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Abstract 

Higher cognitive functions are the product of a dynamic interplay of perceptual, mnemonic, 

and other cognitive processes. Modeling such interplaying processes and generating 

predictions about both behavioral and neural data can be achieved with cognitive 

architectures. However, such architectures are still relatively rarely used, likely because 

working with them comes with high entry-level barriers. To lower these barriers, we provide 

a methodological primer for modeling higher cognitive functions and their constituent 

cognitive subprocesses with arguably the most developed cognitive architecture today – 

ACT-R. We showcase a principled method of generating individual response-time 

predictions and demonstrate how neural data can be used to refine ACT-R models. To 

illustrate our approach, we develop a fully specified neurocognitive model of a prominent 

strategy for memory-based decisions – the take-the-best heuristic – modeling decision 

making as a dynamic interplay of perceptual, motor and memory processes. This 

implementation allows us to predict the dynamics of behavior and temporal and spatial 

patterns of brain activity. Moreover, we show that comparing the predictions for brain 

activity to empirical BOLD data allows to differentiate competing ACT-R implementations 

of TTB. 

 

Keywords: ACT-R, fMRI, response times, model comparison.
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If a theory covers only one part or component, it flirts with trouble from the start. 

 A. Newell’s (1990, p. 17) 

1. Introduction 

Research in cognitive psychology aims at identifying the mental processes that 

produce observable behavior – in Anderson’s (1990) terms, to find “the function that maps 

input to output” (p. 24). Yet, perceptual, mnemonic, and other cognitive processes typically 

generate behavior in interplay with higher cognitive functions. A prime example of such 

higher cognitive functions are processes of decision making. When trying to understand the 

processes underlying decision making, cognitive scientists have been relying not only on data 

about the decision outcome, but also on various types of data potentially indicative of the 

decision process itself. Such process data include response times (RTs), measures of 

predecisional information search (e.g., eye tracking, Mouselab; Duchowski, 2002; Willemsen 

& Johnson, 2011), or verbal protocols (Ericsson & Simon, 1980). From those data, 

researchers try to infer what kind of decision mechanisms drove a persons’ choices. Yet, in 

doing so, they face a conundrum: Due to the abovementioned interplay of cognitive 

subprocesses, the observed RTs and eye movements are not only a function of decisional, but 

also of perceptual, attentional, and mnemonic processes.  

In addressing this conundrum many researchers try to keep all non-decisional 

processes constant in an experiment and rely on supplementary assumptions about these 

processes to evaluate the extent to which observations are consistent with a given decision 

mechanism. Those assumptions come in different forms. For example, some are explicit 

assumptions about memory, such as that the time to judge an object as recognized will vary 

as a function of frequency of occurrence in the media (e.g., Hertwig, Hertzog, Schooler, & 

Reimer, 2008). Others are assumptions about reading phases and key-stroke times, which are 

often assumed to be constant and then subtracted from observed RTs (e.g., Johnson, Schulte-
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Mecklenbeck, & Willemsen, 2008; Pachur, Hertwig, Gigerenzer, & Brandstätter, 2013). 

Moreover, there are assumptions within data analysis procedures, such as that the probability 

of committing an error is equal for all decision trials (trembling-hand error, e.g., Bröder, 

2003) or that RTs are log-normally distributed (e.g., Glöckner, 2009). Finally, approaches 

differ in terms of their specificity and complexity, ranging from informal (i.e., verbal) 

assumptions about the average duration of potential arithmetic and reading operations (Payne, 

Bettman, & Johnson, 1993) to formal (i.e., mathematical or computational) theories of, for 

example, memory (e.g., Dougherty, Gettys, & Ogden, 1999).  

While such approaches have been followed to identify specific regularities in the 

observed data speaking to different cognitive processes of interest, very few researchers 

actually model how those cognitive processes dynamically interplay and, consequently, 

produce observable RTs, eye movements, and other process data. Yet, this can be 

problematic when attempting to identify specific cognitive mechanisms. Is a model’s 

description of the data (in)adequate because of the main or because of the supplementary 

assumptions (see epigram above)? What has been called the irrelevant specification problem 

(Lewandowsky, 1993; A. Newell, 1990),1 revolves around the dilemma of whether 

assumptions make psychological claims or whether they merely serve to enable the 

generation of predictions. In the worst case, incorrect assumptions will lead to patterns in 

observed data being wrongly attributed to the cognitive process of interest (e.g., decisional 

processes).  

Moreover, while behavioral data—including outcome data (i.e., overt decisions) and 

non-physiological process data (i.e., RTs, eye movements, verbal protocols)—inform us 

about at least some aspects of a cognitive task, they do not provide sufficient constraints to 

 
1 When translating an underspecified theory into a precise formal model, a lot of details have to be specified in 

the code, which are not part of the original theory. The irrelevant specification problem poses the question of 

which of those details can be considered part of a psychological theory and which not. 
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unequivocally identify the underlying cognitive subprocesses, because “there is an infinite 

number of mechanisms that compute the same input-output function[]” (Anderson, 1990, p. 

24). In fact, Anderson’s critique, known as the identifiability problem, puts into question any 

process model that is developed and tested only through behavioral data. Instead, he 

contends, we need the type of neural data that “traces out the states of computation in the 

brain” (Anderson, 1990, p. 25) to pin down the mental steps a participant goes through. 

Ideally, taking into account neural data would allow researchers to deduce the dynamics of 

these cognitive processes from physiological data on the temporal and spatial patterns of 

brain activity. However, how can task-related activity in specific brain regions be related to 

dynamically interplaying cognitive mechanisms? 

Cognitive Architectures  

 A formal description of temporal and spatial patterns of brain activity in different 

tasks can be provided by cognitive architectures. A cognitive architecture is a quantitative 

model that applies to many different behaviors and that casts theories of memory, perception, 

action selection, and other components of cognition into a single mathematical or 

computational system (for an introduction to cognitive architectures, see, e.g., Gluck, 2010). 

At present, the most detailed cognitive architecture is ACT-R (Anderson, 2007; for other 

architectures, see e.g., Eliasmith, 2013; Meyer & Kieras, 1997; A. Newell, 1990). ACT-R has 

been continuously developed and updated over the last decades to incorporate current 

findings and theoretical ideas in a principled manner. ACT-R simultaneously generates 

multiple types of quantitative behavioral and neural data, ranging from RTs and eye 

movements to functional magnetic resonance imaging (fMRI) or electroencephalography 

(EEG) data. Indeed, ACT-R is being increasingly used in combination with neural data to 

link neural activation patterns with specific cognitive processes (see Anderson, Fincham, Qin, 

& Stocco, 2008). Moreover, neural data have been relied on to more rigorously test cognitive 
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models composed of those cognitive processes (see, Borst & Anderson, 2015, for an 

overview of these approaches). All this makes ACT-R an excellent tool to address the 

irrelevant specification and identifiability problems.  

ACT-R is widely used by a large worldwide community and applied to areas as 

diverse as airplane flying (Byrne & Kirlik, 2005), intelligent tutoring (Ritter, Anderson, 

Koedinger, & Corbett, 2007), skill acquisition (Taatgen, Huss, Dickison, & Anderson, 2008), 

or list memory (Anderson, Bothell, Lebiere, & Matessa, 1998; see http://act-

r.psy.cmu.edu/publication/ for a complete list of publications). Yet, building a model in ACT-

R comes with at least three important entry-level barriers. First, users need to fully 

understand the theory. However, this is not trivial, because ACT-R consists of models of 

various aspects of cognition (e.g., memory, perception, procedural knowledge) and their 

interaction. Second, users need to know how to implement their hypotheses in this 

computational modeling framework, which is instantiated as a programming language with 

built-in human constraints, written in Common Lisp. Third, users need to be aware of 

methods for developing, calibrating, and testing complex architectural models.  

 Our goal in this article is to guide scientists modeling process data with ACT-R. In 

offering this methodological primer, we complement the extensive tutorial that comes with 

the ACT-R software (available at http://act-r.psy.cmu.edu/software/) and the excellent step-

by-step tutorial of how to use the architecture with fMRI data (Borst & Anderson, 2017) in 

three ways. First, we illustrate how ACT-R model parameters can be empirically constrained 

on separate experimental tasks in a principled manner. Second, we showcase the capability of 

these constrained models to generate participant-specific behavioral predictions (e.g., RT 

distributions). Third, we illustrate how BOLD data can help to further refine a model beyond 

what can be achieved from behavioral data alone.  

http://act-r.psy.cmu.edu/software/
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 We will first introduce the formal underpinnings of ACT-R and demonstrate how to 

develop a neurocognitive model for a prominent strategy in memory-based decision making, 

the take-the-best (TTB) heuristic (Gigerenzer & Goldstein, 1996). To develop our model, we 

will rely on an fMRI experiment, in which participants were instructed to follow that decision 

strategy (Khader et al., 2011, Exp. 1). We will demonstrate how the parameters of our model 

can be empirically estimated in a behavioral task in that study that precedes the actual 

decision task. We will then generate individual predictions about RTs in the decision task and 

compare those to the empirical data. Finally, we will showcase how to use the BOLD 

predictions of our model to further refine it.  

