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Abstract

Bayesian solutions to geophysical and hydrological inverse problems are depen-

dent upon a forward model linking subsurface physical properties to measured

data, which is typically assumed to be perfectly known in the inversion proce-

dure. However, to make the stochastic solution of the inverse problem computa-

tionally tractable using methods such as Markov-chain-Monte-Carlo (MCMC),

fast approximations of the forward model are commonly employed. This gives

rise to model error, which has the potential to significantly bias posterior statis-

tics if not properly accounted for. Here, we present a new methodology for

addressing model error in Bayesian solutions to hydrogeophysical inverse prob-

lems that is geared towards the common case where the error cannot be (i)

effectively characterized through some parametric statistical distribution; and

(ii) estimated by interpolating between a small number of computed model-

error realizations. To this end, we focus on identification and removal of the

model-error component of the residual during MCMC using a projection-based

approach, whereby the orthogonal basis employed for the projection is derived

in each iteration from the K-nearest neighboring entries in a model-error dictio-

nary. The latter is constructed during the inversion and grows at a specified rate
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as the iterations proceed. We demonstrate the performance of our technique on

the inversion of synthetic crosshole ground-penetrating radar travel-time data

considering three different subsurface parameterizations of varying complexity.

Synthetic data are generated using the eikonal equation, whereas a straight-

ray forward model is assumed for their inversion. In each case, our developed

approach enables us to remove posterior bias and obtain a more realistic char-

acterization of uncertainty.

Keywords: Model error, Bayesian inference, MCMC, Proxy model

1. Introduction1

Bayesian inversion of hydrological and geophysical data using Markov-chain-2

Monte-Carlo (MCMC) methods has become increasingly popular over the past3

decade. Key advantages of this approach are that: (i) it allows for more com-4

prehensive quantification of posterior parameter uncertainty when compared to5

traditional linearized uncertainty estimates; (ii) it is extremely flexible in the6

sense that any information that can be expressed probabilistically (e.g., model7

prior information, data measurement errors) can be incorporated into the in-8

verse problem; and (iii) it provides a natural framework within which to per-9

form data integration. The Bayesian-MCMC approach does, however, have the10

notable disadvantage of being limited by its high computational cost, which re-11

sults from the typically large numbers of model parameters in geophysical and12

hydrological problems combined with the need for small model perturbations13

along the Markov chain in order to ensure reasonable rates of proposal accep-14

tance. That is, millions of forward model runs are commonly required to obtain15

meaningful posterior statistics, which is computationally prohibitive for many16

real-world applications (e.g., [1]).17

A variety of techniques exist for reducing the computational load of Bayesian-18

MCMC inversions. Recent algorithmic developments for MCMC methods, which19

take advantage of parallel architectures and incorporate chain history and pos-20

terior gradient information into the proposal distribution, have been shown to21
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significantly improve computational efficiency past the standard Metropolis-22

Hastings approach (e.g., [2, 3, 4, 5, 6, 7]). Model reduction, through the use23

of basis functions that exploit the spatial correlation naturally present in sub-24

surface properties (e.g., [8, 9, 10, 11]), can also be performed to reduce the25

dimensionality, and thus the numerical complexity, of the inverse problem. Yet26

another means of reducing the computational load of Bayesian-MCMC inver-27

sions, and arguably the most intuitive and commonly employed approach, is28

to use a fast approximation of the forward solver in place of the slower “full”29

numerical solution. This can be accomplished via simplification of the physics30

of the problem (e.g., [12, 13]), reduction of the numerical accuracy of the solu-31

tion by coarsening the model discretization (e.g., [14, 15]), or the construction32

of response-surface proxies based on, for example, polynomial chaos expansion,33

artificial neural networks, or Gaussian processes (e.g., [16, 17, 18, 19]). While34

the use of approximate forward solvers in this manner can be highly effective,35

it can lead to strongly biased and overconfident posterior statistics if the dis-36

crepancies between the approximate and detailed solutions are not taken into37

account [20]. Indeed, such “model errors” have the potential to overwhelm the38

effects of data measurement uncertainties and may have a controlling influence39

on posterior inference. Despite this fact, the issue of model error has been40

largely ignored in the vast majority of geophysical and hydrological studies to41

date where Bayesian-MCMC methods have been employed.42

In recent years, a number of techniques have appeared in the scientific and43

engineering literature to address the model error problem, thus allowing for more44

effective use of approximate forward solvers in Bayesian stochastic inversions.45

One popular avenue of research focuses on the overall or “global” statistical46

characterization of these errors, whereby a small number of stochastic model-47

error realizations, generated by running the approximate and detailed forward48

solvers on random parameter sets drawn from the prior distribution, are used to49

develop likelihood functions that better reflect the combined nature of all error50

sources. To this end, by far the most straightforward and common approach is51

to assume that the model errors are Gaussian distributed and thus characterized52
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by some mean vector and covariance matrix, both of which are estimated from53

the realizations (e.g., [14, 21, 22, 23, 24]). Alternatively, customized parametric54

likelihood functions have been developed, most notably in the fields of catch-55

ment and urban hydrology, to reflect the non-Gaussian, strongly correlated, and56

often heteroscedastic nature of residuals in some problems (e.g., [25, 26, 27]). In57

all of these studies, it has been shown that inclusion of model-error statistical58

characteristics into the Bayesian likelihood function results in a broadening of59

posterior distributions along with, in many cases, a reduction in posterior bias.60

