling into poverty, apart from lifting the poor out of
poverty. Nevertheless, both settings pursue one same objective: poverty reduction.

Particular attention should be paid to the fact that the targeted UCTs considered
in this chapter, either to the poor only or to both poor and vulnerable non-poor
households, prevent households from becoming extremely poor, as extreme poverty
implies poverty (recall that a household is at risk of becoming extremely poor only
when its capital lies below the critical capital x∗ or, in other words, a household
can become extremely poor only when it is already poor). This is consistent with
how extreme poverty is currently measured. For instance, the World Bank uses the
International Poverty Line (IPL), set at USD 2.15 per person per day, to measure
extreme poverty (Jolliffe et al., 2022). The IPL is also the most relevant poverty
line to measure poverty in low-income countries, whereas in other countries, other
poverty lines are used to measure poverty. For example, the poverty line is set at
USD 3.65 and USD 6.85 per person per day, in lower and upper middle-income coun-
tries, respectively (Jolliffe et al., 2022). According to the World Bank’s definition of
extreme poverty, it is clear how extreme poverty implies poverty. In general, extreme
poverty differs from conventional poverty in that it has greater depth (degree of de-
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privation), larger length (duration over time) and greater breadth (the number of
dimensions such as illiteracy and malnutrition, among others) (Emran et al., 2014).
Because of these characteristics, the economic costs of extreme poverty are also ex-
pected to be higher than those of conventional poverty. Hence, extreme poverty
should be avoided by all means, and should be considered and studied separately.

The remainder of the chapter is structured as follows. In Section 5.2, we intro-
duce the capital model, with special emphasis on its behavior inside and outside
the poverty area. Explicit equations, their solutions and numerical illustrations for
the trapping probability are given in Section 5.3 for the particular case in which the
remaining proportions of capital are Beta(α, 1)−distributed. In particular, a com-
parison between the trapping probability of the original capital model introduced
by Kovacevic and Pflug (2011) and the one proposed in this chapter is presented in
Appendix 5.B. The event of extreme poverty and the time when it occurs are dis-
cussed in Section 5.4. In addition, closed-form solutions and numerical illustrations
for the probability of extreme poverty are derived in Section 5.4, assuming constant
and exponential extreme poverty rate functions for the particular case in which the
remaining proportions of capital are Beta(α, 1)−distributed. Following Albrecher
and Lautscham (2013), Section 5.5 illustrates how to approximate the probability
of extreme poverty for more general cases by making use of an efficient Monte Carlo
simulation method. Finally, concluding remarks are discussed in Section 5.6.

5.2 The Capital Model

This chapter extends the capital process originally proposed in Kovacevic and Pflug
(2011), where an individual household’s income It at time t comprises consumption
Ct and savings (investments) St. Hence, as in the original capital process, income
dynamics are given by

It = Ct + St.

Moreover, consumption is an increasing function of income and its dynamics are
given by

Ct =

{
It if It ≤ I∗,

I∗ + a (It − I∗) if It > I∗,

where 0 < a < 1. It is assumed that permanent consumption below I∗ might result
in severe adverse effects on health (Kovacevic and Pflug, 2011). Figure 5.1a shows
the dynamics of consumption and savings. Consider the accumulated capital Xt up
to time t follows the dynamics

dXt

dt
= cSSt,

with 0 < cS < 1, and income is generated through capital

It = bXt,
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where 0 < b holds.

Putting all these pieces together and defining x∗ · b = I∗, one gets the dynamical
system

dXt

dt
= r · [Xt − x∗]+ ,

where r = (1 − a) · b · cS > 0 and x∗ > 0 represents the threshold below which
a household lives in poverty, also interpreted as the amount of capital needed to
acquire the critical income I∗ as a perpetuity (Kovacevic and Pflug, 2011).

We now also consider direct transfers (capital cash transfers) provided by donors
or governments only to those deemed eligible. Assume a household qualifies to
be a beneficiary of the unconditional capital cash transfer programme when its
accumulated capital Xt up to time t is below some capital barrier level B > x∗ and
that the external support will be provided at a rate cT > 0. The main objective of
the proposed UCTs is to reduce the gap between the capital barrier level and the
accumulated capital Xt up to time t for those households with capital levels below
the capital barrier level B > x∗. Under this framework, one gets the dynamical
system

dXt

dt
= r · [Xt − x∗]+ + cT · [B −Xt]

+. (5.2.1)

In line with the ideology that households are susceptible to the occurrence of capital
losses, including severe illness, the death of a household member or breadwinner
and catastrophic events such as floods and earthquakes, we model the occurrence
of these events with a Poisson process with intensity λ and consider the capital
process follows the dynamics of (5.2.1) in between events. On the occurrence of a
loss, the household’s capital at the event time is reduced by a random proportion
0 ≤ 1−Zi ≤ 1. Hence, the fraction of the capital not destroyed at the event time is
given by Zi. The sequence {Zi}∞i=1 is independent of the Poisson process and i.i.d.
with common distribution function GZ . A trajectory of the capital process Xt is
shown in Figure 5.1b.

Here, the trajectories of the piecewise-deterministic process (Davis, 1984) behave as
follows: if the capital lies above the capital barrier level B > x∗, then the capital
grows exponentially at a rate r, whereas if the capital lies above the critical capital
x∗ but below the capital barrier level B > x∗, then the capital growth is composed
by both the individual household rate r and the external support rate cT ; otherwise,
the capital growth only incorporates the external support rate cT . Note that, both
the critical capital x∗ and the capital barrier level B > x∗ act as equilibrium levels
for the process. That is, the further above the current value of the process is from
the critical capital x∗, the faster the capital will depart from the critical capital x∗
at the individual household rate r. Similarly, the further below the current value
of the process is from the capital barrier level B > x∗, the faster the capital will
grow to the capital barrier level B > x∗ at the external support rate cT (there is a
“B−reverting” effect where cT is the rate of reversion).
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Figure 5.1: (a) Consumption and savings (b) Trajectory of the stochastic process
Xt.

5.3 When and How Households Become Poor?

In this section, we will study the trapping time τ P

x , which is defined as the time at
which a household with initial capital x ≥ x∗ falls into the area of poverty. That is,

τ P

x := inf {t ≥ 0 : Xt < x∗ | X0 = x} .

Note that, we use the superscript “P” to distinguish trapping-related variables and
functions. Our analysis will involve the expected discounted penalty function, a
concept commonly used in actuarial science (Gerber and Shiu, 1998). The expected
discounted penalty function contains information on the trapping time τ P

x itself and
two related random variables, the capital surplus prior to the trapping timeXτ P−

x
−x∗

and the capital deficit at the trapping time | Xτ P
x
− x∗ |.

For a force of interest δ ≥ 0 and initial capital x ≥ x∗, the expected discounted
penalty function is defined as

m P

δ(x) = E
[
w P(Xτ P−

x
− x∗, | Xτ P

x
− x∗ |)e−δτ P

x 1{τ P
x<∞}

]
, (5.3.1)

where 1{A} is the indicator function of a set A, and w P(x1, x2), for 0 ≤ x1 < ∞
and 0 < x2 ≤ x∗, is a non-negative penalty function of x1, the capital surplus
prior to the trapping time, and x2, the capital deficit at the trapping time. For
more details on the so-called Gerber-Shiu risk theory, interested readers may wish
to consult Kyprianou (2013). The function m P

δ(x) is useful for deriving results in
connection with joint and marginal distributions of τ P

x , Xτ P−
x
− x∗ and | Xτ P

x
− x∗ |.

For instance, (5.3.1) could also be viewed in terms of a Laplace transform when δ
is serving as the argument. Indeed, if we let w P(x1, x2) = 1, (5.3.1) is the Laplace
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transform of the trapping time τ P

x
1. Another choice is w P(x1, x2) = 1{x1≤x,x2≤y} for

δ = 0, for which (5.3.1) leads to the joint distribution function of the capital surplus
prior to the trapping time and the capital deficit at the trapping time. It is not
difficult to realise that, by appropriately choosing a penalty function w P(x1, x2) and
force of interest δ, various risk quantities can be modelled. A non-exhaustive list
of such risk quantities is given in He et al. (2023). In this chapter, we are mainly
interested in studying the impact of capital cash transfers on the probability of
falling into the poverty trap. Thus, we will focus our analysis on the risk quantity
ψ P(x) = P(τ P

x <∞), which can be derived by choosing w P(x1, x2) = 1 and δ = 0 in
(5.3.1).

Following Gerber and Shiu (1998), our goal is to derive a functional equation for
m P

δ(x) by applying the law of iterated expectations to the right-hand side of (5.3.1).

We point out that m P

δ(x) has different sample paths for x ≥ B and x∗ ≤ x < B.
Hence, we distinguish the two situations by writing m P

δ(x) = m P

δ,u(x) for x ≥ B and
m P

δ(x) = m P

δ,l(x) for x∗ ≤ x < B. Similarly, we write ψ P

u(x) = P(τ P

x <∞) for x ≥ B
and ψ P

l (x) = P(τ P

x <∞) for x∗ ≤ x < B.

Remark 5.3.1. Note that, when B = x∗, above the critical capital x∗, the dynamics of
the capital process follow those of the original process (Kovacevic and Pflug, 2011).
Thus, the trapping probability ψ P(x) and the expected discounted penalty function
at the trapping time m P

δ(x), are equivalent to those studied in Henshaw et al. (2023)
and Flores-Contró (2024), respectively. Clearly, this also holds true when cT = 0.
Appendix 5.B evidences this behaviour for a set of selected parameters.

Theorem 5.3.1. When x ≥ B, we have

m P

δ,u(x) =
λ

r
(x− x∗)λ+δr

∫ ∞

x

1

(u− x∗)λ+δr +1

[∫ 1

B/u

m P

δ,u(u · z)dGZ(z)

+

∫ B/u

x∗/u

m P

δ,l(u · z)dGZ(z) + A P(u)

]
du, (5.3.2)

and when x∗ ≤ x < B, we have

m P

δ,l(x) =
λ

r − cT
(x+ x∗∗)

λ+δ
r−cT

∫ B

x

1

(u+ x∗∗)
λ+δ
r−cT

+1

[∫ 1

x∗/u

m P

δ,l(u · z)dGZ(z) + A P(u)

]

du+
λ

r
(B − x∗)λ+δr

(
x+ x∗∗

B + x∗∗

) λ+δ
r−cT

∫ ∞

B

1

(v − x∗)λ+δr +1

[∫ 1

B/v

m P

δ,u(v · z)dGZ(z)

+

∫ B/v

x∗/v

m P

δ,l(v · z)dGZ(z) + A P(v)

]
dv, (5.3.3)

where the function A P(u) is given by

A P(u) :=

∫ x∗/u

0

w P(u− x∗, x∗ − u · z)dGZ(z).

