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Abstract We apply the cognitive hierarchy model of Camerer et al. (Q J Econ
119(3):861–898, 2004)—where players have different levels of reasoning—to Huck
et al. (Games Econ Behav 38:240–264, 2002) discrete version of Hamilton and Slut-
sky (Games Econ Behav 2:29–46, 1990) action commitment game—a duopoly with
endogenous timing of entry. We show that, for an empirically reasonable average num-
ber of thinking steps, the model rules out Stackelberg equilibria, generates Cournot
outcomes including delay, and outcomes where the first mover commits to a quantity
higher than Cournot but lower than Stackelberg leader. We show that a cognitive hier-
archy model with quantal responses can explain the most important features of the
experimental data on the action commitment game in (2002). In order to gauge the
success of the model in fitting the data, we compare it to a noisy Nash model. We find
that the cognitive hierarchy model with quantal responses fits the data better than the
noisy Nash model.
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1 Introduction

The theoretical literature on endogenous timing tries to identify factors that might
lead to the endogenous emergence of sequential or simultaneous play in oligopolistic
markets.1 In Hamilton and Slutsky (1990) action commitment game, two firms must
decide a quantity to be produced in one of two periods before the market clears. If a
firm commits to a quantity in the first period, it will have to make its decision without
knowing whether the other firm has chosen to commit early or not. If a firm commits
to a quantity in the second period, then it observes the first period production of the
rival (or its decision to wait).

Hamilton and Slutsky show that this game has three subgame perfect pure strategy
Nash equilibria: both firms committing in the first period to the simultaneous-move
Cournot–Nash equilibrium quantities, and each waiting and the other playing its Stack-
elberg leader quantity in the first period. They also show that only the Stackelberg
equilibria survive elimination of weakly dominated strategies.2

Observed behavior in experiments on this canonical model of endogenous timing
is at odds with the theory. For example, Huck et al. (2002) test experimentally the
predictions of the action commitment game. They find that: (i) market outcomes are
very heterogeneous, (ii) Stackelberg equilibria are rare, (iii) Cournot outcomes are
modal, (iv) simultaneous-move Cournot outcomes are often played in the second
period (delay), and (v) there is a high percentage of outcomes where the first mover
commits to a quantity higher than Cournot but lower than Stackelberg leader.

The questions that the endogenous timing literature tries to address are particularly
relevant in terms of new markets, where two or more firms will enter. The experimental
evidence suggests that simultaneous-move play may be a better predictor of behavior
in markets for new goods than sequential play.3 It also suggests that there may be
substantial heterogeneity in behavior in these markets.

Why do we observe this gap between the theoretical predictions and the experi-
mental evidence? One explanation might be that subjects have trouble coordinating
their play in one of the two Stackelberg equilibria: if both equilibria are exactly the
same then it is far from clear which of the two firms is going to assume the leading

1 The seminal papers are Saloner (1987), Hamilton and Slutsky (1990), and Robson (1990).
2 Consider the game:

L C W
L 0, 0 48, 32 72, 36
C 32, 48 64, 64 64, 64
W 36, 72 64, 64 64, 64

In this game L represents the strategy of playing the Stackelberg leader’s quantity in the first period, C
the strategy of playing the Cournot quantity in the first period, and W the strategy of waiting (and playing
in the second period). This game has three pure strategy Nash equilibria (C, C), (L , W ) and (W, L). The
“Cournot equilibrium” (C, C) does not survive elimination of weakly dominated strategies because strategy
C is weakly dominated by W .
3 As we have seen the prediction of Stackelberg equilibria rests on equilibrium selection arguments.
Simultaneous-move Cournot–Nash equilibria typically exist, however, they do not survive the application
of equilibrium refinements.
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role in the first period—see Matsumura (2001) on the instability of leader-follower
relationships.

It is possible to think of explanations for some aspects of the experimental evidence.
However, it is much harder to explain most of them. For example, Harsanyi and Selten
(1988) risk-payoff equilibrium selection argument can explain why Cournot outcomes
are more frequently played than Stackelberg outcomes since the Cournot–Nash equi-
librium risk dominates (i.e. is less risky than) the Stackelberg equilibrium.4 However,
risk-payoff considerations cannot explain delay, collusive or double Stackelberg lead-
ership outcomes.

Another explanation might be inequity aversion. Santos-Pinto (2008) generalizes
Hamilton and Slutsky (1990) action commitment game by assuming that players are
averse to inequality in payoffs. He shows that relatively high levels of inequity aversion
rule out asymmetric equilibria, and inequity aversion gives rise to a continuum of
simultaneous-move equilibria which include the Cournot–Nash outcome, collusive
outcomes as well as double Stackelberg leadership. However, inequity aversion is
not able to explain delay. Although inequity aversion can cast some light into the
experimental evidence on endogenous timing games, we believe that the discussion
can be further enriched with a different focus.

Recent experiments suggest that in strategic settings without clear precedents, indi-
viduals’ initial responses often deviate systematically from equilibrium. Moreover,
different players seem to employ different levels of reasoning in games. Nagel (1995)
was one of the first to provide evidence for this using the p-beauty contest, a dominance
solvable game. She found that most people do not follow the Nash equilibrium predic-
tion of behavior; rather, their degree of strategic thinking is limited to a finite number
of iterations when eliminating weakly dominated strategies. Other important refer-
ences on non-equilibrium models of behavior in games are Stahl and Wilson (1994),
Costa-Gomes et al. (2003), and Camerer et al. (2004). In these models, a level-k player
computes his best response assuming that his rivals employ less thinking steps; the
sole exception is that of the level zero players, who do not behave strategically and
choose randomly across the strategy set.5

This paper applies Camerer et al. (2004) cognitive hierarchy model to Huck et al.
(2002) discrete version of Hamilton and Slutsky (1990) action commitment game.
Since this is a dynamic game and the cognitive hierarchy model is usually applied to
static games we assume that: (1) a level zero player randomizes independently at each
information set, and (2) players of higher levels choose best responses at information
sets using backward induction and use Bayes’ rule to update beliefs about their rivals’
level of strategic sophistication.

4 Here “risk dominates” should be interpreted as strategic uncertainty and not as the decision theoretical
notion of risk. In the game in footnote 2 the “Cournot equilibrium” (C, C) risk dominates the “Stack-
elberg equilibrium” (L , W ) since the product of the deviation losses is highest for (L , W ) (Harsanyi
and Selten 1988, Lemma 5.4.4): (0 − 72)(48 − 72)(64 − 36)(64 − 36) = 1354752 > (32 − 64)

(64 − 64)(32 − 64)(64 − 64) = 0.

5 Ivanov et al. (2009) apply a non-equilibrium model of behavior in games to a model of endogenous timing
in investment where players decide if they want to invest in a market and, if yes, when they want to carry
that action out.
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We show that, for an empirically reasonable average number of thinking steps,
the cognitive hierarchy model predicts that standard Stackelberg equilibria will not be
played. We also show that the model predicts that Cournot outcomes will be frequently
played, specially simultaneous play of Cournot quantities in the second period (delay).
Finally, we show that the model predicts a high percentage of outcomes where the first
mover commits to a quantity higher than Cournot but lower than Stackelberg leader.

The intuition behind these results is as follows. A level 1 (L1 from now on) prefers
to wait since by doing that it can best respond to a level 0 (L0 from now on) who
commits to period 1. If the L1 does not observe commitment by the rival in period 1,
then he chooses a Cournot quantity since this is his best response to the L0’s expected
quantity. Thus, when two L1s meet there will be delay. A level 2 (L2 from now on)
faces a trade-off between committing to period 1 and waiting. If she knew the rival
was an L1, then she would prefer to commit to period 1 with a Stackelberg leader’s
quantity. If she knew that the rival was an L0, then she would prefer to wait so that she
could best respond to the rival when he commits to period 1. For empirically reasonable
average number of thinking steps, an L2 commits to period 1—because there is a high
probability the rival is an L1—and chooses a quantity higher than Cournot but lower
than Stackelberg leader—because the rival might turn out to be an L0.