A key concern, however, is the validity of the assumption that the errors can be61

adequately described by the specified parametric distribution. Indeed, our own62

experience with high-dimensional spatially distributed inverse problems in geo-63

physics and hydrology suggests that it is more often the case that model errors64

exhibit highly complex statistics and correlations that change significantly not65

only over the data space, but also as a function of the input model parameters.66

Note that this in part has led to greatly increased interest in alternative like-67

lihood methods such as generalized likelihood uncertainty estimation (GLUE)68

(e.g., [28]) and approximate Bayesian computation (ABC) (e.g., [29]).69

Another avenue of research to account for the discrepancy between approx-70

imate and detailed forward solvers in Bayesian stochastic inversions, which71

addresses the latter point above, focuses on the development of “local” error72

models that describe, either statistically or deterministically, the discrepancy73

between the approximate and detailed forward solutions over the model pa-74

rameter space. O’Sullivan and Christie [30], for example, use a small number75

of coarse-grid versus fine-grid model-error realizations, computed over a low-76

dimensional model-parameter space, to characterize through interpolation how77

the model-error mean and covariance matrix change as a function of the input78

parameters. Kennedy and O’Hagan [31] present a comprehensive theoretical79

framework for dealing with model errors where the error statistics are described80

by a Gaussian process conditioned to the points in the parameter space where81

the model error is known. Xu and Valocchi [32] also represent the model error as82

a Gaussian process that is trained during the Bayesian inversion with spatially83

4



and temporally distributed observations. Doherty and Christensen [33] and Jos-84

set et al. [12] propose the use of regression models to predict the results of the85

detailed solver from the approximate solution, with the latter study making use86

of functional principal components analysis and dimension reduction to facili-87

tate the analysis. Finally, Cui et al. [34] and Laloy et al. [35] assume that the88

model error obtained from the last detailed forward simulation during two-stage89

MCMC (discussed below) is a valid approximation of the model error for the90

current set of input parameters, and use it to correct the approximate solution91

before computing the likelihood. In all of this work, local error models are ef-92

fectively constructed by interpolating between a limited number of model-error93

realizations, under the implicit assumptions that the model response surface is94

smooth enough to do so and that the parameter space has been adequately sam-95

pled. While this may be perfectly valid for low-dimensional inverse problems,96

it becomes extremely difficult in high dimensions.97

Yet another means of addressing the issue of model error when using ap-98

proximate forward solvers in Bayesian stochastic inversions is the two-stage99

MCMC approach. With this method, model errors are not explicitly accounted100

for, but instead are avoided altogether because the approximate solver is used101

only in a first accept/reject stage to prevent unpromising sets of model param-102

eters from being tested with the computationally expensive detailed solution103

(e.g., [36, 37, 38]). In order to realize computational gains with this technique,104

the approximate solver needs to be a “good” approximation in the sense that it105

provides results that are relatively close to the detailed one [36]. For this reason,106

a number of researchers have paired the approximate solver with a local error107

model to improve its accuracy [34, 39, 35]. The advantage of two-stage MCMC108

is that the effects of model errors in the Bayesian posterior distribution can be109

avoided. The significant disadvantage, however, is that the computational gains110

of the approach may still not be enough to render the inverse problem compu-111

tationally tractable since each posterior realization must still pass through the112

detailed forward solver, in addition to other parameter sets that have passed113

the first stage but are later rejected.114
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In this paper, we attempt to address the above-mentioned challenges and115

present a new methodology for dealing with model errors that is geared towards116

inverse problems where these errors cannot be effectively characterized globally117

through some parametric statistical distribution or locally based on interpola-118

tion between a small number of computed realizations. Rather than focusing119

on the construction of a global or local error model, we instead work towards120

identification of the model-error component of the residual through a projection-121

based approach. In this regard, pairs of approximate and detailed model runs122

are stored in a dictionary that grows at a specified rate during the MCMC in-123

version procedure. At each iteration, a local model-error basis is constructed for124

the current test set of model parameters using the K-nearest neighbor (KNN)125

entries in the dictionary, which is then used to separate the model error from126

the other error sources. We begin in section 2 with a brief review of Bayesian-127

MCMC methods followed by development of our modified approach to account128

for model error. We then show in section 3 the application of our methodology129

to three example inversions involving crosshole ground-penetrating radar (GPR)130

travel-time tomography, where in each case the different subsurface model pa-131

rameterizations. In each example, posterior parameter distributions are com-132

pared for the cases where: (i) there is no model error present; (ii) model error is133

present but not accounted for; and (iii) model error is accounted for using our134

developed approach.135

2. Methodology136

2.1. Bayesian inversion using MCMC137

Consider the general forward problem linking a set of observed geophysical138

or hydrological data dobs to a set of subsurface model parameters of interest139

mtrue:140

dobs = F (mtrue) + ed, (1)
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where forward operator F (·) contains the physics and geometry of the measure-141

ments and ed is a vector of data measurement errors. The corresponding inverse142

problem involves estimating mtrue given dobs, which requires knowledge of F (·)143

along with prior information about the model parameters. Within a probabilis-144

tic framework, this can be formulated using Bayes’ theorem, whereby an initial145

prior model parameter distribution p(m) is updated into a more refined pos-146

terior parameter distribution p(m|dobs) taking into account the observed data147

(e.g., [40]). That is,148

p(m|dobs) =
p(dobs|m) p(m)

p(dobs)
, (2)