1We know from probability theory that, for a continuous random variable Y , with probability
density function fY , the Laplace transform of fY is given by the expected value L{fY } (s) =
E
[
e−sY

]
.
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See Appendix 5.A.1 for proof of Theorem 5.3.1.

Remark 5.3.2. We point out that the Integral Equations (IEs) (5.3.2) and (5.3.3)
allow us to consider the differentiability of the functions m P

δ,u(x) and m P

δ,l(x). For
instance, it is easy to see from (5.3.2) and (5.3.3) that m P

δ,u(x) and m P

δ,l(x) are
differentiable in (B,∞) and (x∗, B), respectively. Furthermore, they satisfy the
following condition

m P

δ,u(B) = m P

δ,l(B
−). (5.3.4)

The existence and uniqueness of the required solution to the IEs derived in Theorem
5.3.1 should be justified in each case (see, for example, Mihálykó and Mihálykó
(2011) for an analysis of the existence and uniqueness of the solution of an IE for
the expected discounted penalty function of a risk process with dependent inter-
arrival times and claim sizes). Now, by differentiating the IEs (5.3.2) and (5.3.3),
we obtain the Integro-Differential Equations (IDEs) for m P

δ,u(x) and m P

δ,l(x) in the
following theorem

Theorem 5.3.2. When x ≥ B, we have

r(x− x∗)m′ P

δ,u(x)− (λ+ δ)m P

δ,u(x) + λ

[∫ 1

B/x

m P

δ,u(x · z)dGZ(z)

+

∫ B/x

x∗/x

m P

δ,l(x · z)dGZ(z) + A P(x)

]
= 0, (5.3.5)

and when x∗ ≤ x < B, we have

(r − cT)(x+ x∗∗)m′ P

δ,l(x)− (λ+ δ)m P

δ,l(x) + λ

[∫ 1

x∗/x

m P

δ,l(x · z)dGZ(z) + A P(x)

]
= 0.

(5.3.6)

In addition, the boundary conditions for m P

δ,u(x) and m P

δ,l(x) are given by (5.3.4),
lim
x→∞

m P

δ,u(x) = 0 and m P

δ,l(x
∗) = 1

λ+δ

[
cT(B − x∗)m′ P

δ,l(x
∗) + λA P(x∗)

]
.

Remark 5.3.3. Equation (5.3.6) for m P

δ,l(x) is independent of m P

δ,u(x). However,
m P

δ,l(x) is subject to the boundary condition (5.3.4) which is involved with m P

δ,u(x).
Furthermore, it is easy to see from (5.3.4), (5.3.5) and (5.3.6) that m P

δ,u(x) and
m P

δ,l(x) satisfy

m′ P

δ,u(B) = m′ P

δ,l(B
−). (5.3.7)

5.3.1 The Trapping Time

Sometimes it is easier to work with a transformation rather than with the original
distribution function of a random variable. In this chapter, we focus on studying
the Laplace transform of the random variables of interest. The Laplace transform of
a random variable characterises the probability distribution uniquely and is known
to be a powerful tool in probability theory and, in particular, quite useful when
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studying nonnegative random variables. Recall that, by specifying the penalty func-
tion such that w P(x1, x2) = 1, m P

δ(x) becomes the Laplace transform of the trapping
time, also interpreted as the expected present value of a unit payment due at the
trapping time.

Thus, with w P (x1, x2) = 1, Equations (5.3.5) and (5.3.6) can then be written such
that when x ≥ B,

0 = r(x− x∗)m′ P

δ,u(x)− (λ+ δ)m P

δ,u(x) + λ

[∫ 1

B/x

m P

δ,u(x · z)dGZ(z)

+

∫ B/x

x∗/x

m P

δ,l(x · z)dGZ(z) +GZ

(
x∗

x

)]
, (5.3.8)

and when x∗ ≤ x < B,

0 = (r − cT)(x+ x∗∗)m′ P

δ,l(x)− (λ+ δ)m P

δ,l(x)

+ λ

[∫ 1

x∗/x

m P

δ,l(x · z)dGZ(z) +GZ

(
x∗

x

)]
. (5.3.9)

Proposition 5.3.1. Consider a household capital process with initial capital x ≥ x∗,
capital growth rate r, capital barrier level B, capital transfer rate cT , intensity λ > 0
and remaining proportions of capital with distribution Beta(α, 1) where α > 0; that
is, Zi ∼ Beta(α, 1). The Laplace transform of the trapping time is given by

m P

δ (x) =





A P

2,uy
P

u(x)−b
P
u

2F1

(
b P

u, b
P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(x)−1) for x ≥ B,

A P

1,ly
P

l (x)−a
P
l

2F1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x)−1)

+ A P

2,ly
P

l (x)−b
P
l

2F1

(
b P

l , b
P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (x)−1) for x∗ ≤ x < B,

(5.3.10)

where δ ≥ 0 is the force of interest for valuation, 2F1 (·) is Gauss’s Hypergeometric

Function as defined in (5.A.8), y P

u(x) = x
x∗
, a P

u =
−(δ+λ−αr)−

√
(δ+λ−αr)2+4rαδ

2r
, b P

u =
−(δ+λ−αr)+

√
(δ+λ−αr)2+4rαδ

2r
, c P

u = c P

l = α, y P

l (x) = − x
x∗∗

with x∗∗ = cTB−rx∗
r−cT , a P

l =

−(δ+λ−α(r−cT ))−
√

(δ+λ−α(r−cT ))2+4(r−cT )αδ

2(r−cT )
, b P

l =
−(δ+λ−α(r−cT ))+

√
(δ+λ−α(r−cT ))2+4(r−cT )αδ

2(r−cT )

and the constants A P

2,u, A P

1,l and A P

2,l are given by (5.A.9), (5.A.10), and (5.A.11),
respectively.

The mathematical proof of Proposition 5.3.1 is presented in Appendix 5.A.2.
Remark 5.3.4. As mentioned previously, the Laplace transform of the trapping time
approaches the trapping probability as δ tends to zero, i.e.

lim
δ↓0

m P

δ(x) = P(τ P

x <∞) ≡ ψ P(x),

for α > λ
r
. If the net profit condition α > λ

r
does not hold, then trapping would be

certain (Henshaw et al., 2023).
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Figures 5.2a2 and 5.2b display the trapping probability ψ P(x) for the capital process
Xt. Not surprisingly, Figure 5.2a shows the trapping probability is a decreasing
function of both the capital transfer rate cT and the initial capital. In particular, it
is worth noting the important role the capital transfer rate cT can play in attaining
lower trapping probabilities for households with initial capital below the capital
barrier level B as very high capital transfer rates cT have the potential to level
the likelihood of becoming poor for this particular group. However, high capital
transfer rates cT seem to be less efficient for attaining lower trapping probabilities
for households with initial capital above the capital barrier level B. This is due to
the fact that households with initial capital above the capital barrier level B are
exposed to never receiving a capital cash transfer. Indeed, if they experience a large
loss, they are likely to fall directly into the poverty trap without ever receiving a
capital cash transfer. From Figure 5.2b, we can also highlight the importance of the
capital barrier level B to reach lower values for the trapping probability. Although
a higher capital transfer rate cT and a higher capital barrier level B may lead to
lower trapping probabilities, the sensitivity analyses shown in Appendices 5.B and
5.C suggest the trapping probability is less sensitive to these parameters compared
to the probability of extreme poverty.
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Figure 5.2: (a) Trapping probability ψ P(x) when Zi ∼ Beta(0.8, 1), a = 0.1, b = 4,
cS = 0.4, B = 2, λ = 1 and x∗ = 1 for cT = 0.1, 1, 10, 100 (b) Trapping probability
ψ P(x) when Zi ∼ Beta(0.8, 1), a = 0.1, b = 4, cS = 0.4, cT = 0.25, λ = 1 and x∗ = 1
for B = 1, 2, 3, 4.

2A GitHub repository with some code used in this chapter is available at
https://github.com/josemiguelflores/TheRoleofDirectCapitalCashTransfers.git

https://github.com/josemiguelflores/TheRoleofDirectCapitalCashTransfers.git
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5.4 When and How Households Become Extremely
Poor?

We define the random variable τ EP

x for x ∈ (0,∞) as the time of extreme poverty i.e.
the moment at which a household with initial capital x becomes extremely poor and
ψ EP (x) = P (τ EP

x <∞) as the probability of extreme poverty. Note that, we use the
superscript “EP” to distinguish extreme poverty-related variables and functions. The
probability of extreme poverty is quantified by an extreme poverty rate function
ω (x), where x represents the value of capital below the critical capital x∗. The
extreme poverty rate function is defined in such a way in which the probability
of extreme poverty increases when the capital deficit | Xs − x∗ | grows. Namely,
for some capital Xs < x∗ and no prior extreme poverty event, the probability of
extreme poverty on the time interval [s, s+ dt) is given by ω (Xs) dt. The expected
discounted penalty function at extreme poverty is therefore given by

m EP

δ (x) = E
[
w EP(Xτ EP -

x
, | Xτ EP

x
− x∗ |)e−δτ EP

x 1{τ EP
x <∞}

]
,

where w EP(x1, x2), for 0 ≤ x1 < x∗ and 0 < x2 ≤ x∗, is a non-negative penalty
function of x1, the accumulated capital prior to the time of extreme poverty, and
x2, the capital deficit at the time of extreme poverty. Note that, for the case of
the expected discounted penalty function at extreme poverty, it is reasonable to
consider the accumulated capital immediately before extreme poverty instead of the
capital surplus, which was considered in (5.3.1) for the expected discounted penalty
function at the trapping time.

We point out that m EP

δ (x) has different sample paths for x ≥ B, x∗ ≤ x < B and
0 < x < x∗. Hence, we distinguish the three situations by writing m EP

δ (x) = m EP

δ,u(x)
for x ≥ B, m EP

δ (x) = m EP

δ,m(x) for x∗ ≤ x < B and m EP

δ (x) = m EP

δ,l(x) for 0 < x < x∗.
Similarly, we write ψ EP

u (x) = P(τ EP

x < ∞) for x ≥ B, ψ EP

m(x) = P(τ EP

x < ∞) for
x∗ ≤ x < B and ψ EP

l (x) = P(τ EP

x <∞) for 0 < x < x∗.

