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Abstract	52	

Pseudomonas	protegens	are	multi-talented	plant-colonizing	bacteria	 that	suppress	plant	pathogens	53	

and	 stimulate	 plant	 defenses.	 In	 addition,	 they	 are	 capable	 of	 invading	 and	 killing	 agriculturally	54	

important	plant	pest	insects	which	makes	them	promising	candidates	for	biocontrol	applications.	Here	55	

we	 assessed	 the	 role	 of	 type	 VI	 secretion	 system	 (T6SS)	 components	 of	 type	 strain	 CHA0	 during	56	

interaction	with	larvae	of	the	cabbage	pest	Pieris	brassicae.	We	show	that	the	T6SS	core	apparatus	and	57	

two	VgrG	modules,	 encompassing	 the	 respective	 T6SS	 spikes	 (VgrG1a	 and	VgrG1b)	 and	 associated	58	

effectors	 (RhsA	 and	 Ghh1),	 contribute	 significantly	 to	 insect	 pathogenicity	 of	 P.	 protegens	 in	 oral	59	

infection	assays,	but	not	when	bacteria	are	injected	directly	into	the	hemolymph.	Monitoring	of	the	60	

colonization	levels	of	P.	protegens	in	the	gut,	hemolymph	and	excrements	of	the	insect	larvae	revealed	61	

that	 the	 invader	relies	on	T6SS	and	VgrG1a	module	 function	 to	promote	hemocoel	 invasion.	A	16S	62	

metagenomic	analysis	demonstrated	that	T6SS-supported	invasion	by	P.	protegens	induces	significant	63	

changes	in	the	insect	gut	microbiome	affecting	notably	Enterobacteriaceae,	a	dominant	group	of	the	64	

commensal	gut	bacteria.	Our	study	supports	the	concept	that	pathogens	deploy	T6SS-based	strategies	65	

to	disrupt	the	commensal	microbiota	in	order	to	promote	host	colonization	and	pathogenesis.	66	

	 	67	
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Introduction	68	

Bacteria	of	the	Pseudomonas	fluorescens	species	complex	[1]	are	commonly	associated	with	plant	and	69	

soil	 environments	 and	 many	 exert	 plant-beneficial	 functions	 including	 the	 suppression	 of	 plant	70	

diseases	and	stimulation	of	plant	defenses	 [2,	3].	Moreover,	a	 subgroup	encompassing	 the	species	71	

Pseudomonas	 protegens	 and	 Pseudomonas	 chlororaphis	 is	 capable	 of	 engaging	 in	 pathogenic	72	

interactions	with	plant	pest	insects	[4,	5].	The	insect-pathogenic	and	plant-beneficial	activities	and	the	73	

capacity	 to	 colonize	 the	 two	 contrasting	 hosts	 makes	 these	 bacteria	 promising	 candidates	 for	74	

biocontrol	applications	in	agriculture.	75	

P.	protegens	type	strain	CHA0	investigated	here	is	among	the	best-characterized	environmental	76	

bacteria	with	plant-protecting	activities	[4–7].	CHA0	exhibits	potent	oral	 insecticidal	activity	toward	77	

herbivorous	 larvae	 of	 several	 major	 Lepidopteran	 pest	 insects	 of	 agricultural	 crops	 [4,	 5,	 8,	 9].	 A	78	

number	of	virulence	factors	contributing	to	insect	pathogenicity	have	been	identified	in	P.	protegens	79	

CHA0	and	the	closely	related	strain	Pf-5	[10].	They	include	several	toxins	(Fit	toxin,	hydrogen	cyanide,	80	

cyclic	lipopeptides,	rhizoxins)	and	secreted	lytic	enzymes	(chitinase,	phospholipase)	[5,	8,	11–14].	The	81	

infection	process	starts	with	the	ingestion	of	P.	protegens	by	the	larvae	feeding	on	contaminated	plant	82	

tissues,	leading	to	the	establishment	of	the	invader	in	the	intestinal	tract	[4].	The	bacteria	then	cross	83	

the	gut	epithelial	barrier	to	invade	the	hemocoel	by	a	yet	unknown	mechanism.	This	passage	can	take	84	

place	as	early	as	24	h	after	oral	infection	[4,	5,	8].	Owing	to	a	particular	O-antigen	decoration	of	the	85	

cell	surface,	P.	protegens	is	capable	of	resisting	antimicrobial	peptides	(cecropins),	i.e.	central	defense	86	

molecules	 of	 the	 insect	 [15].	 In	 the	 hemolymph,	 P.	 protegens	 proliferates	 and	 produces	 specific	87	

virulence	factors,	notably	the	insecticidal	toxin	Fit,	resulting	in	septicemia	and	ultimately	death	of	the	88	

insect	[8,	13,	16].	89	

During	the	establishment	in	the	insect	gut	and	the	preparation	of	the	passage	through	the	gut	90	

epithelial	 barrier,	 invading	 P.	 protegens	 cells	 face	 competition	 from	 the	 resident	 gut	 microbiota.	91	

Nothing	is	currently	known	about	the	factors	that	help	the	bacteria	to	be	competitive	during	this	crucial	92	

infection	 step.	 We	 speculated	 that	 type	 VI	 secretion	 system	 (T6SS)-mediated	 antagonism	 toward	93	
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commensal	gut	bacteria	might	be	involved.	The	T6SS	is	as	a	sophisticated	nano-weapon	used	by	many	94	

Gram-negative	bacteria	to	inject	toxic	effector	proteins	into	prokaryotic	or	eukaryotic	cells,	thereby	95	

promoting	interbacterial	antagonism	and	virulence	in	various	host	environments	such	as	the	gut	[17–96	

21].	T6SS-mediated	strategies	are	known	to	help	pathogenic	bacteria	achieve	optimal	host	colonization	97	

by	displacing	host	commensal	bacteria	or	eliminating	bacterial	competitors	[19].	This	is	exemplified	by	98	

the	enteropathogens	Vibrio	cholerae	and	Salmonella	Typhimurium	which	were	shown	to	deploy	T6SS-99	

based	antibacterial	activities	for	the	colonization	of	animal	models	[22,	23].	Likewise,	T6SS-mediated	100	

interbacterial	competition	promotes	host	plant	colonization	by	phytopathogenic	bacteria	[24,	25].	101	

The	T6SS	apparatus	shows	striking	similarity	with	the	injection	machinery	of	bacteriophages	[26,	102	

27]	and	consists	of	a	membrane-anchoring	complex	that	stands	on	a	baseplate-like	structure	to	which	103	

is	docked	a	tube	that	is	composed	of	Hcp	proteins	[17,	18,	20,	21].	The	Hcp	tube	is	fitted	in	a	contractile	104	

sheath-like	structure	and	capped	with	a	spike	formed	by	VgrG	proteins	[17,	18].	PAAR-domain	proteins	105	

sharpen	the	VgrG	spike	and	can	function	as	adapters	for	effector	delivery	[18,	28–30].	Antibacterial	106	

effectors	typically	have	severe	lytic	and	toxic	activity	targeting	essential	bacterial	structures	such	as	107	

cell	 walls,	 cell	 membranes	 and	 nucleic	 acids	 [31–33].	 Some	 effectors	 impact	 eukaryotic	 cells	 by	108	

manipulating	the	cytoskeleton	or	exerting	cytotoxic	effects	[19].	Cognate	immunity	proteins	protect	109	

the	producer	bacteria	from	self-destruction	[28,	32].	The	T6SS	can	be	fitted	with	different	VgrG-PAAR-110	

effector	assemblies	allowing	a	modular	usage	of	the	injection	device	to	deliver	diverse	toxic	effectors	111	

[28–30,	34].	112	

Here,	we	report	on	the	characterization	of	the	T6SS	core	apparatus	and	two	VgrG	modules	with	113	

associated	effectors	of	P.	protegens	 CHA0	 for	 their	 role	 in	 insect	 invasion	and	pathogenesis.	Using	114	

larvae	of	the	cabbage	butterfly	Pieris	brassicae	as	plant-feeding	insect	model,	we	establish	that	the	115	

T6SS	 and	both	VgrG	modules	 contribute	 to	 insect	 killing	 following	 oral	 infection.	We	 show	 that	P.	116	

protegens	 uses	 the	 T6SS	 and	 one	 of	 the	 VgrG	 modules	 to	 promote	 insect	 gut	 colonization	 and	117	

competition	 with	 commensal	 gut	 bacteria.	 A	 16S-metagenomic	 analysis	 demonstrates	 that	 TSS6-118	
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supported	invasion	by	P.	protegens	induces	significant	changes	in	the	insect	gut	microbiome	affecting	119	

notably	Enterobacteriaceae,	a	dominant	group	of	the	commensal	gut	bacteria.	120	

121	
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Material	and	methods	122	

Bacterial	strains,	culture	conditions	and	in	vitro	competition	assays	123	

Bacterial	strains	and	plasmids	used	in	this	study	are	listed	in	Tables	S1-S2.	Bacterial	culture	conditions,	124	

isolation	and	identification	of	commensal	insect	gut	bacteria	and	interbacterial	competition	assays	are	125	

detailed	in	the	Supplementary	Information.	126	

	127	

T6SS	core	apparatus	and	VgrG	module	loci	in	the	P.	protegens	CHA0	genome	128	

Gene	clusters	encoding	the	T6SS	core-apparatus	and	the	VgrG1a	and	VgrG1b	modules	were	localized	129	

in	 the	 chromosome	 of	 P.	 protegens	 CHA0	 by	 performing	 BLAST	 searches	 on	 the	 NCBI	 website	130	

(https://blast.ncbi.nlm.nih.gov/BlastAlign.cgi)	 and	 in	 the	 Pseudomonas	 Genome	 Database	 [35]	131	

focusing	 on	 orthologous	 genes	 and	 shared	 synteny	 in	 Pseudomonas	 aeruginosa	 PAO1.	 For	 the	132	

identification	of	the	T6SS	and	the	VgrG	proteins,	we	used	blastp	with	a	minimum	of	70%	of	amino-acid	133	

sequence	 identity	 over	 at	 least	 70%	 of	 the	 total	 sequence	 length.	 We	 admitted	 less	 sequence	134	

conservation	for	the	detection	of	the	effectors	associated	with	the	VgrG	modules.	The	functions	of	the	135	

identified	 proteins	 were	 predicted	 using	 the	 NCBI	 Conserved	 Domain	 Database	 Search	 [36]	 and	136	

InterPro	 [37]	 with	 default	 parameters	 and	 published	 information	 about	 the	 related	 proteins	 in	 P.	137	

aeruginosa	[34,	38–40].	138	

	139	

Creation	of	deletion	mutants	of	P.	protegens	CHA0	140	

Mutants	 of	 strain	 CHA0	 with	 deletions	 of	 gene	 clusters	 encoding	 (i)	 the	 T6SS	 core	 apparatus	141	

(PFLCHA0_RS30085	 through	 PFLCHA0_RS30180),	 (ii)	 the	 VgrG1a	 module	 encompassing	 predicted	142	

spike	 VgrG1a,	 effector	 RhsA	 and	 immunity	 protein	 RhsI	 (PFLCHA0_RS30185	 through	143	