where p(dobs|m) is the likelihood function and p(dobs), which does not depend149

on the model parameters, acts as a normalization constant. Assuming that the150

data measurement errors are independent and identically normally distributed151

with mean zero and standard deviation σd, the likelihood is multi-Gaussian and152

can be expressed as153

p(dobs|m) =
1

(2πσ2
d)N/2

exp

[
−||r(m)||2

2σ2
d

]
, (3)

where || · || denotes the `2-norm, N is the number of data, and154

r(m) = F (m)− dobs

= F (m)− [F (mtrue)︸ ︷︷ ︸
parameter error

+ ed] (4)

is the residual vector, which describes the misfit between the observed data and155

those predicted by applying the forward operator to parameter set m. We see156

that the likelihood will be maximized for a particular set of model parameters157

when the `2-norm of the residual is minimized, which correponds to the case158

where m = mtrue and the parameter error defined in equation (4) is equal to159

zero.160

Equations (2) through (4) together provide a means of calculating the pos-161
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terior probability of a particular set of model parameters m. This is commonly162

used within MCMC sampling procedures to quantify posterior uncertainty and163

thus solve the inverse problem, since performing the multi-dimensional inte-164

grations necessary to obtain the statistical moments of p(m|dobs) is generally165

not possible. In this regard, Algorithm 1 describes a basic Metropolis-Hastings166

MCMC code [41, 42] that is guaranteed, after burn-in, to generate a Markov167

chain of samples {m1, ...,mk} from the Bayesian posterior distribution. Start-168

ing from an initial parameter set m1 drawn from the prior distribution, in169

each iteration a new parameter set m′ is drawn from the proposal distribution170

Q(m′|mi). The likelihood of the proposed parameter set p(dobs|m′) is computed171

using equation (3) and the probability of accepting it is evaluated using172

pacc = min

{
1,
p(m′|dobs)Q(mi|m′)
p(mi|dobs)Q(m′|mi)

}
. (5)

If the new parameter set is probabilistically accepted, it becomes the new state173

of the chain. Otherwise, if it is rejected, the chain remains at the last accepted174

parameter set.175

Algorithm 1: Metropolis-Hastings MCMC

1 i = 1
2 draw initial model parameter set m1 from prior distribution p(m)
3 compute likelihood p(dobs|m1) using equation (3)
4 while i < imax do
5 draw new parameter set m′ from proposal distribution Q(m′|mi)
6 compute likelihood p(dobs|m′) using equation (3)
7 compute acceptance probability pacc using equation (5)
8 generate random number u ∼ U(0, 1)
9 i = i+ 1

10 if u ≤ pacc then
11 mi = m′

12 else
13 mi = mi−1
14 end

15 end

176
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2.2. Accounting for model error177

Employing approximate forward solvers F̂ (·) in Bayesian-MCMC inversions178

in place of the true or detailed forward operator F (·) introduces model error179

which, as mentioned earlier, has the potential to strongly bias posterior statistics180

if not accounted for. In this case, the residual is given by the following equation:181

r(m) = F̂ (m)− dobs

= F̂ (m)− [F (mtrue) + ed]

= F̂ (m)− F (m)︸ ︷︷ ︸
model error

+F (m)− [F (mtrue)︸ ︷︷ ︸
parameter error

+ ed], (6)

where we see that the additional model-error component means that ||r(m)||182

will not necessarily be minimized when m = mtrue, and that feasible sets of183

model parameters may be mapped to extremely low likelihoods if equation (3)184

is directly employed. To address this issue, researchers have typically used185

small numbers of detailed and approximate model pairs to develop global or lo-186

cal error models, as described previously. However, for many inverse problems187

in geophysics and hydrology involving spatially distributed model parameters,188

non-linear forward solvers, and/or large numbers of data: (i) the model-error189

distribution will be too complex to characterize globally in a meaningful way us-190

ing parametric statistical distributions; and (ii) the size of the model-parameter191

space combined with the variability of the response surface will not be con-192

ducive to effective error model development based on regression/interpolation193

techniques.194

To overcome these challenges, we seek in this work to develop a strategy195

for dealing with model errors that does not depend on their accurate statistical196

characterization or the construction of an error model, but rather focuses on197

identification of the model-error component of the residual during MCMC such198

that it can be subtracted prior to calculation of the likelihood using equation (3).199

To this end, in each MCMC iteration, we use a small number of model-error200

realizations, all corresponding to points in the model-parameter space that are201
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close to the parameter set being tested m′, to build an orthogonal basis for202

the model error. The model-error realizations come from a dictionary that is203

constructed during the inversion procedure and grows over time at a specified204

rate as the iterations proceed. We assume that this basis, which is local as it205

represents the span of the KNN points to m′, can be used to approximate the206

model error at m′. At the same time, we assume that the other components of207

the residual at m′, namely the parameter and data-measurement errors, cannot208

be well represented by the model-error basis and lie largely orthogonal to it.209

As a result, under these assumptions, projection of the residual onto the basis210

yields an estimate of the model error.211

Algorithm 2 shows the steps involved in our modified MCMC procedure to212

generate samples from the Bayesian posterior distribution in the presence of213

model error. The algorithm is the same as the standard Metropolis-Hastings214

approach presented in Algorithm 1 with the exception of two important addi-215

tions: (i) a new function likelihood on lines 25-33 to compute the likelihood216

of the proposed set of model parameters m′ with a correction for model er-217

ror, which replaces its direct computation on line 6 using equation (3); and (ii)218

code on lines 15–23 to build and grow the model-parameter and corresponding219

model-error dictionaries Mδ and Eδ, respectively, which are used by function220

likelihood to construct the local model-error basis. To reflect these additions,221

new inputs required by the code are K, the number of nearest-neighbor points to222

consider when creating the basis, and pdict, the probability during each MCMC223

iteration of running the detailed forward solver and adding the model parameter224

set and corresponding model-error realization to Mδ and Eδ.225
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Algorithm 2: Modified Metropolis-Hastings MCMC to account for model
error