Proceeding as in Section 5.3, one derives the following IEs for the expected dis-
counted penalty function at extreme poverty in the following theorem

Theorem 5.4.1. When x ≥ B, we have

m EP

δ,u(x) =
λ

r
(x− x∗)λ+δr

∫ ∞

x

1

(vu − x∗)
λ+δ
r

+1

[∫ x∗/vu

0

m EP

δ,l(vu · z)dGZ(z)

+

∫ B/vu

x∗/vu

m EP

δ,m(vu · z)dGZ(z) +

∫ 1

B/vu

m EP

δ,u(vu · z)dGZ(z)

]
dvu, (5.4.1)

when x∗ ≤ x < B, we have

m EP

δ,m(x) =
λ

r − cT
(x+ x∗∗)

λ+δ
r−cT

∫ B

x

1

(vm + x∗∗)
λ+δ
r−cT

+1

[∫ x∗/vm

0

m EP

δ,l(vm · z)dGZ(z)

+

∫ 1

x∗/vm

m EP

δ,m(vm · z)dGZ(z)

]
dvm
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+
λ

r
(B − x∗)λ+δr

(
x+ x∗∗

B + x∗∗

) λ+δ
r−cT

∫ ∞

B

1

(vu − x∗)
λ+δ
r

+1

[∫ x∗/vu

0

m EP

δ,l(vu · z)dGZ(z)

+

∫ B/vu

x∗/vu

m EP

δ,m(vu · z)dGZ(z) +

∫ 1

B/vu

m EP

δ,u(vu · z)dGZ(z)

]
dvu, (5.4.2)

and when 0 < x < x∗, we have

m EP

δ,l(x) = − 1

cT (x−B)
λ+δ
cT

∫ x∗

x

1

(vl −B)1−λ+δ
cT

e
1
cT

∫ vl
x

ω(ul)

ul−B
dulω(vl)w

EP(vl, x
∗ − vl)dvl

− λ

cT (x−B)
λ+δ
cT

∫ x∗

x

1

(vl −B)1−λ+δ
cT

e
1
cT

∫ vl
x

ω(ul)

ul−B
dul

∫ 1

0

m EP

δ,l(vl · z)dGz(z)dvl

+
λ

r − cT

(
x∗ −B
x−B

)λ+δ
cT

(x∗ + x∗∗)
λ+δ
r−cT

∫ B

x∗

1

(vm + x∗∗)
λ+δ
r−cT

+1
e

1
cT

∫ x∗
x

ω(ul)

ul−B
dul

[∫ x∗/vm

0

m EP

δ,l(vm · z)dGZ(z) +

∫ 1

x∗/vm

m EP

δ,m(vm · z)dGZ(z)

]
dvm

+
λ

r

(
x∗ −B
x−B

)λ+δ
cT
(
x∗ + x∗∗

B + x∗∗

) λ+δ
r−cT

(B − x∗)λ+δr
∫ ∞

B

1

(vu − x∗)
λ+δ
r

+1
e

1
cT

∫ x∗
x

ω(ul)

ul−B
dul

[∫ x∗/vu

0

m EP

δ,l(vu · z)dGZ(z)

+

∫ B/vu

x∗/vu

m EP

δ,m(vu · z)dGZ(z) +

∫ 1

B/vu

m EP

δ,u(vu · z)dGZ(z)

]
dvu. (5.4.3)

See Appendix 5.A.3 for proof of Theorem 5.4.1.
Remark 5.4.1. We point out that the IEs (5.4.1), (5.4.2) and (5.4.3) allow us to
consider the differentiability of the functions m EP

δ,u(x), m EP

δ,m(x) and m EP

δ,l(x). For
instance, it is easy to see from (5.4.1), (5.4.2) and (5.4.3) that m EP

δ,u(x), m EP

δ,m(x) and
m EP

δ,l(x) are differentiable in (B,∞), (x∗, B) and (0, x∗), respectively. Furthermore,
they satisfy the following condition

m EP

δ,u(B) = m EP

δ,m(B−) (5.4.4)

and

m EP

δ,m(x∗) = m EP

δ,l(x
∗−). (5.4.5)

As for Theorem 5.3.1, the existence and uniqueness of the required solution to the IEs
derived in Theorem 5.4.1 should be justified in each case. Now, by differentiating
the IEs (5.4.1), (5.4.2) and (5.4.3), we obtain the IDEs for m EP

δ,u(x), m EP

δ,m(x) and
m EP

δ,l(x) in the following theorem

Theorem 5.4.2. When x ≥ B, we have

r(x− x∗)m′ EP

δ,u(x)− (λ+ δ)m EP

δ,u(x) + λ

[∫ x∗/x

0

m EP

δ,l(x · z)dGZ(z)
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+

∫ B/x

x∗/x

m EP

δ,m(x · z)dGZ(z) +

∫ 1

B/x

m EP

δ,u(x · z)dGZ(z)

]
= 0, (5.4.6)

when x∗ ≤ x < B, we have

(r − cT) (x+ x∗∗)m′ EP

δ,m(x)− (λ+ δ)m EP

δ,m(x) + λ

[∫ x∗/x

0

m EP

δ,l(x · z)dGZ(z)

+

∫ 1

x∗/x

m EP

δ,m(x · z)dGZ(z)

]
= 0, (5.4.7)

and when 0 < x < x∗, we have

cT(x−B)m′ EP

δ,l(x) + [λ+ δ + ω(x)]m EP

δ,l(x)

− ω(x)w EP(x, x∗ − x)− λ
∫ 1

0

m EP

δ,l(x · z)dGZ(z) = 0. (5.4.8)

In addition, the boundary conditions for m EP

δ,u(x), m EP

δ,m(x) and m EP

δ,l(x) are given by
(5.4.4), (5.4.5) and lim

x→∞
m EP

δ,u(x) = 0.

Remark 5.4.2. Equation (5.4.8) for m EP

δ,l(x) is independent of m EP

δ,u(x) and m EP

δ,m(x).
However, m EP

δ,l(x) is subject to the boundary condition (5.4.5) which is involved with
m EP

δ,m(x). At the same time, m EP

δ,m(x) is subject to the boundary condition (5.4.4)
which is involved with m EP

δ,u(x). Furthermore, it is easy to see from (5.4.6), (5.4.7)
and (5.4.8) that m EP

δ,u(x), m EP

δ,m(x) and m EP

δ,l(x) satisfy

m′ EP

δ,u(B) = m′ EP

δ,m(B−) (5.4.9)

and

m′ EP

δ,m(x∗) = m′ EP

δ,l(x
∗−). (5.4.10)

5.4.1 The Time of Extreme Poverty

Focusing again in studying the Laplace transform of the random variable of interest
(the time of extreme poverty) we note that by specifying the penalty function such
that w EP(x1, x2) = 1, m EP

δ (x) becomes the Laplace transform of the time of extreme
poverty, also interpreted as the expected present value of a unit payment due at
the time of extreme poverty. Thus, Equation (5.4.8) can then be written such that
when 0 < x < x∗,

0 = cT(x−B)m′ EP

δ,l(x) + [λ+ δ + ω(x)]m EP

δ,l(x)− ω(x)− λ
∫ 1

0

m EP

δ,l(x · z)dGZ(z).

(5.4.11)

Examples of Extreme Poverty Rate Functions

Constant Extreme Poverty Rate Functions. Let ω1 (x) ≡ ωc · 1{x<x∗} with
ωc > 0. This is the simplest case of extreme poverty rate function and it could be
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interpreted as the situation in which the events of extreme poverty occur at discrete
times. For instance, let ξ1, ξ2, ... be i.i.d. exponential random variables with mean 1

ωc
and Ξk = ξ1 + ξ2 + ...+ ξk denote the kth event of extreme poverty (e.g. unexpected
loss of assets or health), with k = 1, 2, .... In this context, extreme poverty occurs
when at such an event of extreme poverty the capital level is below x∗ (Albrecher
et al., 2013).

Proposition 5.4.1. Consider a household capital process with initial capital x ≥ x∗,
capital growth rate r, capital barrier level B, capital transfer rate cT , intensity λ > 0
and remaining proportions of capital with distribution Beta(α, 1) where α > 0; that
is, Zi ∼ Beta(α, 1). For a constant extreme poverty rate function ω1 (x) ≡ ωc ·
1{x<x∗}, with ωc > 0, the Laplace transform of the time of extreme poverty is given
by

m EP

δ (x) =





A EP

2,uy
EP

u (x)
−b EP

u
2F1

(
b EP

u , b
EP

u − c EP

u + 1; b EP

u − a EP

u + 1; y EP

u (x)
−1
)

for x ≥ B,

A EP

1,my
EP

m(x)
−a EP

m
2F1

(
a EP

m, a
EP

m − c EP

m + 1; a EP

m − b EP

m + 1; y EP

m(x)
−1
)

+A EP

2,my
EP

m(x)
−b EP

m
2F1

(
b EP

m, b
EP

m − c EP

m + 1; b EP

m − a EP

m + 1; y EP

m(x)
−1
)

for x∗ ≤ x < B,

ωc
δ + ωc

+A EP

1,l2F1 (a EP

l , b
EP

l ; c EP

l ; y EP

l (x)) for 0 < x < x∗,

where δ ≥ 0 is the force of interest for valuation, 2F1 (·) is Gauss’s Hypergeometric

Function as defined in (5.A.8), y EP

u (x) = x
x∗
, a EP

u =
−(δ+λ−αr)−

√
(δ+λ−αr)2+4rαδ

2r
, b EP

u =
−(δ+λ−αr)+

√
(δ+λ−αr)2+4rαδ

2r
, y EP

m(x) = − x
x∗∗

, with x∗∗ = cTB−rx∗
r−cT , c EP

u = c EP

m = c EP

l = α,
a EP
m=

−(δ+λ−α(r−cT ))−
√

(δ+λ−α(r−cT ))2+4(r−cT )αδ
2(r−cT )

, b EP
m=

−(δ+λ−α(r−cT ))+
√

(δ+λ−α(r−cT ))2+4(r−cT )αδ
2(r−cT )

, y EP

l (x) =
x
B
, a EP

l =
αcT+λ+δ+ωc−

√
(αcT+λ+δ+ωc)2−4αcT (δ+ωc)

2cT
, b EP

l =
αcT+λ+δ+ωc+

√
(αcT+λ+δ+ωc)2−4αcT (δ+ωc)

2cT
and the

constants A EP

2,u, A EP

1,m, A EP

2,m and A EP

1,l are obtained as explained in Appendix 5.A.4.

See Appendix 5.A.4 for proof of Proposition 5.4.1.

Remark 5.4.3. As for the trapping time, the Laplace transform of the time of extreme
poverty approaches the probability of extreme poverty as δ tends to zero, i.e.

lim
δ↓0

m EP

δ (x) = P(τ EP

x <∞) ≡ ψ EP(x),

for λ
r
< α.