PFLCHA0_RS30220),	and	(iii)	the	VgrG1b	module	encompassing	predicted	spike	VgrG1b,	effector	Ghh1	144	

and	 immunity	 protein	 GhhI	 (PFLCHA0_RS15145	 through	 PFLCHA0_RS15190)	 were	 constructed.	 In	145	

addition,	mutants	with	individual	deletions	of	the	effector	genes	rhsA	(PFLCHA0_RS30195)	and	ghh1	146	

(PFLCHA0_RS31250)	 and	 VgrG	 spike	 genes	 vgrG1a	 (PFLCHA0_RS30185)	 and	 vgrG1b	147	
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(PFLCHA0_RS15170)	were	generated.	Mutants	(Table	S1)	were	created	using	the	suicide	vector	pEMG	148	

and	the	I-SceI	system	[41]	adapted	to	P.	protegens	[16],	with	plasmids	and	primers	listed	in	Tables	S2-149	

S3.	150	

	151	

Pieris	brassicae	pathogenicity	assays	152	

The	insect	pathogenicity	of	P.	protegens	strains	was	assessed	in	oral	infection	and	injection	assays	with	153	

larvae	of	Pieris	brassicae.	After	hatching,	larvae	were	kept	on	pesticide-free	cabbage	plants	in	a	Percival	154	

PGC-7L2	 plant	 growth	 chamber	 at	 25°C	 and	 60%	 relative	 humidity,	 with	 16	 h	 of	 light	 and	 8	 h	 of	155	

darkness.	For	the	oral	infection	assay,	18	2nd	instar	larvae	(body	length	1.0-1.5	cm)	were	selected	for	156	

each	testing	condition.	Larvae	were	starved	the	night	before	infection	and	placed	individually	into	six-157	

well	 culture	 plates.	 Each	 larva	 was	 fed	 with	 a	 0.6-g	 pellet	 of	 artificial	 diet	 containing	 horseradish	158	

powder	 as	 feeding	 attractant	 (adapted	 from	 [42]).	 Diet	 pellets	 were	 inoculated	 with	 5	 μl	 of	 a	159	

suspension	containing	5.0	x	106	washed	bacterial	cells	in	sterile	0.9%	NaCl	solution.	Artificial	diet	with	160	

the	same	volume	of	NaCl	solution	was	used	as	negative	control.	Larvae	that	did	not	consume	the	entire	161	

inoculated	diet	pellet	were	excluded	from	the	experiment.	After	24	h,	larvae	from	each	culture	plate	162	

were	transferred	to	a	Petri	dish,	fed	with	fresh	sterile	artificial	diet	and	monitored	for	survival	every	163	

24	h	for	seven	days.	164	

For	the	injection	assay,	bacterial	suspensions	(2.5	µl	containing	102	washed	cells)	were	injected	165	

via	the	second	proleg	directly	into	the	hemolymph	of	4th	instar	P.	brassicae	larvae	(body	length	2.5-3.0	166	

cm).	In	each	experiment,	18	larvae	per	treatment	were	injected	and	incubated	in	groups	of	three	in	167	

Petri	dishes	 in	 the	plant	growth	chamber.	Larval	 survival	was	checked	hourly	starting	at	19	h	post-168	

injection.	169	

	170	

Pieris	brassicae	colonization	assays	171	

For	 use	 in	 the	 colonization	 assay	 with	 P.	 brassicae	 larvae,	 bacterial	 strains	 were	 marked	 with	 a	172	

constitutively	 expressed	GFP-tag	using	pBK-miniTn7-gfp1	 [8].	Oral	 infection	was	done	as	described	173	
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above,	except	that	3rd	instar	larvae	(body	length	2.0-2.5	cm)	and	a	larger	bacterial	inoculum	(i.e.	10	μl	174	

with	1.0	x	107	cells	per	larva)	were	used.	At	24	h	following	oral	infection,	each	larva	was	placed	on	ice,	175	

bled	by	 cutting	a	proleg	 to	 collect	 the	hemolymph	and	 then	dissected	 to	extract	 the	entire	gut.	 In	176	

addition,	excrements	were	instantly	collected	from	corresponding	culture	plate	wells.	Hemolymph,	gut	177	

and	 excrement	 samples	 were	 placed	 in	 tubes	 containing	 900	 μl	 of	 sterile	 0.9%	 NaCl	 solution	 and	178	

homogenized.	Aliquots	of	10	μl	of	serially	diluted	samples	were	spotted	on	NA	containing	10	µg	ml-1	179	

of	 gentamycin.	 CFU	 counts	 were	 determined	 with	 a	 Fusion	 FX	 Spectra	 imaging	 platform	 (Vilber-180	

Lourmat®)	by	checking	colonies	for	fluorescence	under	blue	light	(~470	nm)	 indicative	of	growth	of	181	

GFP-tagged	strains.	182	

	183	

16S	rRNA	gene	sequencing	for	metagenomic	analysis	184	

Third-instar	Pieris	 larvae	were	 orally	 infected	with	P.	 protegens	 strains	 as	 described	 above	 for	 the	185	

colonization	assays.	For	each	condition,	40	larvae	were	infected.	At	24	h	following	oral	infection,	each	186	

larva	 was	 surface-disinfested	 in	 ethanol	 and	 dissected	 to	 extract	 the	 gut.	 For	 each	 condition,	 10	187	

samples	each	 containing	pooled	guts	 from	 four	 larvae	were	prepared.	 Samples	were	processed	by	188	

GenoScreen	(Lille,	France)	for	DNA	extraction,	16S	rRNA	gene	sequencing	and	metagenome	analysis	189	

using	 the	 Metabiote®	 pipeline	 (see	 Supplementary	 Information).	 Following	 establishment	 of	 the	190	

abundance	matrix,	non-infected	 insect	gut	samples	 in	which	no	Pseudomonas	OTUs	were	detected	191	

were	 removed	 from	 the	 analysis	 (Table	 S4).	 Sequences	 affiliated	 to	mitochondria	 and	 chloroplasts	192	

(indicative	 of	 insect	 tissues	 and	 ingested	 plant	 material)	 were	 removed	 from	 the	 sample	 prior	 to	193	

analysis.	The	abundance	matrix	was	 loaded	into	Calypso	software	version	8.18	[43]	using	total	sum	194	

scaling	 (TSS)	 and	 cumulative	 sum	 scaling	 (CSS)	 normalization	 [44].	 Statistical	 analysis	 for	 16S-195	

metagenomic	 data	 (PCAs,	 calculation	 of	 diversity	 indexes,	 and	 comparison	 of	 taxa	 abundances	196	

between	treatments)	were	done	using	Calypso	software.	197	

	198	

Statistical	analysis	of	data	199	
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Data	were	statistically	analyzed	using	R	studio	version	3.3.2	(http://www.rstudio.com/)	and	considered	200	

significantly	different	when	P	<	0.05.	For	oral	pathogenicity	assays	with	P.	brassicae,	only	sample	sets	201	

with	 less	than	two	dead	larvae	out	of	18	 in	the	non-infected	control	were	considered	for	statistical	202	

analysis.	 Data	were	 analyzed	 using	 the	mixed	 effect	 Cox	model.	 To	 identify	 significant	 differences	203	

between	 treatments,	 ANOVA	 coupled	 with	 Tukey’s	 HSD	 test	 including	 Bonferroni	 correction	 was	204	

employed.	 For	 insect	 colonization	 and	 interbacterial	 competition	 assays,	 data	 were	 log10-205	

transformed.	Student’s	 t-test	was	performed	to	detect	significant	differences	between	colonization	206	

levels	of	 the	CHA0	wild	 type	and	∆T6SS	mutant.	ANOVA	followed	by	Fisher’s	LSD-test	was	done	 to	207	

detect	significant	differences	between	colonization	levels	of	the	CHA0	wild	type	and	∆VgrG1a-mod	and	208	

∆VgrG1b-mod	 mutants.	 Data	 of	 interbacterial	 competition	 assays	 were	 analyzed	 using	 ANOVA	209	

followed	by	Tukey’s	HSD	test.	210	

	211	

	 	212	
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Results	and	discussion	213	

Characterization	of	gene	clusters	encoding	the	T6SS	and	VgrG	modules	in	P.	protegens	CHA0	214	

To	identify	T6SS	components	in	P.	protegens	CHA0,	we	searched	for	protein	homology	with	the	well-215	

annotated	T6SS	components	of	P.	aeruginosa	PAO1	[44].	The	cluster	encoding	the	unique	T6SS	core	216	

apparatus	 of	 CHA0	 ranges	 from	 taqQ	 (PFLCHA0_RS30085)	 to	 clpV	 (PFLCHA0_RS30180)	 and	 shows	217	

extensive	similarity	to	the	H1-T6SS	cluster	of	P.	aeruginosa	PAO1	[39,	46,	47]	 in	terms	of	sequence	218	

identities	and	synteny	(Fig.	1;	Table	S5).	A	near	identical	T6SS	gene	cluster	exists	also	in	the	related	219	

strain	 P.	 protegens	 Pf-5	 [48,	 49].	 Within	 the	 H1-T6SS	 locus	 of	 CHA0,	 the	 tag	 encoded	 proteins	220	

(PFLCHA0_RS30085	through	PFLCHA0_RS30115)	share	at	least	55%	identity	with	the	PAO1	PpkA-PppA	221	

and	Tag	proteins	(Fig.	1;	Table	S5)	that	are	involved	in	T6SS	signaling	and	regulation	[18,	20,	50].	The	222	

13	conserved	 tss	 genes	upstream	of	 the	 tag	 genes	are	 required	 for	 the	assembly	of	 the	T6SS	core	223	

components	including	baseplate,	membrane	complex,	sheath	and	tube	[17,	21,	29,	51,	52].	224	

T6SS-associated	membrane-puncturing	devices	are	mainly	composed	by	VgrG	proteins	forming	a	225	

spike	that	is	sharpened	by	associated	PAAR	proteins	[29,	30].	We	identified	two	proteins	in	CHA0	that	226	

share	more	than	70%	 identity	with	 the	spike	proteins	VgrG1a	 (PA0091)	and	VgrG1b	(PA0095)	of	P.	227	

aeruginosa	PAO1	[34,	38]	and	to	which	we	attributed	the	same	names	(Fig.	1;	Table	S5).	Both	predicted	228	

CHA0	spike	proteins	harbor	a	conserved	VI_Rhs_Vgr	domain	 (TIGR03361),	which	 identifies	 them	as	229	

typical	members	of	the	T6SS	Vgr	protein	family	[47].	The	CHA0	vgrG1a	gene	(PFLCHA0_RS30185)	 is	230	

located	 adjacent	 to	 the	 T6SS	 core	 apparatus	 genes	 whereas	 CHA0	 vgrG1b	 (PFLCHA0_RS15170)	 is	231	

located	distant	 from	the	T6SS	 locus	 (Fig.	1),	however,	 in	notable	vicinity	of	 the	 locus	encoding	 the	232	

insecticidal	toxin	Fit	[53].	233	

The	vgrG	genes	are	often	located	in	clusters	with	genes	encoding	toxic	T6SS	effectors	along	with	234	

adaptor	and	cognate	immunity	proteins	[29].	We	found	that	vgrG1a	and	vgrG1b	of	CHA0	are	part	of	235	

such	clusters	that	we	termed	here	VgrG	modules.	The	predicted	VgrG1a	module	ranges	from	locus	236	

tags	 PFLCHA0_RS30185	 to	 PFLCHA0_RS30220	 (Fig.	 1;	 Table	 S5).	 Within	 this	 module,	237	