1 i = 1, δ = K
2 draw initial model parameter set m1 from prior distribution p(m)
3 compute p(dobs|m1) = likelihood(m1, dobs, Mδ, Eδ)
4 while i < imax do
5 draw new parameter set m′ from proposal distribution Q(m′|mi)
6 compute p(dobs|m′) = likelihood(m′, dobs, Mδ, Eδ)
7 compute acceptance probability pacc using equation (5)
8 generate random number u ∼ U(0, 1)
9 i = i+ 1

10 if u ≤ pacc then
11 mi = m′

12 else
13 mi = mi−1
14 end
15 generate random number v ∼ U(0, 1)
16 if v ≤ pdict then
17 δ = δ + 1
18 set m∗δ = m′

19 compute model error e(m∗δ) = F̂ (m∗δ)− F (m∗δ)
20 add m∗δ to model parameter dictionary Mδ = {m∗1, ...,m∗δ}
21 add e(m∗δ) to model error dictionary Eδ = {e(m∗1), ..., e(m∗δ)}
22 recompute p(dobs|mi) = likelihood(mi, dobs, Mδ, Eδ)

23 end

24 end

25 function likelihood(m, dobs, Mδ, Eδ)
26 search dictionary Mδ for K-nearest neighbors to m
27 take K corresponding model error realizations from Eδ and place in

set EK(m)
28 build orthonormal basis B having span{EK(m)}
29 compute residual r(m) = F̂ (m)− dobs
30 project r(m) onto B to estimate model error ẽ(m) = B ·BT · r(m)
31 subtract estimated model error r̃(m) = r(m)− ẽ(m)
32 compute likelihood p(dobs|m) using equation (3) and replacing r(m)

with r̃(m)
33 return

226

With respect to addition (i) above, the modified likelihood computation for227

some generic model parameter set m proceeds as follows. First, the current228

model-parameter dictionary Mδ is searched for the KNN parameter sets to m,229

which are determined using a standard Euclidean distance measure (e.g., [43]).230
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Next, the K corresponding entries from the model-error-realization dictionary231

Eδ are placed into the set EK(m) and used to build an orthonormal basis B for232

the model error at m such that span{B} = span{EK(m)}. We accomplish this233

using the Gram-Schmidt procedure. Assuming that the data-measurement and234

parameter-error components of the residual at m cannot be represented by, and235

indeed lie orthogonal to, this basis, the model error ẽ(m) can then be estimated236

by projecting r(m) from equation (6) onto B. That is,237

ẽ(m) = B ·BT · r(m). (7)

Finally, the estimated model error is subtracted from the residual to yield re-238

mainder239

r̃(m) = r(m)− ẽ(m), (8)

which is now largely suitable for calculation of the likelihood using equation (3)240

assuming independent and identically normally distributed data-measurement241

errors.242

With respect to addition (ii) on lines 15–23 of Algorithm 2, parameter pdict243

controls how often the detailed forward solver is run during MCMC in order244

to grow the model-parameter and model-error dictionaries Mδ and Eδ, where δ245

denotes the current number of entries. Before starting the inversion procedure,246

these dictionaries are set to contain K entries consisting of unrealistically large247

values for the model parameters and zero values for the model-error realizations.248

This ensures that the KNN search in function likelihood can be performed;249

however it means that the estimated model error in the first few iterations of250

our procedure will be zero and thus that the returned likelihood is given by251

equation (3). As the MCMC iterations continue, the option to perform a dictio-252

nary update will be periodically accepted, whereby the detailed forward solver253

will be run alongside the approximate solver and Mδ and Eδ will be augmented254

with entries around the current state of the Markov chain. As a result, these255
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dictionaries will become increasingly representative of the local model error,256

and the capacity of the computed orthogonal basis to identify the model-error257

component of the residual will improve over time. It is important to note that258

a critical step in the dictionary enrichment part of Algorithm 2 is line 22 where,259

after a dictionary update is performed, the likelihood is recomputed for the cur-260

rent state of the Markov chain. This step is necessary to maintain a consistent261

use of the same dictionary while estimating the acceptance probability at the262

subsequent steps.263

Following the procedure described above, we are able to effectively reduce264

posterior bias due to model error using a limited number of detailed forward265

solver runs. In the initial stages of our algorithm when the model error is dif-266

ficult to characterize due to a small number of dictionary entries, a relatively267

large portion of the data mismatch tends to be removed from the residual by268

the projection procedure, which leads to greater exploration of the model pa-269

rameter space and avoids early convergence to a biased posterior distribution.270

As the MCMC iterations proceed and the dictionaries grow, the model error be-271

comes more effectively identified and the algorithm begins to sample from the272

bias-free posterior distribution. The success of our procedure does, however,273

hinge on the validity of the assumptions that (i) the model error can eventually274

be effectively represented by the KNN-derived basis; and (ii) parameter and275

data-measurement errors lie orthogonal to this basis. With regard to (i), it is276

reasonable to think that a basis derived from nearest-neighbor model-error re-277

alizations should include in its span the model error at the current point. With278

regard to (ii), it is highly unlikely that the model-error basis functions, which279

tend to possess a high degree of spatial correlation, are capable of representing280

random data-measurement errors. Thus these errors tend to be largely attenu-281

ated through projection of the residual onto B. In the case of parameter errors,282

our experience with the algorithm suggests that, although it cannot be proven283

that these errors should lie orthogonal to the model error, they usually possess284

vastly different spatial characteristics and are not well captured by the basis.285