2. Overview of ACT-R 

In order to model and predict behavior and brain activation with ACT-R, different 

cognitive processes are modeled by separate modules, which have been mapped onto 

different brain areas (see Figure 1). These modules include perceptual ones, namely a visual 

and an aural module, which model focused attention to perceptual input and are mapped to 

regions reflecting advanced perceptual processing: the secondary auditory cortex and 

fusiform gyrus, respectively. There are also vocal and manual modules, which model speech 

and typing on a keyboard, respectively. These output modules are mapped onto two regions 

in the central sulcus where the hand, and face and tongue are represented. Furthermore, there 

are three central cognitive modules: The goal module tracks an agent’s goals; this module 

maps onto the anterior cingulate cortex. The imaginary module holds information relevant to 

the task and problem state at hand. This module corresponds to posterior parietal cortex—a 

region hypothesized to be involved in the transformation of mental representations. How 

information is stored in and retrieved from declarative memory is modeled by the declarative 

module. This module is associated with the lateral inferior prefrontal cortex. All modules can 
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operate in parallel, but within each module, information is processed serially (Byrne & 

Anderson, 2001).  

Perceptual and central cognitive modules operate on declarative knowledge (i.e., 

explicit memory). Such knowledge is modeled by chunks. Chunks represent information 

input from the visual and aural modules, the current goal of the cognitive system, information 

relevant to the problem state as well as knowledge in long-term memory. Chunks are 

collections of attributes, called slots, and their corresponding values: 

(chunk-name2 slot1 slot1-value slot2 slot2-value slot3 slot3-value …). 

For example, we can represent factual knowledge, such as “Paris is the capital of France”, or 

current states of the world, such as “the bird sings loudly”, with the following two chunks: 

(capital-France name Paris role capital country France) 

(loud-bird-by-my-office object bird action sings adverb loudly). 

 A procedural module orchestrates the other modules and functions as the central 

bottleneck in information processing (Figure 1). The procedural module is associated with the 

basal ganglia—a system hypothesized to implement conditional information routing to the 

cortex (Stocco, Lebiere, & Anderson, 2010). This module is instantiated as a production 

system (i.e., A. Newell, 1973), that is, it consists of a collection of production rules (if-then 

rules). The productions’ conditions (the “if”-parts of the rules) are matched against the 

current state of the other modules (e.g., whether something is retrieved from memory or 

whether an object is visually attended to). Production rules, whose conditions are met, can 

fire, that is, they can direct other modules to change their current state. Examples of 

production rules in natural language are: 

1. IF an object is visually attended to and the goal is to look at it, 

THEN visually encode the object of attention. 

 
2 For convenience, chunk names (e.g., capital-France) are used in ACT-R to refer to chunks. Those names are 

not considered to form part of the chunk itself. 
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2. IF the goal is to guess the name of a country’s capital and France is currently 

stored into the problem state,  

THEN attempt to recall the name of France’s capital. 

Production rules do not access modules’ contents directly, but via buffers. Buffers 

serve as communication channels between modules and productions, and as such can create a 

bottleneck for information transfer (Salvucci & Taatgen, 2008). For example, if the 

procedural module needs to access information in the visual field, the visual module has to 

first place that information (in the form of a chunk) into the visual buffer. Likewise, when a 

production rule sends a retrieval request to the declarative module, the retrieved information 

(i.e., a chunk) must first be placed in the retrieval buffer before another production rule can 

utilize it. In essence, when an ACT-R model is run, requests are sent to modules, which leads 

the modules to execute operations. After completing those operations, modules can place 

chunks into their respective buffers. Reversely, production rules await those chunks to be 

placed into specific buffers to match the conditions specified in their “if-part”. Once those 

conditions are met, the rules can fire (i.e., execute their “then-part”) and send further 

processing requests to modules. The serial operation of modules and the time that it takes 

them to complete their operations creates delays and bottlenecks in the system. Altogether, 

this complex interaction between the procedural and other modules (Figure 1) produces 

behavior.  
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Figure 1. The modular organization of the cognitive system and module-to-brain mappings 

according to the ACT-R cognitive architecture. Seven modules interact with each other 

through an eighth, procedural, module. The procedural module communicates with the other 

modules through buffers, represented as small rectangles. The cognitive architecture interacts 

with the environment (e.g., in an experiment: with a computer screen and/or a keyboard) 

through its perceptual and motor modules. ACC = anterior cingulate cortex; LIPFC = lateral 

inferior prefrontal cortex; PPC = posterior parietal cortex. See the online article for the color 

version of this figure. 

  

ACT-R’s Subsymbolic System 

The modules and buffers can be best thought of as an “upper” symbolic layer of the 

architecture. ACT-R distinguishes that symbolic system from a “lower” layer, called the 

subsymbolic system. The subsymbolic system shapes the outcome of each module’s and each 

buffer’s operations. Specifically, the subsymbolic system describes memory retrieval, the 
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selection of different production rules, visual and other processes in terms of a series of 

mathematical equations. Those equations determine, for example, how likely and how 

quickly memories can be retrieved, which of several alternative courses of action will be 

executed, or how long a key press will take.  

 An important component of ACT-R’s subsymbolic system are the equations 

governing the retrieval of memory traces (i.e., of chunks). Altogether, these equations cast 

memory as an information-processing device that systematically exploits the statistical 

patterns of occurrence of stimuli in the world. Specifically, memory can be thought of 

inferring the probability that a memory trace of stimuli will be needed based on the history of 

past encounters with those stimuli in order to achieve future processing goals. The history of 

past encounters, in turn, probabilistically hinges on patterns of occurrence of those stimuli in 

the world. For instance, we are more likely to learn about car brands and cities that occur 

more often in the media. In real world environments, patterns of past occurrence of stimuli 

are predictive of future ones (e.g., Anderson & Schooler, 1991; Schooler & Anderson, 1997). 

To illustrate this, the more often an object (e.g., a name) has been mentioned in the news in 

the past, the more likely it is that this object will be mentioned again in the future. Similarly, 

the longer it has been since an object has last been mentioned, the less likely it is that the 

object will be mentioned again in the future. These lawful relations in information occurrence 

in the environment allow memory to guide present information-processing demands, for 

example, by retrieving memory traces of recently encountered stimuli more quickly or by 

setting aside (i.e., forgetting) information that has been encountered infrequently or a long 

time ago. 

Specifically, in ACT-R each chunk i has an activation, Ai, associated with it that 

quantifies the strength of that memory trace. Activation models the likelihood that a chunk is 

needed to achieve a given processing goal at the current moment. Activation itself is fed by 
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three subcomponents—the chunk’s base-level activation, Bi, the spreading activation, SAi,  

and noise, ε: 

     𝐴𝑖 = 𝐵𝑖 + 𝑆𝐴𝑖 + 𝜀.     (1) 

The base-level activation is a function of the chunk’s history: 

     𝐵𝑖 = ln ∑ 𝑡𝑘
−𝑑𝑛

𝑘=1 ,     (2) 

where the decay parameter, d, specifies the rate forgetting over time, which is modeled in 

terms of a power function. The parameter n represents the number of encounters with the 

information that chunk i represents, and tk is the time since the kth encounter. Those latter two 

parameters capture the history of encountering stimuli in the world. 

 SAi, quantifies a chunk’s relevance in the current context by assuming that chunks 

related to what is currently the focus of attention are more likely to be needed than those that 

are not. In ACT-R, context is modeled as all chunks currently stored in the buffers. Thus, 

spreading activation to chunk i in declarative memory is a function of the associations 

between that chunk and the chunks j currently in the buffers:  

     𝑆𝐴𝑖 = ∑ 𝑊𝑗𝑆𝑗𝑖𝑗 .     (3) 

The amount of spreading activation SAi is determined by the associative strength, Sji, between 

chunks i and j, which is weighted by the source activation, Wj, of chunk j in a buffer. The 

associative strengths, Sji, between chunks is approximated by 

      𝑆𝑗𝑖 = 𝑆 − ln(𝑓𝑎𝑛𝑗),     (4) 

where S denotes the maximum associative strength and fanj is the number of chunks 

associated with a chunk j. The more chunks are associated with a chunk in memory, the lower 

the associative strength between it and each of its associates becomes. 

 Finally, retrieval noise, ε, is added to the base-level and spreading activation 

components when a retrieval request is made. ε is generated from a logistic distribution with a 

mean of zero and a variance of 
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       𝜎𝑑
2 =

𝜋2

3
𝑠𝑑

2,      (5) 

where sd is a free parameter. The random nature of activation means that at each specific time 

a chunk can have an activation higher or lower than its mean.  

 A chunk can be retrieved only when its current activation value is above the retrieval 

threshold, τ. The retrieval probability, pi, of a chunk is the probability that its activation 

exceeds this threshold:  

      𝑝𝑖 =
1

1+𝑒
−

𝜇𝐴𝑖
−𝜏

𝑠

,     (6) 

where 𝜇𝐴𝑖
= 𝐵𝑖 + 𝑆𝐴𝑖 is the mean of the activation distribution. The time required for 

retrieval is scaled by a latency factor F:  

      𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 = 𝐹𝑒−𝐴𝑖.     (7) 

Thus, more active chunks are more quickly retrieved. If no chunk matches a retrieval request 

or if the matching chunk with the highest activation is below the retrieval threshold, a 

retrieval failure will occur. The retrieval failure time is: 

      𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝐹𝑒−𝜏.    (8) 

  Another important component of the subsymbolic system are the equations governing 

ACT-R’s production rules. Various higher-order cognitive functions are implemented in 

ACT-R as sets of productions that specify, for instance, what the goals of the decision maker 

are (e.g., making inferences about car brands as accurately as possible), when and how that 

person will encode information in his/her environment (e.g., reading the names of different 

car brands in a catalogue or on a computer screen) and when and how the participant will 

search for information in memory (e.g., what facts about different cars will be recalled). 