Next, we take the model to the data and see if it is able to explain the exper-
imental evidence on the action commitment game in Huck et al. (2002) (HMN
from now on). Since the cognitive hierarchy model typically delivers small sets of
predicted behavior we introduce noise into players’ behavior by assuming quantal
responses (see McKelvey and Palfrey 1995; Rogers et al. 2009; Östling et al. 2011).
We estimate the model using maximum likelihood and compare its predictions to the
data.

We find that the cognitive hierarchy model with quantal responses is able to explain
several of the most important features of the experimental data in HMN. The model
predicts spikes in the Cournot quantity in periods 1 and 2. The model also predicts
a high percentage of first movers who commit to a quantity higher than Cournot but
lower than Stackelberg leader. The model’s estimates for the percentage of players who
commit to periods 1 and 2 are very close to the data. The model predicts little play of
strictly dominated quantities which is also consistent with the data. The model gen-
erates heterogeneity in market outcomes (e.g., sequential play of Cournot quantities,
first movers punished by second movers, double Stackelberg leadership, and collusive
outcomes, among others) and predicts a high percentage of Cournot outcomes includ-
ing simultaneous-move Cournot outcomes in period 2 (delay). Notwithstanding, the
model’s predictions for the percentages of first movers who play a particular quantity
within the set of quantities that are higher than Cournot but lower than Stackelberg
leader fall somewhat far from those in the data.

In order to gauge the success of the cognitive hierarchy model in fitting the data,
we compare it to a noisy Nash model. This alternative model posits that players adopt
the symmetric mixed strategy subgame perfect equilibrium of the action commitment
game in HMN with probability θ1 , commit to the Cournot quantity in the first period
with probability θ2, and randomize uniformly over all actions with probability θ3 =
1 − θ1 − θ2. We find that the cognitive hierarchy model with quantal responses fits the
data better than the noisy Nash model.
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Table 1 Theoretical predictions for equilibria and fully collusive outcome

Cournot Stackelberg Collusion

Individual quantities qC
i = 8 q L= 12; q F = 6 (q J

i = 6)sym

Total quantities QC = 16 QS= 18 Q J = 12

Profits �C
i = 64 �L= 72;�F = 36 (�J

i = 72)sym

Consumers’ surplus C SC = 128 C SS= 162 C S J = 72

Total welfare T W C = 256 T W S= 270 T W J = 216

The remainder of this paper is organized as follows. Section 2 describes the empir-
ical evidence in HMN. Section 3 applies the cognitive hierarchy model to the action
commitment game in HMN. Section 4 explains how we introduce quantal responses
in the cognitive hierarchy model, reports the maximum likelihood estimates and dis-
cusses the results. Section 5 concludes the paper. The Appendix contains the payoff
matrix of the action commitment game and the classification of market outcomes.

2 Experimental evidence

HMN use a laboratory experiment to test the action commitment model in Hamilton
and Slutsky (1990). Subjects in the experiment were students of various backgrounds
who were paid according to their results in the game and a participation fee to cover
eventual negative profits. Subjects were told that they would act as a firm which,
together with another firm, serves one market, and that in each round both were to
choose the period of production and the quantity. Subjects were informed that in each
round pairs of participants would be randomly matched and were not informed of
who their rival was. After each round the subjects got individual feedback about what
happened in their market. HMN assume a linear inverse demand function p = 30− Q,
as Q = q1 + q2 ≤ 30 in their setting, and a cost function Ci (qi ) = 6qi , with i = 1, 2.

Table 1, taken from Huck et al. (2001), summarizes the quantities, profits, consumer
surplus and total welfare for the Cournot and Stackelberg equilibria and for the fully
collusive market outcome.6

Subjects were handed a payoff matrix with discrete quantity values and the respec-
tive payoffs their choices would yield considering the quantities that their randomly
matched rival might play and the rival’s profit. The experiment was done with two
payoff matrices, one large and one small. The large payoff matrix had quantities rang-
ing from the integers 3 to 15 and the small payoff matrix had only 6, 8 and 12 as
possible choices. The play lasted 30 rounds and the subjects were informed, at the
end of each round, of the quantity and time of entry their rival had chosen and the
respective payoffs.

As HMN we focus on the results of the game with the large payoff matrix (see
Appendix 1). In that game the quantities 6, 7, 8, and 9 are weakly dominated by the

6 In this earlier paper, an experiment was performed with the same design except that the timing of the
decisions was previously stipulated, either for sequential and simultaneous move. The purpose was to study
Stackelberg and Cournot frameworks when subjects were matched randomly or in fixed pairs.
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Table 2 Observed quantities
per period of play

First 5 rounds Entire set

Period 1 Period 2 Period 1 Period 2

3 0.0 0.7 0.1 0.3

4 0.0 0.7 0.1 0.2

5 2.0 0.0 0.3 0.2

6 2.7 7.3 3.9 2.6

7 2.7 5.3 6.6 6.9

8 12.0 12.7 16.0 14.0

9 4.7 8.0 5.3 6.3

10 13.3 4.7 15.6 4.5

11 8.0 3.3 6.0 1.9

12 8.0 0.7 5.2 1.3

13 0.7 0.0 0.8 0.2

14 0.7 0.0 0.4 0.1

15 1.3 0.7 0.7 0.3

Total 56.0 44.0 61.0 39.0

strategy “enter the market in the second period.” The quantities 3, 4, 5, 13, 14, and
15 are strictly dominated. This game has three Stackelberg equilibria in undominated
strategies: two asymmetric Stackelberg equilibria in pure strategies, where one player
commits to quantity 12 in period 1 and the other player waits and chooses quantity
6, and a symmetric mixed equilibrium in which players commit to quantity 10 in
period 1 with probability 2/5 and with probability 3/5 they wait. Furthermore, there
is one pure strategy equilibrium in weakly dominated strategies, namely the Cournot
equilibrium in which both players commit to quantity 8 in period 1, and there is also a
variety of mixed strategy equilibria in weakly dominated strategies.7 As Hamilton and
Slutsky (1990) require equilibria not to be in weakly dominated strategies, we focus
on symmetric mixed equilibrium in which players commit to quantity 10 in period 1
with probability 2/5 and with probability 3/5 they wait.

Table 2 displays the percentage of choices made broken down by quantity and
period of play for the first five rounds and for the entire set. There are three points
worth stressing from inspection of Table 2. The first is the existence of three spikes
in the strategy space indicating a nonrandom structure in the reasoning of players. In
period 1 there is a spike in quantity 8 and another one in quantity 10. In period 2 there
is a spike in quantity 8. The second is that more players commit to period 1 than to
period 2. The third is that the quantities chosen are highly concentrated in the subset
{6, 7, 8, 9, 10, 11, 12}, that is, very few players choose strictly dominated quantities.8

7 In Hamilton and Slutsky (1990), the linearity of the demand and cost functions combined with the
continuous action space guarantee that there are no equilibria where players mix a first period choice with
the strategy “wait.” With a discrete strategy space there exist various mixed strategy equilibria.
8 Behavior becomes more cooperative as the number of rounds of play increases. By splitting the sample
into two parts, the first encompassing the first fifteen rounds and the second the remaining rounds, we
observe that: quantities 6 and 7 were chosen less often in the first part of the sample than in the second
part; quantities 9 and 11 were chosen more often in the first part and less often in the second. Throughout,
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Table 3 Observed market
outcomes

Market outcomes (% cases) First 5 rounds Entire set

Cournot (8 or 9):

1st period 2.7 4.5

Sequential 10.7 14.8

2nd period 6.7 4.5

Stackelberg:

Leader 12, follower 6 4.0 0.9

Leader 11 or 10, follower 7 9.4 6.5

First mover punished or rewarded:

Stackelberg leader punished 6.7 11.9

Stackelberg leader rewarded 0.0 0.2

Cournot (8 or 9) punished 1.3 0.9

Cournot (8 or 9) rewarded 0.0 0.0

Stackelberg and Cournot in 1st
period

12.0 12.6

Double Stackelberg leadership 10.7 6.3

Collusion:

Collusion successful 4.0 6.1

Collusion failed 5.3 10.6

Collusion exploited 4.0 4.3

Other 22.7 16.0

Table 3 organizes results into market outcomes and displays the percentage of
each in terms of the total. Following HMN, we count 6 and 7 as collusive quan-
tities, 8 and 9 as Cournot quantities, and 10, 11 and 12 as Stackelberg leader’s
quantities.

