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INTRODUCTION

This paper shows how, in a patchy regenerating environ-
ment, hunger alone can produce distributions of animals
that approximate closely to the ideal free distribution.
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We present a minimal model of an individual forager,
incorporating searching for, collecting, and utilizing
food, and show how such animals distribute themselves.
We then explore the sensitivity of the simple model to the
addition of the biological properties of real animals,
incorporating a realistic functional response and realistic
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costs of metabolism. We then systematically explore the
major predictions to be derived from modelling such
individuals foraging in patchy environments. Finally, we
show how these predictions differ from those derived
from optimal models and identify the crucial data required
to distinguish between the classes of models. We conclude
that an account of the spatial distribution of foraging
animals in patchy environments can be obtained without
direct reference to evolutionary optimization.

Alternative Interpretations of the Ideal Free
Distribution

Two different interpretations of the ideal free distribu-
tion are in common use: one assumes that the maximal
rate of food intake is set by the standing stock of food and
the other that it is set by the rate at which the food enters
the environment (Weber, 1998). To discuss these different
interpretations unambiguously it is necessary to define
formally a specific environment and the ideal free distri-
bution of the animals implied by such an environment.

Suppose that a heterogeneous environment contains n
animals and p patches of food such that at time t there are
n: animals feeding at patch :, which contains F: units of
food, and which is regenerating at the rate a:�0. Under
the first interpretation, say Type I, the ideal free distribu-
tion of n animals at time t is taken to imply that
n: �n=F:(t)�� p

;=1 F;(t), for :=1, 2, 3, ..., p, and under
the second interpretation, say Type II, to imply that
n: �n=a:(t)�� p

;=1 a;(t). The Type I and Type II inter-
pretations generally predict different distributions of
foragers.

The Type I interpretation seems to imply that the
environment contains food that does not regenerate but
exists in such abundance that it is not depleted by the
foragers; but without depletion there is no mechanism by
which the animals can be distributed as predicted unless
an alternative density-dependent mechanism such as
direct interference is postulated. However, findings
discussed in following sections suggest that the relation-
ship between standing crop and rates of regeneration in
the causation of equilibrium distributions of animals is
likely to be more complex than it might, at first, appear
to be.

The Type II interpretation assumes that the resources
in the environment regenerate in some way. A feature of
this interpretation that has led to confusion is that at
equilibrium there may be no net depletion of the stand-
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ing crop of food at each patch, and this has led to the
conclusion that there is necessarily zero standing crop at
each patch (Weber, 1998). This conclusion is questionable
because the feeding rate of an individual animal is a
function of the standing crop of food. In the absence of
food the animal is incapable of feeding.

Assumptions and Requirements

Any optimal theory that purports to explain the distri-
bution of foraging animals must satisfy the following
requirements: the environment must be sufficiently well
characterised for an optimal solution to exist, and each
animal must possess the properties that make the
optimal solution accessible to it.

In order to derive the form of the ideal free distribu-
tion, a number of assumptions are made about the
properties of the foragers. These are:

1. All animals are competitively equal.

2. All animals are free to search for food wherever
they want, and the searching is free of costs.

3. All animals feed at their maximum possible rates.

4. The rate of feeding of an animal is a monoton-
ically decreasing function of the density of animals.

This paper presents an alternative approach to model-
ling the foraging of a population of animals. It uses a
local model to represent the dynamics of foraging that
lead to the observed equilibria, and it provides an
account not of the ideal free distribution of evolutionary
theory, but of the observed distributions of approxi-
mately ideal, more or less free real animals. This
approach is concerned not only with the collection of
food, but also with the significance of feeding in the
maintenance of life. Accordingly, the requirements given
above may be replaced by the set that follows.

1. Animals eat food, part of which is incorporated
into the animal (Requirement of Consumption).

2. To maintain itself an animal utilizes body tissue,
the equivalent of stored food, and the rate of utilization
is dependent on the mass of the animal (Requirement of
Utilization).

3. An animal will reject food if the rate at which
that food can be eaten is less than the rate of utilization
of body tissue (Requirement of Hunger).

4. By eating, an animal depletes the standing crop
of food (Requirement of Depletion).

5. The rate at which an animal feeds is a function
of the standing crop of food (Requirement of Ingestion).

6. The rate at which an animal feeds is a function
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of the density of all of the animals feeding on same food
(Requirement of Competition).

These requirements imply the following.



The Requirement of Consumption implies that there
exists a function that maps food to body mass, the
fundamental state variable in the system. Insofar as a
currency is implied by this model that currency is body
mass.

The Requirement of Utilization postulates that, other
things being equal, big animals need more food for main-
tenance than small ones, explicitly recognizing that
animals use food and implying that starving animals lose
body mass by using their own reserves to maintain their
vital processes.

The Requirement of Hunger is the fundamental
physiological rule. While the animal is not feeding its
mass decreases as it uses up incorporated food. Infor-
mally, when the animal is not feeding it gets hungry. The
animal will reject food that does not reduce its hunger by
increasing its body mass.

The Requirement of Depletion makes a clear distinc-
tion between the animal's feeding which depletes the
standing crop of food and the state of a system of food
and foragers in dynamic equilibrium where there may be
no net depletion of food.

The Requirements of Depletion and Ingestion are
sufficient alone to imply exploitation competition; the
Requirement of Competition is added to admit inter-
ference competition.

Real animals vary in their competitive abilities and in
their willingness to move in the environment. Standard
ideal free theory can account for some of these less than
ideal properties. In contrast, the model described here
starts with the unideal animals and emphasises explana-
tion, not of the process by which the ideal distribution
arises, but of the consistently observed departures from
it, and of the dynamic processes of competition that
cause equilibrium distributions to arise. The following
sections explore the distributions of individuals with a
variety of unideal properties foraging more or less freely
in a variety of regenerating environments.

THE MODELS

We consider two models: the first is a simple popula-
tion dynamic model, concerned, for example, with the
distribution of sessile animals invading a regenerating
patchy environment, each population growing in its own
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patch, independently of the other populations; the second
is a more complex behavioural model that ignores popula-
tion dynamics, but which predicts how the decision-
making of individual animals results in their disposition
approximating to the ideal free distribution, in timescales
short with respect to the processes of natality and
mortality. The population dynamics model is of interest
because it provides a new mechanism, independent of the
movement of individuals, which can cause the ideal free
distribution of Type II to arise. This model can be
expressed by the following:

dF
dt

=a&vFN

dN
dt

=bvFN \K&N
K + ,

where a is the constant rate of addition of food, b is the
yield of animals per unit food eaten, F is the standing
crop of food, v is the specific feeding rate of an individual
animal, N is the standing crop of animals, and K is the
maximum number that can be sustained indefinitely. The
Requirement of Utilization implies that an equilibrium
population of animals can be supported only by the
continuous addition of food at a constant rate. Since food
is being supplied at a rate a and since, at equilibrium, K
animals are being supported, K=a�m, where m is rate
of food consumption that is sufficient to maintain an
individual. Since the size of the population in the patch is
proportional to the rate of supply of food at the patch,
the model defines a simple form of the Type II ideal free
distribution. Solving this model for stationary states, F�
and N� , it follows that

F� =
m
v

and

N� =
a
m

,

proving that for any rate of addition of food, the equi-
librium standing crop of food, F� , is constant, and the
equilibrium population size, N� B a, satisfying the defini-
tion of the ideal free distribution of Type II. In the
context of what follows it is important to recognize that
the population dynamic model satisfies all the require-
ments laid out above. Where it differs from the behavioural
model to be discussed below is in the effect on the animals
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of the Requirement of Consumption. In the population
dynamics model the result of consumption is a change
in the numbers of individuals in the population, the
individuals, by implication being of a fixed size, each



having a fixed constant maintenance requirement. In the
behavioural model discussed below the result of consump-
tion is bodily growth of a fixed number of individuals.