These equations determine which production rules will be executed in case the conditions 

(i.e., the if-parts) of several of those if-then rules are met. According to these equations, the 

productions that have been most successful in the past are the ones that are most likely to be 
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chosen, with production success being quantified by its utility. A production’s utility is 

learned according to the Rescorla-Wagner learning rule (Wagner & Rescorla, 1972): 

    𝑈𝑖(𝑛) = 𝑈𝑖(𝑛 − 1) + 𝛼[𝑅𝑖(𝑛) − 𝑈𝑖(𝑛 − 1)],                                 (9) 

where Ui(n) is the utility of the production after its nth application, Ui(n-1) is its utility after 

the n-1th application and Ri(n) is the reward that it receives on the nth application. Basically, 

upon each application of a production, its utility is updated in the direction of the reward that 

it receives: If the reward is lower than its current utility, the utility will decrease, whereas if it 

is higher, it will increase. 

 

ACT-R and Brain Activation 

To derive predictions regarding brain activation, ACT-R draws on the relationship 

between brain activity and blood supply (e.g., Boynton, Engel, Glover, & Heeger, 1996): 

metabolic demand in an active brain region leads to an increased blood supply to that region, 

measured as a hemodynamic response (HR). The HR is not immediate, but peaks around 6 

seconds after the metabolic demand. Its temporal profile, labeled the hemodynamic response 

function (HRF), is described by a gamma distribution or a mix of two gamma distributions. 

Here, we will use the canonical HRF as implemented in the SPM fMRI analysis software 

(statistical parametric mapping; Friston et al., 1998; see Figure 2 for a visualization of this 

HRF): 

    𝐻𝑅𝐹𝑆𝑃𝑀(𝑡) =
6𝑡5𝑒−𝑡

Γ(6)
−

1

6

16𝑡15𝑒−𝑡

Γ(16)
 ,   (10) 

where Γ is the gamma function. 
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Figure 2. SPM’s canonical HRF. 

 

Once an ACT-R model has been developed, generating BOLD response predictions 

involves the following steps: First, the activity of each module is described with a demand 

function D(t). Here, we follow the standard assumption that whenever a module is active 

[D(t) = 1], the brain region associated with this module is active [else, D(t) = 0 and the brain 

region is inactive]. We then assume that at each moment when that brain region is active, it 

responds according to the HRF in Equation 10 (see Borst & Anderson, 2017). The resulting 

HR prediction is a convolution of the demand function over the entire experiment, and that 

HRF: 

     𝐻𝑅(𝑡) = (𝐷 ∗ 𝐻𝑅𝐹)(𝑡).   (11) 

The HR predictions can be related to brain activation data in two ways: model-based 

fMRI analysis and region-of-interest (ROI) analysis (e.g., Borst & Anderson, 2015). Recall 

that ACT-R’s modules are assumed to mediate different cognitive functions (e.g., declarative 

memory, vision). In model-based fMRI analysis, the blood-oxygenation-level-dependent 

(BOLD) response prediction of each ACT-R module is regressed against all voxels in the 

experimental data, which, in turn, allows identifying the brain correlates of the modules. This 

approach has been used to identify regions in the brain that strongly correlate with module 

activity. 
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While model-based fMRI analysis serves to establish module-to-brain mappings, ROI 

analysis uses already established mappings to evaluate cognitive models. Specifically, ROI 

analysis compares BOLD predictions associated with different cognitive processes to brain 

activation in predetermined regions.3 In contrast to analyses involving behavioral data, an 

ROI analysis of neural data is especially useful for testing cognitive models (e.g., Anderson, 

Carter et al., 2008; Borst, Taatgen, Stocco, & van Rijn, 2010), because neural data relate 

directly to each individual module’s activity.  

 Next, after introducing the decision strategy that will serve as a case-in-point – TTB – 

we will demonstrate how ACT-R models work and how predictions for that strategy can be 

derived and tested. We will use both behavioral data and neural data in a ROI analysis to test 

the detailed cognitive model of TTB. 

 

3. An Example of Decision Processes: The TTB Heuristic 

TTB is a representative of an important class of decision strategies that implement 

sequential information search. TTB and similar lexicographic models, such as elimination-

by-aspects (Tversky, 1972), stand in contrast to the classic assumption that people integrate 

and weight available evidence to make decisions (Chase, Hertwig, & Gigerenzer, 1998), such 

as in subjective expected utility theory (Edwards, 1954), or other compensatory weighted-

additive strategies (e.g., Payne et al., 1993). TTB is a model of inference: It uses objects’ 

(e.g., cell phones, car brands, cities) attributes (e.g., whether a cell phone is recommended by 

others) to infer which of two objects has the larger value on an unknown criterion (e.g., the 

phone’s quality). To this end, TTB operates on attributes with binary attribute values that are 

coded as 1 if positive (e.g., phone is recommended) or 0 if unknown or negative (not 

 
3 For Talairach coordinates of those brain regions, see Anderson, Fincham et al. (2008). For MNI coordinates, 

see Borst, Taatgen, Stocco, and van Rijn (2010). Note that Borst, Nijboer, Taatgen, van Rijn, and Anderson 

(2015) have further refined those brain mappings through a data-driven model-based approach.  
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recommended). When making inferences, TTB inspects attributes in order of their 

importance. Once two objects have different values on an attribute i (i.e., one has a value of 

1, the other of 0), that is, once a discriminating attribute is found, TTB makes a decision 

without considering further information (i.e., other attributes). In the literature, this decision 

process has been described in terms of three building blocks (e.g., Gigerenzer & Gaissmaier, 

2010): 

  Search rule: Search through attributes in the order of their validity. 

Stopping rule: Stop search as soon as an attribute is found that discriminates 

between the objects. 

Decision rule: Infer that the object with the positive attribute value has the 

higher value on the criterion of interest.  

TTB has been shown to be spontaneously used in particular under conditions with 

high information cost, including memory-based (rather than screen-based) decisions (e.g., 

Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003). The notion underlying TTB that 

people sometimes ignore information has triggered a large number of empirical studies 

(Bergert & Nosofsky, 2007; Bobadilla-Suarez & Love, 2017; Bröder & Schiffer, 2003; 

Juslin, Jones, Olsson, & Winman, 2003; Pachur & Aebi-Forrer, 2013; Khader, Pachur, & 

Jost, 2013; Pachur & Marinello, 2013; Rieskamp & Otto, 2006; for an overview, see Pachur 

& Bröder, 2013). To test TTB against information integration models, such as compensatory 

weighted-additive strategies, those studies have made use of RTs (Bröder & Gaissmaier, 

2007) and patterns of information search (B. R. Newell, Weston, & Shanks, 2003), often 

making the kind of supplementary assumptions about mnemonic, perceptual, and motor 

processes that we mentioned in the Introduction (Section 1). Indeed, as can be seen, the 

search, stopping, and decision rules used in the literature to describe TTB remain fully silent 

about how the decisional processes assumed by TTB nestle into the rest of the cognitive 
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architecture. Thus, developing an ACT-R implementation of TTB illustrates how to integrate 

TTB’s key theoretical assumptions about decision making (such as sequential and limited 

search) with mnemonic, visual, and other information-processing activities.  

 When developing an ACT-R model of TTB—or any other decision mechanism, for 

that matter—to unveil the cognitive processes behind a people’s decisions, it is important to 

ensure that the observed output on every instance (e.g., a trial in an experiment) is produced 

by that mechanism and not by another one. In the cognitive and decision sciences, many 

experiments present participants with a decision task and then, based on their responses, 

individual participants are classified, for instance, as “users” of TTB or alternative decision 

mechanisms (Bröder, 2000; B. R. Newell & Lee, 2011; Nosofsky & Bergert, 2007). While 

suited for testing competing models of decision making against each other, such data make it 

difficult to develop architectural models of TTB, because the observed data can, but need not 

be produced by TTB. A data set where participants’ reliance on TTB is ensured has been 

provided by Khader et al. (2011). In their experiments, participants were instructed to rely on 

TTB for their decisions while their brain activity was recorded, which renders this data set an 

excellent basis for illustrating how neurocognitive ACT-R models can be developed.  

4. Developing an ACT-R Implementation of TTB  

Khader et al. (2011) employed a memory-based paradigm, where two objects (here: a 

pair of fictitious companies) are presented on a computer screen and participants have to rely 

on their memory to recall previously learned attribute values and make a decision according 

to TTB. An ACT-R implementation of TTB should perform the same operations that a 

participant would: For example, it needs to read the object names and then recall objects’ 

attribute values in order to make a decision.  

The attribute values of objects are stored as chunks in the model’s declarative 

memory. What slots would these chunks consist of? In Khader et al.’s experiment, prior to 
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the decision task participants learned to associate objects (i.e., companies) with attributes 

(e.g., where the company is located and which product it produces) and their values (i.e., 

whether the attributes are positively or negatively related to the decision criterion; see Khader 

et al., 2011, for details). In our model, we rely on the following chunk structure to describe 

object attributes stored in memory: 

 (objectN-attributeM object-name objectN attribute-name attributeM attribute-value 

0/1).  