We will briefly go through the meaning of some of the market outcomes in Table 3.
The outcome “Cournot sequential” means that the first and second movers both choose
a Cournot quantity (8 or 9). The outcome “Stackelberg leader punished” means that
the first mover chooses a Stackelberg leader’s quantity (12, 11 or 10) and the second
mover chooses a quantity greater than his best response to the first mover. The outcome
“ Stackelberg and Cournot in 1st period” means that one player chooses a Stackelberg
leader’s quantity while the other chooses a Cournot quantity. The outcome “double
Stackelberg leadership” means that both players play a Stackelberg leader’s quantity in
period 1. The outcome “collusion successful” means that both players play a collusive
quantity in either period. The outcome “ collusion failed” means that both players
move in period 1, one player chooses a collusive quantity and the other player plays
either Stackelberg or Cournot. The outcome “collusion exploited” means that the first
mover chooses a collusive quantity and the second a quantity greater than 7. Finally,

Footnote 8 continued
quantities 8, 10 and 12 remain approximately constant in both subsets as well as the strictly dominated
quantities.
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the market outcome “ others” refers to those situations that do not fit into any of the
previous cases.9

3 A cognitive hierarchy in the action commitment game

Camerer et al. (2004) propose a cognitive hierarchy theory of behavior in games
where different players employ different levels of reasoning. L0 players do not think
strategically at all; they randomize equally across all strategies. Players of level k ≥ 1
anticipate the decisions of lower-level players and best respond to the mixture of their
decisions using normalized frequencies.10

Formally, players of level k ≥ 1 know the true proportions of lower-level players
f (0), f (1),…, f (k − 1). Since these proportions do not add to one, they normalize
them by dividing by their sum. That is, players with k ≥ 1 levels of reasoning have
the following beliefs about players with h levels of reasoning:

gLk (Lh) =
{

f (h)/
∑k−1

l=0 f (l), ∀h < k
0, ∀h ≥ k

.

Camerer et al. (2004) discuss the properties that the appropriate distribution of levels
should possess: it should be discrete because the thinking steps are integers; it should
reflect the fact that, as thinking steps increase, so do the computations that the players
carry out. Working memory constraints should make it likely that, the higher is k, the
fewer are the players doing one further reasoning level. In other words f (k)/ f (k − 1)

is decreasing in k. Moreover, the authors assume that the ratio is proportional to 1/k
and that the distribution is the Poisson f (k|τ) = τ ke−τ /k!, with k = 0, 1, 2, . . . and
τ > 0. The advantage of this assumption is that it is reasonable and uses only one
degree of freedom.

To apply the cognitive hierarchy model to the action commitment game in HMN
we follow the spirit of McKelvey and Palfrey (1998) by assuming that 0-step thinkers
randomize independently at each information set and higher-level types choose best
responses at information sets using backward induction.

In the action commitment game in HMN a player chooses an action from the set
{3, 4, . . ., 15} ∪ {W }, where W represents the action to delay. Therefore, we assume
that in period 1 the L0 randomizes with a discrete uniform distribution with support
on {3, 4, . . ., 15} ∪ {W }. If that is the case, then the L0 plays each quantity in period
1 as well as W with probability 1/14, i.e.,

Pr L0
1 (q) = Pr L0

1 (W ) = 1

14
,

9 See Appendix 2 for a complete description of the quantities and periods of play that characterize each
market outcome.
10 Thus, players of level k ≥ 1 are assumed to not realize that some players might be thinking at least as
‘hard’ as they are about the game. This could be due to overconfidence: players believe that their rivals have
less insight regarding the game they are playing. It could also be due to the limited capacity that people
have to continuously eliminate dominated strategies. However, players of level k ≥ 1 are assumed to make
an accurate guess about the relative proportions of players using fewer steps than they do.
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for all q ∈ {3, . . ., 15}. If the L0 chooses W in period 1, then the L0 will play each
quantity in period 2 with probability 1/13, i.e.,

Pr L0
2 (q) = 1

13
.

Additionally, the best response function of a level-k player, with k ≥ 1, to quantity
q Lr chosen by his rival is given by

B RLk
(

q Lr
)

= arg max
q Lk∈{3,...,15}

[
P

(
q Lk + q Lr

)
− c

]
q Lk .

The next step is to determine the optimal strategy of an L1. An L1 thinks that the
population is composed only of L0s. The L1 also knows that an L0 will play a
random quantity and will do it in period 1 with probability 13/14 and in period 2 with
probability 1/14. We solve backwards. If the L1 commits to period 2 two things can
happen: the rival commits to period 1 or the rival commits to period 2. Hence, the
perceived expected profit of an L1 who commits to period 2 is

E
(
π L1

2

)
=

[
1 − Pr L1

(
W L0

)]
E

(
π L1

2 |W̄ L0
)

+ Pr L1
(

W L0
)

E
(
π L1

2 |W L0
)

,

where PrL1(W L0) is the probability the L1 assigns to the L0 committing to period
2, E(π L1

2 |W̄ L0) is the perceived expected profit of the L1 when the L1 commits to
period 2 and the rival commits to period 1, and E(π L1

2 |W L0) is the perceived expected
profit of the L1 when the L1 commits to period 2 and the rival also commits to period
2. Since

Pr L1
(

W L0
)

= gL1(L0) = Pr L0
1 (W ) = 1

14
,

we have

E
(
π L1

2

)
= 13

14
E

(
π L1

2 |W̄ L0
)

+ 1

14
E

(
π L1

2 |W L0
)

. (1)

If the L1 commits to period 2 and the rival commits to period 1, then the L1 will be
able to best respond to the quantity commitment of the rival and so

E
(
π L1

2 |W̄ L0
)

=
∑

q L0∈{3,...,15}

1

13
π L1

(
B RL1

(
q L0

)
, q L0

)
. (2)

If the L1 commits to period 2 and the rival also commits to period 2, then the L1’s
perceived expected profit of committing to q L1 in period 2 is

E
[
π L1

2

(
q L1

)
|W L0

]
=

∑
q L0∈{3,...,15}

1

13
π L1

(
q L1, q L0

)
. (3)
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The optimal choice of the L1 is the best reply to the expected output of the L0 since
the payoff function is linear in the opponent’s strategy (demand is linear). Hence, the
L1 chooses B RL1(q̄ L0) where q̄ L0 denotes the expected output of an L0 and

E
(
π L1

2 |W L0
)

= E
[
π L1

2

(
B RL1

(
q̄ L0

))
|W L0

]

=
∑

q L0∈{3,...,15}

1

13
π L1

(
B RL1

(
q̄ L0

)
, q L0

)
. (4)

Substituting (2) and (4) into (1) we obtain

E
(
π L1

2

)
= 13

14

∑
q L0∈{3,...,15}

1

13
π L1

(
B RL1

(
q L0

)
, q L0

)

+ 1

14

∑
q L0∈{3,...,15}

1

13
π L1

(
B RL1

(
q̄ L0

)
, q L0

)
. (5)

If, on the contrary, the L1 commits to quantity q L1 in period 1, then the L1 will attain
a perceived expected profit of

E
[
π L1

1

(
q L1

)]
=

∑
q L0∈{3,...,15}

1

13
π L1

(
q L1, q L0

)
. (6)

Since the L0 plays randomly, the optimal quantity commitment for the L1 in period
1 is B RL1

(
q̄ L0

)
. Therefore, the perceived expected profit of an L1 who commits to

B RL1
(
q̄ L0

)
in period 1 is

E
[
π L1

1

(
B RL1

(
q̄ L0

))]
=

∑
q L0∈{3,...,15}

1

13
π L1

(
B RL1

(
q̄ L0

)
, q L0

)
. (7)

By definition of the best response function, we know that

∑
q L0∈{3,...,15}

1

13
π L1

(
B RL1

(
q L0

)
, q L0

)
>

∑
q L0∈{3,...,15}

1

13
π L1

(
B RL1

(
q̄ L0

)
, q L0

)
.