The behavioural model requires a more explicit defini-
tion of the environment because the processes taking
place at one patch are not independent of the processes
taking place at the other patches. We therefore consider
an environment that is composed of a number, p, of
discrete patches. Throughout the text Greek subscripts
will refer to food patches and Roman subscripts will refer
to foraging animals. The patch : has a standing crop of
food, F: , which regenerates at a constant rate a: . The
patch contains n: foraging animals which deplete the
standing crop at a rate �n:

i=1
Ri (F:), where we define

Ri (F:) to be the functional response of the i th animal.
The functional response is currently assumed to be a
function only of F: , the standing crop. We consider the
more complex case of the functional response depending
also on n: , the number of animals, below, in the section
dealing with intraspecific interaction. (Notice that our
use of the term functional response refers to the rate of
ingestion of food only while the animal is feeding.) For
the present the rate of change of the standing crop can be
written as

dF:

dt
=a:& :

n:

i=1

Ri (F:). (1)

Animals are composed of tissues belonging to two
broad categories: structural tissue and reserve tissue.
Structural tissue cannot be remobilised. Reserve tissue is
more labile and is metabolised continuously to maintain
physiological functioning. We assume that the forager is
composed solely of reserve tissue and that the i th animal
foraging on patch : contains mi, : units of mass of such
tissue. We also assume that the rate of assimilation of
food is directly proportional to the rate at which it is
ingested, and because the absolute rate of assimilation
plays no part in the dynamics of the model, we assume
that the rate of assimilation is equal to the rate of ingestion.

Food is ingested at a rate given by the functional
response, Ri (F:), and is metabolised at a rate given by
the function M(mi, :). The rate of change of mass of the
ith animal feeding at the patch : can therefore be written
as

dmi, : =Ri (F:)&M(mi, :). (2)
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dt

To complete the model it is necessary to represent
hunger formally. We assume that the i th animal will not
feed at a patch on arrival or will cease to feed at a patch
when

dmi, :

dt
�0, (3)

which means that an animal will not stay at a patch if its
metabolic costs equal or exceed the return from feeding
there.

The model is simplest when the functional response is
a Holling Type I linear response,

Ri (F:)=vF: , (4)

where v is the rate of feeding per unit standing crop of the
i th animal at patch :. The rate of feeding per unit stand-
ing crop can vary between animals, but to simplify the
notation the subscript i will be used only when necessary
to avoid ambiguity. The metabolic cost is a linear func-
tion of the mass of tissue,

M(mi, :)=rmi, : , (5)

where r is the metabolic rate per unit mass of tissue, the
specific metabolic rate, of an animal; and the rate of
change of the mass of the i th forager feeding at the patch
: is expressed by the equation

dmi, :

dt
=vF:&rmi, : . (6)

If each patch of food regenerates at a constant rate,
then the rate of change of the standing crop on patch :
can be written as

dF:

dt
=a:&V:F: , (7)

where V:=�n:
i=1 v is the total feeding rate of all the

animals on the patch. This linear model was studied by
Ollason (1987), who showed that Eqs. (6) and (7) could
be solved explicitly to give

F:(t)=F:(�)+(F:(0)&F:(�)) e&V: t (8)

Ollason and Yearsley
mi, :(t)=mi, :(�)+(mi, :(0)&mi, :(�)) e&rt

+
v

r&V:
(F:(0)&F:(�)) (e&V: t&e&rt), (9)



where t is the time from first entering the patch, so that
t=0 is the initial time when the animal arrives at the
patch, and F:(�)=a: �V: , and mi, :(�)=F:(�) v�r are
the equilibrium values of the standing crop and reserve
tissue, respectively, if the animal never leaves the patch.
By calculating dmi, : �dt and using the definition of hunger
given by Eq. (3), the expected time spent foraging for the
ith animal on the patch :, ti, : , is

ti, : =
1

r&V: _ln \ r
V:++ln \1&

V:&r
v

_{mi, :(�)&mi, :(0)
F:(0)&F:(�) =+& , (10)

which shows that the extremal staying time on patch :,
t̂i, :=ln(r�V:)�(r&V:), is a maximum if (mi, :(�)&
mi, :(0))(F:(0)&F:(�))<0 and otherwise a minimum.
For realistic scenarios we expect that F:(0)>F:(�).
Furthermore, if F:(0)&F:(�)r |=|, where =r0, imply-
ing that the patch is close to its equilibrium, then any
animal with vF:(�)>rmi, :(0) is unlikely to leave the
patch unless there is a change due to some external factor
(for example more animals entering the patch). The
model therefore predicts that if a patch is close to equi-
librium, and the animals arrive with low mass, in other
words, very hungry, only external factors will cause an
animal to cease feeding.

The results presented in Eqs. (8�10) may be used to
analyse the feeding behaviour of a single forager in an
environment containing a finite number of patches
visited and revisited in a fixed order, as on a closed
trapline. Empirical evidence from simulation indicates
that in such an environment the standing crop and the
animal's foraging behaviour converge to equilibria that
are independent of the initial conditions, such that at
each point in time the animal arrives at any particular
point in its circuit, all the patches are in the same state as
they were when the point was last visited, as is the animal
itself. The equilibrium properties of the system can be
found by inferring the foraging behaviour that leaves the
whole system unchanged after a forager has completed
one circuit of the environment. This approach is used to
calculate the equilibrium behaviour of one animal forag-
ing in an environment composed of two patches, Patch 0
and Patch 1, replenished at the constant rates, a0 and a1 ,
and separated by a travelling time of tt (Appendix 1). The
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single animal is indexed by i and is defined by Eqs. (6)
and (7). It visits each patch in turn. The staying times at
Patch 0 and Patch 1 converge to the equilibrium values
of t i, 0 and ti, 1 , respectively. The equilibrium behaviour
TABLE 1

The Behaviour of the Model Simulating One Forager in an Environment
Containing Two Regenerating Patches under a Range of Travelling
Times

tt ti, 0 ti, 1 ti, 0 �t i, 1 mi, 1(0)�mi, 0(ti, 0)

1 4.490 8.830 0.509 0.992
2 6.130 11.85 0.517 0.984
4 8.270 15.58 0.531 0.969
8 11.05 19.92 0.554 0.939

16 14.55 24.54 0.593 0.882
32 18.79 28.89 0.651 0.779
64 23.57 32.24 0.731 0.607

128 28.32 34.03 0.832 0.368
256 32.00 34.25 0.934 0.135
512 33.30 33.61 0.991 0.018

1024 32.95 32.96 1.000 3_10&4

2048 32.59 32.59 1.000 1_10&7

Note. a0=0.01, a1=0.02, v=0.08, r=1�128. tt , travelling time;
ti, 0 , ti, 1 mean staying times at patch 0 and patch 1, respectively. For this
choice of parameters the extremal staying time t̂i=32.23. mi, :+1(0)�
mi, :(ti, :) is the proportion of the body mass left after travelling.

can be determined exactly in three limiting cases. First,
when the travelling time becomes large,

lim
tt � �

ti, 0=t i, 1= t̂i=
1

r&v
ln \r

v+ , (11)

where t̂i is the extremal staying time for one foraging
animal. Hence, the animal spends equal times at each
patch. So, as the travelling time becomes increasingly
large, the model predicts an increasing degree of under-
matching (Table 1). The ratio mi, :+1(0)�mi, :(ti, :) is the
proportion of body mass remaining after travelling
between patch : and :+1. The loss of a large proportion
of the body mass is likely to be lethal to real animals. It
is therefore likely that real animals will choose to forage
in environments in which the average travelling time
between patches is substantially less than 1�r, the time
required for the body mass to decay to 1�e of the mass on
leaving the last patch. It is in such environments that the
distribution will approximate reasonably closely to the
ideal free distribution of Type II.

Second, when the metabolic costs become negligible,
(r � 0), it can be shown that

lim
t i, 0+2tt =

a0 (12)
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r � 0 ti, 1+2tt a1

and hence, third, as tt � 0, the staying times converge to
those predicted by the ideal free distribution. The proofs



of these results are presented in Appendix 1. Finally, we
show, for the special case of an indefinitely long trapline
of patches of the same type, and when costs become
negligible, that the time budget predicted by the model
converges to the optimal time budget predicted by the
marginal value theorem (Appendix 2).

Although this model is formally unchanged from that
of Ollason (1987), the physiological interpretation, first
introduced by Ollason and Lamb (1995), is different
from the original interpretation, which was formulated
in terms of learning. This paper extends the findings
previously reported by additional analysis and by using
the individual-based modelling approach to explore the
emergent consequences of adding more realistic biological
detail.