How are such chunks used to develop a model of TTB? In modeling participants’ declarative 

memory, in a first step, the model’s declarative memory is populated with all attribute values 

that participants learned prior to working on the decision task. 

Once we have defined the declarative chunk structure, we continue with outlining the 

sequence of steps that a model needs to go through. In addition to TTB’s search, stopping, 

and decision rules (see Section 3), we need to include all steps that a participant in an 

experiment would go through, such as visual and motor steps. For our task, these steps are: 

(1) look at the company names, (2) retrieve the attribute, (3) retrieve the corresponding 

attribute values, (4a) press the key on the keyboard that corresponds to the company with a 

positive attribute value if the attribute values differ or (4b) retrieve the next attribute in the 

hierarchy if the attribute values on the current attribute are the same.  

To translate these steps into a sequence of productions, it is necessary to consider 

ACT-R’s architectural constraints. For example, the visual module can only process objects 

serially. This means that the visual system needs to attend the first company name on the 

screen—an action guided by a production—and then encode that company name guided by a 

second production. Only then can it attend and encode the second company name. Similar 

buffer capacity and temporal constraints exist for other modules. For instance, the imaginal 

module can also only perform one operation at a time (e.g., store a chunk or modify the 
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chunk it currently holds) and that operation also incurs a time cost (i.e., 200 ms). Similarly, 

the retrieval module can only be attempting to retrieve one chunk from long-term memory 

and the time it takes to perform the retrieval is determined by Equation 7.  

Figure 3 shows a process trace of a run of the entire ACT-R implementation of TTB 

for a decision on which the most valid attribute in the hierarchy discriminates between the 

two companies.4 The components of the cognitive architecture are active at different points in 

time, with eight production rules coordinating the modules’ actions. In this example, the 

model first starts by comparing the two objects on the screen: It first looks on the left part of 

the screen (guided by production 1), reads the name of the company present on that part of 

the screen (production 2) and stores it in the imaginal buffer, while shifting its gaze to the 

right part of the screen (production 3). After reading (production 4) and storing the name of 

the company present there (production 5), the model checks if the companies are different 

and, if so, it executes TTB, starting with the most valid attribute (production 6). For the most 

important attribute, the model recalls the attribute value of the left company (also production 

6), then it recalls the attribute value of the right company (production 7) and finally, it 

compares them (production 8). Then, the model chooses the company to which that attribute 

is pointing and finishes with an overall RT of 2 s. Note that on other trials retrieval might be 

faster or slower, or more attributes might need to be examined prior to making a decision, 

which will lead to a different RT and a different relative activity of each module.  

 

 
4 See model “TTB_v1.lisp” in online materials at osf.io/25pt8 for the model code.  
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Figure 3. Schematic process trace of an ACT-R implementation of TTB. For the sake of 

illustration, the model trace schematically depicts arbitrary recall times (for actual times run 

the model in online materials at osf.io/25pt8). The y-axis denotes various ACT-R modules 

and associated brain regions. LIPFC = Lateral Inferior Prefrontal Cortex. PPC = Posterior 

Parietal Cortex. Eight production rules control the behavior of this model. Production 1 

directs visual attention to the location of the first object (company 1) and production 2 

requests that the visual module encodes it. Productions 3 and 4 repeat the same steps for the 

second object (company 2) and also request storing the first object in the imaginal buffer. 

Production 5 starts storing the name of the second object in the imaginal buffer. Productions 

6 and 7 request that the declarative module retrieves the attribute values of the first attribute 

for each object. Finally, production 8 selects the object with a positive attribute value my 

requesting a key press. See the online article for the color version of this figure.  

 

5. Testing the ACT-R Model of TTB 

In an initial learning task, the 17 participants memorized the values on 4 attributes 

about 16 fictitious companies; a total of 64 attribute values. In a subsequent strategy-training 

task, participants were instructed how use TTB. They also practiced to apply this heuristic, 

using a decision task different from that in the main decision task (a fictitious job-scenario). 

Finally, participants learned the hierarchy of the four attributes by indicating their importance 

repeatedly. In the decision task, participants’ responses and the associated RTs and BOLD 
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signals were recorded. One hundred thirty-two company pairs were presented (on the left and 

right side of the screen, respectively) in three blocks of 44 trials each. Participants were 

instructed to use TTB and the acquired attribute-knowledge to decide which of the two 

companies is more likely to be successful in the future. The inter-trial interval (ITI) was 2, 4 

or 6 s (varied randomly), and each trial started with a fixation cross presented for 2 s.  

There were five types of decision trials, which differed in the number of attributes that 

TTB would need to consider prior to making a decision (i.e., none, one, two, three, or all four 

attributes). This is relevant because it is assumed that, due to TTB’s stopping rule, the time it 

takes to make decisions with this strategy depends on how many attributes have been 

considered before a discriminating attribute is retrieved from memory (e.g., Bröder & 

Gaissmaier, 2007). In control trials (i.e., where no attributes need to be considered) the same 

company name was presented on both sides of the screen and participants were instructed to 

respond directly, without retrieving any attributes. For further details on the experimental 

methodology, see Khader et al. (2011).  

A Roadmap for Model Testing 

We used data from Khader et al.’s (2011; Experiment 1) to develop and test an ACT-

R implementation of TTB. Figure 4 provides an overview of the various steps and stages of 

the procedure.5 First, we calibrated the model by fitting its free parameters in the learning 

task. To this end, we developed a recall model in ACT-R. We then used the estimated 

parameters from the learning task to generate distributional RT predictions for the decision 

task with the TTB implementation. Note that the parameters were not fitted to the data of the 

decision task, so these are genuine predictions. We also performed a ROI analysis to compare 

brain activation predictions to BOLD data. Finally, in an iterative process, we used the ROI 

analysis to further refine our model. Specifically, we constructed seven alternative 

 
5 Data, analysis scripts, and model files are available under osf.io/25pt8. 
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implementations of TTB and selected the implementation whose processing steps generated 

BOLD predictions best corresponding to observed data. 

 

 

Figure 4. Overview of the different steps of model development and testing. (1) An ACT-R 

model of recall is developed to estimate perceptual-motor times in the learning task. (2) 

Memory parameters are estimated from the learning task. (3) An ACT-R model of TTB is 

developed, which uses as input the memory parameters estimated in the learning task. (4) 

Distributional RT predictions are generated using this model and compared with 

experimental RTs. (5) Module activity is mapped onto HR. (6) The predicted HR is compared 

to the experimental fMRI data. See the online article for the color version of this figure. 
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Model Calibration in the Learning Task 

 In order to rigorously test a model’s descriptive power, it is important to ensure that it 

performs well in predicting data out-of-sample rather than being able to fit data (e.g., Pitt, 

Myung, & Zhang, 2002). In order to derive predictions about RTs and BOLD responses in 

the decision task, we estimated ACT-R’s memory parameters for each participant from 

his/her RTs in the learning task (Figure 4, steps 1 & 2). During the learning task, different 

attribute values are remembered increasingly better across various rounds of learning (see the 

description of the learning task above), until the corresponding chunks are activated strongly 

enough to be retrieved with a probability of almost 1 (see Equation 6) in the last round of 

learning. Thus, the last learning round defines the peak activation of each attribute-value 

chunk. Moreover, it is temporally closest to the decision task. This renders a chunk’s 

activation at this point in time a reasonable approximation to that chunk’s activation at the 

beginning of the decision task. 

 ACT-R relates activation to RT as per Equation 7 (Section 2). We transformed this 

equation to estimate the activation of chunks representing attribute values from the retrieval 

time of each attribute-value chunk in the last round of learning: 

     𝐴 = − 𝑙𝑜𝑔
𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙

𝐹
  ,    (12) 

where the latency factor, F, is left fixed at its default value (F = 1). This implies that 

estimating activation as per Equation 12 requires no parameter fitting.6 To assess retrieval 

time, we then assumed that 

𝑡retrieval = RT − 𝑡non−retrieval,     (13) 

that is, that the total RT consists of separable retrieval and non-retrieval components. We then 

estimated tnon-retreival by constructing an ACT-R model of recall in a learning trial, whereby we 

 
6 ACT-R includes parameters which shape the workings of its subsymbolic system. For example, these 

parameters determine how long retrieval takes, or low quickly one would attend an object in the visual field. 

These parameters have default values, which ensure consistency between models constructed within this 

architecture.  



ACT-R PRIMER FOR DECISION MAKING 

25 
 

relied entirely on ACT-R’s default parameters (Figure 4, step 1). This model, shown in 

Figure 5, starts by looking at the company name. It then stores that name in the imaginal 

buffer and looks at the attribute. Once both attribute and company are available in the 

model’s buffers, the model attempts recalling the attribute value and responds by pressing a 

key on the keyboard. We computed the median duration of non-retrieval processes over 100 

runs7 of that model to estimate non-retrieval time. This was necessary because ACT-R 

assumes a certain variability in the operation time of its various cognitive components, such 

as visual attention and motor action. As a result, ACT-R makes predictions about the 

distributional characteristics of the RTs. Our model estimated a mean perceptual-motor time 

of 780 ms for the first attribute of a company and 495 ms for the remaining three attributes.8 

 

 

Figure 5. Schematic process trace of ACT-R model of recall. The y-axis denotes various 

ACT-R modules. This model operates through six productions. Productions 1 and 2 request 

that the visual module attends to and encodes the company name, while productions 3 and 4 

direct the visual module to attend and encode the attribute. Production 5 tell the declarative 

module to recall the value on that attribute and, finally, production 6 makes the appropriate 

response by requesting a key press from the manual module. For the sake of illustration, the 

model trace schematically depicts somewhat arbitrary recall times, and not those that a 

participant would likely need. See the online article for the color version of this figure. 