PFLCHA0_RS30195,	 encodes	 a	putative	effector	of	 the	 rearrangement	hotspot	 (Rhs)	protein	 family	238	
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[54],	which	shares	29%	identity	over	74%	of	the	entire	protein	length	with	the	Rhs	protein	Tse5/RhsP1	239	

(PA2684)	of	P.	aeruginosa	[33,	34].	A	near-identical	Rhs	effector	(99%	identity	with	PFLCHA0_RS30195)	240	

belonging	 to	 the	 DNase	 enzyme	 family	 and	 termed	 RhsA	 (PFL_6096)	 was	 recently	 functionally	241	

characterized	 in	 P.	 protegens	 Pf-5	 along	 with	 its	 cognate	 immunity	 protein	 RhsI	 (PFL_6097;	 99%	242	

identity	with	PFLCHA0_RS30200)	[55].	We	adopted	the	same	terminology	for	CHA0.	The	central	part	243	

of	RhsA	of	CHA0	harbors	numerous	Rhs	repeats,	which	are	thought	to	encapsulate	the	C-terminal	toxic	244	

domain	 of	 T6SS-delivered	 Rhs-type	 effectors	 [28].	 Like	 other	 Rhs	 T6SS	 effectors,	 RhsA	 of	 CHA0	245	

possesses	a	typical	N-terminal	PAAR	domain,	described	to	bind	and	sharpen	the	VgrG	spike	to	facilitate	246	

effector	 translocation	 into	 the	 targeted	 cell	 [18,	 30,	 54].	Moreover,	 two	 loci	 flanking	 the	 rhsA-rhsI	247	

effector-immunity	gene	pair	of	CHA0	(PFLCHA0_RS30190,	PFLCHA0_RS30210)	encode	proteins	of	the	248	

DUF1795	 superfamily,	 recently	 identified	 as	 adaptor	 proteins	 required	 for	 the	 secretion	 of	 PAAR-249	

domain	T6SS	effectors	[18,	30,	55].	250	

The	predicted	VgrG1b	module	of	CHA0	comprises	PFLCHA0_RS15145	through	PFLCHA0_RS15170.	251	

Predicted	proteins	share	35%	to	74%	identity	with	those	encoded	by	the	P.	aeruginosa	PAO1	vgrG1b	252	

locus	(PA0095	through	PA0101)	[34]	located	near	the	H1-T6SS	locus	(Fig.	1;	Table	S5).	Within	the	CHA0	253	

VgrG1b	module,	PFLCHA0_RS31250	 is	predicted	to	encode	a	T6SS	effector	that	we	named	Ghh1.	 It	254	

harbors	an	N-terminal	PAAR-like	domain	and	a	C-terminal	TOX-GHH2	domain	with	predicted	nuclease	255	

activity	like	the	orthologous	PA0099-encoded	effector	Tse7	(48%	identity)	in	P.	aeruginosa	[34,	40].	By	256	

analogy,	we	predict	that	the	gene	that	follows	ghh1	in	CHA0	(PFLCHA0_RS15150)	encodes	the	cognate	257	

immunity	protein	and	termed	it	ghhI.	PFLCHA0_RS15160,	upstream	of	ghh1,	encodes	a	protein	of	the	258	

DUF2169	 superfamily,	 members	 of	 which	 have	 recently	 been	 suggested	 to	 serve	 as	 adaptors	 or	259	

chaperones	aiding	binding	of	PAAR-domain	T6SS	effectors	to	the	VgrG	spike	[57].	260	

To	summarize,	our	analysis	of	the	genome	of	P.	protegens	CHA0	identified	gene	clusters	coding	261	

for	a	single	T6SS	core	apparatus	and	two	distinct	VgrG	modules	that	we	termed	VgrG1a	module	(with	262	

spike	VgrG1a	and	effector	RhsA)	and	VgrG1b	module	(with	spike	VgrG1b	and	effector	Ghh1).	To	assess	263	

the	involvement	of	these	components	in	insect	pathogenicity,	insect	colonization	and	competition	with	264	
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the	gut	microbiome,	we	compared	the	activity	of	wild	type	CHA0	with	mutants	in	which	we	deleted	265	

the	entire	T6SS	or	VgrG	module	gene	clusters	(ΔT6SS,	ΔVgrG1a-mod	or	ΔVgrG1b-mod,	respectively)	or	266	

individual	genes	encoding	the	respective	VgrG	spikes	or	effectors	(ΔvgrG1a,	ΔvgrG1b,	ΔrhsA	or	Δghh1,	267	

respectively)	(Table	S1).	268	

	269	

The	T6SS	contributes	to	insect	pathogenicity	of	P.	protegens	following	oral	infection	270	

To	assess	the	relative	contribution	of	the	T6SS	and	the	two	VgrG	modules	to	the	insect	pathogenicity	271	

of	P.	protegens,	we	orally	infected	larvae	of	the	plant	pest	insect	Pieris	brassicae	with	the	CHA0	wild	272	

type	 and	 the	 various	 T6SS-related	mutants	 and	monitored	 larval	 survival	 for	 one	week.	 After	 this	273	

period,	less	than	12%	of	the	larvae	infected	by	the	CHA0	wild	type	had	survived,	whereas	almost	90%	274	

of	the	larvae	of	the	control	treatment	without	bacteria	administration	were	alive	and	healthy	(Fig.	2a).	275	

Larval	mortality	was	significantly	lower	when	they	were	fed	the	ΔT6SS,	ΔVgrG1a-mod	or	ΔVgrG1b-mod	276	

mutants.	More	than	25%	of	these	larvae	survived,	highlighting	that	the	T6SS	and	the	two	VgrG	modules	277	

are	 involved	in	the	 infection	process.	This	was	further	supported	by	our	finding	that	CHA0	mutants	278	

with	 individual	 deletions	of	 the	 respective	Vgr	 spike	 (ΔvgrG1a,	 ΔvgrG1b)	 or	 effector	 genes	 (ΔrhsA,	279	

Δghh1)	were	equally	impaired	in	oral	pathogenicity	towards	the	Pieris	larvae	(Figs.	S1).	280	

Our	previous	studies	established	hemocoel	invasion	as	a	crucial	step	in	insect	pathogenesis	of	P.	281	

protegens	 CHA0	 [4,	 13].	 The	 bacterium	 uses	 a	 tight	 control	 system	 to	 specifically	 activate	 the	282	

production	of	the	insecticidal	toxin	Fit	in	this	compartment	leading	to	an	acute	disease	phase	and	the	283	

death	 of	 the	 insect	 [8,	 16].	 Other	 toxic	 metabolites,	 notably	 hydrogen	 cyanide	 and	 the	 cyclic	284	

lipopeptide	orfamide,	contribute	to	insect	killing	during	this	infection	step	[11].	To	address	whether	285	

the	T6SS	and	the	two	VgrG	modules	play	a	role	 in	 the	 insect	hemolymph,	we	mimicked	a	systemic	286	

infection	by	directly	injecting	cells	of	the	CHA0	wild	type	or	the	ΔT6SS,	ΔVgrG1a-mod	or	ΔVgrG1b-mod	287	

mutants	into	the	hemolymph	of	Pieris	larvae.	At	24	h	post	injection,	the	percentage	of	surviving	larvae	288	

sharply	declined	for	all	bacterial	strains	tested,	dropping	to	levels	of	less	than	20%	at	30	h	post	injection	289	

(Fig.	2b).	No	differences	were	observed	between	the	insecticidal	effects	of	the	wild-type	and	mutant	290	
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strains	(Fig.	2b),	indicating	that	the	T6SS	and	the	VgrG	modules	are	not	involved	in	the	hemocoel	phase	291	

of	pathogenesis.	292	

These	findings	support	a	significant	role	of	the	T6SS	and	the	two	VgrG	modules	along	with	their	293	

respective	spike	and	effector	proteins	in	insect	pathogenesis	of	P.	protegens.	To	our	best	knowledge,	294	

we	provide	here	the	first	example	for	the	implication	of	T6SS	components	in	the	pathogenicity	of	an	295	

environmental	bacterium	in	a	plant	pest	oral	infection	model.	During	the	past	years,	the	involvement	296	

of	T6SS	components	in	pathogenicity,	be	it	direct	by	subverting	host	cellular	function	or	 indirect	by	297	

aiding	 competitive	 host	 colonization,	 has	 been	 documented	 for	 a	 number	 of	 human	 and	 plant	298	

pathogenic	bacteria	[19,	24,	32,	58].	 In	several	cases,	mutants	defective	for	T6SS	components	were	299	

reported	to	be	impaired	in	persistence	and	interbacterial	competitiveness	during	host	interaction	[19].	300	

These	reports	prompted	us	to	speculate	that	the	T6SS	and	the	VgrG	modules	might	be	required	for	the	301	

successful	establishment	of	P.	protegens	 in	the	intestinal	tract	of	the	insect	and	thus	in	competitive	302	

interactions	with	the	commensal	microbiota	populating	this	environment.	303	

	304	

The	T6SS	of	P.	protegens	contributes	to	insect	invasion	305	

We	 examined	 whether	 the	 reduced	 insect	 pathogenicity	 of	 the	 T6SS	 and	 VgrG	 module	 deficient	306	

mutants	 of	 P.	 protegens	 CHA0	 is	 linked	 to	 a	 reduced	 capability	 of	 insect	 invasion	 following	 oral	307	

infection.	To	address	this,	we	performed	in	vivo	colonization	assays	with	GFP-tagged	variants	of	the	308	

bacteria	 and	monitored	 their	 establishment	 in	 the	 gut,	 the	 hemolymph,	 and	 the	 excrements	 of	P.	309	

brassicae	larvae	24	h	after	oral	infection.	We	deliberately	chose	this	sampling	time	point	because	after	310	

this	 incubation	period	the	first	 larvae	started	to	die	 (Fig.	2a),	 implying	that	pseudomonads	by	then	311	

began	to	breach	the	gut	epithelial	barrier	to	gain	the	hemolymph,	i.e.	a	crucial	step	of	insect	invasion	312	

at	the	onset	of	systemic	infection.	Compared	with	the	wild	type,	the	ΔT6SS	mutant	was	only	slightly,	313	

but	 significantly,	 impaired	 in	 its	 capacity	 to	 establish	 in	 the	 insect	 gut	 (Fig.	 3a)	 but	 was	 strongly	314	

hampered	in	its	capacity	to	establish	in	the	hemolymph	(Figs.	3b).	Interestingly,	only	one	of	the	two	315	

VgrG	modules	appeared	to	be	 implicated	 in	 insect	 invasion.	 Indeed,	 the	∆VgrG1a-mod	mutant	was	316	
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largely	unable	to	cross	the	gut	epithelial	barrier	of	the	Pieris	larvae	to	reach	the	hemolymph	whereas	317	

the	∆VgrG1b-mod	mutant	established	in	this	compartment	at	wild-type	levels	(Fig.	3b).	At	this	time	318	

point,	both	VgrG	module	mutants	were	not	significantly	affected	in	their	gut	colonization	abilities	(Fig.	319	