Simulations involving several patches of food and small
numbers of foragers can display apparently pathological
behaviour: an animal can come to settle in a patch : and,
provided that circumstances do not change, it will stay at
that patch indefinitely with a rate of growth which,
although positive, asymptotically approaches zero.
Other animals visiting other patches can attain much
greater masses and on visiting or revisiting patch : leave
immediately, being unable to feed at the minimum expected
rate. Consequently the population can divide into a
group of animals that are small, grow slowly, and are
fixed in one of the patches, say :, and a group of animals
that are larger, that grow more rapidly, and that visit all
patches, but feed only in the patches other than :. The
initial conditions for such simulations where this
behaviour was observed were as follows. Each animal
was assigned at random to one of the patches. The initial
values of mi, : were small and randomly perturbed so that
no two animals had the same value of mi, : . Some of the
individuals assigned to the poorest patch left it, fed at one
of the other patches, and upon revisiting the poorest
patch left without feeding. Only animals that were
initially present in the poorest patch stayed feeding there.
This behaviour depends only on initial conditions and is
independent of the number of foragers simulated. It is
most unlikely to be observed in populations of real
animals in which stochastic processes, unrelated to forag-
ing, will cause the individuals to move away from such
patches. In the simulations that follow the staying times
of animals, ti, : , are constrained to lie in the range 0�t i, :

�tmax , where tmax=1000 time units. This avoids the
subdivision of the population. All results presented below
were obtained with staying times potentially constrained
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in this fashion, although, in fact, it was very seldom
necessary to apply the upper bound to the staying times.

All simulations converged towards equilibria, and the
simulations were concluded and the data recorded when
the staying times for all animals on any patch changed by
no more than 10 over 100 consecutive visits. In the
simulations involving two patches a standard set of initial
conditions was chosen: the value of mi, : for each individual
was set to a small value, randomly perturbed, and all the
individuals were placed at one of the patches, chosen at
random. We chose these initial conditions to represent
the usual initial experimental conditions of placing of
food-deprived animals into the environment and observ-
ing their behaviour. Except where noted below, at the
beginning of the experiments the patches all contained
the same amount of food, but the rates of regeneration of
each patch were varied as the simulation required. The
detailed results of a quantitative investigation of the
influence of initial conditions are presented below, in the
section describing the distribution of many animals in
many patches. The results we have chosen to report are
those usually reported in observational or experimental
studies of the distributions of foraging animals. In
general we have chosen not to report the standing crop
of food at the patches, because of the difficulty of assess-
ing this variable in the laboratory or the field while the
animals are foraging.

For small travelling times, such as are observed when
animals are foraging over limited geographical areas, and
spending much more time foraging than searching, the
mean distributions of foragers approximated closely to
the ideal free distribution of Type II but undermatched it
to a small degree. (``Undermatching'' is the term applied
to the observation that a smaller proportion of the
population occupies the areas that have a higher than
average regeneration rate than that predicted by the
Ideal Free Distribution.)

ONE ANIMAL FORAGING IN TWO
PATCHES

Consider an environment composed of two patches,
Patch 0 and Patch 1, replenished at constant rates a0 and
a1 , and separated by a travelling time of tt . A single
animal, indexed by i and defined by Eqs. (6) and (7) visits
each patch in turn. The staying times at Patch 0 and
Patch 1 converge to ti, 0 and t i, 1 , respectively. The equi-
librium behaviour in this system is described by Eqs. (11)
and (12). The results shown in Table 1 of the simulations
of the foraging behaviour defined by Eqs. (6) and (7)
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show that the degree of undermatching increases with
travelling time as predicted.

In real animals the functional response is unlikely to be
linear and the specific metabolic rates are unlikely to be



constant; it is therefore of interest to explore the conse-
quence of including more biological detail. In one simula-
tion we replaced the linear functional response with a
Holling Type II response, and in another we scaled the
specific metabolic rate as a power of body mass.

We assumed that the functional response had the form

Ri (F:)=
vF:

Si+F:
, (13)

where Si is the half-saturation constant (the standing
crop of food that enables the i th animal to feed at half the
maximum possible rate). When Si=0 the functional
response is constant. When Si>>F: then Ri is linear. If
the standing crop is much greater than S i the rate of feed-
ing becomes almost independent of the standing crop,
and if this circumstance should arise, the occupancy of
the patches would depart significantly from the ideal free
distribution. We explored the effect of Si , the half-satura-
tion constant, on the staying times of one animal forag-
ing in the environment containing two patches with Si in
the range 0.1�Si�10, and the results are shown in
Table 2.

TABLE 2

The Effect of a Holling Type II Functional Response, R i (F:), on the
Equilibrium Staying Times, t i, 0 and t i, 1 , of a Single Animal Feeding in
an Environment Containing Two Patches, 0 and 1

Si ti, 0 ti, 1 ti, 0 �t i, 1 F0(ti, 0) F1(ti, 1)

10 4.703 9.247 0.509 0.389 0.391
5 3.239 6.297 0.514 0.195 0.196
4 2.868 5.548 0.516 0.156 0.156
3 2.448 4.697 0.521 0.117 0.117
2 1.954 3.697 0.529 0.078 0.078
1 1.320 2.420 0.545 0.039 0.039
0.5 0.885 1.555 0.569 0.019 0.020
0.333 0.697 1.190 0.586 0.013 0.013
0.25 0.590 0.985 0.599 0.010 0.010
0.1 0.335 0.530 0.632 0.004 0.004

Note. Ri (F:)=vF: �(Si+F:), where F: is the standing crop of food
on patch :, v is the maximum specific feeding rate, and Si is the half-
saturation constant. F0(t i, 0) and F1(ti, 1) are, respectively, the standing
crops of food at Patch 0 and Patch 1 at the time the animal leaves. The
other values of the parameters in the simulations are as follows: v=0.8,
tt=1, a0=0.01, and a1=0.02, implying that the expected value of
ti, 0 �t i, 1=0.5. Note that in every case the equilibrium standing crop is
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much less than the corresponding value of Si , implying that saturation
has only a very small effect on the feeding behaviour of the animal and
that there is an increasing degree of undermatching as Si approaches 0.
This may be explained by the fact that as Si � 0, tt becomes large with
respect to ti, 0 and ti, 1 .
Except when Si is very small, the Type II functional
response makes little change to the ratio of the staying
times of the animal: the system shows a degree of under-
matching characteristic of the behaviour of the model
with the Type I functional response. As Si decreases the
undermatching increases, because as Si decreases the
overall feeding rate increases. The faster the animal feeds,
the faster the standing crop is depleted and the shorter
the staying time. When Si is very small, staying times are
small compared with the travelling times, converging to
the limit defined in Eq. (11), producing undermatching.

Empirical evidence suggests that the specific metabolic
rate is not constant; rather it approximates to an allometric
scaling of body mass which may be represented as

M(mi, :)=rmi, :
z, (14)

where z is the allometric exponent (z=1 gives the linear
case of Eq. 5). To explore the influence of z, simulations
were carried out for values of z in the range 0.5�z�1.5
and the results are shown in Table 3.

With increasing values of z the equilibrium staying
times decrease, because with a larger value of z the
animal will reach its break-even point (dmi, : �dt=0)
earlier than an animal with a lower value of z. However,
despite the fact that the staying times of the animals vary
by a factor of approximately 3, the proportions of the
population feeding at the two sites remain approximately
constant, indicating that the distribution of the foragers
between the patches is not strongly dependent upon z.

TABLE 3

The Influence of Making the Metabolic Costs Proportional to mi, :
z ,

Where mi, : Is the Mass of the i th Animal on Patch :

z ti, 0 ti, 1 ti, 0 �ti, 1

0.5 8.460 17.019 0.497
0.6 6.990 13.910 0.503
0.7 6.030 11.930 0.505
0.8 5.360 10.568 0.507
0.9 4.870 9.580 0.508
1.0 4.496 8.831 0.509
1.1 4.201 8.241 0.510
1.2 3.965 7.770 0.510
1.3 3.766 7.373 0.511
1.4 3.603 7.048 0.511
1.5 3.463 6.771 0.511

Note. The behaviour of a single animal has been simulated and the
parameters of the simulation are a0=0.01, a1=0.02, v=0.08, r=1�128.
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The equilibrium staying times at Patch 0 and Patch 1 are, respectively,
ti, 0 and ti, 1 . Over the range of z encountered in nature the ratio of stay-
ing times is relatively independent of z. ti, 0 and ti, 1 are the mean staying
times of individuals at Patch 0 and Patch 1, respectively.
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TABLE 4

The Distribution of the Animals Approximates to the Ideal Free Distribut

n ti, 0 ti, 1 ti, 0 �t i, 1

1 4.49 8.830 0.509
2 6.72 13.860 0.490
4 9.21 18.152 0.508
8 14.51 29.636 0.490

16 19.46 38.557 0.505
32 33.27 67.853 0.490
64 50.22 100.210 0.501

128 46.14 92.157 0.501
256 87.60 174.179 0.503

Note. The parameters used in the simulations were v=0.08, r=1�128
of animals; ti, 0 , ti, 1 , the mean staying times; n0 , n1 , the mean numbers
travelling between patches.