  

 
7 We ran each model 100 times, which strikes a good balance between number of data points generated and 

required simulation time. 
8 In the learning task of the experiment, attributes were grouped per company. Thus, a participant only needs to 

encode the company name for the first attribute.  
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 After subtracting the average tnon-retrieval from the overall RT, we removed outliers from 

the resulting tretrieval: Specifically, we first, we removed outliers on the left side of the 

distribution by eliminating all negative values; this amounted to 4.3% of all observations. 

Second, we removed outliers on the right side of the distribution by removing the 2.5% most 

extreme values (see Ratcliff, 1993, for general recommendations of outlier removal). The 

97.5th percentile of the distribution of all participants’ RTs was at 6.2 s. 

 To account for memory retrieval being inherently noisy, ACT-R models the noise on 

activation with a logistic distribution (see Equations 1 and 5). We assume that all 64 attribute-

value chunks stored in a participant’s memory are characterized by the same parameter 

values (logistic distributions with equal means and scales; Figure 4, step 2). This assumption 

is plausible for three reasons. First, all attributes have approximately the same learning 

history (i.e., they were presented similarly often and similarly long ago) and hence the same 

base-level activation. Second, all attribute-values receive the same amount of spreading 

activation, because every attribute is related to 16 attribute values (an associative fan of 16) 

and each company to 4 attribute values (a fan of 4). And third, by definition, there is a single 

activation noise parameter per participant. Starting from Equation 1, this assumption means 

that all chunks i for a participant have an activation: 

     𝐴𝑖~𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜇𝐴, 𝑠).    (14) 

In essence, three parameters have to be estimated per participant: the two parameters of the 

logistic distribution (mean activation 𝜇𝐴, and activation noise s) and, also, a retrieval 

threshold τ (see Equations 6 and 8). 

 Figure 6 shows, for three representative participants, the resulting fit of a logistic 

distribution to the 64 samples from the activation distribution from the last round of learning 

(corresponding to the 64 attribute values). These 64 data points are RT distributions 

transformed with Equations 12 and 13. The parameters of such a theoretical cumulative 
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distribution function provide an estimate of the mean activation and activation noise for all 64 

attribute-value chunks of a participant. To estimate each participant’s retrieval threshold, we 

set it equal to the activation of the least active attribute value (also, see Figure 6).  

 

 

Figure 6. Examples of fitting a logistic distribution to learning data of three participants. 

Points show 64 empirically estimated activations from the last round of the learning task for 

each of the 64 attributes. The red line shows the fitted logistic curve, while the black line 

designates the value of the retrieval threshold. See the online article for the color version of 

this figure. 

 

RT Predictions 

The memory parameters, estimated individually for each participant, are used to 

derive predictions for the decision task: activation and other components feed into the TTB 

model described above (Figure 4, step 3).9 When generating predictions, all other parameters 

were set to their ACT-R default values. To mimic the exact experimental conditions, we 

added the timing details of an ITI of 2, 4, or 6 s, a fixation cross presented for 2 s at the 

beginning of each trial, and a presentation of a company pair until a response is made (see the 

description of the experimental procedure above) to the model presented in Figure 3. When 

the fixation cross is drawn, the model looks at it. When an ITI is presented, the model does 

nothing. Finally, when the two companies are presented, the model executes TTB: it reads the 

 
9 Given that the time elapsed between last round of the learning task and the beginning of the decision task is 

minimal, we assume negligible memory decay between those tasks. 
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company names sequentially, recalls attributes and attribute values and responds with a 

keypress (see Figure A1 in the Appendix for a trace of the complete final model, which also 

includes screen events and mental events for clarity).  

As mentioned in Section 2, ACT-R assumes that cognitive processes are inherently 

noisy, implying that the same process can produce different patterns of data. To model this 

variation, ACT-R models are typically run multiple times in a computer simulation. In our 

case, the simulation of the complete decision task, consisting of 132 trials, was repeated 100 

times for each participant. In so doing, in each simulation run and for each participant, stimuli 

(i.e., pairs of company names) were presented in the same order as the participants saw them. 

The resulting distributional RT predictions are compared against the empirical RTs (Figure 4, 

step 4). Figure 8 offers a snapshot of such a comparison by plotting median RTs and RT 

percentiles, together with empirical RTs for three participants (see the Supplementary Online 

Materials for plots for all participants). 
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Figure 8. Distributional RT predictions for three participants (over 100 runs) of the ACT-R 

model of TTB and observed RTs of the corresponding participants in Khader et al. (2011, 

Exp. 1). The trial index is shown on the x-axis. That index can be thought of as timeline, with 

the first trial corresponding to the first and the last trial to the last comparison of two 

companies in the decision task. The black line represents the median predicted RTs across 

trials; the dark grey strip is the region between the 25th and 75th RT percentile; the light grey 

strip is the region between the 10th and 90th RT percentile. The observed RTs are presented in 

yellow. There were 132 paired comparisons of companies in total. See the online article for 

the color version of this figure. 

 

The trial-by-trial RT predictions of participant 1 are summarized as a function of the 

number of attributes that need to be retrieved to make a decision and compared to 

experimental data in Figure 910 (see Supplementary Online Materials for such plots for all 

participants). When the same company name is presented on both sides of the screen and, 

 
10 There are few items, on which 3 attributes (16 items) or 4 attributes (8 items) need to be retrieved. As a 

consequence, we have grouped those items together to have a better representation of their distribution. Note 

that there are also only 8 items, on which no attributes need to be retrieved, but these exhibit a very small 

variability in response time and are thus not grouped with other items.  
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consequently, no attributes need to be retrieved, the model almost always responds within 1 s 

(Figure 9a; mediansim: 918 ms), while this subject more frequently needs between 1 and 2 s 

(medianexp: 1237 ms). Most participants (11 out of 17) also more frequently respond within 1 

s on such trials. Moreover, as can be seen, for this participant the more attributes need to be 

retrieved (1 attribute: Figure 9b, mediansim: 3788 ms, medianexp: 3816 ms; 2 attributes: Figure 

9c, mediansim: 6923 ms, medianexp: 7886 ms; 3 or 4 attributes: Figure 9d, mediansim: 11026 

ms, medianexp: 14854 ms), the more likely it is that his/her RTs deviate from the model 

predictions. This trend can be seen among most subjects with some subjects’ data aligning 

better with our predictions and some worse. We suspect that three factors contribute to this. 

First, sample sizes are smaller the more attributes need to be retrieved and, thus, each sample 

is more variable. Second, RT variability also increases with increasing RTs. Finally, the 

probability of not precisely following the prescribed strategy (e.g., by getting distracted or 

wrongly remembering an attribute value) increases the longer the execution of that strategy. 

Interestingly, some subjects exhibit very fast RTs (in some cases within 2 s) even on trials 

that require 3 or 4 attributes to be considered, which supports our last hypothesis. When 

developing ACT-R models, detecting such deviations by plotting predictions and data in 

different ways is important. This aids to gauge the overall performance of a model, and can 

uncover where further model refinements are warranted.  
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Figure 9. Comparison of predicted and observed RT distributions in the decision task as a 

function of the number of attributes considered for participant 1 from Khader et al. (2011, 

Exp. 1). Each count corresponds to a trial of that participant. See the online article for the 

color version of this figure. 

 

To further illustrate this point and examine inter-participant variability, one can also 

ask how well our model performs across all participants. In Figure 10 we compare the extent 

to which the empirically observed RTs deviate from the median predicted RTs (in terms of 

mean absolute deviation, MAD) relative to how much the model deviates, on average, from 

median predicted RTs on individual runs. How much the model deviates on each individual 

run from its median RT predictions provides us with an estimate of model variability. If a 

participant shows a smaller deviation from median model predictions than individual model 

runs, our model overestimates the variability in RT. On the other hand, if a participant shows 
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a larger MAD, our model either underestimates a participant’s RT variability or it 

systematically deviates from the participant’s RT. Figure 10 demonstrates that participants 

and model exhibit similar variability, although the empirical RTs typically depart more from 

the median predictions than individual runs of the simulation. Moreover, as noted above, as a 

participant needs to retrieve more attributes (0 attribute: Figure 10a; 1 attribute: Figure 10b; 2 

attributes: Figure 10c; 3 or 4 attributes: Figure 10d), his/her RTs depart more strongly from 

the predictions. 

 

 

Figure 10. Comparison of MAD of individual model runs and of experimental data from 

median predicted RTs of model as a function of number of attributes retrieved before 

deciding. RT absolute deviations were averaged over participant and trial type (i.e., number 

of attributes that need to be recalled). Error bars represented minimum and maximum MAD 

from the 100 runs of the model.  
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Neural Activation Predictions 

 In Section 2, we explained how HR predictions are derived in ACT-R. Figure 11 

illustrates, in practice, how the HR resulting from a module’s activity emerges (Equation 11). 