(8)

From (5), (7), and (8) it follows that E(π L1
2 ) > E[π L1

1 (B RL1(q̄ L0))]. Hence, the L1
is better off by committing to period 2, i.e.,

Pr L1
1 (W ) = 1.

The intuition behind this result is that since L0 players do not act strategically, the L1
has nothing to gain if he commits to period 1 because he cannot condition the L0’s
response. Therefore, waiting is the optimal choice of an L1.
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Let us now determine the optimal strategy of the L2. The L2 thinks that the pop-
ulation is composed exclusively of L0s and L1s. The L2 knows that an L0 will play
a random quantity and will do it in period 1 with probability 13/14 and in period 2
with probability 1/14. The L2 also knows that the L1 will commit to period 2 with
probability PrL1

1 (W ).11

We solve backwards. If the L2 commits to period 2 two things can happen: the rival
commits to period 1 or the rival commits to period 2. Hence, the perceived expected
profit of a L2 who commits to period 2 is

E
(
π L2

2

)
=

[
1−Pr L2

(
W Lr

)]
E

(
π L2

2 |W̄ Lr
)
+Pr L2

(
W Lr

)
E

(
π L2

2 |W Lr
)

, (9)

where PrL2(W Lr ) is the probability the L2 assigns to a rival committing to period
2, E(π L2

2 |W̄ Lr ) is the perceived expected profit of the L2 when the L2 commits to
period 2 and the rival commits to period 1, and E(π L2

2 |W Lr ) is the perceived expected
profit of the L2 when the L2 commits to period 2 and the rival also commits to period
2. We have

Pr L2
(

W Lr
)

= gL2(L0) Pr L0
1 (W ) +

[
1 − gL2(L0)

]
Pr L1

1 (W )

= 1

1 + τ

1

14
+ τ

1 + τ
Pr L1

1 (W ). (10)

If the L2 commits to period 2 and the rival commits to period 1, then the L2 will be
able to best respond to the quantity commitment of the rival and the L2’s perceived
expected profit will be

E
(
π L2

2 |W̄ Lr
)

= Pr L2
(

L0|W̄ Lr
) ∑

q L0∈{3,...,15}

1

13
π L2

(
B RL2

(
q L0

)
, q L0

)

+
[
1 − Pr L2

(
L0|W̄ Lr

)] ∑
q L1∈{3,...,15}

[
Pr L1

1

(
q L1

)

×π L2
(

B RL2
(

q L1
)

, q L1
)]

, (11)

where PrL2(L0|W̄ L0) is the (posterior) belief of the L2 that the rival is an L0 given
that the rival commits to period 1. Assuming the L2 uses Bayes’ rule to update beliefs
about a rival’s type we have

Pr L2
(

L0|W̄ Lr
)

= gL2(L0)
[
1 − Pr L0

1 (W )
]

1 − Pr L2
(
W Lr

) =
1

1+τ
13
14

1 −
[

1
1+τ

1
14 + τ

1+τ
Pr L1

1 (W )
]

=
1

1+τ
13
14

1
1+τ

13
14 + τ

1+τ

[
1 − Pr L1

1 (W )
]

11 The L2 also knows that PrL1
1 (W ) = 1. In Sect. 4 we will generalize the model by allowing for the

possibility that players make mistakes in the timing and quantity choices and so PrL1
1 (W ) ∈ (0, 1). Hence,

to make the analysis that follows compatible with that of Sect. 4, we will not substitute PrL1
1 (W ) for 1.
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= 1

1 + 14
13τ

[
1 − Pr L1

1 (W )
] . (12)

If the L2 commits to period 2 and the rival also commits to period 2, then the L2’s
perceived expected profit of committing to quantity q L2 in period 2 is

E
(
π L2

2

(
q L2

)
|W Lr

)
=Pr L2

(
L0|W Lr

) ∑
q L0∈{3,...,15}

1

13
π L2

(
q L2, q L0

)

+
[
1−Pr L2

(
L0|W Lr

)]
π L2

(
q L2, B RL1

(
q̄ L0

))
, (13)

where PrL2(L0|W Lr ) is the (posterior) belief of the L2 that the rival is an L0 given
that the rival committed to period 2. From Bayes’ rule we have

Pr L2
(

L0|W Lr
)

= gL2(L0) Pr L0
1 (W )

PrL2
(
W Lr

)

=
1

1+τ
1

14
1

1+τ
1

14 + τ
1+τ

Pr L1
1 (W )

= 1

1 + 14τ Pr L1
1 (W )

. (14)

The optimal quantity choice of the L2 when the L2 and the rival both commit to period
2, denote it by q L2

2 , is the solution to

max
q L2∈{3,...,15}

1

1 + 14τ Pr L1
1 (W )

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2, q L0

)

+ 14τ Pr L1
1 (W )

1 + 14τ Pr L1
1 (W )

π L2
(

q L2, B RL1
(

q̄ L0
))

. (15)

We can thus write the L2’s perceived expected profit when the L2 commits to q L2
2 in

period 2 and the rival also commits to period 2 as

E
(
π L2

2 |W Lr
)

= 1

1 + 14τ Pr L1
1 (W )

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2

2 , q L0
)

+ 14τ Pr L1
1 (W )

1 + 14τ Pr L1
1 (W )

π L2
(

q L2
2 , B RL1

(
q̄ L0

))
.

Therefore, the L2’s perceived expected profit of committing to period 2 is

E
(
π L2

2

)
= 1

1 + τ

13

14

∑
q L0∈{3,...,15}

1

13
π L2

(
B RL2

(
q L0

)
, q L0

)

+ τ

1 + τ

[
1 − Pr L1

1 (W )
] ∑

q∈{3,...,15}
Pr L1

1 (q)π L2
(

B RL2 (q) , q
)
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+ 1

1 + τ

1

14

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2

2 , q L0
)

+ τ

1 + τ
Pr L1

1 (W )π L2
(

q L2
2 , B RL1

(
q̄ L0

))
. (16)

If, on the contrary, the L2 commits to q L2 in period 1, then the L2 ’s perceived expected
profit is

E
[
π L2

1

(
q L2

)]
= 1

1 + τ

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2, q L0

)

+ τ

1 + τ

[
1 − Pr L1

1 (W )
] ∑

q∈{3,...,15}
Pr L1

1 (q)π L2
(

q L2, q
)

+ τ

1 + τ
Pr L1

1 (W )π L2
(

q L2, B RL1
(

q L2
))

. (17)

The L2’s optimal commitment quantity in period 1, denote it by q L2
1 , is the solu-

tion to maxq L2∈{3,...,15} E[π L2
1 (q L2)]. Hence, the L2’s perceived expected profit of

committing to q L2
1 in period 1 is

E
[
π L2

1

(
q L2

1

)]
= 1

1 + τ

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2

1 , q L0
)

+ τ

1 + τ

[
1 − Pr L1

1 (W )
] ∑

q∈{3,...,15}
Pr L1

1 (q)π L2
(

q L2
1 , q

)

+ τ

1 + τ
Pr L1

1 (W )π L2
(

q L2
1 , B RL1

(
q L2

1

))
. (18)

The L2 will commit to q L2
1 in period 1 if E[π L2

1 (q L2
1 )] > E(π L2

2 ). This inequality
will be satisfied for sufficiently high values of τ , i.e., when, from the standpoint of
an L2, there are many L1s and few L0s in the population. The intuition behind this
result is as follows. The L2 is faced with a trade-off. If she knew the rival was an L1,
then she would prefer to commit to period 1 and reap the benefits of a Stackelberg
leadership position. If she knew her rival was an L0, then she would prefer to commit
to period 2 since by doing that she is able to best respond to an L0 who commits
to period 1. However, the L2 only knows the percentage of L0s and L1s and so her
optimal choice will depend on τ . When τ is high an L2 prefers to commit to period 1
since she thinks that there are many L1s and few L0s in the population.

We will now show that the L2 commits to period 1 for sufficiently high values of
τ . Setting PrL1

1 (W ) = 1 in (16), the L2’s perceived expected profit of committing to
period 2 is simplified to
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E
(
π L2

2

)
= 1

1 + τ

13

14

∑
q L0∈{3,...,15}

1

13
π L2

(
B RL2

(
q L0

)
, q L0

)

+ 1

1 + τ

1

14

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2

2 , q L0
)

+ τ

1 + τ
π L2

(
q L2

2 , B RL1
(

q̄ L0
))

.