The distribution is weakly dependent on z, however, the
equilibria arising with the lower values of z showing
overmatching, and the higher values undermatching.

In view of the insensitivity of the model to z, and to Si ,
the remaining simulations have been carried out using
the simple linear version of the model.

MANY ANIMALS FORAGING IN TWO
PATCHES

Simulations of differing numbers of foragers in an
environment containing just two patches of food were
carried out to determine whether the equilibria were
dependent on the numbers of foragers. The results,
shown in Table 4, indicate that the model's predictions
are independent of the number of animals simulated.

MANY ANIMALS FORAGING IN MANY
PATCHES

The equilibrium distribution of many foragers, among
many patches, approximates to the ideal free distribu-
tion. An example of the simulation of animals foraging
in a two-dimensional environment is given below. The
environment is a square lattice containing nine nodes in
all. A patch of food could be placed at each node. The
nodes are separated from their nearest neighbours by a
travelling time, tt=16 units. In the simulation there are
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three patches of food, located at the three corners with
the coordinates x=0, y=2, x=2, y=2, and x=2, y=0.
The regeneration rates of the patches are, respectively,
0.01, 0.02, and 0.04. Sixty foragers are introduced into the
Independently of the Number of Animals Foraging

nt n0 n1 n0 �n1

0.131 0.293 0.576 0.509
0.179 0.600 1.222 0.491
0.272 1.255 2.472 0.508
0.347 2.515 5.138 0.490
0.533 5.188 10.279 0.505
0.621 10.323 21.056 0.490
0.840 21.084 42.076 0.501
1.825 42.093 84.082 0.501
1.941 85.192 169.040 0.504

=1, a0=0.01, a1=0.02. The entries in the table are n, the total number
atch 0 and Patch 1, respectively; and nt , the mean number of animals

system. On leaving a patch a forager is free to move to
any neighbouring node, including those on the diagonals,
and chooses its destination at random. If the animal moves
diagonally the travelling time is adjusted accordingly.
When an animal leaves, the destination node is chosen at
random. The foragers are all similar, their parameters
having the following values: r=1�512, v=0.01. At the

TABLE 5

The Mean Distribution of 60 Foragers Searching for Food in a Square
Lattice Containing Nine Nodes at Three of Which Patches of Food Are
Regenerating

Coordinate x, y: 0, 2 2, 2 2, 0
ax, y : 0.01 0.02 0.04

Initial conditions

0.1, 0.2, 0.4 0.161 0.299 0.540
0.1, 0.4, 0.2 0.165 0.298 0.537
0.2, 0.1, 0.4 0.160 0.292 0.548
0.2, 0.4, 0.1 0.163 0.295 0.542
0.4, 0.1, 0.2 0.168 0.302 0.532
0.4, 0.2, 0.1 0.161 0.296 0.543

4.0, 2.0, 1.0 0.167 0.300 0.533
40.0, 20.0, 10.0 0.165 0.295 0.540

Note. The entries in the table show the mean proportions of the
feeding animals at each patch. The initial conditions list in order the
masses of food present at each patch at the start of the simulation. The
patches regenerate at the rates ax, y . The travelling time from node to
node is 16 units. The entries in the upper part of the table provide
evidence that all possible permutations of the same initial standing
crops generate the same equilibrium distributions. The entries in the
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lower part show that the equilibrium distributions are independent of
the absolute masses of the initial standing crops. The parameters of the
animals are v=0.01 and r=1�512. The simulation ran for 40,000
events. The means were computed after discarding the results from the
first 200 of the duration of the simulation.



beginning of the simulation each animal has mi, :=2+$m,
where $m is a small random perturbation to ensure that
each animal is slightly different in mass from all the
others. Table 5 shows the results of the simulation run
over 40,000 visits by individual animals. The results in
the first 200 of the simulation are neglected to avoid any
transient effects due to the initial conditions.

Table 5 shows that the distribution of foragers is almost
exactly as the Type II ideal free distribution predicts, the
degree of undermatching being very small. The equilibrium
standing crops in the simulations were not recorded
because their close approximation to equality is logically
entailed by the model. By definition the rate of removal
of food by an animal is proportional to the standing crop
(Eq. 4). The equilibrium number of animals is propor-
tional to the rate of supply of food. Each of the feeding
animals everywhere must therefore be feeding at approxi-
mately the same rate, and therefore each animal must be
feeding at a patch of food containing the same mass of
food. This implies that the distribution of the animals
departs from that predicted by the Type I model, except
in the case where the rate of supply of food is the same
at each patch. More complex interactions involving
nonlinear dependence of rate of feeding on standing crop,
and direct interactions among individuals, are con-
sidered in the following sections.

In order to confirm that the behaviour of the simula-
tions is independent of the initial conditions, the simula-
tions were replicated with different initial masses of food
at the three patches. These were 0.1, 0.2, and 0.4 units,
and, as shown in Table 5, all permutations of the food
and the regeneration rates were explored. The proportion
of time spent at a patch was unaffected by the amount of
food present at the beginning of the simulation. The
observed variation in the proportions lying within the
range of variability was caused by the stochastic process
governing the choice of destinations. The effect of much
larger initial amounts of food was explored by supplying
initial masses of 4.0, 2.0, and 1.0 and 40.0, 20.0, and 10.0
units of food. Table 5 indicates that the proportions of
the population occupying the patches are independent of
the initial masses of food.

MIXTURES OF FREE AND SITE-
FAITHFUL ANIMALS FORAGING IN
TWO PATCHES

Hungry Animals Searching for Food
The settlement and continued feeding of animals at a
particular site has no significant effect on the mean
proportions of the population feeding at each patch if the
TABLE 6

The Influence of Animals That Stay Feeding at One Patch on the Overall
Mean Distributions of Foragers in an Environment Containing Two
Patches

No. stayers n0 n1 n0 �n1

0 10.326 21.062 0.490
5 10.248 21.093 0.486

10 10.341 21.093 0.490
15 10.357 21.093 0.491
20 10.341 21.093 0.490
25 6.705 25.000 0.268

Note. The simulation involved 32 foragers in all. The patches
regenerated at the rates a0=0.01 and a1=0.02. The travelling time
between patches was tt=1. The parameters of the foragers were
v=0.08 and r=1�128. The simulation ran for 8000 time units; the
means were calculated after discarding the results for the first 200 of
the duration of each simulation. The ideal free ratio is n0 �n1=0.5.

proportion that is settled is less than or equal to the
proportion of the total regeneration of food taking place
at that patch, such that at patch :, n: �n<a: �� p

;=1 a; ,
where n: is the number of settled, site-faithful, animals at
patch :, and n=� p

:=1 n: is the total number of animals
in the environment containing p patches of food, of which
the patch ; is regenerating at the rate a; . An example of
the effects of site-fidelity is shown in Table 6. Thirty-two
animals foraging in two patches were simulated. Dif-
ferent numbers of settled animals were placed at Patch 1.
The expected average occupancy was 1�3 of the popula-
tion at Patch 0 and 2�3 at Patch 1. Table 6 shows that the
presence of stayers has hardly any effect on the overall
distribution until more than 2�3 of the foragers are settled
at Patch 1.

THE EFFECT OF INTRASPECIFIC
INTERACTION

Depletion of food and hunger cause the animals to
move from patch to patch. As well as competing by
exploitation, animals may also interact directly, altering
each other's access to the food, typically reducing it; but
for some species the feeding rate of the individual is
increased as the number of conspecifics in the feeding
area increases: among flock-feeding wading birds the cost
per individual of vigilance may be reduced as the flock
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increases in size, enabling individuals to feed faster in
larger flocks than in smaller ones. The simple case in
which the standing crops at patches were not depleted
by the feeding animals, but where the rate of feeding of



an individual was inversely proportional to the number
of individuals feeding at the patch, was discussed by
Ollason (1987). It was shown that in this case the distri-
bution of animals approximated closely to the ideal free
distribution of Type I. More complex interactions among
animals may be modelled by making Ri (F:), the func-
tional response, a function of n: , the number of animals
in patch :, competition being represented by a decreasing
function of n: and facilitation by an increasing function.
A simple representation of this effect is provided by the
function

v(n)=(v1&v�) e&u(n&1)+v�

Ri (F: , n)=v(n) F:

u=
1

(n1�2&1)
ln(2),

where n is the number of animals at the patch, v1 is the
specific feeding rate when the animal is alone, v� is the
specific feeding rate of the animal in the presence of an
infinite number of conspecifics, and n1�2 is the number of
animals at a patch that causes the specific feeding rate to
take the mean of the maximum and minimum feeding
rates, (v1+v�)�2. If the animals are competing v1>v�

and if facilitating v1<v� . Such interaction could also
have a similar effect on metabolic costs. This too could be
modelled by making r within the patch a function of the
number of occupants. An example of the effects of inter-
ference by suppression of feeding rate is shown in Table 7.