In this figure, the activity of two modules (declarative and visual modules), as described by 

their demand functions (light color), is transformed into predicted BOLD responses (dark 

color) for the first 50 s of a model run for a participant. Following the same procedure as for 

these 50 s, we derive BOLD-response predictions for each of the 100 model runs of each 

participant for the entire decision task (Figure 4, step 5). Thus, we are effectively able to 

specify the expected pattern of brain activation related to each of ACT-R’s modules, given 

the sequence of cognitive steps assumed by our model.  

 When engaging in such ACT-R modeling, the details matter: For instance, we model 

the repeated presentation of fixation crosses and ITIs in the experimental procedure (see 

Figure A1 in the Appendix, for a process trace of the complete final model). This is important 

for accurately generating BOLD predictions, because the repeated presence of fixation 

crosses and ITIs shape the time course of the HR. As can be seen in Figure 2, the HRF needs 

more than 20 s to settle back to its baseline level. Given that the fixation cross duration is 2 s 

and that the ITI is at most 6 s, there will always be some residual HR from the previous trial 

in the current trial (see the dashed lines in Figure 11, which represent the time point at which 

a new trial begins).  
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Figure 11. Transformation of visual and retrieval modules activity, as describe by the 

demand function, to HR for first 50 s of a run of an ACT-R implementation of TTB. The 

beginning of each trial is denoted with a dashed line. The HR often has not decayed to 

baseline before the beginning of the subsequent trial. See the online article for the color 

version of this figure. 

 

 Following the ROI procedure, these HR predictions, associated with different 

cognitive processes specified in the model were compared to the observed brain activity. 

BOLD signals were extracted from module-specific areas based on the center coordinates and 

ROI sizes provided in Anderson (2007).11 To mimic an fMRI scan, model predictions were 

averaged every 2 s. Then, for both predictions and observations, the first scan of each trial for 

that participant (and that model run in the case of the predictions) served as baseline – BOLD 

response was estimated relative to its magnitude. Finally, both predicted and observed BOLD 

 
11 All coordinates are in Talairach space: declarative module: x = +/- 43, y = 23, z = 24; imaginal module: x = 

+/-23, y = -63, z = 40 ; procedural module: x = +/-14, y = 10, z = 7; manual module: x = +/-41, y = -20, z = 50; 

visual module: x = +/-42, y = -61, z = -9 (from Anderson, 2007, p. 189). 
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responses for all participants were grouped according to the number of attributes that have to 

be considered before a decision can be made and averaged over bins of 2 s. Figure 12 

compares predictions for the five modules of interest12 and observations from the 

corresponding regions in both the left and right hemisphere. The first column of Figure 12 

plots recordings from the left hemisphere, the second from the right hemisphere, and the third 

column plots our model predictions.  

   

 
12 ACT-R currently does not generate separate predictions for each hemisphere. 



ACT-R PRIMER FOR DECISION MAKING 

36 
 

 

Figure 12. Observed and predicted BOLD responses for ten brain regions, associated with the 

manual, procedural, declarative, visual, and imaginal modules. LIPFC = Lateral Inferior 

Prefrontal Cortex. PPC = Posterior Parietal Cortex. BG = Basal Ganglia. FG = Fusiform 

Gyrus. The x-axis represents the time point in the trial at which the BOLD signal is measured 
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or predicted, while the y-axis represents the signal change relative the first scan of that trial. 

The different degrees of brightness are associated with a different number of attributes that 

need to be retrieved before TTB makes a decision. The BOLD response is averaged over all 

participants and trials that require that number of attributes to be retrieved. Only points 

averaged from least 20 observations are included in the plot, because the empirical data 

become very noisy with just a few observations. See the online article for the color version of 

this figure. 

  

 To quantify the degree of correspondence between predicted and observed fMRI 

patterns, we used the Tucker Congruence Coefficient (TCC)13 and the coefficient of 

determination R2 (similar to Borst et al., 2015). In addition, we used a weighted coefficient of 

determination Rw
2 (computed as the square of the weighted correlation between predictions 

and observations) which weights each point by the number of observations that were 

averaged to produce that point, whereby the averaging took place over participants and trial 

time. Table 1 compares predictions and observations on these three measures for the 10 brain 

regions of interest. The measures of correspondence between model and data are comparably 

good to work of others (e.g., the fit Borst et al., 2015, which established new mappings of 

modules to brain regions, shows TCCs in the range between .86 and .96 and R2s in the range 

of .67 and .93). There were also two important deviations: First, the visual regions failed to 

match the observed increase in BOLD response amplitude with number of attributes 

considered. Second, the two motor regions correlated more weakly with the predicted BOLD 

response than the remaining regions.  

 When developing ACT-R models, such discrepancies need to be explained and 

resolved so that they can, potentially, inform future model refinements. For instance, the 

weaker match between predictions and observations for the manual module was probably due 

to low motor activity: Motor activity (i.e., pressing a key on the response device) was 

 
13 TCC is used to assess the similarity of two quantities. Just like the correlation coefficient, it ranges between -1 

and 1. Unlike the correlation, TCC is based on the degree to which the quantities deviate from 0 as opposed to 

from their means.  
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necessary only once, at the end of each trial. This, in turn, probably resulted in a low signal 

relative to the BOLD noise. We can probably do nothing to further improve the motor 

predictions of our model. However, predictions based on the visual module and BOLD data 

recorded in the corresponding brain region exhibited low correlation and negative TCC. The 

negative TCC in particular means that the observed signal tends to follow the opposite sign 

from our predictions: Whenever the observed signal is positive, our predictions tend to be 

negative and vice versa. A visual inspection of Figure 12 further corroborates that our model 

fails to predict activity in the visual region. This might be due to a possible mismatch 

between our model and the sequence of cognitive processes that participants executed, calling 

for a further refinement our model to better match participants’ visual activity. 

 

Table 1. Comparison of empirical and model brain activity for the brain regions 

corresponding to the 5 modules active in our TTB implementation. 

Region TCC R2 Rw
2 

Left manual .26 .08 .14 

Right manual .62 .21 .33 

Left visual -.51 .48 .29 

Right visual -.33 .20 .18 

Left procedural .80 .61 .73 

Right procedural .84 .73 .80 

Left imaginal .72 .52 .75 

Right imaginal .75 .58 .76 

Left declarative .94 .86 .87 

Right declarative .66 .30 .40 

Note. TCC = Tucker’s Congruence Coefficient, Rw
2 = Weighted Coefficient of 

Determination. Rw
2 is computed by squaring the weighted correlation between predictions 

and observations. 
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Model Refinement 

There are often multiple ways of translating a model into a detailed architectural 

implementation. This holds also true when translating TTB’s search, stopping, and decision 

rules into ACT-R. Our first ACT-R implementation of TTB relied on a set of assumptions 

about how people would execute this strategy. Yet, the ROI analysis outlined above 

demonstrated that some of those assumptions may not hold. This provides us with an 

opportunity to further refine our model. What other ways are there to translate TTB into 

ACT-R? 

Currently, our model maintains the company names in a short-term store (i.e., the 

imaginal buffer). Yet, a participant might avoid the burden of storing this information that is 

readily available on the computer screen by reading one or both company names off the 

screen upon the inspection of each attribute. Additionally, our model stores both attribute 

values in the imaginal buffer before comparing them. Yet, the second attribute value is 

immediately accessible after being recalled (i.e., in the retrieval buffer) and it might not be 

necessary to first move it to the imaginal buffer before comparing the attribute values. 

Finally, when we attempt to retrieve knowledge from long-term memory, we often shift our 

visual attention (i.e., we look away) and so then need to reallocate it back to its initial 

position (i.e., towards the screen), while for our model visual attention is always on the last 

object that it looked at.  

We have created 7 additional models (Table 2) that vary according to these 

dimensions. TTB1 is the model that we have examined up to here. TTB2 reflects the intuition 

that people may access an attribute’s value directly after they recalled it instead of first 

moving it to a short-term store. Further reducing the amount of information maintained in 

short-term memory, TTB3 and TTB4 read company names off the computer screen instead of 

storing them in the imaginal buffer. TTB5 lies at the intersection between TTB1/TTB2 and 



ACT-R PRIMER FOR DECISION MAKING 

40 
 

TTB3/TTB4, because it only maintains one company name in the imaginal buffer. Similarly, 

TTB6 and TTB7 are a combination of TTB1/TTB2 and TTB3/TTB4 as they not only look at 

both company names upon the inspection of each attribute, but also store those company 

names in the imaginal buffer. Finally, TTB8 is the model that loses the attentional focus once 

a retrieval starts and so attention needs to be reallocated after retrieval is completed. 

 

Table 2. Summary descriptions of the 8 implementations of TTB. 