Figure 5.3 shows the probability of extreme poverty ψ EP(x) for the capital process
Xt for a constant extreme poverty rate function. As shown in Figure 5.2 for the case
of the trapping probability, Figure 5.3a and 5.3b reveal the probability of extreme
poverty is also a decreasing function of the cash transfer rate cT , the capital barrier
level B and the initial capital. In addition, in line with the definition of the extreme
poverty rate function, Figure 5.4 demonstrates the probability of extreme poverty
is an increasing function of the extreme poverty rate function. Furthermore, Figure
5.4 also plots the trapping probability obtained in Section 5.3 for reference, which
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is given by the particular case when ωc ≡ ∞ and therefore represents an upper
bound for the probability of extreme poverty. Appendix 5.C provides a sensitivity
analysis for the probability of extreme poverty with a constant extreme poverty rate
function.
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Figure 5.3: (a) Probability of extreme poverty ψ EP(x) when Zi ∼ Beta(0.8, 1), a =
0.1, b = 4, cS = 0.4, B = 2, λ = 1, x∗ = 1 and ω1(x) = 0.02 for cT = 0.25, 0.5, 0.75, 1
(b) Probability of extreme poverty ψ EP(x) when Zi ∼ Beta(0.8, 1), a = 0.1, b = 4,
cS = 0.4, cT = 0.25, λ = 1, x∗ = 1 and ω1(x) = 0.02 for B → x∗+ and B = 2, 3, 4.
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b = 4, cS = 0.4, cT = 0.25, B = 2, λ = 1, x∗ = 1 and ω1(x) = ωc for ωc =
0.02, 0.05, 0.09.
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Exponential Extreme Poverty Rate Functions. Let now ω2 (x) = β
x
·1{x<x∗},

for some β > 0. In this case, the extreme poverty rates take fairly flat values for
lower deficit levels and reach higher values when the capital level gets close to zero.
Such a function could be considered as the analogous version of the exponential
bankruptcy rate function studied in Albrecher and Lautscham (2013).

Remark 5.4.4. In general, it is not straightforward to obtain the solution of (5.A.18)
for more general extreme poverty rates ω(x), as functions of ω(x) appear both in the
coefficients of the homogeneous equation and in the inhomogeneous term. Thus, for
the particular case of exponential extreme poverty rate functions ω2 (x) = β

x
·1{x<x∗},

we will only discuss the probability of extreme poverty.

Proposition 5.4.2. Consider a household capital process with initial capital x ≥ x∗,
capital growth rate r, capital barrier level B, capital transfer rate cT , intensity λ > 0
and remaining proportions of capital with distribution Beta(α, 1) where α > 0; that
is, Zi ∼ Beta(α, 1). For an exponential extreme poverty rate function ω2 (x) =
β
x
· 1{x<x∗}, with β > 0, the probability of extreme poverty is given by

ψ EP (x) =





A EP

2,u

( x
x∗

)λ
r−α

2F1

(
α− λ

r
, 1− λ

r
; 1 + α− λ

r
;
x∗

x

)
for x ≥ B,

A EP

1,my
EP

m(x)
−a EP

m
2F1

(
a EP

m, a
EP

m − c EP

m + 1; a EP

m − b EP

m + 1; y EP

m(x)
−1
)

+A EP

2,my
EP

m(x)
−b EP

m
2F1

(
b EP

m, b
EP

m − c EP

m + 1; b EP

m − a EP

m + 1; y EP

m(x)
−1
)

for x∗ ≤ x < B,

1 +A EP

2,ly
EP

l (x)
2−α−c EP

l
2F1 (a EP

l − c EP

l + 1, b EP

l − c EP

l + 1; 2− c EP

l ; y EP

l (x)) for 0 < x < x∗,

where 2F1 (·) is Gauss’s Hypergeometric Function as defined in (5.A.8), y EP

m(x) =
− x
x∗∗

, with x∗∗ = cTB−rx∗
r−cT , a EP

m=
−(λ−α(r−cT ))−

√
(λ−α(r−cT ))2

2(r−cT )
, b EP

m=
−(λ−α(r−cT ))+

√
(λ−α(r−cT ))2

2(r−cT )
, c EP

m =

α, y EP

l (x) = x
B
, a EP

l = 1 − α, b EP

l = cT+λ
cT

and c EP

l = −BcT (α−2)+β
BcT

for α > λ
r
and the

constants A EP

2,u, A EP

1,m, A EP

2,m and A EP

2,l are obtained as explained in Appendix 5.A.5.

The mathematical proof of Proposition 5.4.2 is given in Appendix 5.A.5.

Figures 5.5 and 5.6 display the probability of extreme poverty when dealing with
an exponential extreme poverty rate function. Evidently, under this setup, the
probability of extreme poverty attains higher values compared to that under which
a constant extreme poverty rate is considered. This can be verified by comparing
Figures 5.3a and 5.5a, for several cash transfer rates cT , Figures 5.3b and 5.5b, for
different capital barrier levels B, and Figures 5.4 and 5.6, for different values of the
extreme poverty rate, respectively. This result is not particularly surprising because
of the fact that the exponential extreme poverty rate takes higher values for higher
capital deficits while the constant extreme poverty rate remains flat for all capital
levels. Appendix 5.C also presents a sensitivity analysis of the probability of extreme
poverty for an exponential extreme poverty rate function.

As mentioned previously, Appendix 5.C shows how sensitive the probability of ex-
treme poverty is with respect to all the underlying parameters (for both constant
and exponential extreme poverty rate functions). In particular, the sensitivity with
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respect to the cash transfer rate cT and the capital barrier level B is worth noting.
These results accentuate the importance of selecting an appropriate cash transfer
rate cT (i.e. an adequate frequency or intensity of the capital cash transfers) and
a suitable capital barrier level B (i.e. an opportune targeting), when designing the
social protection strategy for achieving extreme poverty reduction.
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Figure 5.5: (a) Probability of extreme poverty ψ EP(x) when Zi ∼ Beta(0.8, 1), a =
0.1, b = 4, cS = 0.4, B = 2, λ = 1, x∗ = 1 and ω2(x) = 0.02

x
for cT = 0.25, 0.5, 0.75, 1

(b) Probability of extreme poverty ψ EP(x) when Zi ∼ Beta(0.8, 1), a = 0.1, b = 4,
cS = 0.4, cT = 0.25, λ = 1, x∗ = 1 and ω2(x) = 0.02

x
for B → x∗+ and B = 2, 3, 4.

0.
0

0.
2

0.
4

0.
6

0
.8

1
.0

Initial Capital

ψ
E
P
(x
)

0 x∗ = 1 B = 2 3 4 5

Trapping Probability (ωc ≡ ∞)
β = 0.02
β = 0.05
β = 0.09

Figure 5.6: Probability of extreme poverty ψ EP(x) when Zi ∼ Beta(0.8, 1), a = 0.1,
b = 4, cS = 0.4, cT = 0.25, B = 2, λ = 1, x∗ = 1 and ω2(x) = β

x
for β =

0.02, 0.05, 0.09.
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Figures 5.7a and 5.7b provide an example of the cash transfer rate cT and the capital
barrier level B required to attain a given target trapping probability and probability
of extreme poverty (for a constant extreme poverty rate function), respectively.
Clearly, policy makers must decide between reducing the intensity of the capital cash
transfers (lowering the capital cash transfer rate cT) to a wider group of households
(increasing the capital barrier level B) or increasing the intensity of the capital cash
transfers (rising the capital cash transfer rate cT) to a narrower group of households
(lowering the capital barrier level B) in order to achieve the target probabilities,
showing an evident trade-off between these two parameters.
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Figure 5.7: (a) Cash transfer rate cT and capital barrier level B required to attain a
given target trapping probability of ψ P(x) = 0.01 when Zi ∼ Beta(1.25, 1), a = 0.1,
b = 4, cS = 0.4, λ = 1 and x∗ = 1 for initial capital x = 1.5, 2, 3, 4 (b) Cash transfer
rate cT and capital barrier level B required to attain a given target probability of
extreme poverty of ψ EP(x) = 0.01 when Zi ∼ Beta(1.25, 1), a = 0.1, b = 4, cS = 0.4,
λ = 1, x∗ = 1 and ωc = 0.09 for initial capital x = 1.5, 2, 3, 4.

5.5 Monte Carlo Simulation

In general, it is not straightforward to derive explicit formulas for both the trapping
probability and the probability of extreme poverty when more general cases are
considered. Monte Carlo simulation is an alternative way to produce estimates for
both quantities and is particularly useful when dealing with cases for which closed-
form formulas are not available. In this section, following Albrecher and Lautscham
(2013), we introduce a simple and efficient methodology that allows to generate
fairly accurate approximations for the probability of extreme poverty.
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5.5.1 Methodology

Following Albrecher and Lautscham (2013), we note that for any capital level x ∈
(0,∞) it holds that

ψ EP(x) = 1− E
[
e−

∫∞
0 ω(Xt)1{Xt<x∗}dt | X0 = x

]
,

as extreme poverty can only be avoided if there is no event of the Poisson process with
level-dependent intensity ω (·) during the time the capital process spends below the
critical capital x∗. The above expectation can then be computed by conditioning on
the simulated sample path. Concretely, conditioning on the remaining proportions
Θi, with

Ψ EP(ω, x) | (T1,Θ1) , (T2,Θ2) . . . =

∫ ∞

0

ω (Xt) · 1{Xt<x∗}dt

= −
∞∑

i=0

1{XTi<x∗}
∫ min(Ti+1,Ti+τx∗(XTi))

Ti

ω (Xs) ds

(5.5.1)

with T0 = 0, we can write

ψ EP(ω, x) = E(T1,Θ1),(T2,Θ2)...

[
1− eΨ EP(ω,x)|(T1,Θ1),(T2,Θ2)...

]
.

In particular, for the two choices ω1(x) = ωc, ωc > 0, and ω2(x) = β
x
, β > 0, (5.5.1)

reads

Ψ EP(ω1, x) | (T1,Θ1) , (T2,Θ2) . . . = −
∞∑

i=0

1{XTi<x∗}
∫ min(Ti+1,Ti+τx∗(XTi))

Ti

ωc ds

= −ωc
∞∑

i=0

1{XTi<x∗} [min (Ti+1 − Ti, τx∗ (XTi))]

(5.5.2)

and

Ψ EP(ω2, x) | (T1,Θ1) , (T2,Θ2) . . . = −
∞∑
i=0

1{
XTi<x

∗
} ∫ min

(
Ti+1,Ti+τx∗

(
XTi

))
Ti

β(
XTi −B

)
ecT (Ti−s) +B

ds

= −
β

cTB

∞∑
i=0

1{
XTi<x

∗
}[cT min

(
Ti+1 − Ti, τx∗

(
XTi

))
+ ln

(
B +

(
XTi −B

)
e
cT

[
Ti−min

(
Ti+1,Ti+τx∗

(
XTi

))])
− ln

(
XTi

)]
,

(5.5.3)

respectively. Figure 5.8 depicts a particular path, and the shaded area refers to
Ψ EP(ω, x) | (T1,Θ1) , (T2,Θ2) . . . as in (5.5.1).
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Figure 5.8: Computation of Ψ EP (ω, x) conditional on a realised sample path.
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Figure 5.9: (a) Probability of extreme poverty ψ̂ EP(x)n when n = 10, 000, Zi ∼
Beta(0.8, 1), a = 0.1, b = 4, cS = 0.4, B = 2, λ = 1, x∗ = 1 and ω1(x) = 0.02 for
cT = 0.25, 0.5, 0.75, 1 (b) Probability of extreme poverty ψ EP(x)n when n = 10, 000,
Zi ∼ Beta(0.8, 1), a = 0.1, b = 4, cS = 0.4, cT = 0.25, λ = 1, x∗ = 1 and ω1(x) = 0.02
for B → x∗+ and B = 2, 3, 4.
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Figure 5.10: Probability of extreme poverty ψ̂ EP(x)n when n = 10, 000, Zi ∼
Beta(0.8, 1), a = 0.1, b = 4, cS = 0.4, cT = 0.25, B = 2, λ = 1, x∗ = 1 and
ω1(x) = ωc for ωc = 0.02, 0.05, 0.09.
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Figure 5.11: (a) Probability of extreme poverty ψ̂ EP(x)n when n = 10, 000, Zi ∼
Beta(0.8, 1), a = 0.1, b = 4, cS = 0.4, B = 2, λ = 1, x∗ = 1 and ω2(x) = 0.02

x
for cT =

0.25, 0.5, 0.75, 1 (b) Probability of extreme poverty ψ EP(x) when Zi ∼ Beta(0.8, 1),
a = 0.1, b = 4, cS = 0.4, cT = 0.25, λ = 1, x∗ = 1 and ω2(x) = 0.02

x
for B → x∗+ and

B = 2, 3, 4.