3a).	The	analysis	of	the	larval	excrements	indicated	that	although	ingested	bacteria	established	in	the	320	

insect	gut,	a	significant	fraction	was	cleared	from	the	larvae	at	roughly	the	same	cell	numbers	for	all	321	

strains	tested	(Fig.	3c).	322	

Together	these	results	indicate	that	the	P.	protegens	T6SS	has	a	significant	role	in	gut	colonization	323	

and	preparation	of	the	subsequent	passage	of	the	invader	into	the	insect	blood	system.	This	is	in	line	324	

with	recent	reports	about	the	contribution	of	T6SSs	to	gut	invasion	by	enteropathogenic	Salmonella,	325	

Shigella	 and	 Vibrio	 [22,	 23,	 59,	 60]	 and	 to	 host	 colonization	 by	 various	 other	 animal	 and	 plant	326	

pathogens	[19,	24].	Hemolymph	invasion	by	P.	protegens	CHA0	required	a	functional	VgrG1a	module.	327	

Interestingly,	the	VgrG1b	module	had	no	apparent	role	in	insect	colonization	although	it	contributed	328	

significantly	to	insect	pathogenicity.	This	suggests	that	P.	protegens	employs	the	two	VgrG	modules	329	

for	different	activities	during	pathogenesis	of	which	that	of	the	VgrG1a	module	is	in	competitive	host	330	

colonization	(see	also	following	chapter)	whereas	the	exact	function	of	the	VgrG1b	module	needs	to	331	

be	addressed	in	further	studies.	Bacteria	equipped	with	T6SSs	commonly	harbor	several	VgrG	modules	332	

along	with	specific	effectors	providing	them	with	diverse	functionalities	during	 interaction	with	the	333	

host	 or	 other	 bacteria	 as	 exemplified	 by	 studies	 on	 P.	 aeruginosa	 [34,	 45]	 and	 enteropathogenic	334	

Escherichia	coli	[61].	335	

	336	

T6SS-mediated	modification	of	the	insect	gut	microbiome	composition	by	P.	protegens	337	

Since	 the	 T6SS	 is	 known	 to	 function	 as	major	 antibacterial	weapon	 in	 pathogenic	 and	 commensal	338	

pseudomonads	[24,	32,	34,	45,	55],	we	speculated	that	a	potential	 role	of	 the	T6SS	components	 in	339	

insect	pathogenesis	of	P.	protegens	could	be	to	eliminate	commensal	bacteria	within	the	insect	gut	340	

thereby	facilitating	the	establishment	of	the	invader	in	this	niche	and	preparing	the	access	to	the	gut	341	

epithelial	barrier	for	passage	into	the	hemocoel.	To	test	this	hypothesis,	we	performed	a	16S	RNA	gene	342	
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metagenomic	 analysis	 of	 the	 gut	 bacterial	 microbiota	 of	 P.	 brassicae	 at	 the	 larval	 stage,	 both	 in	343	

presence	and	absence	of	P.	protegens	infection.	Gut	samples	were	analyzed	after	24	h,	i.e.	at	the	same	344	

time	insect	colonization	was	monitored.	345	

We	sequenced	50	samples	corresponding	to	five	conditions	(non-infected	control;	infection	with	346	

wild	type	CHA0	or	ΔT6SS,	ΔVgrG1a-mod	or	ΔVgrG1b-mod	mutants),	with	10	samples	per	condition	and	347	

four	Pieris	guts	pooled	per	sample	and	generated	a	total	of	763,328	high-quality	reads.	On	average,	348	

12,722	high-quality	filtered	reads	per	sample	were	obtained.	Sequences	clustered	into	160	different	349	

OTUs	at	a	sequence	identity	cut-off	of	97%.	Rarefaction	curves	affirmed	that	the	bacterial	diversity	in	350	

each	sample	was	fully	described	(Fig.	S2).	The	gut	bacterial	microbiome	of	healthy	 insects	 fed	with	351	

non-inoculated	 diet	 was	 composed	 mainly	 of	 two	 bacterial	 phyla,	 i.e.	 Firmicutes	 (61.7%)	 and	352	

Proteobacteria	(38.1%),	while	other	phyla	accounted	for	less	than	0.2%	of	the	total	abundance	(Fig.	353	

S3).	 The	 two	 bacterial	 families	 Enterococcaceae	 (58.7%)	 and	 Enterobacteriaceae	 (40.4%)	 were	354	

dominant	in	the	gut	of	the	P.	brassicae	larvae	(Fig.	4a).	Other	bacterial	families	constituted	less	than	355	

1%	 of	 the	 total	 bacterial	 abundance.	 More	 than	 99.9%	 of	 the	 sequences	 affiliated	 to	 the	356	

Enterococcaceae	 family	 corresponded	 to	 a	 single	 OTU	 (denovo2983)	 associated	 with	 the	 genus	357	

Enterococcus	(Table	S6).	In	the	Enterobacteriaceae	more	than	96.1%	of	the	sequences	were	associated	358	

with	a	single	OTU	(denovo3889)	identified	as	genus	Enterobacter.	Our	analysis	provides	the	first	data	359	

about	 the	 composition	 of	 the	 gut	 bacterial	 community	 of	 this	 important	 Lepidopteran	 plant	 pest.	360	

Previous	studies	specified	Enterobacter	sp.	as	dominant	members	of	the	larval	gut	microbiota	of	the	361	

related	insect	Pieris	rapae	[62,	63].	Enterobacter	and	Enterococcus	are	commonly	found	in	the	gut	of	362	

Lepidopteran	 species	 [64,	 65]	 and	 can	 provide	 beneficial	 services	 to	 their	 host.	 For	 example,	 they	363	

provide	 enzymatic	 functions	 that	 permit	 the	 detoxification	 of	 ingested	 phenolic	 plant	 defense	364	

compounds	[66]	or	may	act	as	bodyguards	against	bacterial	pathogens	invading	the	insect	gut,	e.g.	by	365	

forming	a	protective	biofilm	on	gut	epithelial	cells,	by	producing	antimicrobials	such	as	bacteriocins	or	366	

by	inducing	insect	defenses	[67,	68].	367	
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We	analyzed	to	what	extent	invasion	by	P.	protegens	CHA0	or	its	T6SS-related	mutants	shapes	the	368	

bacterial	 community	 in	 the	 P.	 brassicae	 gut.	 We	 retrieved	 a	 single	 abundant	 Pseudomonas	 OTU	369	

(denovo2125)	from	the	gut	samples	of	P.	protegens-treated	larvae,	which	corresponded	to	the	inocula	370	

fed	to	the	insects	as	verified	by	Blast	analysis	(100%	identity)	(Fig.	4a).	The	bacterial	alpha	diversity	371	

was	 not	 strongly	 affected	 by	 the	 presence	 of	 CHA0	 or	 the	 T6SS-related	mutants	 according	 to	 the	372	

Simpson	and	Chao	 indices	 (Fig.	S4).	The	observed	significant	 increase	of	 the	diversity	at	 family	and	373	

genus	levels	according	to	the	Shannon-Weaver	index	(Fig.	S4a)	could	be	due	to	the	reduction	of	the	374	

most	 abundant	 species	 following	 P.	 protegens	 invasion	 facilitating	 the	 detection	 of	 other	 taxa.	375	

Moreover,	PCA	indicated	that	the	beta-diversity	remained	stable	at	the	phylum	and	class	levels	for	all	376	

tested	conditions	 (Fig.	S5a-5b).	However,	at	 the	 family	and	genus	 levels,	 the	control	condition	was	377	

distant	from	the	other	conditions,	which	reflects	the	effect	of	Pseudomonas	invasion	(Fig.	S5c-5d).	The	378	

dominance	 of	 two	 bacterial	 families	 (Enterococcaceae,	Enterobacteriaceae)	 in	 the	P.	 brassicae	 gut	379	

made	it	difficult	to	observe	significant	shifts	in	the	remaining	fraction	of	gut	bacteria,	which	accounted	380	

for	less	than	1%	of	the	total	bacterial	abundance	in	each	condition.	Hence,	we	focused	our	analysis	on	381	

the	 impact	 of	 Pseudomonas	 invasion	 on	 the	 relative	 abundance	 of	 Enterococcaceae	 and	382	

Enterobacteriaceae.	Infection	by	P.	protegens	CHA0	caused	a	non-significant,	mild	decrease	(P	<	0.09)	383	

in	the	abundance	of	Enterococcaceae,	which	did	not	depend	on	the	bacterial	T6SS	or	VgrG	modules	384	

(Fig.	 4b).	 This	 finding	 is	 not	 unexpected,	 since	 the	 T6SS	 is	 thought	 to	be	 ineffective	 against	Gram-385	

positive	bacteria	[32,	69–71].	By	contrast,	gut	invasion	by	CHA0	resulted	in	a	significant	decline	of	the	386	

Enterobacteriaceae	population	 in	the	 insect	 intestines,	which	required	the	presence	of	a	 functional	387	

T6SS	(Fig.	4c).	The	two	VgrG	modules	might	have	contributed	to	the	observed	effect	to	some	extent	388	

(Fig.	4c),	however,	the	high	variability	among	the	samples	did	not	allow	us	to	statistically	fully	affirm	389	

this	observation.	390	

To	confirm	the	findings	of	the	16S	metagenomic	analysis,	we	isolated	bacteria	from	the	gut	of	P.	391	

brassicae	larvae	in	order	to	test	them	in	in	vitro	competition	assays	against	P.	protegens	CHA0	and	the	392	

T6SS	and	VgrG	module	mutants.	We	 repeatedly	obtained	colonies	with	 two	distinct	morphologies,	393	



18	
	

which	we	purified	and	 identified	by	16S	 rRNA	gene	sequencing	exclusively	as	Enterococcus	 sp.	and	394	

Enterobacter	sp.,	respectively.	In	confrontation	assays	against	Enterobacter,	the	competitive	index	for	395	

the	wild-type	CHA0	was	significantly	higher	than	that	for	the	∆T6SS	mutant	(Fig.	5a).	A	similar	effect	396	

was	observed	 in	 the	competition	of	 Enterobacter	with	 the	∆VgrG1a-mod	mutant,	but	not	with	 the	397	