Nevertheless, there may exist situations where some or all of the parameter er-286
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ror strongly resembles the model error and thus may be identified as such in287

projecting onto B. In these cases, the parameter error will be subtracted along288

with the model error from the residual, resulting in the corresponding parame-289

ter set being more likely to be accepted in MCMC. The algorithm will therefore290

deliver broadened posterior distributions to reflect the fact that the model error291

cannot be distinguished from parameter error.292

3. Application to crosshole GPR tomography293

3.1. Experimental setup and forward solvers294

To demonstrate the above presented model-error approach, we now apply295

it to several crosshole GPR tomographic examples. Crosshole GPR travel-time296

tomography is a popular technique in near-surface geophysical and hydrological297

studies whereby the travel times of radar energy between a transmitter and298

receiver antenna, located at various depths in two adjacent boreholes, are used299

to estimate the spatial distribution of radar wave velocity between the holes.300

The latter quantity is strongly related to soil water content, meaning that the301

method provides estimates of porosity below the water table and information302

on soil texture and water retention characteristics in the unsaturated zone.303

Because the crosshole GPR travel-time inverse problem is relatively straight-304

forward but at the same time represents a challenging test case involving spatial305

distributions of subsurface model parameters, is has been popular in previous306

stochastic inverse studies (e.g., [44, 13, 10, 21]). Here, it is of particular in-307

terest because of the variety of methods with which the forward problem can308

be solved, each representing a different degree of accuracy and computational309

speed. The most precise and computationally expensive method of determining310

the travel time of radar energy between the transmitter and receiver antennas,311

for example, involves wave propagation modeling based on Maxwell’s equations,312

where the first-arrival times are picked from the output waveforms. Assuming313

that wave propagation can be adequately described by ray theory, the eikonal314

equation (e.g., [45]) delivers a less accurate but orders-of-magnitude cheaper315
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solution to the travel-time computation problem, whereby the path of the first-316

arriving energy depends on the subsurface GPR velocity distribution but the317

effects of frequency are ignored. Going even further, we can also assume that318

the ray paths are straight lines connecting the transmitter and receiver anten-319

nas (e.g., [46]). The latter straight-ray approximation is strictly valid only in320

the case of a homogeneous subsurface; however it is commonly employed when321

velocity contrasts are less than 10%.322

For all of the inversions considered in this paper, we consider an experimental323

configuration involving two boreholes 4 m apart and 8 m deep with transmitter324

and receiver positions distributed equally every 0.2 m in the left and right bore-325

holes, respectively. Consideration of energy traveling between every combination326

of transmitter and receiver location leads to 1600 travel-time data. To keep the327

inverse problem as straightforward as possible, we focus on the estimation of328

subsurface slowness (inverse of velocity) rather than velocity itself, meaning that329

the straight-ray problem is linear. The eikonal equation serves as our detailed330

forward solver F (·) and is used to generate the “true” travel-time data for each331

considered example. Gaussian random noise with a standard deviation equal332

to σd = 0.2 ns is added to these data to simulate the effects of measurement333

errors. The straight-ray solution serves as our approximate forward model F̂ (·),334

which is utilized as a “cheap” alternative to the eikonal equation in the MCMC335

inversion procedure. Note that our choice of detailed and approximate solvers in336

this paper was largely made to keep computational costs reasonable for testing337

purposes, and importantly to allow results to be obtained for the case where338

there is no model error. That is, had we chosen full-waveform simulation as339

the detailed forward model in our examples, it would not have been possible to340

compare the results of our algorithm with those for the case where this model341

is used within standard Metropolis-Hastings MCMC.342

Figure 1a shows an example subsurface slowness field for which the corre-343

sponding first-arrival GPR travel-time data, calculated using the approximate344

straight-ray solution and detailed eikonal equation solution, are shown in Fig-345

ure 1b and 1c, respectively. The latter are visualized as a function of the trans-346
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Figure 1: (a) Example GPR subsurface slowness field [ns/m]. (b) Corresponding straight-
ray (approximate model) travel times [ns] plotted as a function of the transmitter (TX) and
receiver (RX) antenna depths. (c) Corresponding curved-ray (detailed model) travel times [ns];
(d) Model error [ns] obtained by subtracting (c) from those in (b).