In the following simulations, n capital process paths are generated and for the kth
such path, the function Ψ EP(ω, x)k | (T1,Θ1) , (T2,Θ2) . . . is computed as per (5.5.2)
and (5.5.3). The estimator of the probability of extreme poverty is given by
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ψ̂ EP(x)n =
1

n

n∑

k=1

(
1− eΨ EP(ω,x)k

)
,

and the two sided 99% confidence interval of the estimator can be written as
(

max

[
ψ̂ EP(x)n −

2.81√
n
σn, 0

]
,min

[
ψ̂ EP(x)n +

2.81√
n
σn, 1

])
,

with σn =

√
1

n−1

∑n
k=1

(
1− eΨ EP(ω,x)k − ψ̂ EP(x)n

)2

, such that the bounds of the con-

fidence interval converge to ψ̂ EP(x)n for n→∞.
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Figure 5.12: Probability of extreme poverty ψ̂ EP(x)n when n = 10, 000, Zi ∼
Beta(0.8, 1), a = 0.1, b = 4, cS = 0.4, cT = 0.25, B = 2, λ = 1, x∗ = 1 and
ω2(x) = β

x
for β = 0.02, 0.05, 0.09.

Figures 5.9, 5.10, 5.11 and 5.12 provide an example of the Monte Carlo methodology
discussed in this section. A comparison of Figure 5.3 with Figure 5.9, Figure 5.4 with
Figure 5.10, Figure 5.5 with Figure 5.11 and Figure 5.6 with Figure 5.12, respectively,
provides insight into the ability of this method to produce approximations of the
probability of extreme poverty when considering more general cases. Although,
in general, Monte Carlo simulations produce fairly accurate approximations, it is
especially important to note that, for some cases of selected parameters, Monte
Carlo simulations may lead to less accurate approximations. Comparing Figures
5.3a and 5.9a, and Figures 5.3b and 5.9b, for higher capital cash transfer rates cT
and higher capital barrier levels B, respectively, leads to a clear evidence of this
imprecision. In this particular case, the differences between the closed-form formula
and the Monte Carlo approximates are mainly due to the fact that for high capital
cash transfer rates cT and capital barrier levels B, the capital trajectory will grow
rapidly up to the capital barrier level B, even in those cases where capital levels
close to zero are reached, whereas for the closed-form formula, this would almost
certainly be considered as an event of extreme poverty. Nevertheless, it is also worth
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noting that even though there are the aforementioned discrepancies, Monte Carlo
estimates are able to capture the main trend in the probability of extreme poverty.

As mentioned previously, the proposed methodology could be of great advantage
when dealing with dynamics for which closed-form formulas are not available. For
instance, one could produce approximates of the probability of extreme poverty for
situations under which the remaining proportions of capital after experiencing a loss
are non Beta(α, 1)−distributed; i.e. when the random variables Zi follow another
distribution with support in (0, 1].

5.6 Conclusion

Using standard techniques from actuarial science and, in particular, from ruin the-
ory, this study analyses the efficiency of regular unconditional cash transfer (UCT)
programmes in achieving one of the global public’s priorities: ending poverty in all
its forms everywhere. Introducing an alternative version of the household’s capital
model originally proposed in Kovacevic and Pflug (2011), where we consider a par-
ticular group of households are entitled to benefit from capital cash transfers and,
adopting ideas from the Omega risk process, first introduced in Albrecher et al.
(2011), this chapter focuses on studying two main random variables: the trapping
time and the time of extreme poverty. While the trapping time has been previ-
ously studied for more common risk processes (see, for example, Flores-Contró et al.
(2021) and Flores-Contró (2024)), to the best of our knowledge, this is the first
work that considers the trapping time and the time of extreme poverty under the
dynamics of a household’s capital process that incorporates capital cash transfers.
Furthermore, for the particular case of the time of extreme poverty, this work also
introduces the concept of the extreme poverty rate function for the first time. This
chapter analyses the behavior of two main risk measures associated to these random
times: the trapping probability and the probability of extreme poverty.

From a ruin-theoretic perspective, our main contribution is obtaining closed-form
solutions for both risk measures, which is considered to be the ideal situation when
working with ruin probabilities (Asmussen and Albrecher, 2010). We derive explicit
formulas for both the trapping probability and the probability of extreme poverty
assuming the proportion of the remaining capital of a household after experiencing
a loss is Beta(α, 1)−distributed. Moreover, for the particular case of the probability
of extreme poverty, we also consider two examples of extreme poverty rate functions
for which closed-from solutions for the probability of extreme poverty are available:
constant and exponential extreme poverty rate functions. Nevertheless, explicit
formulas are generally not straightforward to obtain for more general cases. Hence,
following Albrecher and Lautscham (2013), in Section 5.5 we also illustrate how to
produce approximations of the probability of extreme poverty via an efficient Monte
Carlo simulation method.

Numerical examples presented in Sections 5.3 and 5.4 indicate that regular UCT pro-
grammes are an efficient social protection strategy to keep households out of poverty
and extreme poverty, as their trapping probability and the probability of extreme
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poverty, respectively, decrease when they are part of such strategy. In particular,
the role played by both the capital cash transfer rate cT and the capital barrier
level B for attaining lower probabilities is outlined. Our findings can provide policy
makers with a mathematically sound starting point for designing UCT programmes.
That is, our model, for instance, could provide insights during the planning phase
of an UCT programme to policy makers about the impact on the probability of (ex-
treme) household impoverishment when targeting a particular group of households
(depending on the selection of the capital barrier level B). Moreover, the sensitiv-
ity of the probability of (extreme) household impoverishment to the frequency or
intensity of the capital cash transfers (depending on the choice of the capital cash
transfer rate cT) can also be assessed with our results. Furthermore, it is important
to note that our analyses show that the probability of extreme poverty appears to
be more sensitive to changes in these parameters, compared to the trapping proba-
bility, therefore suggesting that policy makers should specially watch out on these
parameters when designing social protection strategies aimed at reducing extreme
poverty.

From the point of view of development economics, previous empirical studies are
in line with our findings. Furthermore, our work presents an alternative approach
to analyse cash transfer programmes and may represent a point of departure for
applying knowledge of another discipline, such as actuarial science, in development
economics.

It is important to highlight some of the limitations of our study. For example, due
to the construction of the model, our analysis does not capture the direct effect
of an UCT programme on a household’s consumption. Recently, Habimana et al.
(2021) show how Rwanda’s UCT programme (VUP-Direct Support) increases a
household’s total and food consumption. In the same way, in its current form, the
capital model is unable to incorporate the rationale behind conditional cash transfer
(CCT) programmes, as it does not track any beneficiary actions such as: enrollment
and attendance of children and adolescents in school, use of health services and
uptake of food and nutritional supplements (Cruz et al., 2017). Alternative versions
of the proposed model should address these issues.

Finally, future research should also consider the cost of an UCT programme. This
cost could be estimated, for instance, by computing the total expected discounted
value of capital cash transfers made to a household. This concept would be analogous
to other well-known quantities previously studied in ruin theory, such as the expected
discounted capital injections (Albrecher and Ivanovs, 2014). These quantities could,
for example, be useful for estimating the required capital cash transfer rate cT and
capital barrier level B such that, for a given social protection budget, the trapping
probability or probability of extreme poverty is minimised.
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5.A Appendix A: Mathematical Proofs

5.A.1 Proof of Theorem 5.3.1

For x ≥ B, the capital immediately before the first capital loss is hr(t, x) = (x −
x∗)ert + x∗. Hence, by conditioning on the time and the remaining proportion of
the first capital loss and discounting the expected values to time 0 at the force of
interest δ, when x ≥ B we obtain

m P

δ,u(x) =

∫ ∞

0

λe−(λ+δ)t

[∫ 1

B/hr(t,x)

m P

δ,u(hr(t, x) · z)dGZ(z)

+

∫ B/hr(t,x)

x∗/hr(t,x)

m P

δ,l(hr(t, x) · z)dGZ(z)

+

∫ x∗/hr(t,x)

0

w P(hr(t, x)− x∗, x∗ − hr(t, x) · z)dGZ(z)

]
dt.

(5.A.1)

The above equation for m P

δ,u(x) involves m P

δ,l(x) for x∗ ≤ x < B. When the initial
capital is below the capital barrier level B, the capital growth is driven by both the
capital growth rate r and the capital transfer rate cT before the capital returns to
the capital barrier level B. Thus, for x∗ ≤ x < B, let τB := τB(x) be the solution to

hr−cT (t, x) = (x+ x∗∗)e(r−cT )t − x∗∗ = B,

with x∗∗ = (cTB − rx∗) / (r − cT). Namely, τB := τB(x) = ln [(B + x∗∗) / (x+ x∗∗)] /
(r − cT), which is the time when the capital returns to the capital barrier level B
if no capital loss occurs prior to time τB. Furthermore, hr−cT (t, x) < B for t < τB
and hr−cT (τB, x) = B. Moreover, hr−cT (t, x) is the capital at time t ≤ τB if no capital
loss occurs prior to time τB. Thus, by conditioning on the time and the remaining
proportion of the first capital loss and discounting the expected values to time 0 at
the force of interest δ, when x∗ ≤ x < B we obtain

m P

δ,l(x) =

∫ τB

0

λe−(λ+δ)t

[∫ 1

x∗/hr−cT (t,x)

m P

δ,l(hr−cT (t, x) · z)dGZ(z)

+

∫ x∗/hr−cT (t,x)

0

w P (hr−cT (t, x)− x∗, x∗ − hr−cT (t, x) · z) dGZ(z)

]
dt

+

∫ ∞

τB

λe−(λ+δ)t

[∫ 1

B/hr(t−τB,B)

m P

δ,u(hr(t− τB, B) · z)dGZ(z)

+

∫ B/hr(t−τB,B)

x∗/hr(t−τB,B)

m P

δ,l(hr(t− τB, B) · z)dGZ(z)

+

∫ x∗/hr(t−τB,B)

0

w P(hr(t− τB, B)− x∗, x∗ − hr(t− τB, B) · z)dGZ(z)

]
dt.