∆VgrG1b-mod	 mutant.	 This	 indicates	 that	 P.	 protegens	 uses	 its	 T6SS	 and	 the	 VgrG1a-module	 to	398	

outcompete	Enterobacter.	Contrarily,	the	the	T6SS	and	the	VgrG	modules	did	not	contribute	to	the	399	

competitive	 advantage	 of	 P.	 protegens	 CHA0	 in	 confrontations	 with	 Enterococcus	 (Fig.	 5b).	 These	400	

findings	are	consistent	with	the	T6SS-mediated	reduction	of	Enterobacteriaceae	by	P.	protegens	in	the	401	

gut	microbiome	of	Pieris	observed	in	the	16S-metagenomic	analysis	(Fig.	4c).	402	

Collectively,	 these	results	demonstrate	that	during	 invasion	of	P.	brassicae	 larvae	P.	protegens	403	

uses	the	T6SS	to	modify	the	composition	of	the	gut	microbiome	of	the	insect,	thereby	targeting	and	404	

eliminating	in	particular	bacteria	of	the	genus	Enterobacter	that	constitute	one	of	the	two	dominant	405	

groups	 of	 commensals	 present	 in	 the	 intestinal	 tract	 of	 the	 plant	 pest.	 For	Enterobacter	 killing,	P.	406	

protegens	appears	to	deploy	the	T6SS	primarily	with	the	associated	VgrG1a	module	which	is	equipped	407	

with	the	DNase	effector	RhsA.	Commensal	gut	bacteria	may	form	a	protective	layer	at	the	gut	surface,	408	

preventing	systemic	infections	by	entomopathogens	[65,	68].	It	is	plausible	that	T6SS-mediated	killing	409	

of	commensal	Enterobacter	by	P.	protegens	might	 locally	disrupts	this	protective	 layer	allowing	the	410	

invader	to	reach	the	hemolymph	and	kill	the	insect	(Fig.	6).	411	

	412	

Conclusion	413	

The	findings	of	this	study	support	the	concept	that	pathogens	deploy	T6SS-based	strategies	to	disrupt	414	

or	otherwise	manipulate	the	commensal	microbiota	of	their	host	in	order	to	facilitate	host	colonization	415	

as	recently	demonstrated	for	the	human	enteropathogens	Salmonella	Typhimurium	[23]	and	Vibrio	416	

cholerae	[72–74].	We	provide	here	the	first	example	of	the	use	of	this	strategy	by	an	environmental	417	

plant-colonizing	bacterium	to	successfully	invade	a	plant	pest	insect	and	hence	to	gain	access	to	an	418	

alternative	host.	We	show	evidence	that	the	T6SS-mediated	changes	to	the	gut	microbiome	of	the	pest	419	
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insect	induced	by	P.	protegens	are	linked	to	the	functional	requirement	of	the	T6SS	(i)	to	outcompete	420	

specific	members	of	the	commensal	gut	microbiota,	 (ii)	 to	colonize	the	 insect	and	ultimately	(iii)	 to	421	

promote	the	pathogenic	relationship	with	the	insect	host.	This	is	in	line	with	recent	work	of	Fast	and	422	

colleagues	 [72]	who	demonstrated	 that	 T6SS	activity	 against	 commensal	 gut	bacteria	 supports	 the	423	

pathogenesis	of	V.	cholerae.	The	present	work	significantly	expands	our	knowledge	about	the	virulence	424	

strategies	and	weaponry	that	contribute	to	the	capacity	of	a	group	of	plant-associated	pseudomonads	425	

to	orally	infect	and	kill	plant	pest	insects.	Genomic	and	mutational	analyses	carried	out	since	the	first	426	

discovery	of	the	potent	insecticidal	activity	in	these	pseudomonads	[13]	so	far	have	identified	secreted	427	

toxins	 (Fit	 toxin,	 rhizoxins,	 cyclic	 lipopeptides,	 hydrogen	 cyanide)	 and	 lytic	 enzymes	 (chitinase,	428	

phospholipase)	as	bacterial	determinants	promoting	insect	pathogenesis,	i.e.	all	virulence	factors	likely	429	

deployed	by	the	bacteria	to	cause	direct	damage	to	the	insect	host	at	some	point	during	invasion	[5,	430	

8,	9,	11,	12,	16].	In	turn,	the	bacteria	appear	to	rely	on	specific	cell	surface	decorations	to	escape	the	431	

insect	immune	defense	[10,	15].	Here,	we	identified	T6SS-mediated	manipulation	of	the	gut	microbiota	432	

as	further	strategy	to	promote	insect	pathogenesis	in	the	repertoire	of	insecticidal	pseudomonads.	In	433	

our	study,	P.	protegens	uses	the	T6SS	to	target	a	dominant	group	of	commensals,	i.e.	Enterobacter	sp.,	434	

in	the	gut	of	the	investigated	plant	pest.	By	eliminating	part	of	the	population	of	these	commensals,	P.	435	

protegens	possibly	improves	the	access	to	the	gut	epithelial	barrier	for	the	subsequent	passage	into	436	

the	hemolymph.	Collectively,	all	these	findings	advance	our	understanding	of	the	infection	process	and	437	

allow	us	to	further	detail	the	interaction	model	between	Pseudomonas	and	the	insect	as	illustrated	in	438	

Fig.	6.	 Since	P.	protegens	 is	 also	known	as	an	efficient	 root	 colonizer	and	biocontrol	 agent	of	 crop	439	

diseases	[4,	6],	it	will	be	of	interest	to	study	to	which	extent	this	bacterium	deploys	its	T6SS	weaponry	440	

to	competitively	colonize	plants,	i.e.	its	original	host.	441	
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Figure	legends	635	

	636	

Fig.	 1.	 T6SS	 and	 VgrG1a	 and	 VgrG1b	module	 gene	 clusters	 of	 Pseudomonas	 protegens	 CHA0	 and	637	

orthologous	genomic	regions	in	Pseudomonas	aeruginosa	PAO1.	638	

Sequence	identities	and	predicted	functions	are	detailed	in	Supplementary	Table	S5.	PAO1	genes	that	639	

are	absent	in	the	CHA0	genome	are	shown	as	empty	arrows.	Numbers	indicate	the	locus	tags	for	P.	640	

protegens	CHA0	(prefix	PFLCHA0_RS…)	and	P.	aeruginosa	PAO1	(prefix	PA…).	641	

	642	

Fig.	2.	The	T6SS	and	the	VgrG	modules	contribute	to	insect	pathogenicity	of	Pseudomonas	protegens	643	

CHA0	upon	oral	infection	but	not	upon	injection.	644	

(a)	Oral	activity	was	tested	by	feeding	larvae	of	Pieris	brassicae	artificial	diet	inoculated	with	5	x	106	645	

cells	of	wild	 type	CHA0	or	 its	ΔT6SS,	ΔVgrG1a-mod	or	ΔVgrG1b-mod	mutants	and	monitoring	 their	646	

survival	daily	during	one	week.	(b)	Systemic	activity	was	tested	by	injecting	102	cells	of	the	bacterial	647	

strains	directly	into	the	hemolymph	of	the	larvae	and	checking	their	survival	hourly,	starting	at	19	h	648	

post-injection.	The	feeding	and	injection	experiments	were	repeated	six	and	five	times,	respectively,	649	

with	18	 larvae	per	treatment	 in	each	 individual	experiment.	Sterile	NaCl	solution	at	0.9%	served	as	650	

negative	control.	Data	were	analyzed	using	the	mixed	effect	Cox	model	incorporating	the	experiment	651	

repetition	factor	and	one-way	ANOVA	followed	by	Tukey’s	test	with	Bonferroni	correction.	For	each	652	

panel,	treatments	with	different	letters	(a,	b	or	c)	significantly	differed	from	each	other	(P	<	0.05).		653	

	654	

Fig.	 3.	 Contribution	 of	 the	 T6SS	 and	 the	 VgrG	 modules	 of	 Pseudomonas	 protegens	 CHA0	 to	 the	655	

colonization	of	 the	gut	 (a),	 the	hemolymph	 (b)	and	 the	excrements	 (c)	of	 larvae	of	Pieris	brassicae	656	

following	oral	infection.	657	

Larvae	were	fed	with	a	small	piece	of	artificial	diet	containing	107	cells	of	GFP-tagged	variants	of	wild	658	

type	CHA0	or	its	ΔT6SS,	ΔVgrG1a-mod	or	ΔVgrG1b-mod	mutants.	The	T6SS	mutant	(upper	figure	panels	659	

below	 insect	 scheme)	and	 the	VgrG	module	mutants	 (lower	 figure	panels)	were	 tested	 in	 separate	660	
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experiments.	Data	show	CFU	counts	of	bacterial	inoculants	per	mg	of	gut,	hemolymph	or	excrements	661	

of	individual	larvae	determined	at	24	h	post	oral	infection.	Each	dot	corresponds	to	one	insect.	Each	662	

box-plot	graph	represents	the	median	of	the	colonization	 levels	calculated	from	three	 independent	663	

experiments	 that	 were	 carried	 out	 with	 nine	 larvae	 per	 treatment	 in	 each	 experiment.	 For	 the	664	

statistical	 analysis,	 a	 Student’s	 t-test	was	 performed	 to	 detect	 significant	 differences	 between	 the	665	

colonization	levels	of	the	wild	type	CHA0	and	the	∆T6SS	mutant.	ANOVA	followed	by	Fisher’s	LSD	test	666	

was	done	to	detect	significant	differences	between	the	colonization	levels	of	CHA0	and	the	VgrG1a	667	

and	VgrG1b	module	mutants.	P-value	<	0.001	(***)	and	P-value	<	0.05	(*).	668	

	669	

Fig.	4.	The	T6SS	contributes	to	changes	induced	in	the	gut	microbiome	composition	of	larvae	of	Pieris	670	

brassicae	 upon	 invasion	 by	 Pseudomonas	 protegens,	 impacting	 in	 particular	 on	 members	 of	 the	671	

Enterobacteriaceae	family.	672	

(a)	Gut	bacterial	composition	following	oral	infection	with	wild	type	CHA0	or	its	ΔT6SS,	ΔVgrG1a-mod	673	

or	ΔVgrG1b-mod	mutants.	Larvae	were	fed	with	a	small	piece	of	artificial	diet	containing	107	inoculant	674	

cells	and	were	dissected	24	h	later	to	retrieve	their	guts.	Control	larvae	were	fed	sterile	diet.	For	each	675	

treatment,	 10	 samples	 were	 prepared	 each	 containing	 the	 pooled	 guts	 from	 four	 larvae.	 DNA	676	

preparation	and	16S	rRNA	gene-based	metagenome	sequencing	were	performed	by	GenoScreen	(Lille,	677	

France).	The	gut	bacterial	composition	was	determined	using	non-transformed	abundance	data	and	678	

the	eight	most	abundant	families	are	presented.	679	

Box-plots	 illustrate	 the	 effects	 of	wild	 type	 CHA0	 and	 the	 T6SS	 and	 VgrG	module	mutants	 on	 the	680	

median	relative	abundance	of	the	Enterococcaceae	(b)	and	Enterobacteriaceae	(c)	families	in	the	insect	681	

guts.	 The	 data	 from	 the	 abundance	 matrix	 were	 transformed	 using	 total	 sum	 scaling	 (TSS)	 and	682	

cumulative	sum	scaling	(CSS)	normalization	[44]	and	statistically	analyzed	using	the	CALYPSO	pipeline	683	

[43].	P-value	<	0.01	(**),	P-value	<	0.05	(*)	and	P-value	between	0.05	and	0.09	(.).	684	

	685	
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Fig.	 5.	 The	 T6SS	 and	 the	VgrG1a	module	 contribute	 to	 interbacterial	 competition	 of	Pseudomonas	686	

protegens	CHA0	with	Enterobacter	sp.	(a)	but	not	with	Enterococcus	sp.	(b)	isolated	from	the	gut	of	687	