The uniform distribution assumption implies q̄ L0 = 9 and the payoff matrix in HMN
implies that 8 is the unique best response to q̄ L0 = 9. Hence, B RL1

(
q̄ L0

) = 8. When
the L2 commits to period 2 and the rival commits to period 1, the L2 is able to best
respond and the L2’s perceived expected profit is 59.615. When the L2 commits to
period 2 and the rival also commits to period 2 the optimal choice of the L2 is q L2

2 = 8
for all τ ≥ 0. This leads to a perceived expected profit of 56 when the rival is an L0
and of 64 when the rival is an L1. Therefore, the L2’s perceived expected profit of
committing to period 2 is

E
(
π L2

2

)
= 1

1 + τ

13

14
59.615 + 1

1 + τ

1

14
56 + τ

1 + τ
64

= 1

1 + τ
59.357 + τ

1 + τ
64. (19)

Setting PrL1
1 (W ) = 1 in (17), the L2’s perceived expected profit of committing to q L2

in period 1 is simplified to

E
[
π L2

1

(
q L2

)]
= 1

1 + τ

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2, q L0

)

+ τ

1 + τ
π L2

(
q L2, B RL1

(
q L2

))
.

Maximizing the right-hand side of this equality with respect to q L2 ∈ {3, . . ., 15} we
obtain the optimal quantity of an L2 who commits to period 1:

q L2
1 (τ ) =

⎧⎨
⎩

8 if 0 ≤ τ ≤ 1
10 if 1 < τ ≤ 7
12 if 7 < τ

. (20)

Therefore, the L2’s perceived expected profit of committing to q L2
1 (τ ) in period 1 is

E
[
π L2

1

(
q L2

1 (τ )
)]

=
⎧⎨
⎩

1
1+τ

56.000 + τ
1+τ

64 if 0 ≤ τ ≤ 1
1

1+τ
49.923 + τ

1+τ
70 if 1 < τ ≤ 7

1
1+τ

36.000 + τ
1+τ

72 if 7 < τ

. (21)

From (19) and (21) we find that τ ≥ 1.58 implies E[π L2
1 (q L2

1 (τ ))] > E(π L2
2 ). Hence,

if τ ∈ [1.58, 7] the L2 commits to quantity 10 in period 1. In contrast, if τ ∈ [0, 1.58)
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the L2 commits to period 2 and (i) if the rival commits to period 1 the L2 best responds,
(ii) if the rival commits to period 2 the L2 commits to 8.

So, for an empirically reasonable average number of thinking steps, i.e., τ ∈
[1.58, 7], the cognitive hierarchy model predicts that L2 players will commit to 10 in
period 1. Finally, we also see that the cognitive hierarchy model predicts delay and a
spike in the Cournot quantity 8 in period 2 mostly due to the behavior of L1s. However,
the model is not able to predict the spike in the Cournot quantity 8 in period 1.

In short, applying the cognitive hierarchy model to the discrete action commitment
game in HMN gives rise to the following behavior predictions:

L0: In period 1 the L0 chooses an action randomly from the set {3, 4, . . ., 15}∪{W }
using the discrete uniform distribution. As a consequence, the L0 commits to period
1 with probability 13/14 and to period 2 with probability 1/14. In period 2 the L0
chooses a quantity randomly from the set {3, 4, . . ., 15} using the discrete uniform
distribution.
L1: Commits to period 2 and (i) if the rival commits to period 1 the L1 chooses
a best response, (ii) if the rival commits to period 2 the L1 chooses quantity 8 (a
best response to 9, the average quantity produced by an L0).
L2: If τ ∈ [0, 1.58), then the L2 commits to period 2 and (i) if the rival commits
to period 1 the L2 chooses a best response, (ii) if the rival commits to period 2 the
L2 commits to 8. If τ ∈ [1.58, 7], then the L2 commits to 10 in period 1. If τ > 7
then the L2 commits to 12 in period 1.

Further thinking steps are easily added to the model by following the same logic as
above.

4 Estimation

This section explains how we introduce quantal responses in the cognitive hierarchy
model, reports the maximum likelihood estimates and discusses the results.

4.1 Cognitive hierarchy with quantal responses

Cognitive hierarchy models typically produce a rather small set of best responses. In
the action commitment game, predicted behavior alternates (for players other then
the L0) between committing to period 1 with quantity 10 or waiting and, either best
responding to observed quantities in the case of sequential movement, or playing
quantity 8 if no commitment has been observed.

To fit the data well, it is necessary to assume that players respond stochastically
rather than always choose best responses (see El-Gamal and Grether 1995; Costa-
Gomes et al. 2001; Rogers et al. 2009; Östling et al. 2011). One way to smooth out the
predicted choices over a wider range is to assume quantal responses—see McKelvey
and Palfrey (1995, 1998). Hence, we assume that the payoff of an action chosen by a
player with level k ≥ 1 is subject to random error and that actions that yield higher
payoffs have higher probability of being played. Furthermore, we assume logit quantal
responses. With this framework, the error can take place both in the quantity and the
timing decisions.
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The behavior of the L0 has already been described in Sect. 3. The L1 thinks that
the whole population is composed of L0s and knows the behavior of the L0. When the
L1 decides whether to commit to period 1 or 2 he anticipates his subsequent choice
in period 2 and incorporates the fact that he can make a mistake in period 2.12

If the L1 commits to period 2 and the rival commits to quantity q Lr in period 1,
then the probability that the L1 commits to quantity q ∈ {3, . . ., 15} in period 2 is

Pr L1
2

(
q|W̄ Lr , q Lr

)
= eλπ L1

(
q,q Lr

)
∑

q L1∈{3,...,15} eλπ L1(q L1,q Lr)
. (22)

If the L1 commits to period 2 and the rival also commits to period 2, then the probability
that the L1 commits to quantity q ∈ {3, . . ., 15} in period 2 is

Pr L1
2

(
q|W Lr

)
= eλE

[
π L1

2 (q)|W L0
]

∑
q L1∈{3,...,15} eλE

[
π L1

2 (q L1)|W L0
] , (23)

where E[π L1
2 (q L1)|W L0] is given by (3). Therefore, if the L1 commits to period 2,

then the L1’s perceived expected profit is

E
(
π L1

2

)
= 13

14

1

13

∑
q L0∈{3,...,15}

∑
q L1∈{3,...,15}

Pr L1
2

(
q L1|W̄ Lr , q L0

)
π L1

(
q L1, q L0

)

+ 1

14

1

13

∑
q L0∈{3,...,15}

∑
q L1∈{3,...,15}

Pr L1
2

(
q L1|W Lr

)
π L1

(
q L1, q L0

)
,

(24)

where PrL1
2 (q L1|W̄ Lr , q L0) is given by (22) and PrL1

2 (q L1|W Lr ) by (23). If the L1
commits to quantity q L1 in period 1, then the L1’s perceived expected profit is
E[π L1

1 (q L1)] defined in (6). Hence, the probability that the L1 commits to quantity
q ∈ {3, . . ., 15} in period 1 is

Pr L1
1 (q) = eλE

[
π L1

1 (q)
]

eλE
(
π L1

2

)
+ ∑

q L1∈{3,...,15} eλE
[
π L1

1 (q L1)
] , (25)

and the probability that the L1 commits to period 2 is

Pr L1
1 (W ) = eλE

(
π L1

2

)

eλE
(
π L1

2

)
+ ∑

q L1∈{3,...,15} eλE
[
π L1

1 (q L1)
] , (26)

where E(π L1
2 ) is given by (24) and E[π L1

1 (q L1)] by (6).

12 Hence, for levels L1 and higher, we apply the idea of agent quantal response equilibrium (AQRE)
proposed by McKelvey and Palfrey (1998) where a player’s agents anticipate the choices of subsequent
agents and incorporate the fact that subsequent agents can make mistakes.
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The quantal response probabilities (22), (23), (25), and (26) characterize the behav-
ior of a “perturbed” L1. Note that the parameter λ ≥ 0 is inversely related to the level
of error. When λ = 0 all actions consist of error and the L1 becomes an L0. When
λ = ∞ there is no error and the behavior of the L1 is “unperturbed.”