(5.A.2)
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Now, changing variables u = hr(t, x) in (5.A.1), we obtain (5.3.2). Moreover, first
changing variables u = hr−cT (t, x) in the integrals with respect to t from 0 to τB in
(5.A.2), and then changing variables v = hr(t− τB, B) in the integrals with respect
to t from τB to ∞ in (5.A.2), we obtain (5.3.3).

5.A.2 Proof of Proposition 5.3.1

When Zi ∼ Beta(α, 1), i.e. gZ(z) = αzα−1
1{0<z<1} with α > 0, Equations (5.3.8)

and (5.3.9) can be written such that when x ≥ B,

0 = r(x− x∗)m′ P

δ,u(x)− (λ+ δ)m P

δ,u(x) + λ

[∫ 1

B/x

m P

δ,u(x · z)αzα−1dz

+

∫ B/x

x∗/x

m P

δ,l(x · z)αzα−1dz +

(
x∗

x

)α]
, (5.A.3)

and when x∗ ≤ x < B,

0 = (r − cT)(x+ x∗∗)m′ P

δ,l(x)− (λ+ δ)m P

δ,l(x)

+ λ

[∫ 1

x∗/x

m P

δ,l(x · z)αzα−1dz +

(
x∗

x

)α]
. (5.A.4)

Applying the operator d
dx

to both sides of (5.A.3) and (5.A.4), together with a
number of algebraic manipulations, yields to the following second order Ordinary
Differential Equations (ODEs),

x ≥ B : 0 = r(x2 − xx∗)m′′ P

δ,u(x) + [(r(1 + α)− δ − λ)x− rαx∗]m′ P

δ,u(x)− αδm P

δ,u(x)

(5.A.5)

and

x∗ ≤ x < B : 0 = (r − cT)(x2 + xx∗∗)m′′ P

δ,l(x)

+ [((r − cT) (1 + α)− δ − λ)x+ α (r − cT)x∗∗]m′ P

δ,l(x)− αδm P

δ,l(x).

(5.A.6)

Letting f P

i (y P

i ) := m P

δ,i(x) for i = u, l, such that y P

u and y P

l are associated with the
change of variables y P

u := y P

u(x) = x/x∗ and y P

l := y P

l (x) = −x/x∗∗, respectively,
Equations (5.A.5) and (5.A.6) reduce to Gauss’s Hypergeometric Differential Equa-
tion (Slater, 1960)

0 = y P

i (1− y P

i ) · f ′′ P

i (y P

i ) + [c P

i − (1 + a P

i + b P

i )y
P

i ]f
′ P

i (y P

i )− a P

i b
P

i f
P

i (y P

i ),

(5.A.7)

for a P
l =
−(δ+λ−α(r−cT ))−

√
(δ+λ−α(r−cT ))2+4(r−cT )αδ
2(r−cT )

, b P
l =
−(δ+λ−α(r−cT ))+

√
(δ+λ−α(r−cT ))2+4(r−cT )αδ
2(r−cT )

, a P

u =
−(δ+λ−αr)−

√
(δ+λ−αr)2+4rαδ

2r
, b P

u =
−(δ+λ−αr)+

√
(δ+λ−αr)2+4rαδ

2r
and c P

u = c P

l = α with
regular singular points at y P

i = 0, 1,∞ (corresponding to x = −∞,−x∗∗, 0, x∗ and
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∞). A general solution of (5.A.7) in the neighborhood of the singular point y P

i =∞
is given by

f P

i (y P

i ) := m P

δ,i(x) = A P

1,iy
P

i (x)−a
P
i

2F1

(
a P

i , a
P

i − c P

i + 1; a P

i − b P

i + 1; y P

i (x)−1)

+ A P

2,iy
P

i (x)−b
P
i

2F1

(
b P

i , b
P

i − c P

i + 1; b P

i − a P

i + 1; y P

i (x)−1) ,

for arbitrary constants A P

1,i, A
P

2,i ∈ R (see for example, Equations (15.5.7) and
(15.5.8) of Abramowitz and Stegun (1972)). Here,

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
(5.A.8)

is Gauss’s Hypergeometric Function (Gauss, 1866) and (a)n = Γ(a+n)/Γ(n) denotes
the Pochhammer symbol (Seaborn, 1991).

To determine the constants A P

1,i and A P

2,i we use the boundary conditions at x∗ and
at ∞. In addition, we use (5.3.4), (5.3.7) and the differential properties of Gauss’s
Hypergeometric Function

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z).

The boundary condition limx→∞m
P

δ,u(x) = 0, by definition of m P

δ(x) in (5.3.1), thus
implies that A P

1,u = 0. Moreover, letting x = x∗ in (5.3.9) yields

m P

δ,l(x
∗) =

1

λ+ δ

[
cT (B − x∗)m′ P

δ,l(x
∗) + λ

]
.

Hence, this yields to

A P

2,u =
[
λy P

u (B)
b P

u x∗y P

l (B)
−(a P

l +b
P

l ) y P

l (x∗)a
P

l

(
a P

l 2F̃1

(
a P

l + 1, a P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
)

2F̃1

(
b P

l , b
P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (B)−1
)
− b P

l 2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
)

2F̃1

(
b P

l + 1, b P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (B)−1
))]

/
[
Γ (1− a P

u + b P

u)
(
y P

l (B)
−b P

l

(
(δ + λ)x∗2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x∗)−1
)

+cTa
P

l (B − x∗) 2F̃1

(
a P

l + 1, a P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x∗)−1
))

(
b P

u2F̃1

(
b P

u + 1, b P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)
2F̃1

(
b P

l , b
P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (B)−1
)

−b P

l 2F̃1

(
b P

u, b
P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)
2F̃1

(
b P

l + 1, b P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (B)−1
))

− y P

l (B)
−a P

l y P

l (x∗)a
P

l−b P

l

(
b P

u2F̃1

(
b P

u + 1, b P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
)
− a P

l 2F̃1

(
b P

u, b
P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
1 + a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
))

(
(δ + λ)x∗2F̃1

(
b P

l , b
P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (x∗)−1
)

+cTb
P

l (B − x∗) 2F̃1

(
b P

l + 1, b P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (x∗)−1
)))]

, (5.A.9)
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A P

1,l =
[
λx∗y P

l (x∗)a
P

l

(
1 + 1/

(
−1 +

(
y P

l (B)
a P

l−b P

l y P

l (x∗)b
P

l−a P

l

(
(δ + λ)x∗2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x∗)−1
)

+cTa
P

l (B − x∗) 2F̃1

(
a P

l + 1, a P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x∗)−1
))

(
b P

u2F̃1

(
b P

u + 1, b P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
b P

l , b
P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (B)−1
)
− b P

l 2F̃1

(
b P

u, b
P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
b P

l + 1, b P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (B)−1
)))

/
((
b P

u2F̃1

(
b P

u + 1, b P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
)
− a P

l 2F̃1

(
b P

u, b
P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
a P

l + 1, a P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
))

(
(δ + λ)x∗2F̃1

(
b P

l , b
P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (x∗)−1
)

+cTb
P

l (B − x∗) 2F̃1

(
b P

l + 1, b P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (x∗)−1
)))))]

/

[
(δ + λ)x∗2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x∗)−1
)

+cTa
P

l (B − x∗) 2F̃1

(
a P

l + 1, a P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x∗)−1
)]

(5.A.10)

and

A P

2,l =
[
λx∗y P

l (B)−a
P

l y P

l (x∗)a
P

l Γ (1 + a P

l − b P

l )
(
b P

u2F̃1

(
b P

u + 1, b P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
)
− a P

l 2F̃1

(
b P

u, b
P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
a P

l + 1, a P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
))
sin ((a P

l − b P

l )π)
]
/

[
(a P

l − b P

l )π
(
−y P

l (B)−b
P

l

(
(δ + λ)x∗2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x∗)−1
)

+cTa
P

l (B − x∗) 2F̃1

(
a P

l + 1, a P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (x∗)−1
))

(
b P

u2F̃1

(
b P

u + 1, b P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)
2F̃1

(
b P

l , b
P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (B)−1
)

−b P

l 2F̃1

(
b P

u, b
P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)
2F̃1

(
b P

l + 1, b P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (B)−1
))

+ y P

l (B)−a
P

l y P

l (x∗)a
P

l−b P

l

(
b P

u2F̃1

(
b P

u + 1, b P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
a P

l , a
P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
)
− a P

l 2F̃1

(
b P

u, b
P

u − c P

u + 1; b P

u − a P

u + 1; y P

u(B)−1
)

2F̃1

(
a P

l + 1, a P

l − c P

l + 1; a P

l − b P

l + 1; y P

l (B)−1
))

(
(δ + λ)x∗2F̃1

(
b P

l , b
P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (x∗)−1
)

cTb
P

l (B − x∗) 2F̃1

(
b P

l + 1, b P

l − c P

l + 1; b P

l − a P

l + 1; y P

l (x∗)−1
)))]

, (5.A.11)

where 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c) denotes the Regularised Hypergeometric
Function. Therefore, the Laplace transform of the trapping time is given by (5.3.10).
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5.A.3 Proof of Theorem 5.4.1

Using similar arguments as those for Theorem 5.3.1, we know that for x ≥ B, the
capital immediately before the first capital loss is hr(t, x) = (x−x∗)ert +x∗ and the
capital has three possibilities at time t, that it is more than B, that it is between x∗
and B, and that it is between 0 and x∗. Thus, by conditioning on the time and the
remaining proportion of the first capital loss and discounting the expected values to
time 0 at the force of interest δ, when x ≥ B we obtain

m EP

δ,u(x) =

∫ ∞

0

λe−(λ+δ)t

[∫ x∗/hr(t,x)

0

m EP

δ,l(hr(t, x) · z)dGZ(z)

+

∫ B/hr(t,x)

x∗/hr(t,x)

m EP

δ,m(hr(t, x) · z)dGZ(z)

+

∫ 1

B/hr(t,x)

m EP

δ,u(hr(t, x) · z)dGZ(z)

]
dt (5.A.12)

Then, doing the change of variable vu = hr(t, x) in the integrals with respect to t
from 0 to ∞ in (5.A.12), we obtain (5.4.1).