Pieris	brassicae	larvae.	688	

Competition	of	P.	protegens	wild	type	CHA0,	the	ΔT6SS	mutant	or	the	ΔVgrG1a-mod	or	ΔVgrG1b-mod	689	

mutants	 against	 Enterobacter	 sp.	 and	 Enterococcus	 sp.	 was	 assessed	 in	 filter	 spot	 assays.	 CFU	690	

quantifications	were	performed	at	t	=	0	h	and	t	=	24	h	based	on	the	antibiotic	resistance	profiles	of	the	691	

strains	as	detailed	in	the	Supplementary	information.	The	competitive	index	(CI)	of	the	competitor	was	692	

calculated	as	follows:	CI	=	[CFUcompetitor_24	h/CFUgut	isolate_24	h]	/	[CFUcompetitor_0	h/CFUgut	isolate_0	h].	Boxplots	693	

represent	data	from	three	independent	experiments,	each	with	three	replicate	strain	confrontations.	694	

Each	dot	corresponds	to	one	confrontation.	Data	were	analyzed	using	an	ANOVA	followed	by	HSD	of	695	

Tukey.	Statistical	differences	between	the	competitive	indices	of	CHA0	mutants	in	confrontations	with	696	

Enterobacter	are	indicated	with	letters	a	and	b	(P	<	0.05).	No	statistical	differences	were	found	in	the	697	

competitions	with	Enterococcus.		698	

	699	

Fig.	6.	Interaction	model	between	Pseudomonas	protegens	and	the	plant	pest	insect	Pieris	brassicae.	700	

Step	1:	Oral	 infection;	P.	protegens	cells	 (red)	are	 ingested	by	the	 larvae.	Step	2:	P.	protegens	cells	701	

follow	 the	 path	 of	 food	 through	 the	 gut	 and	 establish	 in	 this	 insect	 compartment.	 In	 the	 gut,	 the	702	

microflora	is	mainly	composed	of	Enterococcus	sp.	(green	cells)	and	Enterobacter	sp.	(blue	cells).	Step	703	

3:	 P.	 protegens	 cells	 cross	 the	 gut	 epithelial	 barrier	 by	 a	 yet	 unknown	 mechanism	 to	 reach	 the	704	

hemocoel.	For	this	step,	the	bacteria	need	to	find	their	way	through	the	indigenous	microflora	that	705	

can	aggregate	onto	the	epithelial	cells	to	form	an	additional	protective	layer	[65,	68].	P.	protegens	uses	706	

its	 T6SS	 and	 the	 associated	 VgrG1a	module,	 encompassing	 the	 VgrG1a	 spike	 along	with	 the	 RhsA	707	

effector,	 to	 kill	 Enterobacter	 locally	 in	 the	 vicinity	 of	 the	 gut	 epithelial	 cells.	 Step	 4:	 Once	 in	 the	708	

hemocoel,	P.	protegens	starts	to	proliferate.	Step	5:	The	bacteria	produce	virulence	factors,	among	709	

which	the	entomotoxin	Fit	[13]	that	is	specifically	produced	in	the	hemolymph	of	the	insect	[8,	16].	710	

During	 invasion,	 a	 particular	 LPS	 decoration	 protects	 P.	 protegens	 against	 antimicrobial	 peptides	711	
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(cecropins)	produced	by	the	host	[15]	and	additional	virulence	factors	such	as	hydrogen	cyanide,	cyclic	712	

lipopeptides,	 chitinase	and	phospholipase	aid	 to	promote	pathogenesis	 [5,	 10,	 11].	As	 soon	as	 the	713	

bacteria	invade	the	hemocoel	compartment,	the	insect	enters	in	an	acute	disease	phase	leading	to	its	714	

death	within	about	one	day.	IM,	inner	membrane;	P,	periplasm;	OM,	outer	membrane.	715	

	716	
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Supplementary	Methods	

	

Bacterial	strains,	culture	conditions	and	in	vitro	competition	assays	

Bacterial	strains	and	plasmids	used	in	this	study	are	listed	in	Supplementary	Tables	1	and	2.	Bacteria	

were	routinely	cultured	on	nutrient	agar	(NA),	in	nutrient	yeast	broth	(NYB)	or	in	lysogeny	broth	(LB)	

[1].	When	required,	growth	media	were	supplemented	with	ampicillin	(100	µg	ml-1),	chloramphenicol	

(50	µg	ml-1),	gentamycin	(10	µg	ml-1)	or	kanamycin	(25	µg	ml-1).	The	 incubation	temperatures	were	

25°C	 for	Pseudomonas	 strains	and	 insect	gut	 isolates	and	37°C	 for	Escherichia	 coli	 if	not	otherwise	

specified.	Electro-competent	cells	of	P.	protegens	were	obtained	at	35°C.	

	

16S	rRNA	gene	sequencing	for	metagenomic	analysis	

DNAs	 were	 extracted	 from	 Pieris	 gut	 content	 using	 a	 protocol	 developed	 and	 standardized	 by	

GenoScreen	(Lille,	France)	based	on	the	QIAamp	Fast	DNA	Stool	Mini	kit	(Qiagen,	USA).	DNAs	were	

then	 quantified	 by	 fluorescence.	 The	 amplicon	 library	 was	 generated	 by	 targeting	 the	 V3	 and	 V4	

hypervariable	regions	of	the	16S	rDNA	with	5	ng	of	extracted	DNA	per	sample	using	192	bar-coded	

primers	(Metabiote	MiSeq	Primers).	The	final	library	was	obtained	by	equimolary	pooling	amplicons.	

Illumina	MiSeq	 sequencing	 (2	 x	 250	 nt)	 was	 performed.	 Sequence	 data	were	 processed	 using	 the	

GenoScreen	 analysis	 pipeline	MetaBiote®	OnLine.	 Sequences	were	 denoised,	 OTUs	 generated	 and	

chimeras	removed.	Operational	taxonomic	units	(OTUs)	were	defined	by	clustering	at	3%	divergence	

(97%	similarity).	Final	OTUs	were	taxonomically	classified	by	the	RDP	method	using	the	Greengenes	

database.	 The	 16S-metagenomic	 data	 were	 deposited	 at	 the	 European	 Nucleotide	 Archive	 as	

BioProject	ID	PRJEB28754,	samples	ERS2756952	to	ERS2757001.	

	

Isolation	of	bacteria	from	the	gut	microbiota	of	P.	brassicae	larvae	

To	isolate	Enterobacter	sp.	and	Enterococcus	sp.,	the	guts	of	surface-disinfested	3rd	instar	larvae	were	

extracted	and	pooled	by	three	in	Eppendorf	tubes	containing	1	ml	of	sterile	0.9%	NaCl	solution	and	

glass	beads.	The	tubes	were	agitated	using	a	FastPrep-24™	5G	homogenizer,	for	1	min	at	6	m.s-1.	The	

obtained	homogenate	was	diluted	and	plated	on	NA	plates	that	were	 incubated	overnight	at	room	

temperature.	Colonies	were	purified	by	subculturing	and	isolates	with	similar	or	different	phenotypic	

characteristics	were	subjected	to	colony	PCR	using	universal	primers	UV-F	and	UV-R	(Supplementary	

Table	3)	 targeting	a	part	of	 the	bacterial	16S	 rRNA	gene	 [2].	The	amplicons	were	purified	with	 the	

QIAquick®	PCR	Purification	Kit	 (Qiagen®)	 and	 sent	 for	 sequencing	 (GATC	Biotech).	 Sequences	were	

subjected	to	BLAST®	analysis	in	order	to	identify	the	isolated	bacteria.	
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Interbacterial	competition	assays	

Killing	activities	of	P.	protegens	wild	type	CHA0,	the	ΔT6SS	mutant	or	the	ΔVgrG1a-mod	or	ΔVgrG1b-

mod	mutants	against	Enterobacter	 sp.	or	Enterococcus	 sp.	 isolated	 from	the	 insect	gut	 (see	above)	

were	tested	in	confrontation	assays	on	filters	as	follows.	Over-night	cultures	were	washed	with	0.9%	

NaCl	and	their	OD600nm	was	adjusted	to	0.1.	Aliquots	of	50	μl	of	the	adjusted	cultures	were	mixed	at	a	

ratio	of	 1:1	 and	 spotted	onto	 a	 sterile	 0.2-µm	cellulose	 acetate	membrane	 filter	 (Sartorius)	with	 a	

diameter	of	25	mm	placed	on	a	NA	plate.	Following	incubation	at	25°C	for	24	h,	the	bacterial	growth	

on	each	filter	was	suspended	in	5	ml	of	sterile	0.9%	NaCl	solution.	The	resulting	cell	suspensions	were	

serially	diluted	and	aliquots	of	10	µl	were	spotted	onto	 the	appropriate	NA	plates	with	or	without	

antibiotic	depending	on	the	specific	confrontation	as	 follows.	 In	the	Enterococcus	vs.	Pseudomonas	

competition	 assays,	 Enterococcus	 sp.	 were	 selected	 on	 NA	 with	 10	 µg	 ml-1	 of	 gentamycin	 and	

Pseudomonas	strains	on	NA	with	200	µg	ml-1	of	ampicillin,	with	incubation	at	25°C.	In	the	Enterobacter	

vs.	Pseudomonas	sp.	competition	assay,	Enterobacter	sp.	were	selected	on	NA	without	antibiotic	and	

incubation	at	42°C,	and	Pseudomonas	strains	on	NA	with	25	µg	ml-1	of	spectinomycin	with	incubation	

at	 25°C.	 The	 CFU	 counts	 of	 the	 competitors	 (CHA0	WT	 or	 derivatives)	 and	 the	 gut	 isolates	 were	

determined	at	t	=	0	h	and	t	=	24	h	and	used	to	calculate	the	competitive	 index	(CI)	as	follows:	CI	=	

[CFUcompetitor-24	h/CFUgut	isolate-24	h]	/	[CFUcompetitor-0	h/CFUgut	isolate-0	h].	
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Supplementary	Figures	
	