TABLE 7

The Influence of Interference Competition of Differing Intensities on the
Mean Distributions of Foragers in an Environment Containing Two
Patches

n1�2 n0 n1 n0 �n1

3 2.271 57.145 0.040
4 5.279 54.103 0.098
5 11.231 48.110 0.233
8 17.770 32.381 0.549

15 18.795 31.654 0.594
30 18.173 33.720 0.539
60 18.192 33.748 0.539

120 18.180 33.740 0.539

Note. The simulation involved 60 foragers in all. The patches
regenerated at rates a0=0.001 and a1=0.002. The travelling time
between patches was tt=25. The parameters of the foragers were
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v1=0.008, v�=0, and r=1�128. The simulation ran for 8000 time
units; the means were calculated after discarding the results for the first
200 of the duration of each simulation. Except when interference is
very severe (n1�2 small), it has little effect on the mean distribution of the
foragers. The ideal free ratio is n0 �n1=0.5.
The expected proportion for large n is 1�3 of the feed-
ing population at Patch 0 and 2�3 at Patch 1. Except
when n1�2 is very small, the population is distributed
almost exactly in the ideal free distribution, implying that
interference is unimportant in determining the equilibria
unless extremely intense.

An example of the consequence of facilitation of
feeding is shown in Fig. 1.

Thirty foragers were simulated foraging at two patches,
regenerating at the rates, a0=0.001, a1=0.002, v1=0.008,
v�=0.016, and n1�2=5. The ideal free distribution there-
fore predicts that the proportion of feeding animals at
Patch 0 will be 1�3 and at Patch 1 will be 2�3. Although the
numbers of foragers at the patches fluctuates greatly, the
mean number of animals occupying Patch 0 was 9.845, and
Patch 1 was 16.504, making the proportion of the feeding
animals feeding at Patch 0 equal to 0.374 and the propor-
tion at Patch 1 equal to 0.626. In contrast interference,
simulated by setting v1=0.008, v�=0.004, and n1�2=5,
produces only very small departures from the ideal free
distribution of Type II (Fig. 2).

In the latter simulation the mean number of animals
occupying Patch 0 was 9.907, and at Patch 1 the mean

TABLE 8

The Foraging Behaviour of 30 Similar Individuals Was Simulated in an
Environment Containing Two Patches of Food, Each Patch Regenerat-
ing at a Constant Rate

n1�2 pa0=1�2 pa0=1�3 pa0=1�5 pa0=1�9

5 pn0 0.499 0.319 0.174 0.103
pF0 0.499 0.148 0.04 0.018

10 pn0 0.500 0.340 0.204 0.108
pF0 0.500 0.323 0.20 0.151

20 pn0 0.500 0.334 0.203 0.112
pF 0.500 0.41 0.344 0.304

40 pn0 0.498 0.336 0.205 0.111
pF0 0.50 0.456 0.41 0.402

Note. In the four different environments shown, Patch 0 regenerates
at a0 , Patch 1 at a1 . The rate of regeneration at Patch 1 was always the
same (a1=0.04), and the regeneration of Patch 0 was a0=0.005, 0.01,
and 0.04. For all animals the maximum specific feeding rate, v1=0.08,
and the minimum specific feeding rate was v�=0 and r=1�128. The
proportion of the total rate of regeneration at Patch 0 is denoted by
pa0 , the proportion of the feeding foragers at Patch 0 is denoted by pn0 ,
and the proportion of the standing crop of food at Patch 0 is denoted
by pF0 . The rows of the table shows the equilibrium proportions of
food and foragers when all the foragers are equal competitors, and the
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presence of conspecifics decreases the feeding rate. The smaller the
value of n1�2 , the more intense the competition. Notice that under the
Type II interpretation, the distribution is close to the ideal free distribu-
tion, while under the Type I interpretation it departs increasingly as the
intensity of the interference decreases.
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FIG. 1. The numbers of foragers searching for food at Patch 0, regene
lines). The straight lines indicate mean numbers of occupants over the d
intervals of 50 time units. The constant lines indicate the mean number
decayed to insignificance. The animals facilate each other's feeding rate.
fact that as one individual leaves a patch the feeding rates of the remaining a
proportion of feeding animals feeding at Patch 0 is 1�3 and at Patch 1 is 2�
respectively. This represents a small degree of undermatching (v1=0.08,

number was 19.845. In facilitation, the departure of an
individual depresses the feeding rate of the other
individuals at the patch, causing more individuals to
leave almost immediately (Fig. 1). In competition, the
departure of one individual increases the rate of feeding
at the patch, and this reduces the likelihood that others

FIG. 2. The numbers of foragers searching for food at Patch 0, regene
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line). Consecutive points in the curves are sampled at intervals of 50 time un
the patch, calculated after transient behaviour has decayed to insignifican
variance in the numbers occupying the patches is caused by the fact that as
are increased, causing the others to remain feeding. The expected proportio
observed mean proportions were 0.3330 and 0.6670 at Patches 0 and 1, resp
ng at rate 0.01 (solid lines), and Patch 1, regenerating at rate 0.02 (dotted
tion of the simulation. Consecutive points in the curves are sampled at
f animals feeding at the patch, calculated after transient behaviour has
e large variance in the numbers occupying the patches is caused by the
als are reduced, causing others to leave almost immediately. The expected

he observed mean proportions were 0.3736 and 0.6264 at patches 0 and 1,
=0.016, n1�2=5, r=1�128).

ing at rate 0.01 (solid line), and Patch 1, regenerating at rate 0.02 (dotted

will leave (Fig. 2). Despite the marked differences in the
dynamics the mean distributions of animals in the two
simulations are very similar.

The effect of the intensity of interference manifested by
otherwise equal competitors has been investigated by
simulating populations of animals of the same type, but

97
its. The constant lines indicate the mean numbers of animals feeding at
ce. The animals interfere reducing each other's feeding rate. The small
one individual leaves a patch the feeding rates of the remaining animals
n of feeding animals feeding at Patch 0 is 1�3 and at Patch 1 is 2�3; the
ectively (v1=0.008, v�=0.004, n1�2=5).
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with different values of n1�2 . Table 8 indicates that the
intensity of the interference has very little effect on the
proportions of the population foraging at the different
patches, the distribution being close to the ideal free
distribution of Type II, and that as competition becomes
intense (n1�2 becoming small), there is some suggestion
that the distribution approaches that predicted by the
Type I interpretation. The exact form of interaction func-
tion may be very important in determining the overall
equilibrium distributions. The function we chose to
represent interaction was chosen to have the following
general properties: it is strictly monotonic and depending
on the relationship between v1 and v� can be either
increasing or decreasing, representing both facilitation
and interference, respectively. The parameter n1�2 is a
convenient index of the intensity of interaction. For most
normal cases of interference v� will be equal to 0.
However, in cases of facilitation it is likely that v� would
take some finite positive value.

MANY UNIDEAL ANIMALS (UNEQUAL
COMPETITORS) FORAGING IN TWO
PATCHES

Inequality may be simulated by assigning a different
value of the functional response to each animal of the
population of foragers, and in the linear case this is a
different value of v, the specific feeding rate. Animals with

FIG. 3. The numbers of foragers searching for food at Patch 0, regene
line). Consecutive points in the curves are sampled at intervals of 50 tim
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the patch, calculated after transient behaviour has decayed to insignificance
expressed through exploitation competition. The large variance in the nu
individuals collect together, and as they move from patch to patch they dri
expected proportion of feeding animals feeding at Patch 0 is 1�3 and at Pa
Patches 0 and 1, respectively.
ing at rate 0.01 (solid line), and Patch 1, regenerating at rate 0.02 (dotted
its. The constant lines indicate the mean numbers of animals feeding at

larger values of v will feed faster than those with smaller
values, implying that animals with the larger values of v
are the more effective competitors. An example of the
results of allowing such unequal individuals to forage in
two patches follows. The environment contained two
patches of food separated by a travelling time, tt=1,
Patch 0 with a regeneration rate a0=0.01, and Patch 1
with a regeneration rate a1=0.02. The animals possessed
the same value of r, the metabolic rate, with r=1�128.
Each of 32 foragers had its own rank i=1, 2, ..., 32 and
corresponding vi , and vi=v1+(i&1) $v, where v1=0.08
and $v=0.05. (Note that in this simulation v is independent
of the number of animals present at a patch, implying
that the animals come into exploitation competition
only).