Let’s now turn to the behavior of the L2. The L2 thinks that the population is only
composed of L0s and L1s and knows their behavior including the fact that the L1
makes mistakes. Hence, the L2 knows that the L1 might commit to period 1 with
positive probability, even though the L1’s best “unperturbed” response is to commit
to period 2. When the L2 decides whether to commit to period 1 or 2 he anticipates
his subsequent choice in period 2 and incorporates the fact that he can make a mistake
in period 2.

If the L2 commits to period 2 and the rival commits to quantity q Lr in period 1,
then the probability that the L2 commits to quantity q ∈ {3, . . ., 15} in period 2 is

Pr L2
2

(
q|W̄ Lr , q Lr

)
= eλπ L2

(
q,q Lr

)
∑

q L2∈{3,...,15} eλπ L2(q L2,q Lr)
. (27)

If the L2 commits to period 2 and the rival also commits to period 2, then the probability
that the L2 commits to quantity q ∈ {3, . . ., 15} in period 2 is

Pr L2
2

(
q|W Lr

)
= eλE

[
π L2

2 (q)|W Lr
]

∑
q L2∈{3,...,15} eλE

[
π L2

2 (q L2)|W Lr
] , (28)

where

E
[
π L2

2

(
q L2

)
|W Lr

]
= 1

1 + 14τ Pr L1
1 (W )

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2, q L0

)

+ 14τ Pr L1
1 (W )

1 + 14τ Pr L1
1 (W )

∑
q L1∈{3,...,15}

[
Pr L1

2

(
q L1|W L0

)

×π L2
(

q L2, q L1
)]

,

and where PrL1
2 (q L1|W L0) is given by (23). Therefore, if the L2 commits to period 2,

then the L2’s perceived expected profit is

E
(
π L2

2

)
= 1

1 + τ

13

14

1

13

∑
q L0∈{3,...,15}

∑
q L2∈{3,...,15}

Pr L2
2

(
q L2|W̄ Lr , q Lr

)
π L2

(
q L2, q L0

)

+ 1

1 + τ

1

14

1

13

∑
q L0∈{3,...,15}

∑
q L2∈{3,...,15}

Pr L2
2

(
q L2|W Lr

)
π L2

(
q L2

2 , q L0
)

+ τ

1 + τ

[
1 − Pr L1

1 (W )
] ∑

q L1∈{3,...,15}

∑
q L2∈{3,...,15}

[
Pr L1

1

(
q L1

)

× Pr L2
2

(
q L2|W̄ Lr , q Lr

)
π L2

(
q L2, q L1

)]
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+ τ

1 + τ
Pr L1

1 (W )
∑

q L1∈{3,...,15}

∑
q L2∈{3,...,15}

[
Pr L1

1

(
q L1|W Lr

)

× Pr L2
2

(
q L2|W Lr

)
π L2

(
q L2, q L1

)]
(29)

where PrL1
2 (q L1|W Lr ) is given by (23), Pr L1

1 (q L1) is given by (25), Pr L1
1 (W ) by

(26), PrL2
2 (q L2|W̄ Lr , q Lr ) by (27), and PrL2

2 (q L2|W Lr ) by (28). If the L2 commits to
quantity q L2 in period 1, then the L2’s perceived expected profit is

E
[
π L2

1

(
q L2

)]
= 1

1 + τ

∑
q L0∈{3,...,15}

1

13
π L2

(
q L2, q L0

)

+ τ

1 + τ

[
1 − Pr L1

1 (W )
] ∑

q L1∈{3,...,15}
Pr L1

1 (q L1)π L2
(

q L2, q L1
)

+ τ

1 + τ
Pr L1

1 (W )
∑

q L1∈{3,...,15}

[
Pr L1

2

(
q L1|W̄ L2, q L2

)

×π L2
(

q L2, q L1
)]

, (30)

where PrL1
2 (q L1|W̄ L2, q L2) is given by (22), Pr L1

1 (q L1) by (25), and Pr L1
1 (W ) by

(26). Hence, the probability that the L2 commits to quantity q ∈ {3, . . ., 15} in period
1 is

Pr L2
1 (q) = eλE

[
π L2

1 (q)
]

eλE
(
π L2

2

)
+ ∑

q L2∈{3,...,15} eλE
[
π L2

1 (q L2)
] , (31)

and the probability that the L2 commits to period 2 is

Pr L2
1 (W ) = eλE

(
π L2

2

)

eλE
(
π L2

2

)
+ ∑

q L2∈{3,...,15} eλE
[
π L2

1 (q L2)
] , (32)

where E(π L2
2 ) is given by (29) and E[π L2

1 (q L2)] by (30).
The quantal response probabilities (27), (28), (31), and (32) characterize the behav-

ior of a “perturbed” L2. We see that, by comparison to the situation where there are
no errors in players’ choices, the L2 has less room to condition the L1’s play since
now there is a positive probability that the L1 will commit to period 1. Hence, the
cognitive hierarchy model with quantal responses will make different predictions than
cognitive hierarchy model in Sect. 3.

The process is similar for all higher levels of reasoning and so we stop here.

4.2 Maximum likelihood estimation

The estimation goes through all the pairs of decisions. By pair, we mean every possible
combination of period and quantity decisions of two players playing against each other.
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This approach captures the interaction of players taking decisions that are conditioned
by their rivals’ decisions. The information is thus broken down into three possible
cases: both players commit to period 1; both players commit to period 2; and one
player commits to period 1 and the other to period 2.13

The probability that players 1 and 2, paired up against each other, with reasoning
levels k1 and k2, play a given pair of timing and quantity choices (t1, q1, t2, q2) is:

f (t1, q1, t2, q2|τ, λ) =
K∑

k1=0

K∑
k2=0

pLk1(t1, q1|τ, λ) f (k1|τ)

×pLk2(t2, q2|τ, λ) f (k2|τ) .

The likelihood function then goes through all possible pairs of choices

L(τ, λ) =
2∏

t1=1

15∏
q1=3

2∏
t2=1

15∏
q2=3

[ f (t1, q1, t2, q2|τ, λ)]n(t1,q1,t2,q2) ,

where ti and qi are the timing and quantity predictions for player i in a given pair,
t is the index of timing predictions and q for quantity predictions, n(t1,q1,t2,q2) is the
number of cases that each pair is observed in the data, and τ is the parameter of the
Poisson distribution. Since cognitive hierarchy models are better suited to explain
initial responses (see Crawford et al. 2012) our benchmark estimation is done for
the first five rounds of play. However, we also estimate the model for the entire set
(30 rounds of play). The estimation method is maximum likelihood and it is done
according to a standard grid search approach.14

In order to gauge the success of CH model in fitting the data, we compare it to an
alternative model, which we call the noisy Nash model (NN). This alternative model
posits that players adopt the symmetric mixed strategy subgame perfect equilibrium
with probability θ1, commit to the Cournot quantity 8 in the first period with probability
θ2, and randomize uniformly over all actions with probability 1 − θ1 − θ2.

4.3 Results

We now present and discuss the results of the maximum likelihood estimations. Table 4
displays the estimates of τ and λ for the CH model, the estimates of θ1 and θ2 for the

13 Crawford and Iriberri (2007) and Harless and Camerer (1995) use a similar estimation procedure.
14 The routine starts with initial values λ = 0 and τ = 0 and generates the predictions of the model, i.e., the
probability of timing and quantity decision for each type of player for all levels k ∈ {1, 2, . . ., 10}. After,
the estimated probabilities of timing and quantity decision of levels k ∈ {1, 2, . . ., 10} are aggregated with
the probabilities of timing and quantity decisions of the L0 to obtain the estimated probabilities of each
pair of timing and quantity choices. The estimated probabilities of each pair of timing and quantity choices
are evaluated in the likelihood function. The procedure is repeated several times in a grid search for both
parameters λ and τ . Finally, the values of λ and τ that yield the highest value of the likelihood function are
extracted. Parallel routines in both GAUSS and MATLAB were used for checking the validity of estimates.
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Table 4 Maximum likelihood
estimates

First 5 rounds Entire set

CH

τ 1.29 1.69

λ 0.62 0.49

L −400.76 −2263.03

NN

θ1 0.30 0.28

θ2 0.08 0.12

L −422.74 −2445.70

NN model, and the respective likelihood values. The estimates are reported for the
first five rounds of play and for the entire set.