	
Fig.	S1.	The	VgrG	spikes	and	the	effectors	encoded	by	the	VgrG1a	and	VgrG1b	modules	contribute	to	
the	insect	pathogenicity	of	Pseudomonas	protegens	CHA0	following	oral	infection.	
The	virulence	of	the	CHA0	mutants	lacking	the	VgrG1a	or	VgrG1b	spikes	(a)	or	the	effectors	RhsA	or	
times.	 Results	 were	 pooled	 and	 analyzed	 using	 the	mixed	 effect	 Cox	model	 and	 one-way	 ANOVA	
followed	by	Tukey’s	test	with	Bonferroni	correction.	For	each	panel,	treatments	with	different	letters	
(a,	b	or	c)	significantly	differed	from	each	other	(P	<	0.05).		
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Fig.	S2.	Rarefaction	curves	of	OTUs	for	the	bacterial	community	samples.	
The	plot	shows	the	number	of	OTUs	as	a	function	of	the	number	of	reads	sampled.	The	rarefaction	
curves	were	made	for	each	tested	condition,	i.e.	(a)	WT,	P.	protegens	CHA0	wild	type;	(b)	ΔT6SS	mutant	
of	 CHA0;	 (c)	 ΔVgrG1a-mod	mutant	 of	 CHA0;	 (d)	 ΔVgrG1b-mod	mutant	 of	 CHA0;	 and	 (e)	 NI,	 non-
inoculated	control.	
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Fig.	S3.	Bacterial	community	composition	at	phylum	level	in	the	gut	of	Pieris	brassicae	larvae.	
The	percentage	values	 indicate	 the	 relative	abundance	of	each	phylum.	DNAs	were	obtained	 from	
eight	 insect	 gut	 samples.	 Each	 sample	 was	 prepared	 from	 the	 pooled	 entire	 guts	 of	 four	 larvae.	
Preparation	 and	 metagenomic	 analysis	 of	 16S	 rRNA	 gene	 amplicon	 libraries	 was	 performed	 by	
GenoScreen	(Lille,	France)	using	the	Metabiote®	pipeline.	
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Fig.	S4.	Comparison	of	bacterial	diversity	between	conditions	using	different	α-diversity	indexes.	
The	calculation	of	the	Shannon-Weaver	(a),	Simpson	(b)	and	Chao1	(c)	α-diversity	indexes	was	done	at	different	taxa	levels,	i.e.	phylum,	class,	family	and	
genus.	Data	are	expressed	as	standard	boxplots	with	medians.	Differences	of	bacterial	diversity	among	the	different	conditions	(non-inoculated	control,	
inoculation	with	Pseudomonas	protegens	CHA0	wild	type	or	the	ΔT6SS,	ΔVgrG1a-mod	or	ΔVgrG1b-mod	mutants)	were	determined	using	ANOVA	coupled	
with	Tukey’s	HSD	(P < 0.05).	
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Fig.	S5.	Principal	Component	Analysis	(PCA)	of	the	β-diversity.	
The	β-diversity	for	the	different	conditions,	i.e.	non-inoculated	control	and	inoculation	with	P.	protegens	
CHA0	wild	 type	or	 the	ΔT6SS,	ΔVgrG1a-mod	or	ΔVgrG1b-mod	mutants,	was	assessed	at	different	 taxa	
levels,	i.e.	(a)	phylum,	(b)	class,	(c)	family	and	(d)	genus.	Each	point	corresponds	to	a	sample.	Four	insect	
guts	were	pooled	per	sample.	
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Supplementary	Tables	

	

	

Table	S1.	Bacterial	strains	used	in	this	study.	

Strain	name	 Strain	code	 Genotype	or	relevant	characteristics1	 Reference	or	
source	

Pseudomonas	protegens	 	 	
CHA0	 CHA0	 Wild	type,	genome	accession	number	

NC_021237.1	
[3,	4]	

CHA0-gfp2	 CHA0-gfp2	 CHA0::attTn7-gfp2;	Gmr	 [5]	
ΔT6SS	 CHA5175	 ΔT6SS	mutant	of	CHA0;	deletion	of	

PFLCHA0_RS30085	through	PFLCHA0_RS30180	
This	study	

ΔT6SS-gfp2	 CHA5175-gfp2	 ΔT6SS::attTn7-gfp2;	Gmr	 This	study	
ΔVgrG1a-mod	 CHA5200	 ΔvgrG1a-mod	mutant	of	CHA0;	deletion	of	the	

VgrG1a	module	encompassing	PFLCHA0_RS30185	
through	PFLCHA0_RS30200	

This	study	

ΔVgrG1a-mod-gfp2	 CHA5200-gfp2	 ΔvgrG1a-mod::attTn7-gfp2;	Gmr	 This	study	
ΔVgrG1b-mod	 CHA5086	 ΔvgrG1b-mod		mutant	of	CHA0;	deletion	of	the	

VgrG1b	module	encompassing	PFLCHA0_RS15145	
through	PFLCHA0_RS15190	

This	study	

ΔVgrG1b-mod-gfp2	 CHA5086-gfp2	 ΔvgrG1b-mod::attTn7-gfp2;	Gmr	 This	study	
ΔvgrG1a	 CHA5215	 ΔvgrG1a	mutant	of	CHA0;	deletion	of	VgrG1a	

module	spike	gene	
This	study	

ΔvgrG1b	 CHA5112	 ΔvgrG1b	mutant	of	CHA0;	deletion	of	VgrG1b	
module	spike	gene	

This	study	

ΔrhsA	 CHA5257	 ΔrhsA	deletion	mutant	of	CHA0;	deletion	of	the	
VgrG1a	module	effector	gene	

This	study	

Δghh1	 CHA5209	 Δghh1	mutant	of	CHA0;	deletion	of	the	VgrG1b	
module	effector	gene	

This	study	

Insect	gut	isolates	 	 	 	
Enterobacter	sp.	 	 Isolated	from	the	gut	of	Pieris	brassicae	 This	study	
Enterococcus	sp.	 	 Isolated	from	the	gut	of	Pieris	brassicae	 This	study	

Escherichia	coli	 	 	
S17-1/λpir	 	 Laboratory	strain	 [6]	
DH5α	 	 Laboratory	strain	 [1]	

1	Gmr,	gentamycin	resistance.	
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Table	S2.	Plasmids	used	in	this	study.	

Plasmids	 Genotype	or	relevant	characteristics1	 Reference	or	source	

pBK-miniTn7-gfp2	 pUC19-based	delivery	plasmid	for	miniTn7-gfp2;	mob+;	Gmr,	Cmr,	Apr	 [7]	

pEMG	 pSEVA212S;	oriR6K,	lacZα	with	two	flanking	I-SceI	sites;	Kmr,	Apr		 [8]	

pME8306	 pEMG::ΔvgrG1b	mod	suicide	plasmid	for	the	deletion	of	the	VgrG1b	
module,	i.e.	PFLCHA0_RS15145	through	PFLCHA0_RS15190	
encompassing	the	vgrG1b,	ghh1	and	ghhI	genes	

This	study	

pME8329	 pEMG::ΔvgrG1b;	suicide	plasmid	for	the	in-frame	deletion	of	the	
VgrG1b	spike	gene	(PFLCHA0_RS15170)	

This	study	

pME8384	 pEMG::ΔT6SS	suicide	plasmid	for	the	deletion	of	the	T6SS	core	
apparatus	genes	encompassing	PFLCHA0_RS30085	through	
PFLCHA0_RS30180	

This	study	

pME9407	 Carrier	plasmid	for	mini-Tn7-mcherry;	Gmr,	Apr	 [9]	
pME11025	 pEMG::Δghh1;	suicide	plasmid	for	the	in-frame	deletion	of	the	VgrG1b	

module	effector	gene	ghh1	(PFLCHA0_RS31250)	
This	study	

pME11035	 pEMG::ΔvgrG1a;	suicide	plasmid	for	the	in-frame	deletion	of	the	
VgrG1a	spike	gene	(PFLCHA0_RS30185)	

This	study	

pME11055	 pEMG::ΔrhsA;	suicide	plasmid	for	the	in-frame	deletion	of	the	VgrG1a	
module	effector	gene	rhsA	(PFLCHA0_RS30195)	

This	study	

pME11056	 pEMG::ΔvgrG1a-mod	suicide	plasmid	for	the	deletion	of	the	VgrG1a	
module,	i.e.	PFLCHA0_RS30185	through	PFLCHA0_RS30200	
encompassing	the	vgrG1a,	rhsA	and	rhsI	genes	

This	study	

pSW-2	 oriRK2,	xylS,	Pm::I-sceI;	Gm
R	 [8]	

pUX-BF13	 Helper	plasmid	encoding	Tn7	transposition	functions;	R6K-replicon;	ApR	 [10]	

1	Apr,	ampicillin	resistance;	Cmr,	chloramphenicol	resistance;	Gmr,	gentamicin	resistance;	Kmr,	kanamycin	resistance.	
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Table	S3.	Oligonucleotides	used	in	this	study.	

Oligonucleotide	 Sequence	5’	→	3’,	restriction	enzyme1	 Usage	

T6SS-1	 CGAGCTCCAGGTACTTGGTCAGCCCCT,	SacI	 Deletion	of	the	T6SS	core-apparatus	gene	cluster	
(PFLCHA0_RS30085	through	RS30180)	

T6SS-2	 GGGGTACCAGAGCAACAAGGTCGCGACC,	KpnI	 Deletion	of	the	T6SS	core-apparatus	gene	cluster	
(PFLCHA0_RS30085	through	RS30180)	

T6SS-3	 GGGGTACCAACTGCACTACGACTTCAGC,	KpnI	 Deletion	of	the	T6SS	core-apparatus	gene	cluster	
(PFLCHA0_RS30085	through	RS30180)	

T6SS-4	 CGGGATCCGACGAAATCGAAGCTGGTCT,	BamHI	 Deletion	of	the	T6SS	core-apparatus	gene	cluster	
(PFLCHA0_RS30085	through	RS30180)	

VgrG1a-mod-1	 CGAGCTCAAGAACACCCTGATCCTGCT,	SacI	 Deletion	of	VgrG1a	module	gene	cluster	
(PFLCHA0_RS30185	through	RS30200)	

VgrG1a-mod-2	 GGGGTACCCAGTCGTGTGGATTGCTGAA,	KpnI	 Deletion	of	VgrG1a	module	gene	cluster	
(PFLCHA0_RS30185	through	RS30200)	

VgrG1a-mod-3	 GGGGTACCACGATCGCGCATCCTAGCCA,	KpnI	 Deletion	of	VgrG1a	module	gene	cluster	
(PFLCHA0_RS30185	through	RS30200)	

VgrG1a-mod-4	 CGGGATCCACTCTCAAGCGCGTGCCATC,	BamHI	 Deletion	of	VgrG1a	module	gene	cluster	
(PFLCHA0_RS30185	through	RS30200)	

VgrG1b-mod-1	 CGGAATTCATCGACAGGGTATCGAGCAGGG,	EcoRI	 Deletion	of	VgrG1b	module	gene	cluster	
(PFLCHA0_RS15145	through	RS15190)		

VgrG1b-mod-2	 GGGGTACCTTGTTGTCCGGAGGATGAGCAG,	KpnI	 Deletion	of	VgrG1b	module	gene	cluster	
(PFLCHA0_RS15145	through	RS15190)	

VgrG1b-mod-3	 GGGGTACCCAACCAACTTGAAAGTCACGGC,	KpnI	 Deletion	of	VgrG1b	module	gene	cluster	
(PFLCHA0_RS15145	through	RS15190)	