For x∗ ≤ x < B, there are two possibilities. First, t < τB and the capital has not yet
reached the capital barrier level B. In this case, we know the capital immediately
before time t is hr−cT (t, x) = (x+x∗∗)e(r−cT )t−x∗∗ and the capital has two possibilities
at time t, that it is between x∗ and B, and that it is between 0 and x∗. Second,
for t > τB, that is, no capital loss occurs before the capital exceeds the capital
barrier B. In this case, we also know the capital immediately before time t is
hr(t−τB, B) = (B−x∗)er(t−τB)+x∗ and the accumulated capital has three possibilities
at time t, that it is more than B, that it is between x∗ and B, and that it is between
0 and x∗. Hence, by conditioning on the time and the remaining proportion of the
first capital loss and discounting the expected values to time 0 at the force of interest
δ, when x∗ ≤ x < B we obtain

m EP

δ,m(x) =

∫ τB

0

λe−(λ+δ)t

[∫ x∗/hr−cT (t,x)

0

m EP

δ,l(hr−cT (t, x) · z)dGZ(z)

+

∫ 1

x∗/hr−cT (t,x)

m EP

δ,m(hr−cT (t, x) · z)dGZ(z)

]
dt

+

∫ ∞

τB

λe−(λ+δ)t

[∫ x∗/hr(t−τB,B)

0

m EP

δ,l(hr(t− τB, B) · z)dGZ(z)

+

∫ B/hr(t−τB,B)

x∗/hr(t−τB,B)

m EP

δ,m(hr(t− τB, B) · z)dGZ(z)

+

∫ 1

B/hr(t−τB,B)

m EP

δ,u(hr(t− τB, B) · z)dGZ(z)

]
dt (5.A.13)

Now, first changing variables vm = hr−cT (t, x) in the integrals with respect to t from
0 to τB in (5.A.13), and then changing variables vu = hr(t − τB, B) in the integrals
with respect to t from τB to ∞ in (5.A.13), we obtain (5.4.2).
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For 0 < x < x∗, let τx∗ := τx∗(x) be the solution to

hcT (t, x) = (x−B)e−cT t +B = x∗.

Namely, τx∗ := τx∗(x) = − ln [(x∗ −B) / (x−B)] /cT , which is the time when the
capital returns to the critical capital x∗ if no capital loss occurs prior to time τx∗ .
Furthermore, hcT (t, x) < x∗ for t < τx∗ and hcT (τx∗ , x) = x∗. Moreover, hcT (t, x) is
the capital at time t ≤ τx∗ if no capital loss occurs prior to time τx∗ .

Thus, for 0 < x < x∗, there are three possibilities. First, t < τx∗ and the capital up
to time t has not reached the critical capital x∗. In this case, the capital immediately
before time t is hcT (t, x) = (x − B)e−cT t + B. Second, τx∗ ≤ t < τx∗ + τB (x∗) and
the capital has not yet reached the capital barrier level B and no capital loss occurs
before the capital exceeds the critical capital x∗. In this case, the capital immediately
before time t is hr−cT (t − τx∗ , x∗) = (x∗ + x∗∗)e(r−cT )(t−τx∗ ) − x∗∗ and the capital up
to time t has two possibilities, that it is between x∗ and B, and that it is between 0
and x∗. Third, t ≥ τx∗ + τB (x∗), that is, no capital loss occurs before the capital up
to time t exceeds the capital barrier level B. In this case, the capital immediately
before time t is hr(t− τx∗ − τB (x∗) , B) = (B−x∗)er(t−τx∗−τB(x∗)) +x∗ and the capital
up to time t has three possibilities, that it is more than B, that it is between x∗

and B, and that it is between 0 and x∗. Hence, by conditioning on the time and the
remaining proportion of the first capital loss and discounting the expected values to
time 0 at the force of interest δ, when 0 < x < x∗ we obtain

m EP

δ,l(x) =

∫ τx∗

0

e−(λ+δ)te−
∫ t
0 ω(hcT (y,x))dyω (hcT (t, x))w EP (hcT (t, x), x∗ − hcT (t, x)) dt

+

∫ τx∗

0

λe−(λ+δ)te−
∫ t
0 ω(hcT (y,x))dy

∫ 1

0

m EP

δ,l(hcT (t, x) · z)dGZ(z)dt

+

∫ τx∗+τB(x∗)

τx∗

λe−(λ+δ)te−
∫ τx∗
0 ω(hcT (y,x))dy

[∫ x∗/hr−cT (t−τx∗ ,x∗)

0

m EP

δ,l(hr−cT (t− τx∗ , x∗) · z)dGZ(z)

+

∫ 1

x∗/hr−cT (t−τx∗ ,x∗)
m EP

δ,m(hr−cT (t− τx∗ , x∗) · z)dGZ(z)

]
dt

+

∫ ∞

τx∗+τB(x∗)

λe−(λ+δ)te−
∫ τx∗
0 ω(hcT (y,x))dy

[∫ x∗/hr(t−τx∗−τB(x∗),B)

0

m EP

δ,l(hr(t− τx∗ − τB (x∗) , B) · z)dGZ(z)

+

∫ B/hr(t−τx∗−τB(x∗),B)

x∗/hr(t−τx∗−τB(x∗),B)

m EP

δ,m(hr(t− τx∗ − τB (x∗) , B) · z)dGZ(z)

+

∫ 1

B/hr(t−τx∗−τB(x∗),B)

m EP

δ,u(hr(t− τx∗ − τB (x∗) , B) · z)dGZ(z)

]
dt (5.A.14)

Now, first changing variables vl = hcT (t, x) and ul = hcT (y, x) in the integrals with
respect to t from 0 to τx∗ in (5.A.14), then changing variables vm = hr−cT (t− τx∗ , x∗)
in the integrals with respect to t from τx∗ to τx∗ + τB (x∗) in (5.A.14) and lastly
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changing variables vu = hr(t − τx∗ − τB (x∗) , B) in the integrals with respect to t
from τx∗ + τB (x∗) to ∞ in (5.A.14) we obtain (5.4.3).

5.A.4 Proof of Proposition 5.4.1

When Zi ∼ Beta(α, 1), i.e. gZ(z) = αzα−1
1{0<z<1} with α > 0, Equations (5.4.6),

(5.4.7) and (5.4.11) can be written such that when x ≥ B,

0 = r(x− x∗)m′ EP

δ,u(x)− (λ+ δ)m EP

δ,u(x) + λ

[∫ x∗/x

0

m EP

δ,l(x · z)αzα−1dz

+

∫ B/x

x∗/x

m EP

δ,m(x · z)αzα−1dz +

∫ 1

B/x

m EP

δ,u(x · z)αzα−1dz

]
, (5.A.15)

when x∗ ≤ x < B,

0 = (r − cT) (x+ x∗∗)m′ EP

δ,m(x)− (λ+ δ)m EP

δ,m(x) + λ

[∫ x∗/x

0

m EP

δ,l(x · z)αzα−1dz

+

∫ 1

x∗/x

m EP

δ,m(x · z)αzα−1dz

]
, (5.A.16)

and when 0 < x < x∗,

0 = cT(x−B)m′ EP

δ,l(x) + [λ+ δ + ωc]m
EP

δ,l(x)− ωc − λ
∫ 1

0

m EP

δ,l(x · z)αzα−1dz.

(5.A.17)

Applying the operator d
dx

to both sides of (5.A.15), (5.A.16) and (5.A.17), together
with a number of algebraic manipulations, yields to the following second order ODEs,

x ≥ B : 0 = r(x2 − xx∗)m′′ EP

δ,u(x) + [(r(1 + α)− δ − λ)x− rαx∗]m′ EP

δ,u(x)− αδm EP

δ,u(x),

x∗ ≤ x < B : 0 = (r − cT)(x2 + xx∗∗)m′′ EP

δ,m(x)

+ [((r − cT) (1 + α)− δ − λ)x+ α (r − cT)x∗∗]m′ EP

δ,m(x)− αδm EP

δ,m(x)

and

0 < x < x∗ : 0 = cT(x
2 −Bx)m′′ EP

δ,l (x)

+ [(cT (1 + α) + δ + λ+ ωc)x− αcTB]m′ EP

δ,l(x)

+ α (δ + ωc)m
EP

δ,l(x)− αwc. (5.A.18)

Hence, for 0 < x < x∗, m EP

δ,l(x) satisfies the nonhomogeneous differential equation
(5.A.18), when the extreme poverty rate function ω1(x) = ωc (constant value) and
the penalty function w EP(x1, x2) = 1. The particular solution of m EP

δ,l(x) is

m∗ EP

δ,l (x) =
ωc

δ + ωc
.
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Therefore, the general solution of m EP

δ,l(x) is given by

m EP

δ,l(x) = h EP

l (x) +
ωc

δ + ωc
,

where h EP

l (x) is the homogeneous solution of (5.A.18). Then, following a simi-
lar procedure to that of Proposition 5.3.1, letting f EP

l (y EP

l ) := h EP

l (x), such that
y EP

l is associated with the change of variable y EP

l := y EP

l (x) = x/B, the homoge-
neous part of Equation (5.A.18) reduces to Equation (5.A.7) for c EP

l = α, a EP

l =
αcT+λ+δ+ωc−

√
(αcT+λ+δ+ωc)2−4αcT (δ+ωc)

2cT
and b EP

l =
αcT+λ+δ+ωc+

√
(αcT+λ+δ+ωc)2−4αcT (δ+ωc)

2cT
,

with regular singular points at y EP

l = 0, 1,∞ (corresponding to x = 0, B and ∞). A
general solution of (5.A.7) in the neighborhood of the singular point y EP

l = 0 is given
by

f EP

l (y EP

l ) :=h EP

l (x) = A EP

1,l2F1 (a EP

l , b
EP

l ; c EP

l ; y EP

l (x))

+ A EP

2,ly
EP

l (x)1−c EP

l
2F1 (a EP

l − c EP

l + 1, b EP

l − c EP

l + 1; 2− c EP

l ; y EP

l (x)) ,

(5.A.19)

for arbitrary constants A EP

1,l, A
EP

2,l ∈ R (see for example, Equations (15.5.3) and
(15.5.4) of Abramowitz and Stegun (1972)). Due to the fact that m EP

δ,l(x) is finite,
we can then conclude that A EP

2,l = 0, as the second term of (5.A.19) is unbounded
when x→ 0+ for α > 0. Thus, the solution of m EP

δ,l(x) is given by

m EP

δ,l(x) = A EP

1,l2F1 (a EP

l , b
EP

l ; c EP

l ; y EP

l (x)) +
ωc

δ + ωc
.

Then, following the proof of Proposition 5.3.1, one can easily obtain the solutions
for m EP

δ,u(x) and m EP

δ,m(x), when x ≥ B and x∗ ≤ x < B, respectively.

Considering the continuity of m EP

δ (x) and m′ EP

δ (x) at the critical capital x∗ and the
capital barrier level B, that is, using (5.4.4), (5.4.5), (5.4.9) and (5.4.10), one can
derive a system of equations from which the unknown coefficients A EP

2,u, A EP

1,m, A EP

2,m

and A EP

1,l, can be determined to obtain an explicit solution for m EP

δ (x).