The estimate of the average number of thinking steps in the CH model is 1.29 for
the first five rounds of play and 1.69 for the entire set. The estimate of τ for the first
five rounds of play implies that 27.5 % of players are L0, 35.5 % are L1, 22.9 % are
L2, 9.8 % are L3, 3.2 % are L4, and the remaining 1.1 % of players are L5 and higher.
The estimates for τ are in line with those found in Camerer et al. (2004) who show
that the average estimate for τ across a wide range of games is 1.5. Nevertheless, it
should be pointed out that other estimates for τ are not uncommon in the literature.
For example, the lowest estimate for τ in the seven weeks of the LUPI game in Östling
et al. (2011) is 2.98, the remaining six are above 5 and the highest are over 10. In Rogers
et al. (2009) there are games for which the predicted τ is also rather high.15

The estimates for θ1 and θ2 in the NN model are 0.30 and 0.08, respectively, for
the first five rounds of play and 0.28 and 0.12 for the entire set. In the first five rounds
of play, the estimates imply that 30 % of players choose the symmetric mixed strategy
subgame perfect equilibrium, 8 % commit to the first period to the Cournot quantity
8, and 62 % display random behavior. Comparing the likelihood values we see that
the NN model generates a poorer fit of the data in the first five rounds of play and in
the entire set.

We now turn towards the quality of the adjustment. Table 5 displays upper and
lower bounds to the maximum likelihood value as well as log-likelihood ratios for
the test of hypothesis that all players randomize uniformly over all actions (p values
are in parenthesis). The upper bound is obtained by running the likelihood function
with the empirical frequencies of the pairs of play. By definition, this procedure yields
the maximum value attainable for the estimation. The lower bound is the maximum
likelihood value of the CH and the NN models when there is only random play (it
is obtained by setting λ = 0 in the CH model or by setting θ1 = θ2 = 0 in the NN

15 Camerer et al. (2004) argue that subjects tend do employ a cost-benefit analysis concerning the amount of
thinking they do in games. They present evidence that the higher the stakes of a given game, the higher will
τ be: they show that subjects tend to think harder in games that yield $4 than games that yield $1. Since the
LUPI game is based on data from an actual lotto game that existed in Sweden with a prize money of at least
e 10,000, it makes sense that the game’s estimates should be relatively high (even though, of course, the
probability of winning the prize is much smaller). In the large matrix experiment we used, subjects received
the equivalent to $11.44, on average, which, given the reward, places our model’s estimates somewhere in
the middle of this range.
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Table 5 Quality of adjustment
First 5 rounds Entire set

Upper bound −336.62 −1825.90

Lower bound −519.40 −2963.62

Log-likelihood ratios

CH 237.28 (0.000) 1401.18 (0.000)

NN 193.32 (0.000) 1035.84 (0.000)

Table 6 Observed and predicted quantities per period of play

Quantity First 5 rounds Entire set

Period 1 Period 2 Period 1 Period 2

Data CH NN Data CH NN Data CH NN Data CH NN

3 0.0 2.0 4.4 0.7 0.3 0.3 0.1 1.3 4.3 0.3 0.2 0.3

4 0.0 2.0 4.4 0.7 0.7 0.3 0.1 1.3 4.3 0.2 0.5 0.3

5 2.0 2.0 4.4 0.0 1.7 1.9 0.3 1.7 4.3 0.2 1.3 1.8

6 2.7 3.6 4.4 7.3 4.5 1.9 3.9 4.1 4.3 2.6 4.0 1.8

7 2.7 6.3 4.4 5.3 9.0 4.1 6.6 8.4 4.3 6.9 7.7 3.7

8 12.0 13.8 12.3 12.7 15.5 8.2 16.0 17.8 16.3 14.0 11.8 8.0

9 4.7 9.8 4.4 8.0 7.3 1.1 5.3 13.6 4.3 6.3 6.5 1.0

10 13.3 6.4 13.9 4.7 2.6 1.9 15.6 8.1 15.5 4.5 2.4 1.8

11 8.0 2.6 4.4 3.3 1.0 1.1 6.0 2.6 4.3 1.9 0.7 1.0

12 8.0 2.0 4.4 0.7 0.3 0.3 5.2 1.6 4.3 1.3 0.2 0.3

13 0.7 2.0 4.4 0.0 0.2 0.3 0.8 1.3 4.3 0.2 0.1 0.3

14 0.7 2.0 4.4 0.0 0.2 0.3 0.4 1.3 4.3 0.1 0.1 0.3

15 1.3 2.0 4.4 0.7 0.2 0.3 0.7 1.3 4.3 0.3 0.1 0.3

Total 56.0 56.5 77.2 44.0 43.5 22.0 61.0 64.4 79.1 39.0 35.6 20.9

model). As is evident from the log-likelihood p values, we can reject the hypothesis
that all players randomize uniformly over all actions.

Table 6 displays the percentage of choices, broken down by quantity and period of
play, in the data and predicted by the CH and NN models.

We will focus our analysis of the results on the first five periods of play since the
results for the entire set are very similar. The first thing we can see from Table 6 is that
the CH model predicts spikes in quantities 8 and 9 in period 1 together with smaller
spikes in the adjacent quantities 7 and 10. The CH model also predicts a spike in
quantity 8 in period 2 together with smaller spikes in the adjacent quantities 7 and
9. The CH model estimates for commitment to periods 1 and 2 (56.5 and 43.5 %,
respectively) are very close to the data (56 and 44 %, respectively). The CH model
overestimates play of strictly dominated quantities by only 8.5 %. Nevertheless, the
CH model underestimates the percentage of first movers who play quantities 12, 10
and 11, and overestimates the percentage of first movers who play quantity 9.

The NN model predicts spikes in the quantities 8 and 10 in period 1 as well as a spike
in quantity 8 in period 2. However, the NN model overestimates period 1 commitment
by 21.2 % and overestimates play of strictly dominated quantities by 23 %. Finally, we
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Table 7 Probabilities of action choice: first 5 rounds

Share L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

27.5 35.5 22.9 9.8 3.2 0.9 0.2 0.0 0.0 0.0 0.0

pLk
1 (3) 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
1 (4) 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
1 (5) 7.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
1 (6) 7.1 4.2 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6

pLk
1 (7) 7.1 7.8 4.1 4.9 5.3 5.4 5.5 5.5 5.5 5.5 5.5

pLk
1 (8) 7.1 14.5 16.7 20.1 21.2 21.6 21.7 21.7 21.7 21.7 21.7

pLk
1 (9) 7.1 4.2 15.2 19.9 20.6 20.8 20.8 20.8 20.8 20.8 20.8

pLk
1 (10) 7.1 0.4 9.7 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9

pLk
1 (11) 7.1 0.0 1.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1

pLk
1 (12) 7.1 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

pLk
1 (13) 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
1 (14) 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
1 (15) 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
1 (W ) 7.1 68.5 52.4 37.4 35.0 34.4 34.3 34.2 34.2 34.2 34.2

pLk
2 (3) 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
2 (4) 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
2 (5) 0.5 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
2 (6) 0.5 9.2 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

pLk
2 (7) 0.5 17.0 9.7 7.5 7.1 7.0 7.0 7.0 7.0 7.0 7.0

pLk
2 (8) 0.5 31.6 24.5 17.6 16.5 16.2 16.2 16.2 16.1 16.1 16.1

pLk
2 (9) 0.5 9.2 13.6 9.1 8.4 8.3 8.2 8.2 8.2 8.2 8.2

pLk
2 (10) 0.5 0.8 2.9 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6

pLk
2 (11) 0.5 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

pLk
2 (12) 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
2 (13) 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
2 (14) 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pLk
2 (15) 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

see that the NN fits the spike in quantity 10 in period 1 better than the CH model but
the CH model fits the spike in quantity 8 in period 2 better than the NN model.