Assumed processing steps TTB1 TTB2 TTB3 TTB4 TTB5 TTB6 TTB7 TTB8 

Store company names in 

imaginal buffer 
X X    X X  

Look back and forth upon 

inspecting each attribute 
  X X  X X X 

Store second attribute value 

in imaginal buffer 
X  X   X  X 

Store one company name in 

imaginal buffer 
    X    

Look at company name 

again after attribute is 

retrieved 

       X 

 

We submitted these eight implementations of TTB to a competitive test against each 

other. While all models generated comparable behavioral predictions (see sections S2 & S3 in 

Supplementary Online Materials), their neural predictions (see section S4 in Supplementary 

Online Materials for figures) pointed towards the most plausible among the models. Table 3 

reports goodness-of-fit measures for the neural predictions of our initial TTB implementation 

(TTB1), the best-fitting implementation (TTB8), and one with an intermediate fit (TTB4).  

These results illustrate the merits of an ROI analysis: Even though the behavioral 

measures produced by the models were very similar, the unique module-to-brain mappings 

afforded neural data to measure the contribution of each cognitive process separately. Put 

differently, variations in cognitive activity that lead to a noticeable change in a brain region’s 

activity can only be identified with the help of neural data. Identifying the degree of activity 



ACT-R PRIMER FOR DECISION MAKING 

41 
 

of each cognitive function then allows us to point at the cognitive processes that most likely 

generated observed BOLD signals. In our case, that is TTB8, which assumes object names are 

not stored into the imaginal buffer. Instead, they are read off the computer screen every time 

they are needed. This model also assumes that visual attention is lost upon each retrieval 

attempt and then recovered once retrieval is completed. 

 

Table 3. Goodness-of-fit measures of 3 of the 8 TTB ACT-R implementations.   

Region 
TTB1 TTB4 TTB8 

TCC R2 Rw
2 TCC R2 Rw

2 TCC R2 Rw
2 

Left manual .26 .08 .14 .26 .08 .15 .24 .07 .13 

Right manual .62 .21 .33 .63 .22 .34 .62 .22 .34 

Left visual -.51 .48 .29 .08 .02 .01 .75 .45 .70 

Right visual -.33 .20 .18 .20 .00 .03 .73 .42 .66 

Left procedural .80 .61 .73 .77 .56 .68 .68 .38 .55 

Right procedural .84 .73 .80 .84 .72 .80 .78 .54 .65 

Left imaginal .72 .52 .75 .55 .25 .54 .77 .56 .77 

Right imaginal .75 .58 .76 .60 .32 .56 .80 .61 .78 

Left declarative .94 .86 .87 .94 .85 .88 .95 .87 .89 

Right declarative .66 .30 .40 .66 .30 .41 .66 .29 .41 

Note. Models differ primarily in how well they predict the signal in the fusiform gyrus. The 

winner of the model comparison is TTB8 which predicts well brain activity related to the 

visual module. Neural predictions for the other 5 models can be found in section S4 in the 

Supplementary Online Materials.  

  

At the same time, these results illustrate another important aspect of ACT-R 

modeling: Cumulative theory building (see Marewski & Olsson, 2008). Specifically, the 

ACT-R architecture has been cumulatively refined, updated, and extended over the past 

decades, based on thousands of data points from experimental research from all over the 

world (current version: ACT-R 7). If one develops isolated models (e.g., of decision making 

or other cognitive processes) in ACT-R, a similar cumulative processes of theory building 

can take place. Typically, the model code is publicly shared, allowing for models developed 

on one data set (or a series of data sets) to be re-used and tested by researchers from other 
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labs on other data sets. The next step of what can be thought of an iterative research process 

of model development and continuous testing would be to submit our TTB implementations 

to tests on new data sets. Conducting such tests would be particularly important for TTB2-8, 

because those seven implementations emerged after the fact, as a result of a refinement of 

TTB1. Hence, in a strict sense, Table 3 reports actual model predictions from foresight only 

for TTB1, but not for the other implementations for which we adapted the model structure 

after the fact (although we did not re-estimate model parameters). The next competitive test 

of those models should therefore be conducted on new data.   

Summary 

We outlined how to develop an ACT-R model based on behavioral and neural data, 

using the TTB heuristic in memory-based decision making as a case in point. Importantly, the 

parameters of our model were constrained in a separate (i.e., learning) task, which as 

independent from and preceded the actual decision task (cf. Khader et al., 2011). The model 

was used to generate predictions about RTs and brain activation for a decision task, in which 

participants are instructed to use TTB to decide between two options, for which they had to 

retrieve decision-relevant information from memory. Overall, the RT predictions matched 

well both central tendencies and variability of individual participants’ data. The brain 

activation predictions of the first model corresponded well to observed fMRI signals in 

regions associated with the manual, retrieval, imaginal, and procedural buffers, but failed to 

predict activity in the visual region. Pushed by this failure, we further refined our model by 

generating alternative hypotheses about the sequence of processing steps, implemented them 

as ACT-R models and selected the model whose predictions best corresponded to observed 

fMRI data. 
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6. General Discussion 

Cognitive activities, such as decision making, are the result of various interplaying 

cognitive resources. When trying to understand such activities, researchers are faced with the 

challenge of separating the contribution of each cognitive capacity. In this article, we provide 

a step-by-step methodological primer of how to separate the contribution of each cognitive 

capacity by implemented models in ACT-R, and how such models can be tested with both 

behavioral and neural data, and further refined. As an illustrative example, we focused on a 

commonly studied model of decision making, the TTB heuristic (Gigerenzer & Goldstein, 

1996). After estimating the free parameters of an ACT-R implementation of TTB using an 

independent learning task, we generated predictions about RTs and brain activation for a 

decision task, and tested those predictions on an fMRI dataset. Overall, both predicted RT 

distributions and temporal and spatial patterns of brain activity of our final model 

corresponded well to the observed data. Our results demonstrate that a properly specified and 

constrained model can predict both of these types of data, without any further adjustment of 

its parameters. As expected, if the components of that model are refined in an iterative 

process, the resulting models’ fit can further increase. More broadly, our results illustrate how 

decision making research can be grounded in more general cognitive theories (Dimov, 2018; 

Dimov & Link, 2017; Dimov, Marewski, & Schooler, 2013, 2017; Dougherty et al., 1999; 

Fechner et al., 2016; Fechner, Schooler, & Pachur, 2018; Fechner, Pachur, & Schooler, in 

press; Gonzalez, Lerch, & Lebiere, 2003; Link, Marewski, & Schooler, 2016; Marewski & 

Mehlhorn, 2011; Marewski & Schooler, 2011; Schooler & Hertwig, 2005; Thomas, 

Dougherty, Sprenger, & Harbison, 2008). In fact, this approach might become a trend that, so 

we and others think, has the potential to ultimately revolutionize the field – once entry-level 

barriers to complex architectural modeling tools such as ACT-R break away. 
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In what follows, we (a) compare how our models would do in predicting participants’ 

RT data if we used a common set of parameters for all participants, (b) explicitly outline the 

four modeling principles that we followed in our model developing efforts, (c) refer readers 

to material relevant to ACT-R. 

Individual vs. Group Parameters 

 Two key features of our approach are, first, that we generate predictions (in our case, 

in the decision task) by estimating model parameters (i.e., mean activation, activation noise 

and retrieval threshold) on a different task from the task of interest (a learning task) and, 

second, that we do so separately for each participant. Constraining parameters in different 

tasks lends credence to architectural models (Newell, 1973) and, more generally, reducing the 

number of free parameters is a widely accepted good practice in psychology. Thus, we call 

for fitting free parameters on tasks separate from the main task whenever possible. Yet, how 

important is the estimation of individual parameter values for participants?  

At least since Estes (1956) it is known that artifacts in parameter estimation can 

emerge if model parameters are fitted to group data. For example, only when fitting to 

individual data Estes and Maddox (2005) could recover reasonable parameter values. Others 

argue that averaged data can change the underlying functional form, for example, from 

exponential at the individual level to a power function at the group level (Anderson & 

Tweney, 1997; Heathcore, Brown, & Mewhort, 2000; Myung, Kim, & Pitt, 2000). In our 

case, we will address this question by estimating common parameters from the learning data 

of all participants and generate new predictions with our model. To this end, we pool the RTs 

of all participants from the last round of the learning task, remove outliers, and fit memory 

parameters to those. 

Figure 13 demonstrates the group parameter fit and compares them to the individual 

parameter estimates. Not surprisingly, the common parameters fall in-between the individual 
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parameters: While individual mean activations range between -0.55 and 1.02, the common 

mean activation is 0.26; while estimated retrieval noise ranges between 0.3 and 0.88, 

common retrieval noise is 0.52.  

 

 

Figure 13. (a) Activation fit of all observed RTs in learning task to generate common 

memory parameters for all participants. 𝐴̅ denotes estimated mean activation, s the retrieval 

noise and τ denotes the retrieval threshold. (b) Individual parameter estimates of mean 

activation and activation noise.  

 

It can be expected that for participants with parameters close to the mean parameters 

it would not matter much whether we use the individual or group parameters, while for 

participants with parameters at the extreme it will matter more. Figure 14 shows how much 

participants’ RTs deviate from model predictions with common vs. individual parameters. 

For more than half of the participants, it does not matter which parameters we use. For one 

participant (the right-most on the graph), the common parameters do better than the 

individual parameters that we estimated.  Finally, for 5 of the 17 participants (5 of the 6 

leftmost) using individual parameters improves the predictive power of our models. The 
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predictions for those participants are roughly between 0.5 s and 1.7 s more accurate with the 

individual than with the common parameters.  