Figure 3 shows that the mean proportions of the
population approximate closely to the ideal free distribu-
tion of Type II, 0.327 and 0.673 (expected 1�3 and 2�3),
but the occupancy of the patches varies with time and the
degree of variation is a function of the difference between
the most dominant (fastest feeding) and the least domi-
nant (slowest feeding) individuals. The mean specific
feeding rate, v� , is (v1+vn)�2, and the mean rank, r� , is
(1+n)�2. If the animals are assorting themselves ran-
domly, the mean rank per individual occupying either
patch will approximate to r� , but if the animals collect
together in a nonrandom way, the mean rank of the
individuals at a patch will be a function of the number of
animals occupying the patch.
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. The foragers are linearly ranked in dominance, and this dominance is
mbers occupying the patches is caused by the fact that the dominant
ve subordinates out and the subordinates travel to the other patch. The
tch 1 is 2�3; the observed mean proportions were 0.3267 and 0.6731 at



FIG. 4. The relationship between the mean rank of the individuals
at Patch 0 and the number of animals occupying the patch. The strong
negative correlation between the variables indicates that the animals
are assorted such that animals with large ranks indicating large values
of the specific feeding rate v drive others from Patch 0. The expected
number of animals feeding at Patch 0 is 10.4574. The mean rank is 16.5.

Figure 4 shows the relationship between mean rank of
individuals at Patch 0 as a function of the number of
animals present. There is a strongly negative relationship
between the mean rank of the occupying animals and
the number occupying the patch. This shows that the
dominant animals collect together and implies that their
feeding activities drive the subordinates to the other
patch.

Suppose, alternatively, that all the animals share the
same value of v1 , the specific feeding rate when foraging
alone, and v� , the specific feeding rate in the company
of an indefinitely large number of conspecifics, with
v1>v� , and that the animals possess different values of
n1�2 , the number of conspecifics at the patch that reduce
the feeding rate to (v1+v�)�2. A large value of n1�2

implies that the feeding rate of an individual is reduced
relatively little as the number of foragers at the patch
increases. Dominant animals are therefore those with
large values of n1�2 and subordinates those with small
values. The parameters used in this simulation were as
above, but with the following exceptions: for all animals
v1 was set to 0.08 and v� to 0.02, for the i th animal,

n1�2, i=n1�2, 1+(i&1) $n, (15)

where $n=0.5. This simulation can therefore be inter-
preted as representing interference competition between
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unequal individuals.
In contrast to the first simulation, this one passed

rapidly to equilibrium in all cases investigated, the
equilibria undermatching the relative rates of supply
and dominant individuals occupying the more rapidly
regenerating patch preferentially. The mean number of
animals at Patch 0 was 12.085 and at Patch 1 was 18.803,
the proportions being 0.390 (expected 1�3) and 0.609
(expected 2�3). If the animals were assorted exactly by
rank the expected mean ranks are (1+12)�2=6.5 and
(13+32)�2=22.5. The mean rank of animals at Patch 0
was 9.000 and at Patch 1 was 21.6316, indicating that the
observed distribution of animals by rank is close to that
predicted if the dominant animals were always found at
Patch 1 and the subordinates at Patch 0.

Under exploitation competition the ideal free distribu-
tion of the animals implies that each one gets the same
proportion of its food from either patch, but that the
dominant animals feed, overall, faster than the subor-
dinates; under interference competition all animals feed
at the same rate, and the interference causes the observed
distribution to depart from the ideal free distribution and
assorts the individuals into the different patches. This
assortment process has some intriguing properties that
are revealed by exploring the consequences of gradients
of the intensity of intraspecific competition.

A series of simulations was carried out in an environ-
ment containing two patches of food regenerating at
rates a0 and a1 , a1=0.04, and a0=0.005, 0.01, 0.02, and
0.04 in different simulations. The patches were separated
by a travelling time, tt=1. The simulation used 30
foragers each with different specific feeding rates, vi , set
as defined by Eq. (15), but with differing values of $n, the
gradient of the competitive abilities of the animals. If $n
is large, this implies that the specific feeding rate of high
ranking animals is reduced relatively little by the
presence of conspecifics feeding at the same patch. The
results of the simulations are shown in Table 9.

When the gradient of competitive ability is steep ($n
large), the presence of conspecifics greatly reduces the
average feeding rate of the individuals, the standing crop
of food builds up at the patch, and the ideal free distribu-
tion arises, seemingly with respect to standing crop (the
Type I interpretation), rather than with respect to the
relative rates of regeneration (the Type II interpretation).
This explains the close agreement between the mean
proportion of standing crop at patch 0, pF0 , and the
mean proportion of foragers at patch 0, pn0 , below the
diagonal of Table 9. Where the gradient of competition is
shallow pn0 agrees more closely with the proportion of
total regeneration rate at patch 0, pa0 , (entries above the
diagonal in bold type). In the absence of interference the
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proportion of animals feeding at a patch is independent
of the standing crop of food at the patch and, indeed,
the standing crop of food at each patch in the system
will be the same, the distribution of the foragers being



TABLE 9

The Result of Simulating Populations of 30 Foragers Coming into
Interference Competition for Food at Two Patches

$n pa0=1�2 pa0=1�3 pa0=1�5 pa0=1�9

0 pn0 0.498 0.318 0.174 0.103
pF0 0.499 0.148 0.050 0.017

0.25 pn0 0.499 0.468 0.327 0.227
pF0 0.498 0.462 0.277 0.151

0.5 pn0 0.503 0.474 0.337 0.236
pF0 0.502 0.479 0.335 0.214

1.0 pn0 0.500 0.474 0.318 0.220
pF0 0.500 0.479 0.37 0.273

Note. The parameters of the simulations are the rate of regenera-
tion of food at Patch 0, a0=0.040, 0.020, 0.010, and 0.005, and at Patch
1, a1=0.04. The proportion of the total rate of regeneration that takes
place at Patch 0 is denoted by pa0 . The mean proportion of the foragers
at Patch 0 is denoted by pn0 . The patches are separated by a travelling
time tt=1. The specific metabolic rate r=1�128. Each animal has a
numerical rank i, i=1, 2, 3, ..., 30, and a specific feeding rate vi . The
feeding rate of each animal alone, v1=0.08, and v�=0, and for
n1�2, 1=5. (This means that feeding at a patch with five conspecifics the
specific feeding rate of that animal of rank 1 is reduced to half of that
of v1 .) For the animal of rank i, n1�2, i=n1�2, 1+(i&1) $n, where $n
takes the values shown above. The feeding rate of individuals of higher
rank is reduced less by the presence of a given number of conspecifics
than is the feeding rate of individuals of lower rank. In other words, the
larger the value of $n, the more extreme is the difference between the
competitive ability of the individuals. When the gradient of competitive
ability is steep, the presence of conspecifics reduces the average feeding
rate of the individuals to the extent that food builds up at the patch,
giving the appearance of the ideal free distribution under the Type I
interpretation, and this is the cause of the close agreement between pF0

and pn0 below the diagonal of the table. Where the gradient of competi-
tion is less, pn0 agrees more closely with pa0 (entries above the diagonal
in bold type).

determined only by the relative rates of regeneration of
the patches.

DISCUSSION

Despite the fact that the model makes no explicit
reference to optimality theory, its predictions depart only
slightly from the ideal free distribution of Type II, and
indeed for a single animal foraging in an environment
containing two patches, if travelling time and metabolic
costs are negligible, the equilibrium distribution is
exactly as predicted by the ideal free model. In general
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the model predicts distributions that undermatch the
ideal free distribution, and undermatching has been
widely observed in nature (Kennedy and Gray, 1997). An
important feature of the model is that the distribution of
animals predicted arises as a result of the distribution of
staying times of the individuals. Other models account-
ing for the ideal free distribution are necessarily silent
about the detailed processes causing the equilibria to
arise.