mitter and receiver antenna depths. The model error, being defined as the347

discrepancy between the approximate and detailed solutions F̂ (m) − F (m), is348

shown in Figure 1d. Note that, although the simulated data corresponding to349

each solver are visually similar, the differences between them, which in this case350

are on the order of 5% of the magnitude of the GPR travel times, can lead to351

significant posterior parameter bias in a Bayesian stochastic inversion. As the352

slowness field in Figure 1a has a greater correlation length in the horizontal353

than in the vertical direction, the largest errors are seen to occur for horizontal354

raypaths corresponding to the main diagonal in Figure 1d.355

3.2. Model parameterization and priors356

For our example inversions, we consider three different means of parameter-357

izing the GPR slowness field between the boreholes, which leads to inverse prob-358

lems of varying degrees of field complexity with different numbers of model pa-359

rameters to be estimated. In the first example, we consider a simple subsurface360

environment consisting of 5 homogeneous horizontal layers with layer-interface361

positions fixed at 1, 4, 5, and 7 m. The inverse problem consists of estimating362

the 5 layer slowness values with the interface positions assumed known. Flat363

priors between 5 ns/m and 15 ns/m are prescribed for each slowness value.364

Figure 2a shows three random slowness realizations that were generated365

from the prior for this example. In Figure 3a, the corresponding model-error366

realizations are shown. We see that, overall, the model error is close to zero367

with the exception of a few large errors located near the main diagonal of each368
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Figure 2: Example GPR slowness fields [ns/m] generated from the Bayesian prior distribution
for (a) 5-layer, (b) 20-KLE-weight, and (c) 20 × 40 pixel-based parameterizations.

image, the latter of which correspond to transmitter and receiver positions at369

approximately the same depth and located close to layer interfaces across which370

there is a large change in slowness. This is to be expected because, at these371

locations, the eikonal equation will allow first-arriving energy to do most of372

its travel through low-slowness (high-velocity) layers, whereas the straight-ray373

solution forces this energy to pass through high-slowness (low-velocity) layers.374

In the second example inversion, we allow for variability in both the hor-375

izontal and vertical directions by considering that the GPR slowness field is376

parameterized using a truncated Karhunen-Loève expansion (KLE). The trun-377

cated KLE has been utilized extensively in stochastic inverse studies to effi-378

ciently represent Gaussian random fields using a small number of parameters379
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Figure 3: Travel-time model-error [ns] corresponding to the GPR slowness fields in Figure 2.
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(e.g., [47, 48, 37, 49, 35]). In two spatial dimensions, it can be expressed as380

S(x, z) = µ(x, z) +

M∑
i=1

mi

√
λi ϕi(x, z), (9)

where S(x, z) is the random field, µ(x, z) is its mean function, mi are a series of381

independent standard normal variables, and λi and ϕi(x, z) are the eigenvalues382

and eigenfunctions of the field’s autocovariance kernel, respectively, which have383

been sorted in decreasing order according to the eigenvalues. Only the first384

M terms of the infinite KLE sum are retained in equation (9), meaning that385

S(x, z) provides a smooth approximation to the underlying Gaussian random386

field that improves as the dimension M increases. In our case, the truncation387

limit is set to M = 20, meaning that 20 coefficients {m1, ...,m20} parameterize388

the slowness distribution and represent the target of the inversion procedure.389

The prior distribution for these coefficients is Gaussian with mean zero and390

covariance equal to the identity matrix. For the autocovariance kernel, a squared391

exponential model is assumed having standard deviation equal to 4 ns/m, and392

horizontal and vertical correlation lengths equal to 0.8 m and 0.3 m, respectively.393

The mean slowness value is set equal to 10 ns/m. The domain between the394

boreholes is discretized using ∆x = ∆z = 0.2 m.395

Figure 2b shows three random subsurface slowness fields that were generated396

from the prior for this example, whereas Figure 3b shows the corresponding397

model-error realizations. Again, we see that large model errors predominantly398

occur close to the main diagonal in each image, where the transmitter and399

receiver are located at the same depth and close to regions having a strong400

slowness contrast. In comparison with Figure 3a, however, note that the lack401

of interface constraints in this case means that the errors can occur anywhere402

along this diagonal. The 2-D nature of the heterogeneity also means that model403

errors are possible in other parts of the image space as well.404

Although the truncated KLE allows for efficient parameterization of Gaus-405

sian random fields, it leads to overly smooth representations that are still far406
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from reality. To incorporate more realism into our final inversion example, we407

consider a pixel-based parameterization of the subsurface whereby the domain408

between the boreholes is discretized into 20× 40 constant-slowness square cells409

having side length 0.2 m, yielding 800 model parameters to be estimated. For410

this example, an exponential autocovariance kernel is assumed having standard411

deviation equal to 1.7 ns/m, and horizontal and vertical correlation lengths equal412

to 6 m and 1.5 m, respectively. The mean slowness is again set to 10 ns/m.413

Figure 2c shows three random slowness fields generated from the Gaussian414

prior for the pixel-based parameterization case using the sequential Gaussian415

simulation code from the GSLIB software package [50]. The fields show many416

small-scale heterogeneities compared with those generated using the truncated417

KLE in Figure 2b, and are clearly more geologically plausible subsurface rep-418

resentations. In the corresponding model-error realizations in Figure 3c, we419

observe a correspondingly greater amount of small-scale variation compared to420

Figures 3a and 3b. Again, however, the model errors tend to be concentrated421

near the diagonal of these images.422

All of the model-error realizations presented in Figure 3 exhibit structures423

that are highly correlated in the data space. Quite importantly, the error real-424

izations are also non-Gaussian-distributed, meaning that attempts to deal with425

these errors as Gaussian in the inversion procedure will lead to an incorrect quan-426

tification of posterior uncertainty. To see this latter point, we generated 10,000427

model error realizations for each parameterization example. For each combi-428

nation of transmitter and receiver position, a quantile-quantile (Q-Q) plot was429

created, comparing the model-error distribution at that location with a stan-430

dard normal distribution. Figure 4 shows the Q-Q plots for five data locations431

chosen completely at random. We observe that, for each example parameter-432

ization, the model error is strongly non-Gaussian and cannot even be roughly433

approximated using simple Gaussian statistics.434
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Figure 4: (a) Transmitter (TX) and receiver (RX) antennas positions of five randomly selected
travel-time data. (b-d) Quantile-quantile plots (solid lines) of the model-error distribution at
these locations compared with a standard normal distribution for the (b) 5-layer, (c) 20-KLE-
weight, and (d) 20×40 pixel-based parameterizations. The dotted lines show the relationship
to be expected if the model errors were Gaussian distributed.
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3.3. Inversion settings and results435