5.A.5 Proof of Proposition 5.4.2

Following a similar procedure to that in Appendix 5.A.4, for 0 < x < x∗, one can
derive from (5.4.11) the following nonhomogeneous second order ODE for ψ EP

l (x),
when the extreme poverty rate function ω2(x) = β

x
(exponential extreme poverty

rate), the penalty function w EP(x1, x2) = 1 and the force of interest δ = 0,

x2 (x−B)ψ′′ EP

l (x) + x

[
cT (1 + α) + λ

cT
x+

β − αBcT
cT

]
ψ′ EP

l (x) +
β (α− 1)

cT
ψ EP

l (x)− β (α− 1)

cT
= 0.

(5.A.20)

Clearly, ψ∗ EP

l (x) = 1 is always a particular solution of Equation (5.A.20), so that one
can write

ψ EP

l (x) = h EP

l (x) + 1,
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where h EP

l (x) is the homogeneous solution of (5.A.20). Now, making the substitution
h EP

l (x) = x1−αg EP

l (x), Equation (5.A.20) yields to the following second order ODE

x (x−B) g′′ EP

l (x) +

[
cT (3− α) + λ

cT
x+

BcT (α− 2) + β

cT

]
g′ EP

l (x) +
(1− α) (cT + λ)

cT
g EP

l (x) = 0.

A second substitution, y EP

l := y EP

l (x) = x/B, such that f EP

l (y EP

l (x)) = g EP

l (x), produces
Equation (5.A.7) for a EP

l = 1 − α, b EP

l = (cT + λ) /cT and c EP

l = − [BcT (α− 2) + β] /
(BcT), with regular singular points at y EP

l = 0, 1,∞ (corresponding to x = 0, B and
∞). Thus, knowing that a general solution of (5.A.7) in the neighborhood of the
singular point y EP

l = 0 is of the form (5.A.19) and that h EP

l (x) = x1−αg EP

l (x) one
obtains the homogenous solution

h EP

l (x) = A EP

1,ly
EP

l (x)1−α
2F1 (a EP

l , b
EP

l ; c EP

l ; y EP

l (x))

+ A EP

2,ly
EP

l (x)2−c EP

l −α
2F1 (a EP

l − c EP

l + 1, b EP

l − c EP

l + 1; 2− c EP

l ; y EP

l (x)) ,

(5.A.21)

for arbitrary constants A EP

1,l, A
EP

2,l ∈ R. Due to the fact that ψ EP

l (x) is finite, we can
then conclude that A EP

1,l = 0, as the first term of (5.A.21) is unbounded when x→ 0+

for α > 0. Hence, the solution of ψ EP

l (x) is given by

ψ EP

l (x) = A EP

2,ly
EP

l (x)2−c EP

l −α
2F1 (a EP

l − c EP

l + 1, b EP

l − c EP

l + 1; 2− c EP

l ; y EP

l (x)) + 1.

As in Appendix 5.A.4, following the proof of Proposition 5.3.1 for δ = 0, one can
easily obtain the solutions for ψ EP

u (x) and ψ EP

m(x), when x ≥ B and x∗ ≤ x < B,
respectively.

Finally, due to the continuity of ψ EP(x) and ψ′ EP(x) at the critical capital x∗ and the
capital barrier level B, that is, using (5.4.4), (5.4.5), (5.4.9) and (5.4.10) for δ = 0
and w EP (x1, x2) = 1, one can derive a system of equations from which the unknown
coefficients A EP

2,u, A EP

1,m, A EP

2,m and A EP

2,l, can be determined to derive a closed-form
expression for ψ EP(x).
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5.B Appendix B: Effects of Underlying Factors on
the Trapping Probability

We consider the influence of the parameters on the trapping probability by varying
them in a reasonable range, keeping all other parameters constant. The reference
setup is given below.

Reference setup: a = 0.1, b = 4, cS = 0.4, Zi ∼ Beta(0.8, 1), λ = 1, x∗ = 1, B = 2
and cT = 1.
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Figure 5.13: Effects of the rate of consumption (0 < a < 1), income generation
(b > 0), investment or savings (0 < cS < 1), the parameter of the Beta distribu-
tion (α > 0) (i.e., expected remaining proportion of capital), the expected capi-
tal loss frequency (λ > 0), the critical capital (x ≥ x∗), the capital barrier level
(B > x∗) and the capital transfer rate (cT > 0) on the trapping probability of
the original model obtained in Henshaw et al. (2023) (in red) and on the trap-
ping probability of the model with capital cash transfers (in blue) for initial capital
x = 1.3 (solid), 1.7 (dashed), 4.0 (dotted), 6.0 (dashed-dotted).
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5.C Appendix C: Effects of Underlying Factors on
the Probability of Extreme Poverty

We consider the influence of the parameters on the probability of extreme poverty
by varying them in a reasonable range, keeping all other parameters constant. The
reference setup is given below.

Reference setup: a = 0.1, b = 4, cS = 0.4, Zi ∼ Beta(0.8, 1), λ = 1, x∗ = 1,
B = 2, cT = 1, ω1(x) = 0.05 and ω2(x) = 0.05
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Figure 5.14: Effects of the rate of consumption (0 < a < 1), income generation
(b > 0), investment or savings (0 < cS < 1), the parameter of the Beta distribution
(α > 0) (i.e., expected remaining proportion of capital), the expected capital loss
frequency (λ > 0), the critical capital (x ≥ x∗), the capital barrier level (B > x∗),
the capital transfer rate (cT > 0) and the extreme poverty rate function on the
probability of extreme poverty for a constant extreme poverty rate function (in
orange) and an exponential extreme poverty rate function (in purple) for initial
capital x = 1.3 (solid), 1.7 (dashed), 4.0 (dotted), 6.0 (dashed-dotted).
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General Conclusions

The aim of this thesis is to assess the extent to which social protection strategies
(and complementary approaches such as insurance) are effective tools to alleviate
poverty, one of the most important common goals of humankind in recent history.
This is done using techniques from ruin theory, a branch of insurance mathematics
that deals with the study of stochastic processes and their fluctuations. Ruin the-
ory, among other things, provides tools to analyse the behaviour of a household’s
capital over time and thus the possibility of estimating the trapping probability of
a household (the probability that a household will ever fall into the poverty trap).

In Chapter 2, we highlight the insufficiency of microinsurance alone as a means
of protecting vulnerable non-poor households (those households living with capital
levels that are just above the poverty line) from falling into the poverty trap, and thus
provide evidence of the importance of government-sponsored microinsurance in the
fight against poverty. In particular, we show that government-sponsored schemes
(here, we consider one with subsidised constant premiums and another one with
subsidised flexible premiums) reduce the trapping probability of households and,
at the same time, the cost of social protection incurred by the government, thus
suggesting that government-sponsored inclusive insurance schemes are cost-effective
instruments for poverty alleviation. The results of Chapter 2 also contribute to the
literature on ruin theory by deriving closed-form formulas for both the trapping
probability and the cost of social protection incurred by the government (under the
scheme with subsidised constant premiums) when considering a particular variation
of the Cramér-Lundberg model that aims to portray a household’s capital over time.

To better represent the fact that vulnerable non-poor households have less to lose
than more privileged households (those with higher levels of capital), and also the
fact that the poverty trap represents an absorbing state from which households
cannot escape without external help (either downwards or upwards), in Chapter 3
we adjust the capital model studied in Chapter 2 and consider a growth-collapse
model in which capital losses are prorated from the household’s accumulated capital
rather than subtracted. Insurance coverage under the assumption of this model
suggests that the increase in trapping probability observed under random-valued
losses considered in Chapter 2 is less severe in this proportional case. The main
contribution of Chapter 3 to the literature on ruin theory is the derivation of a
closed-form formula for the trapping probability of a household. To the best of our
knowledge, we present this formula for the very first time for a risk process with
proportional jumps. Moreover, a novel recursive approach is introduced to derive the
trapping probability under the assumption that the household acquires proportional

175
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microinsurance coverage.

Instead of focusing solely on the trapping probability of a household, Chapter 4
further examines the conditions under which the trapping event occurs (for the
household capital process with proportional jumps also studied in Chapter 3). The
Gerber-Shiu expected discounted penalty function, a concept commonly used in
ruin theory, serves as the main tool for such analysis. This function provides in-
formation on three key random variables: the trapping time, the capital surplus
prior to trapping and the capital deficit at trapping. In Chapter 4, we provide
analytic expressions for the Gerber-Shiu expected discounted penalty function of
the risk process with proportional jumps. Moreover, by applying this concept, we
derive a compelling microeconomic foundation, arising from the derivation of the
Gerber-Shiu expected discounted penalty function itself, to model the distribution
of a household’s income short-fall (the absolute value of the difference between a
poor household’s income (or consumption) and some poverty line). These results
are important, as a household’s income short-fall is the main component of a class of
poverty indicators and these, in turn, serve as a tool for monitoring and evaluating
the performance of social protection strategies.

The role of non-contributory transfers (unconditional cash transfers) in poverty al-
leviation is analysed in Chapter 5. Numerical experiments conducted in Chapter
5 suggest that regular unconditional cash transfer programmes are efficient social
protection strategies to keep households out of poverty and extreme poverty, as their
trapping probability and the probability of extreme poverty (the probability that
a household will ever become extremely poor), respectively, are reduced when they
are part of such strategies. Chapter 5 also stresses the importance of selecting ap-
propriate design and implementation features, such as the frequency of the transfers
and the beneficiary selection criteria. The main contribution of Chapter 5 to the
literature on ruin theory is the derivation of explicit formulas for both the trapping
probability and the probability of extreme poverty. In particular, for the probabil-
ity of extreme poverty, Chapter 5 also introduces for the first time the concept of
extreme poverty rate function. Here, the probability of extreme poverty of a house-
hold depends on the current value of the capital given by the extreme poverty rate
function.

This thesis represents a starting point for applying knowledge from another disci-
pline, such as insurance mathematics, to development economics. There are many
avenues to which this work can be extended. However, as highlighted in Chapter
1, it is true that perhaps the introduction of new risk processes that best describe
the phenomenon of interest remains as the main task for future research. For ex-
ample, in inclusive insurance, the importance of bundling insurance products with
other types of products to reach scale (e.g. linking agricultural insurance to agri-
cultural supplies such as seeds and fertiliser) has been highlighted. Accordingly, a
next step would be to explore risk processes that allow for the bundling of certain
products. Similarly, it would be interesting to consider, for example, the possibility
of assessing the role of unconditional cash transfers alongside inclusive insurance as
joint instruments. Risk processes that incorporate households’ risk preferences over
time and the direct effects of inclusive insurance (or unconditional cash transfer pro-
grammes) on a household’s consumption should also be considered. All these would
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lead to more complex risk processes and thus to difficulties in applying traditional
techniques from ruin theory. Therefore, apart from the fact that these models will
better match reality, they will also represent an interesting challenge from a math-
ematical point of view, as they could give rise to problems never seen before in the
insurance mathematics literature.
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