For a few experimental systems, it has been discovered
that the distribution of foragers, for example wood-ants
(Formica aquilonia), approximated very closely to the
ideal free distribution (Lamb and Ollason, 1993). When
the behaviour of the ants had established the equi-
librium, at each patch there was a pool of solution at
which the ants fed. Had there been no pools, there would
have been no feeding ants. Other studies of the foraging
behaviour of animals in systems containing two regenerat-
ing patches include those of Milinski, (1979, 1984) and
Harper, (1982), but these differ from the work of Lamb and
Ollason because the food was added as discrete particles,
rather than continuously, and because of this, the standing
crop of food fluctuated as an item was added and was
ingested almost, but not exactly, immediately by a feeding
animal. The consequence of this is that in these experiments
also there was, on average, a finite nonzero standing crop
of food, contrary to the assumption of zero standing
crop.

The model is an extreme simplification of the physiol-
ogy of an animal, but it can be refined as required. The
simple extensions of the model, allometric scaling of the
specific metabolic rate, incorporation of the Holling
Type II functional response, had little effect, the equi-
librial distributions departing only a little from those
generated by the simple model. If the model is to be
applied to the prediction of the distribution of popula-
tions of particular animals, other biological properties
are likely to be important: The gut of an animal is finite
and, when filled, the animal may stop feeding. There is
also a maximum of reserve tissue that an animal can
embody. Finally, there is a lower limit to the reserves that
allow an animal to survive. The processes of ingestion,
digestion, and incorporation and the katabolism of
resources can all be modelled and will play their part in
determining the set of conditions in which the animal will
become hungry.

The model in Eq. (2) has already been elaborated
upon to incorporate aspects of the known physiology of
the kittiwake, Rissa tridactyla. The physiological model
represents the adult bird as two compartments, a gut,
into which food passes and is digested, and a body of
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reserve tissue, from which metabolic costs are met. There
is an additional mass of structural tissue, skeleton, etc.,
which imposes a fixed maintenance cost, but which is
never available for maintenance. This elaborated version



has been applied, in preliminary studies, to predict the
spatial distribution of foraging kittiwakes over the North
Sea caused by the heterogeneous distribution of their
food (Ollason et al., 1997).

In homoiotherms, smaller animals have higher specific
metabolic rates than larger ones (Peters, 1983). The
model, dependent on the specific metabolic rate, implies
that the degree of undermatching ought to increase with
increasing specific metabolic rate and therefore with
decreasing body mass in these animals. Such predictions
are unique to this model and open up new areas of
empirical inquiry.

The representation of interference and facilitation is
very crude: the dependence on exponential processes has
a distant connection to notions about random search in
an increasingly crowded environment, but there is no
empirical justification for the choice of the specific func-
tion. The simulations show that the study of the effects of
competition is complicated by the qualitatively different
effects of interference and exploitation which will almost
certainly be operating to different degrees from time to
time as populations of real animals search for food in the
real environment.

Perhaps the most interesting result to arise from the
simulation of interference competition is the feedback
from the behaviour of the animals to the standing crop of
food. The results provide a mechanism by which, for
certain ranges of parameters, interference between com-
peting foragers can lead to equilibria that appear to be
close to those predicted by the Type I interpretation,
even though two fundamental requirements of the Type I
interpretation (no depletion and no regeneration) do not
apply. The correct interpretation is that the interference
causes the equilibrium to depart widely from the predic-
tions of the Type 2 interpretation. This finding is intrigu-
ing because it provides evidence that approximation to
the Type I interpretation need not imply that its underly-
ing assumptions are satisfied.

The mapping from food to body mass may be com-
plicated and difficult to evaluate, but is, in principle,
evaluable. The dependence on body mass offers an escape
from one of the conceptual problems implicit in conven-
tional optimization theory, its dependence on the iden-
tification, a priori, of a single currency. The process of
metabolism is the cause of changes of behaviour and the
value of an item of food can be measured in terms of its
contribution to the replacement of metabolic reserves.
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Finally, we propose that the same processes of physiol-
ogy and behaviour will apply in all circumstances in
which animals forage. Other forms of foraging behaviour,
such as central place foraging, and the selection of a diet
(Ollason and Lamb, 1995), can be modelled using the same
principles, and when the parameters are evaluated for a
particular animal its foraging behaviour can be predicted
in all conceivable circumstances.

It is, perhaps, surprising that the interplay of physiol-
ogy and behaviour alone, without explicit reference to
natural selection, should provide so comprehensive an
account of the origin of the approximately ideal more or
less free distribution, but in view of the centrality of
evolutionary arguments to other accounts, it is worth-
while discussing the elements of the model that might be
amenable to evolutionary explanation.

On the basis of the results we suggest that undermatch-
ing is to be expected from the physiological consequences
of metabolism. From the perspective of optimisation
modelling these consequences could be regarded as
constraints imposed by physiology on natural selection
which would otherwise optimise the behaviour. From the
point of view of the physiological model it is absurd
to regard the specific metabolic rate, a fundamental
necessity for the maintenance of life, as a constraint,
preventing natural selection from instantiating the
optimal foraging that would be observed if the animal
possessed the optimal zero-specific metabolic rate.

Despite these reservations, the behaviour of the model
is adaptive and may not be so very far away from
optimisation models of foraging. Clearly, the model
predicts behaviour that in the view of many biologists
has been satisfactorily accounted for by the Ideal Free
Distribution. The locality of the physiological model is
the fundamental distinguishing feature that sets it apart
from optimisation models. The physiological model
makes no assertion about the ontological status of the
environment; it depends on no characterisation of the
environment from an omniscient point of view; instead,
it derives the behaviour of the foraging animals from
an assessment of their physiological needs and the
behaviour by which they satisfy their needs, taking into
account both the local availability of food and the local
density of the other animals feeding on it. To the extent
that the animal is doing ``the best it can,'' its behaviour
could be regarded as optimal, but among the infinity of
ways that the animal could do the best it can, no single
way can be identified as the best of all. What is interesting
is not that animals forage more or less optimally, but that
it is possible to account, using extraordinarily simple rules,
for the small, consistent departures of the behaviour of

101
animals from that predicted by optimisation methods. In
broader terms still, the physiological model might be
seen as an account epistemologically detached from the
theory of evolution by natural selection. No animal,



however it was brought into existence, would be able to
survive long enough to reproduce if it was unable to
determine whether or not the food it chose to eat was
satisfying its hunger. Foraging behaviour approximating
closely to optimal foraging emerges automatically from
the behaviour that satisfies hunger. Therefore, optimal
foraging is not necessarily connected to natural selection,
because there could never have been animals that foraged
suboptimally, and therefore, no mutant optimal forager
could ever have invaded the suboptimal population.

The model, by representing the utilisation of food as
well as its collection, provides an account, not of the
evolutionary game that leads to the ideal free distribu-
tion, but of the physiological processes that lead to the
approximately ideal, more or less free distribution of real
animals.

APPENDIX 1

The time budget of one animal foraging in an
environment containing two patches of
regenerating food

Here we present the proofs of the analytical results
(Eqs. 11 and 12) for the simple model at equilibrium,
where only one animal, indexed by i, is present in an
environment containing only two patches. Equation (11)
shows that large travelling times result in undermatching
and in the limit tt � � the forager has no preference for
either patch. Equation (12) shows that approximation of
the solution to the Type II interpretation of the ideal free
distribution becomes exact in the limit r � 0 and tt � 0.
Equations (1), (2), (4), and (5) give the dynamical equa-
tions for the model which can be solved for each visit to
a patch to give the general solution for the model not
necessarily at equilibrium (Eqs. 6a and 6b). We use Eqs.
(8) and (9) together with the requirement of equilibrium
to obtain the behaviour of the model at equilibrium.

The patches are labelled 0 and 1 and have regeneration
rates a0 and a1 , respectively. The method could be
extended to more than two patches, although the algebra
becomes very unwieldy. Note that in the following
arguments, each time the animal arrives at patch 0 it
stays ti, 0 time units feeding, then it travels tt time units to
patch 1, staying at patch 1 for ti, 1 time units, and then
travelling tt time units back to patch zero. Hence the
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total time spent on one circuit of both patches is
ti, 0+ti, 1+2tt . The quantities 2F0 and 2F1 denote the
changes in the standing crop of food between the arrival
and the departure of the animal at Patch 0 and Patch 1,
respectively. When the system is at equilibrium, 2F0 and
2F1 are constants. In the following arguments, we
continuously rescale time, so that t=0 at the instant of
arrival at a patch. The equations dealing with feeding are
evaluated separately from the equations dealing with
travelling.