We present below the results of MCMC inversions for the three previously436

described slowness model parameterizations. For each parameterization, inver-437

sions were performed for: (i) the case of no model error, where the synthetic438

data were generated and inverted using the same detailed eikonal equation solver439

and standard Metropolis-Hastings was employed; (ii) the case where model error440

is present but not accounted for through the use of the standard Metropolis-441

Hastings approach; and (iii) the case where model error is present and accounted442

for using our proposed methodology. With regard to our method, 20 KNN were443

considered in every inversion to generate the model-error basis. This number444

was found to offer a good balance between having enough KNN to allow for445

flexibility in the basis to accurately represent the model error for the proposed446

set of parameters in MCMC, and not having too many KNN such that the basis447

was capable of representing other error sources in the residual. Parameter pdict,448

which again controls the frequency with which the detailed forward solver is449

run to augment the model-error dictionary, was set in each inversion to 0.1%450

for the first 40,000 iterations, after which it was gradually reduced to a value451

of 0.005% after 100,000 iterations. This ensured that, at the beginning of the452

algorithm, focus was placed on building the model error dictionary, whereas in453

later iterations the detailed forward model was run less frequently to minimize454

computational costs. For an inversion involving 600,000 iterations, this meant455

that only approximately 100 complex model runs were required. Each example456

parameterization outlined in Section 3.2 requires a specific proposal mechanism457

in MCMC which is presented in the following subsections along with the inver-458

sion results.459

3.3.1. Layered parameterization460

For the layered subsurface example, a simple uniform proposal mechanism461

was used to generate new models to be tested in each MCMC iteration. This is462
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Figure 5: (a) “True” GPR slowness field [ns/m] for the 5-layer parameterization test case.
(b-d) Most probable slowness fields obtained from the suite of posterior MCMC realizations
when (b) there is no model error; (c) model error is present but not accounted for; and (d)
model error is present and accounted for using our proposed methodology.

given by463

m′ = mi + βξ, (10)

where m′ is the proposed set of model parameters, mi is the current state of the464

Markov chain, β is a scaling coefficient that determines the proposal width, and465

ξ is a vector of independent uniform random numbers drawn from U(−0.5, 0.5).466

We chose β = 0.05 for each inversion, which provided a model acceptance rate467

of approximately 30%. A total of 600,000 iterations were run in each case, from468

which the first 50,000 iterations were discarded as burn-in and the remaining469

samples were used to generate the posterior results.470

Figure 5a shows the “true” subsurface slowness field that was used to gen-471

erate the synthetic travel-time data for the 5-layer parameterization case. In472

Figure 5b-d, the most probable slowness fields obtained from the suite of pos-473

terior MCMC realizations are shown for the cases where (i) there is no model474

error, (ii) model error is present but not accounted for, and (iii) model error is475

present and accounted for, respectively. Figure 6, on the other hand, shows the476

marginal posterior parameter distributions obtained from the MCMC results477

for these three cases, along with the flat prior distributions for reference.478

We observe in Figures 5 and 6 that, in the case where model error is not479

present and the only contribution to the residual is therefore data measurement480

error, the most probable slowness field resembles the truth and the posterior481

distributions are focused on the true parameter set, as could be expected. Con-482
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Figure 6: Prior (black) and posterior densities for the 5-layer parameterization test case when
there is no model error (blue); when model error is present and not accounted for (red); and
when model error is present and accounted for using our proposed methodology (green). The
black dots indicate the true parameter values.

versely, when model error is present but disregarded, the posterior distributions483

are biased and overconfident, and the most probable slowness field deviates sig-484

nificantly from the truth. In this latter case, the inverted model parameters485

are compensating for the model error and conclusions based on the results will486

be misleading. Employing the model-error approach presented in Section 2.2,487

we see that the bias is reduced significantly and the most probable slowness488

field is again close to the true configuration. Note, however, that the posterior489

distributions are slightly broader than in the case when there is no model error,490

which is not surprising as some amount of parameter error may be captured by491

the model-error basis during the inversion procedure.492

3.3.2. KLE parameterization493

The increased dimensionality in representing the subsurface with a series of494

truncated KLE coefficients instead of layer slowness values requires, in general,495

more iterations in order to obtain independent samples in MCMC. The pre-496

conditioned Crank-Nicolson (pCN) technique [51, 52] allows for sampling that497

is robust with respect to dimension and can make MCMC considerably more498

efficient. Another approach for increasing efficiency is the adaptive MCMC499

technique [4], whereby posterior information gained from previous MCMC it-500

erations is gradually introduced into the proposal mechanism. For the KLE501

parameterization example, we implemented the dimension-independent adap-502

tive Metropolis (DIAM) MCMC algorithm proposed by Chen et al. [53], where503
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Figure 7: (a) “True” GPR slowness field [ns/m] for the 20-KLE-weight parameterization
test case. (b-d) Most probable slowness fields obtained from the suite of posterior MCMC
realizations when (b) there is no model error; (c) model error is present but not accounted
for; and (d) model error is present and accounted for using our proposed methodology.