Table 7 displays, for the first five rounds of play and for τ equal to 1.29, the
probability that a player of level k chooses an action from {3, . . ., 15} ∪ {W } in period
2 and the probability he chooses an action from {3, . . ., 15} in period 2. The table also
displays, in the second row, the shares of level k players for k ∈ {0, 1, 2, . . ., 10}.

As we have seen in Sect. 3, an estimate for τ of 1.29 for the first five rounds of play
implies that an “ unperturbed” L1 as well as an “unperturbed” L2 commit to period
2. Table 7 show us that when τ is 1.29 a “perturbed” L1 commits to period 1 with
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Table 8 Observed and predicted market outcomes

Market outcomes First 5 rounds Entire set

Data CH NN Data CH NN

Cournot (8 or 9):

1st period 2.7 5.6 2.8 4.5 9.9 4.2

Sequential 10.7 12.8 6.3 14.8 13.1 7.2

2nd period 6.7 7.4 3.5 4.5 4.5 3.0

Stackelberg:

Leader 12, follower 6 4.0 0.7 1.6 0.9 0.4 1.5

Leader 11 or 10, follower 7 9.4 3.4 7.7 6.5 2.9 6.8

First mover punished or rewarded:

Stackelberg leader punished 6.7 2.4 0.9 11.9 2.4 0.8

Stackelberg leader rewarded 0.0 1.8 0.1 0.2 1.8 0.1

Cournot (8 or 9) punished 1.3 0.8 0.3 0.9 1.1 0.4

Cournot (8 or 9) rewarded 0.0 6.4 0.2 0.0 7.5 0.3

Stackelberg and Cournot 1st period 12.0 5.2 8.5 12.6 7.7 9.9

Double Stackelberg leadership 10.7 1.2 6.4 6.3 1.5 5.8

Collusion:

Collusion successful 4.0 3.7 0.9 6.1 4.1 0.9

Collusion failed 5.3 6.9 7.5 10.6 11.0 7.7

Collusion exploited 4.0 7.6 3.5 4.3 7.6 3.2

Other 22.7 34.1 49.8 16.0 24.5 48.2

probability 31.5 %, a “perturbed” L2 commits to period 1 with probability 47.6 %, and
both choose quantity 8 with the highest probability. The high percentage of L0s and
the fact that when a “perturbed” L1 commits to period 1 he plays quantity 8 with a
high probability imply that when a “perturbed ” L2 commits to period 1 he typically
chooses a quantity less than 10. This is the reason why the cognitive hierarchy model
with quantal responses predicts spikes in quantities 8 and 9 in the first period and
underestimates the first period spike in quantity 10.

Table 8 compares the market outcomes predicted by the CH and NN models to
those observed in the data for first five rounds of play and the entire set.

We see from Table 8 that both the CH and the NN models are able to generate
heterogeneity in market outcomes. Both models also underestimate the percentage
of: (i) Stackelberg outcomes where the leader produces 12 and the follower 6, and
(ii) market outcomes where one player plays a Stackelberg quantity and the other a
Cournot quantity in period 1.

We also see from Table 8 that the CH fits four important features of market outcomes
data better than the NN model. First, the percentage of Cournot outcomes predicted by
CH model (25.8 %) is closer to the percentage in the data (20.1 %) than that predicted
by the NN model (12.6 %). Second, the CH model predicts better simultaneous play of
Cournot quantities in period 2 (delay). This is rather important since delay cannot be
explained by risk-payoff equilibrium selection arguments or inequity aversion. Third,
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the CH model predicts better the percentage of leaders (Stackelberg or Cournot) who
get punished by followers. Fourth, the percentage of market outcomes that fall under
the category “ other” predicted by CH model (34.1 %) is much closer to the percentage
in the data (22.7 %) than that predicted by the NN model (49.8 %).

In contrast, the NN model fits four features of market outcomes data better than the
CH model. First, the percentage of Stackelberg leader-follower outcomes predicted
by the NN model (9.3 %) is closer to the percentage in the data (13.4 %) than that pre-
dicted by the CH model (4.1 %). Second, the NN model predicts better the percentage
of leaders (Stackelberg or Cournot) who get rewarded by followers. Third, the NN
model approximates better the percentages double Stackelberg leadership. Fourth, the
percentage of collusive outcomes predicted by the NN model (11.9 %) is closer to the
percentage in the data (13.3 %) than that predicted by the CH model (18.2 %).

Table 8 also shows that the predictions of market outcomes of the CH and the NN
models in the first five rounds of play also extend to the entire set. The only difference
being that the percentage of collusive outcomes predicted by the CH model (22.7 %)
for the entire set is closer to the percentage in the data (21.0 %) than that predicted by
the NN model (11.8 %).

5 Conclusion

This paper is an additional contribution to the literature on endogenous timing games.
This literature shows that observed behavior in experiments on endogenous timing is
at odds with the theory. The theory predicts Stackelberg outcomes but the experiments
find that these are rare and, instead, Cournot outcomes are modal.

We apply the cognitive hierarchy model of Camerer et al. (2004) to Huck et al.
(2002) discrete version of Hamilton and Slutsky (1990) action commitment game. We
show that, for an empirically reasonable average level of thinking steps, the model
rules out Stackelberg equilibria, generates Cournot outcomes including delay, and
outcomes where the first mover produces more than Cournot but less than Stackelberg
leader.

We also show that a cognitive hierarchy model with quantal responses can explain
several of the most important features of the experimental evidence on the action
commitment game in Huck et al. (2002). The model predicts spikes in the Cournot
quantity in periods 1 and 2. The model’s estimates for commitment to periods 1 and 2
are very similar to the data. In addition, the model generates heterogeneity in market
outcomes, a high percentage of Cournot outcomes including simultaneous play of
Cournot quantities in period 2 (delay), and a high percentage of outcomes where the
first mover commits to a quantity higher than Cournot but lower than Stackelberg
leader. Finally, we find that the model predicts collusive outcomes better in the entire
set than in the first five rounds of play. It is out of the scope of this paper to study how
a learning model can account for the dynamics in the data.
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Appendix 1: Large payoff matrix

see (Table 9)

Table 9 Large payoff matrix

Appendix 2: Classification of market outcomes

Table 10 provides the classification of market outcomes. Specifically, the table is
composed of four different matrices. The upper left refers to cases where both players
commit to period 1, the lower right refers to cases where both players commit to period
2, and the remaining two tables refer to sequential play. The notation employed is as
follows:

Cournot outcomes:
C1—Cournot 1st period
C12—Sequential play of Cournot quantities
C2—Cournot 2nd period

Stackelberg outcomes:
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Table 10 Market outcomes classification

t = 1 t = 2

6 7 8 9 10 11 12 6 7 8 9 10 11 12

t = 1 6 CS CS CF CF CF CF CF CS CS CE CE CE CE CE

7 CS CS CF CF CF CF CF CS CS CE CE CE CE CE

8 CF CF C1 C1 SC SC SC CR CR C12 C12 CP CP CP

9 CF CF C1 C1 SC SC SC CR CR C12 C12 CP CP CP

10 CF CF SC SC DL DL DL SR S10 SP SP SP SP SP

11 CF CF SC SC DL DL DL SR S11 SP SP SP SP SP

12 CF CF SC SC DL DL DL S12 SP SP SP SP SP SP

t = 2 6 CS CS CR CR SR SR S12 CS CS O O O O O

7 CS CS CR CR S10 S11 SP CS CS O O O O O

8 CE CE C12 C12 SP SP SP O O C2 C2 O O O

9 CE CE C12 C12 SP SP SP O O C2 C2 O O O

10 CE CE CP CP SP SP SP O O O O O O O

11 CE CE CP CP SP SP SP O O O O O O O

12 CE CE CP CP SP SP SP O O O O O O O

S12—Stackelberg leader 12, follower 6
S11—Stackelberg leader 11, follower 7
S10—Stackelberg leader 10, follower 7

First mover punished or rewarded:
SP—Stackelberg leader punished
SR—Stackelberg leader rewarded
CP—Cournot punished
CR—Cournot rewarded

SC—Stackelberg and Cournot in 1st period
DL—Double Stackelberg leadership
Collusive outcomes:

CS—Collusion successful
CF—Collusion failed
CE—Collusion exploited

O—Other market outcomes.
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