At equilibrium, the depletion of the standing crop
while the animal is foraging on the patch is equal to the
regeneration of the standing crop while the animal is
foraging elsewhere. This can be expressed by

2F0 =F0(t i, 0)&F0(0)=&a0(ti, 1+2tt) (1.1a)

2F1=F1(t i2)&F1(0)=&a1(t i, 0+2tt). (1.1b)

Similarly, at equilibrium the value of reserve tissue of an
animal entering patch 1 is equal to the value of reserve
tissue when the animal left patch 0, discounted by the
metabolic cost of travelling between the patches,

mi, 0(0)=mi, 1(ti, 1) e&rtt (1.1c)

mi, 1(0)=mi, 0(ti, 0) e&rtt , (1.1d)

where tt is the travelling time between the patches, r is the
specific metabolic rate of the animal, and at Patch 0, t i, 0

is the time spent foraging, F0(0) is the standing crop,
mi, 0(0) is the mass of the animal's reserve tissue when it
starts feeding, and mi, 0(ti, 0) is the mass of the animal's
reserve tissue when it leaves. The variables with the sub-
script 1 refer to the corresponding variables with respect
to Patch 1.

In the case of large travelling times Eqs. (1.1c) and
(1.1d) give

lim
tt � �

mi, 0(0)=0 (1.2a)

lim
tt � �

mi, 1(0)=0. (1.2b)

Substituting these results into Eq. (10) gives

lim
tt � �

ti, 0=t i, 1=
1

r&v
ln \r

v+= t̂i , (1.3)

where v is the specific feeding rate of the animal. So, as
the travelling time increases, the time spent foraging on
any patch approaches the extremal possible staying time.
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By simply extending the above argument it can be shown
that Eq. (1.3), with t̂i given by the extremal value of
Eq. (10), is true for any number of foragers on any
number of patches.



Next to be considered is the case when metabolic costs
become negligible, (r � 0). By dividing Eq. (1.1a) by
Eq. (1.1b) we obtain

2F0

2F1

=
a0(t i, 1+2tt)
a1(t i, 0+2tt)

. (1.4)

It will be shown that in limit, as r � 0, 2F0 �2F1 � 1,
which implies the result given in Eq. (12).

We rewrite Eq. (10) as

F:(0)&F:(�)

=
r
v

v&r
g(ti, :)

(mi, :(0)&mi, :(�)) e&rti, : (1.5)

where g(ti, :)=r exp(&vti, :)&v exp(&rti, :), F:(�)=
a: �v, and mi, :(�)=a: �r. Substituting Eq. (1.5) into
Eq. (9) gives an expression for mi, 0(0):

Ami, 0(0)=mi, 1(�) g(ti, 0)(g(ti, 1)+(r&v) e(r&v) ti, 0)

&m0(�)(r&v) e&(r&v) ti, 1&rtt

_(g(ti, 0)+(r&v) e&(r&v) ti, 0), (1.6)

where A = g(t i, 0) g(t i, 1) exp(rtt) & (v&r)2 exp(&rtt)
exp(&(r+v)(ti, 0+ti, 1)). Similarly, an expression for
mi, 1(0) can be calculated to have the same form as
Eq. (1.6), but with the indices 0 and 1 reversed.

In the limit, as r � 0, Eq. (1.6) can be written as

Ami, 0(0)=mi, 0(�) rve&vti, 0(e&vti, 1(1&vt i, 1)&1)

+mi, 1(�) rve&vti, 1(e&vti, 0(1&vti, 0)&1)

+O(r2) (1.7)

and similarly for mi, 1(0). Because the right-hand side of
Eq. (1.7) remains the same when the indices 0 and 1 are
exchanged, it follows that

lim
r � 0

mi, 0(0)=m i, 1(0), (1.8)

and substituting this result into Eqs. (1.1c) and (1.1d)

Hungry Animals Searching for Food
also gives

lim
r � 0

m i, 0(t i, 0)=m i, 1(t i, 1). (1.9)
Finally, by substituting this result into the solutions for
F: and mi, : (Eqs. 8 and 9), it follows that

lim
r � 0

2F0=2F1 , (1.10)

which can be used in Eq. (1.4) to arrive at the result

lim
r � 0

t i, 1+2tt

ti, 0+2tt

a0

a1

=1, (1.11)

which after rearrangement gives the result presented in
Eq. (12).

APPENDIX 2

One animal foraging in an environment
containing more than two patches all
regenerating at the same constant rate

An investigation of the relationship between the local
model developed above and optimal foraging theory
indicates that in the special case of foraging around a
closed trapline containing patches of food regenerating at
the same constant rate, each patch separated from the
next one visited by the same constant travelling time tt ,
as r � 0, if the number of patches in the trapline becomes
indefinitely large, the behaviour of the model approaches
that predicted by the marginal value theorem. Suppose
that the environment contains p patches, that each patch
regenerates at rate a, and that each patch is separated
from its neighbour by a travelling time of tt . Each patch
is assigned an index :=0, 1, 2, ..., p&1 and arranged in
the form of a closed trapline, such that on the n th visit
the animal is at patch n mod p.

Since the patches all regenerate at the same rate, it will
be assumed that the behaviour of the animal will come to
an equilibrium such that it spends the same time at each
patch. Numerical simulations discussed in the body of
the paper provide evidence that such equilibria, while
perhaps not unique, do arise. In this case Eqs. (1.1a�d)
can be rewritten as

2F: =F:(ti, :)&F:(0)
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= &a \ :
p&1

;=0

t i, ;&t i, :+ ptt + (2.1a)

mi, :(0)=mi, :(ti, :) e&rtt, (2.1b)



where : and ;=0, ..., p&1, r is the animal's specific
metabolic rate, ti, : is the time spent feeding at patch :,
F:(0) is the standing crop and mi, :(0) the mass of the
animal's reserve tissue when it starts foraging at patch :,
and F:(ti, :) and mi, :(t i, :) are, respectively, the mass of
food remaining at the patch and the mass of its reserve
tissue when the animal leaves patch :.

By substituting Eq. (2.1b) into the general solution for
mi, :(t) (Eq. 9), discarding the patch subscripts because
each patch will be identical when the animal arrives to
feed, and rearranging, it follows that

v&r
g(ti)

(mi (0)&mi (�)) e&rti

=
mi (�)(v&r)(ertt&1)

(er(tt+ti)(ve&vti&re&rti)&(v&r) e&vti)
(2.2)

where g(ti)=r exp(&vti)&v exp(&rti).
The left-hand side of Eq. (2.2) can be replaced by

F(0)&F(ti) using Eqs. (1.5), (8), and (2.1a) to give

( p&1) ti+ ptt

=
v&r

v
(e&rtt&1)(1&e&vti)

((v&r) e&vti&e&r(ti+tt)(ve&vti&re&rti))
.

(2.3)

In the limit as r � 0, Eq. (2.3) becomes

lim
r � 0 \

p&1
( p&1) t i+ ptt +=

ve&vti

1&e&vti
. (2.4)

In the limit, as p � �, Eq. (2.4) yields the optimal
solution obtained from the marginal value theorem
(Charnov, 1976). This can be shown by considering the
feeding rate of one animal on one type of patch:

vF(ti)=vF(0) e&vti, (2.5)

where F(0) is the standing crop of food when the animal
first started feeding at the patch, and ti is the time spent
feeding. Using this rate of feeding, F� , the mean rate of
intake of food in the absence of metabolic costs may be
expressed as

F� B
�ti

0
vF(t) dt

. (2.6)
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tt+ti

The marginal value theorem states that the optimal
solution is the one that maximizes F� . By differentiating
Eq. (2.6) with respect to ti and equating the derivative to
zero, the maximum rate of intake of food occurs when the
staying time ti satisfies

ve&vti=
1&e&vti

t i+tt
, (2.7)

which is also the limit of Eq. (2.4). Notice, however, that
the mathematics implies implausible biology. At equi-
librium each patch of an indefinitely long trapline will
contain the same indefinitely large amount of food by the
time the animal revisits a given patch, and in the presence
of such an amount of food, the requirement that v, the
specific feeding rate, is constant will not be even approxi-
mately true for a real animal. Furthermore, the specific
metabolic rate of a real animal cannot approach zero.
The value of the approach is that it implies the physio-
logical conditions of the animal that are necessary for the
animal to produce the optimal behaviour, and it predicts
the expected departures as a function of the physiological
properties of the animal and its responses to the local
properties of the environment in which it finds itself.
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