VgrG1b-mod-4	 CGGGATCCGGTGCTTTAAGCGACCATACCT,	BamHI	 Deletion	of	VgrG1b	module	gene	cluster	
(PFLCHA0_RS15145	through	RS15190)	

vgrG1a-3	 GGGGTACCAAAGGCTAATGAACGGACGCC,	KpnI	 Deletion	of	vgrG1a	(PFLCHA0_RS30185)	
vgrG1a-4	 CGGGATCCATCATCGAGGTGTGTTCCAGC,	BamHI	 Deletion	of	vgrG1a	(PFLCHA0_RS30185)	
vgrG1b-1	 CGGAATTCAGATTAAACGTGCCTTTGGCCA,	EcoRI	 Deletion	of	vgrG1b	(PFLCHA0_RS15170)	
vgrG1b-2	 GGGGTACCAACTAGGAGTAACGCGTATGAC,	KpnI	 Deletion	of	vgrG1b	(PFLCHA0_RS15170)	
vgrG1b-3	 GGGGTACCTGCCATAAACGACTTCCTCTGG,	KpnI	 Deletion	of	vgrG1b	(PFLCHA0_RS15170)	
vgrG1b-4	 CGGGATCCGTTTTATTCTTTGGCTGCGCGC,	BamHI	 Deletion	of	vgrG1b	(PFLCHA0_RS15170)	
rhsA-1	 CGGAATTCAAAGGCTAATGAACGGACGC,	EcoRI	 Deletion	of	rhsA	(PFLCHA0_RS30195)	
rhsA-2	 CCCAAGCTTGAGAATGTCGGCCATCATCG,	HindIII	 Deletion	of	rhsA	(PFLCHA0_RS30195)	
rhsA-3	 CCCAAGCTTACCTTCTGGCTTCTTCGCTA,	HindIII	 Deletion	of	rhsA	(PFLCHA0_RS30195)	
rhsA-4	 CGGGATCCGTTCAGTGCTGCCAGTAGTT,	BamHI	 Deletion	of	rhsA	(PFLCHA0_RS30195)	
ghh1-1	 CGGAATTCCCATCAGAGGCGCATATCAATG,	EcoRI	 Deletion	of	ghh1	(PFLCHA0_RS31250)	
ghh1-2	 GGGGTACCTGAGCCACCACCCAATAAACGG,	KpnI	 Deletion	of	ghh1	(PFLCHA0_RS31250)	
ghh1-3	 GGGGTACCCATATTGTTGGCATACACCTCG,	KpnI	 Deletion	of	ghh1	(PFLCHA0_RS31250)	
ghh1-4	 TCCCCCGGGGCCAGAACTCCAACGGATTTAT,	SmaI	 Deletion	of	ghh1	(PFLCHA0_RS31250)	
UV-F2	 AGRGTTYGATYMTGGCTCAG	 Identification	of	gut-isolated	bacteria	
UV-R2	 CCGTCAATTCMTTTRAGTTT	 Identification	of	gut-isolated	bacteria	

1	Restriction	sites	are	underlined.	
2	Reference:	[2].	
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Table	S4.	Filtering	process	before	16S	metagenomic	analysis.	

1	Less	than	3000	reads.	
2	No	Pseudomonas	OTUs	indicative	of	infection	by	P.	protegens	inoculants	were	detected.	NA,	not	applicable.	
	
	

Condition	 Total	number	of	
samples	

Number	of	samples	removed	from	the	
analysis	

Number	of	
samples	
analyzed	Low	number	of	reads1	 Non-infected	by	

Pseudomonas2	

Control	 10	 2	 NA	 8	
CHA0	wild	type	 10	 0	 2	 8	
ΔT6SS	 10	 2	 1	 7	
ΔVgrG1a	mod	 10	 0	 2	 8	
ΔVgrG1b	mod	 10	 0	 1	 9	
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Table	S5.	T6SS	and	VgrG	modules	genes	in	Pseudomonas	protegens	CHA0	and	orthologs	in	Pseudomonas	aeruginosa	PAO1.	

Gene	
name	

P.	protegens	CHA0	
gene	accession	

number	1	

P.	protegens	
CHA0	protein	

accession	number	
Function	

Gene	ortholog	in	P.	
aeruginosa	PAO1	2	

Coverage	
(%)	

Protein	
identity	
(%)	

Type	VI	secretion	system	core	apparatus	 	 	 	 	
tagQ	 PFLCHA0_RS30085	 WP_011064242.1	 Hypothetical	protein	 tagQ1	(PA0070)	 95	 55	
tagR	 PFLCHA0_RS30090	 WP_015637477.1	 Hypothetical	protein	 tagR1	(PA0071)	 98	 78	
tagS	 PFLCHA0_RS30095	 WP_015637478.1	 ABC	transporter	permease	 tagS1	(PA0072)	 100	 63	
tagT	 PFLCHA0_RS30100	 WP_011064245.1	 ABC	transporter	ATP-binding	protein	 tagT1	(PA0073)	 99	 65	
ppkA	 PFLCHA0_RS30105	 WP_015637479.1	 Serine/threonine	protein	kinase	 ppkA	(PA0074)		 100	 71	
pppA	 PFLCHA0_RS30110	 WP_011064247.1	 Serine/threonine-protein	phosphatase	 pppA	(PA0075)	 95	 74	
tagF	 PFLCHA0_RS30115	 WP_011064248.1	 T6SS-associated	protein	TagF	 tagF1	(PA0076)	 98	 61	
tssM	 PFLCHA0_RS30120	 WP_015637480.1	 T6SS	membrane	complex	subunit	TssM	 icmF1	(PA0077)	 94	 78	
tssL	 PFLCHA0_RS30125	 WP_015637481.1	 T6SS	membrane	complex	subunit	TssL	 tssL1	(PA0078)	 100	 76	
tssK	 PFLCHA0_RS30130	 WP_011064251.1	 T6SS	membrane	subunit	TssK	 tssK1	(PA0079)	 100	 77	

tssJ	 PFLCHA0_RS30135	 WP_011064252.1	 T6SS	membrane	complex	subunit	TssJ	
lip1	or	tssJ1	
(PA0080)	 97	 39	

fha	 PFLCHA0_RS30140	 WP_011064253.1	 T6SS-associated	FHA	domain	protein	TagH	 fha1	(PA0081)	 100	 61	
tssA	 PFLCHA0_RS30145	 WP_041752688.1	 T6SS	protein	TssA	 tssA1	(PA0082)	 100	 59	
tssB	 PFLCHA0_RS30150	 WP_011064255.1	 T6SS	contractile	sheath	small	subunit	 tssB1	(PA0083)	 97	 93	
tssC	 PFLCHA0_RS30155	 WP_011064256.1	 T6SS	contractile	sheath	large	subunit	 tssC1	(PA0084)	 100	 92	
hcp	 PFLCHA0_RS30160	 WP_011064257.1	 T6SS	tube	protein	Hcp	 hcp1	(PA0085)	 99	 76	
tssE	 PFLCHA0_RS30165	 WP_011064258.1	 T6SS	baseplate	subunit	TssE	 tssE1	(PA0087)	 98	 68	
tssF	 PFLCHA0_RS30170	 WP_011064259.1	 T6SS	baseplate	subunit	TssF	 tssF1	(PA0088)	 100	 81	
tssG	 PFLCHA0_RS30175	 WP_011064260.1	 T6SS	baseplate	subunit	TssG	 tssG1	(PA0089)	 99	 71	
clpV	 PFLCHA0_RS30180	 WP_015637485.1	 T6SS	ATPase	TssH	 clpV1	(PA0090)	 99	 87	
	 	 	 	 	 	 	
VgrG1a	module	 	 	 	 	 	
vgrG1a		 PFLCHA0_RS30185	 WP_011064262.1	 T6SS	tip	protein	VgrG	 vgrG1a	(PA0091)	 99	 71	
	 PFLCHA0_RS30190	 WP_011064263.1	 DUF1795	domain-containing	protein	 No	ortholog	found	 -	 -	
rhsA	 PFLCHA0_RS30195	 WP_015637486.1	 Protein	RhsA	 tse5	(PA2684)	 74	 29	
rhsI	 PFLCHA0_RS30200	 WP_015637487.1	 Hypothetical	protein	 No	ortholog	found	 -	 -	
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	 PFLCHA0_RS30205	 WP_015637488.1	 Hypothetical	protein	 No	ortholog	found	 -	 -	
	 PFLCHA0_RS30210	 WP_015637489.1	 DUF1795	domain-containing	protein	 EagT6	(PA0094)	 100	 77	
	 PFLCHA0_RS30215	 WP_015637490.1	 Putative	lipoprotein	 No	ortholog	found	 -	 -	
	 PFLCHA0_RS30220	 WP_041752690.1	 Hypothetical	protein	 No	ortholog	found	 -	 -	
	 	 	 	 	 	 	
VgrG1b	module	 	 	 	 	 	
	 PFLCHA0_RS15145	 WP_015635603.1	 Conserved	hypothetical	protein	 PA0101	 98	 63	
ghhI	 PFLCHA0_RS15150	 WP_041752250.1	 Hypothetical	protein	 tsi7	(PA0100)	 95	 35	

ghh1	 PFLCHA0_RS31250	 WP_015635604.1	
DUF4150,	Tox-GHH2,	and	PAAR	domains	containing	
protein	 tse7	(PA0099)	 91	 48	

	 PFLCHA0_RS15155	 WP_015635605.2	 3-Oxoacyl-ACP	synthase	 PA0098	 99	 74	
	 PFLCHA0_RS15160	 WP_015635606.0	 DUF2169	domain-containing	protein	 PA0097	 100	 65	
	 PFLCHA0_RS15165	 WP_015635607.1	 Hypothetical	protein	with	a	portion	of	VgrG	domain	 PA0096	 100	 61	
vgrG1b	 PFLCHA0_RS15170	 WP_015635608.1	 T6SS	tip	protein	VgrG	 vgrG1b	(PA0095)	 100	 73	

1	Genome	accession	number	of	P.	protegens	CHA0:	NC_021237.1.	
2	Genome	accession	number	of	P.	aeruginosa	PAO1:	NC_002516.2.	
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Table	S6.	Relative	abundance	of	OTUs	affiliated	to	the	Enterococcaceae	and	Enterobacteriaceae	families	in	the	gut	
microbiomes	of	Pieris	brassicae	larvae	following	oral	infection	by	Pseudomonas	protegens	CHA0	wild	type	or	its	T6SS	
or	VgrG	module	mutants.	

#OTU	ID	 Genus	affiliation	 Relative	abundance	(%)	inside	the	family	per	condition1	
Non-

inoculated	
Wild	type	
CHA0	 ∆T6SS	 ∆VgrG1a-mod	 ∆VgrG1b-mod	

Enterococcaceae	 	 	 	 	 	 	
denovo2983	 Enterococcus	 99.98	 99.98	 99.99	 99.98	 99.96	
denovo2721	 Enterococcus	 >0.10	 >0.10	 >0.10	 >0.10	 >0.10	
denovo2379	 Enterococcus	 -	 -	 -	 -	 >0.10	
denovo588	 Enterococcus	 >0.10	 -	 -	 -	 >0.10	

	 	 	 	 	 	 	
Enterobacteriaceae		 	 	 	 	 	 	

denovo3889	 Enterobacter	 98.26	 98.69	 98.90	 96.16	 97.69	
denovo966	 Escherichia	 1.21	 0.93	 0.41	 2.07	 1.86	
denovo3152	 Enterobacter	 0.50	 0.30	 0.52	 0.35	 0.43	
denovo3677	 No	genus	affiliated	 -	 >0.10	 >0.10	 1.39	 >0.10	
denovo3436	 Citrobacter	 -	 -	 >0.10	 >0.10	 -	
denovo4425	 Enterobacter	 >0.10	 >0.10	 -	 -	 -	
denovo3577	 Shigella	 >0.10	 -	 -	 -	 -	
denovo4046	 No	genus	affiliated	 -	 -	 >0.10	 -	 -	
denovo2632	 No	genus	affiliated	 -	 -	 >0.10	 -	 -	
denovo906	 Salmonella	 >0.10	 -	 -	 -	 -	
denovo943	 Enterobacter	 -	 >0.10	 -	 -	 -	
denovo951	 Citrobacter	 >0.10	 -	 -	 -	 -	

1	-,	not	detected.	
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