 

 

Figure 14. RT deviation from median predicted RTs for model TTB1. With black is plotted 

MAD of individual runs of TTB1 (with memory parameters fitted separately for each 

participant) from median RTs of that model. The MAD of each participant’s RTs from 

median predicted RTs of TTB1 (with memory parameters fitted separately for each 

participant) is plotted in yellow. Red plots the MAD of each participant’s RTs from median 

predicted RTs of TTB1 (with memory parameters fitted on all participant’s data from the 

learning task). The black dots estimate how much the simulation varies from run to run. 

Participants’ RTs (in yellow) typically deviate more from median model predictions than any 

individual model run (see black error bars, which delineate the region between 10th and 90th 

percentile of RTs on each model run). Moreover, participants’ RTs deviate more for some 

participants from a model with a common set of memory parameters (in red) than from a 

model with individual memory parameters (in yellow).    

 

Which procedure – individual or average parameters – should be adopted when 

developing ACT-R models? In general, we recommend working with individualized 

parameter values, because people differ in terms of their ability to, for instance, remember 

information. People also differ in terms of the statistical structure of real-world environments 
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they have encountered. For instance, if our experimental data set had not entailed fictitious, 

but realistic stimuli names, one might expect that people with different prior real-world 

exposure histories to company names would have different activation levels for the same 

company names (see section 2 on ACT-R’s subsymbolic system). Note that computing 

individualized parameter values does not lead to the problem of overfitting if, as we have 

done, the resulting models are tested with fixed parameter values on a different task for each 

participant. Pooling data, in turn, can became an interesting option when the number of 

observations available for each individual participant is sparse and when one has reasons to 

assume that individual differences across participants are negligible. That said, when working 

with pooled data the modeler should be aware of the problem that the average parameter 

values used might not correspond to any individual and also of the artifacts that might arise 

from estimating parameters from group data. 

Individual differences in decision strategy 

While individual parameter values lead to predictions which are at least as good as a 

common set of parameters for all participants, our model still does not capture all the 

variance in participants’ data. This might be partially due to the limited size of the learning 

data sample, which does not allow us to perfectly estimate the values of memory parameter. 

Other, human, factors such as accumulating fatigue or distraction might also play a role. Yet 

another possibility for the unaccounted variance might lie in inter-participant variability in 

strategy selection. In decision making, it is well known that participants vary widely in the 

strategies they adopt when facing a decision problem and results typically consist of 

tendencies of switching from one strategy to another as certain experimental factors are 

manipulated rather than a unanimous adoption of a single decision strategy (see, e.g., Bröder, 

2012). Even in a task as the one that we are modeling, in which participants are instructed to 

follow a particular strategy, each participant might still be executing TTB in their specific 
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manner. In this case, different participants would be best described by different TTB 

implementations.   

Another potential source of variability that we do not include in our analysis is that 

potential for strategy switching as the experiment progresses. Factors such as fatigue, 

exploration or reinforcement (Rieskamp & Otto, 2006) might slowly increase the likelihood 

that one implementation of TTB is executing over another. For example, a participant might 

start by storing all information in the short-term store (i.e., the imaginal module) similar to 

TTB1 and then discover that it is more efficient to not store information readily available to 

visual attention, as in TTB8. Exploring such individual differences is another potential 

pathway of model refining.  

Principles for Model Development and Testing in Cognitive Architectures  

 Modeling frameworks as complex as ACT-R, which consists of multiple interplaying 

components and many adjustable parameters, are sometimes criticized for being capable of 

fitting everything (Pohl, 2011; Rieskamp & Otto, 2006). Yet, such critique is misleading. 

ACT-R models make extremely precise multi-dimensional predictions (i.e., about different 

variables, including RT, BOLD signals, eye-movements, etc.) that can be easily proved 

wrong in experiments. Our analysis of our ACT-R implementations of TTB serve to 

illustrate, by means of a practical example, methods for creating strong tests beds for 

architectural process models (see Figure 4 for a roadmap of the steps that we followed). 

Specifically, we followed four modeling principles (Dimov & Marewski, 2018).   

 First, while the ACT-R cognitive architecture has a certain number of free parameters, 

the calibration of those parameters is neither arbitrary nor is the careful modeler fully free to 

“choose” his/her parameter values. A common standard in the ACT-R community is to use, 

wherever possible, ACT-R’s default parameter values. If parameters need to be estimated, 

those parameters ought to be constrained on different data sets and tasks (see A. Newell, 
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1990; see also Anderson, 2007). In developing our model, we used the specified default 

parameter values if feasible and calibrated all models’ free declarative parameters on the 

learning task, and then carried over those parameter values unchanged to the decision task 

(Figure 4, steps 1 & 2). 

Second, ACT-R models ought to be tested in predicting new, unseen data rather than 

in fitting existing data. Fitting refers to situations where a model’s free parameters are 

estimated from the human data by minimizing the difference between the human and the 

model. In contrast, testing a model’s predictions entails evaluating a model’s ability to 

reproduce human data to which the model has not been calibrated, that is, out-of-sample with 

fixed parameters (Marewski & Olsson, 2008; Pitt, Myung, & Zhang, 2002; Roberts & 

Pashler, 2000). After having developed our ACT-R implementation of TTB and calibrated its 

memory parameters on an independent behavioral task (see Figure 4, steps 1 & 2), we 

predicted, out of sample, participants’ decisions, RTs, and neural patterns in the decision task 

(Figure 4, steps 3, 4 & 6). 

Third, ACT-R models allow making detailed quantitative predictions about 

distributions of human data, rather than merely predicting means, medians or other point 

estimates (for a related approach, see Smith & Ratcliff, 2004). Predicting the complexities of 

multiple distributions creates very strong tests for models, and often even merely trying to fit 

(rather than to predict) those distributions, poses a serious challenge. For example, Marewski 

and Mehlhorn (2011) specified 39 ACT-R models of decision making with none of them 

being able to fit and predict human RT distributions perfectly in two experiments. Yet, if only 

median RTs would have served as a criterion for model selection, several of those models 

would have been wrongly judged as being able to account equally well for human data. In our 

current analyses, we used our ACT-R implementation of TTB to predict distributional 

patterns (Figure 4, step 4). 



ACT-R PRIMER FOR DECISION MAKING 

50 
 

Fourth, models are not evaluated in isolation, but in their ability to make predictions, 

out of sample, relative to each other. In such model comparisons, models’ predictions about 

dynamic distributional data, and not just means, should be contrasted. This way, we might 

discover that no model accounts perfectly for both central tendencies and variabilities of 

various types of data, but, instead, we can establish the degree to which one model better 

predicts the data than another. The best model can then serve as a benchmark in future 

evaluations.   

 

ACT-R Resources 

 In closing, we provide resources to get the reader started with ACT-R. First, the 

software package for the appropriate operating system can be downloaded from the ACT-R 

website (http://act-r.psy.cmu.edu/software/). In addition to ACT-R, that website contains 

tutorials, a reference guide and other documentation, which can aid the beginner modeler in 

immersing into the theory. Moreover, the website contains additional resources, such as a list 

of publications related to ACT-R and a list of researches working with this architecture. 

Publications cover a broad range of topics and usually come together with ACT-R models, 

which can be freely downloaded. For those willing to experiment with ACT-R without 

engaging with Common Lisp, versions in Java (jACT-R, http://jact-r.org/; Java ACT-R, 

http://cog.cs.drexel.edu/act-r/) and Python (pyact, https://github.com/jakdot/pyactr/; Python 

ACT-R, https://sites.google.com/site/pythonactr/) exist, while the related ACTransfer theory 

and software (Taatgen, 2013) is written in Swift (to be downloaded from 

https://github.com/ntaatgen/ACTransfer). However, the most complete and up-to-date version 

of ACT-R is the one developed in Lisp and, since version 7.5, ACT-R includes a new 

interface that allows interacting with the architecture through any programming langue. 

Additionally, we refer those interested in modeling neural data with ACT-R to the excellent 

https://github.com/ntaatgen/ACTransfer
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tutorial provided by Borst and Anderson (2017). Finally, we recommend future (ACT-R) 

modelers to seek out the literature on methods for model selection. A short overview 

(pertinent to ACT-R) is provided in Marewski and Olsson (2008).   
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Appendix 

 Figure A1 is a description of a run of the final model, which extended the model 

described on Figure 3 by adding an inter-trial interval and a presentation cross. The 

presentation cross leads to additional visual activity when the model attends to the presented 

cross, while the inter-trial interval is a time of inactivity, during which the BOLD signal can 

decay. Thus, adding these two components to our model modifies its BOLD predictions. To 

simplify the understanding of the extended model, we have added screen events, which depict 

what is happening on the screen at this point in time, and mental events, which are higher 

level descriptions of what the model does at this point in time. For example, 2000 ms after 

the trial starts, the two company names are presented on the screen (see screen event). At this 

point, the model starts encoding the two company names off the screen (mental events “read 

company 1” and “read company 2”) and, after determining that the names are different, starts 

executing TTB (mental event “names different; start TTB”). 
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Figure A1. Schematic process trace of an ACT-R implementation of TTB as applied to this 
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experiment. The y-axis denotes various ACT-R modules and associated brain regions. LIPFC 

= Lateral Inferior Prefrontal Cortex. PPC = Posterior Parietal Cortex. See the online article 

for the color version of this figure. 

 