the proposal mechanism is described by504

m′ = m̄ +
√

(1− β2)(mi − m̄) + βξ, (11)

where β is again a scaling coefficient that determines the proposal width, ξ is505

a vector of normally distributed random numbers drawn from N (0,C), and m̄506

and C are the proposal mean and covariance matrix, respectively, defined as507

m̄ = (1− ε)m̄post + εm̄prior (12)

C = (1− ε)Cpost + εCprior. (13)

Here, m̄prior and Cprior represent the prior mean and covariance, and m̄post508

and Cpost are the corresponding posterior quantities that are estimated from the509

sample history. The latter were updated in our inversions every 1000 iterations,510

as suggested by Haario et al. [4]. We set factor ε to gradually decrease after511

10,000 iterations from 1 to 0.5 in order to lead the proposal distribution from512

the prior towards the posterior. The proposal width was chosen to be β = 0.01,513

which yielded a model acceptance rate of around 30%. Employing the DIAM514

approach resulted in an order-of-magnitude decrease in the autocorrelation of515

the parameter history compared to standard Metropolis-Hastings. A total of516

700,000 iterations were carried out for each inversion, with the first 100,000517

iterations discarded as burn-in.518
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Figure 8: Prior (black) and posterior densities for the 20-KLE-weight parameterization test
case when there is no model error (blue); when model error is present and not accounted for
(red); and when model error is present and accounted for using our proposed methodology
(green). The black dots indicate the true parameter values.
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Figure 7a shows the subsurface slowness field that was used to generate the519

synthetic travel-time data for the 20-KLE-coefficient parameterization exam-520

ple, whereas Figure 7b-d present the most probable slowness fields for the three521

different inversion cases. In Figure 8 we show the corresponding marginal poste-522

rior parameter distributions. In accordance with what was observed previously523

we see that, for the case of no model error, the most probable slowness field524

and posterior distributions reflect very well the truth. When model error is525

present but disregarded, however, the posterior distributions become strongly526

biased and the most probable slowness field deviates significantly from the true527

configuration. Applying the model-error approach developed in this paper, we528

are able to remove this bias and better identify the true slowness configuration,529

again at the expense of slightly broadened distributions.530

3.3.3. Pixel-based parameterization531

Pixel-based parameterizations introduce additional complications into the532

inversion process as the dimension of the problem can be extremely large de-533

pending on the chosen discretization. One means of alleviating this issue in-534

volves introducing geostatistical prior information into the MCMC proposal535

mechanism, thereby reducing the number of potential model configurations to536

be tested. In this regard, sequential geostatistical resampling (SGR) operates by537

perturbing a small number of randomly chosen pixels at each MCMC iteration,538

where the pixel values are simulated conditional to the values at the surrounding539

(fixed) points assuming a prior geostatistical model. SGR has been successfully540

employed in a variety of spatially distributed geophysical and hydrological in-541

verse problems to date (e.g., [54, 55, 56, 57, 1]). For further theoretical details542

and practical information on its implementation, please refer to these references.543

Here, we chose to resample a randomly selected block of 2 × 2 pixels in each544

MCMC iteration, which again yielded a model acceptance rate of approximately545

30%. A total of 100,000 iterations were run in each inversion for this example.546

Note that, although this number is certainly not enough to provide a sufficient547

number of independent samples for accurate posterior inference (e.g., [1]), it548
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Figure 9: (a) “True” GPR slowness field [ns/m] for the 20 × 40 pixel-based parameterization
test case. (b-d) Most probable slowness fields obtained from the suite of posterior MCMC
realizations when (b) there is no model error; (c) model error is present but not accounted
for; and (d) model error is present and accounted for using our proposed methodology.

importantly allows us to evaluate whether our model-error approach can be549

effectively employed in such a high-dimensional inverse problem.550

Because of the high-dimension of the model parameter space, it is not prac-551

tical to present posterior distributions for this example. As a result, in Figure 9552

we show only the true subsurface slowness field along with the three best-fitting553

slowness fields obtained from the posterior MCMC realizations for the cases of554

(i) no model error; (ii) model error present but disregarded; and (ii) model error555

present and accounted for using our approach. Again, we see that the presence556

of model error leads to significant errors in the identified subsurface structures,557

as the model parameters are attempting to account for the model error through558

their spatial distribution. Applying the developed model-error approach reduces559

the posterior bias and the subsurface slowness field is again seen to resemble560

the true configuration.561

4. Conclusions562

We have presented in this paper a new methodology for addressing the is-563

sue of model error in Bayesian stochastic inversions that allows for a significant564

reduction in posterior parameter bias when using approximate forward solvers.565

Quite importantly, our approach is based on the identification of model-error566

component of the residual during MCMC, rather than on the construction of a567

global or local error model, the latter of which can be tremendously difficult if568

not impossible when dealing with high-dimensional parameter spaces and non-569
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linear problems. With our method, the discrepancy between the approximate570

and detailed forward solvers is periodically computed during the inversion pro-571

cedure and the results stored in a dictionary. A local orthonormal basis is then572

generated in each MCMC iteration using a specified number of KNN dictio-573

nary entries, which allows us to identify and subtract the model error from the574

residual before computing the likelihood. The proposed methodology is highly575

flexible and does not depend on the model error having well defined statistical576

characteristics or smooth variation as a function of the input model parameters.577

Further, no prior information about the model error is needed before running578

the algorithm.579

As an example, we applied our approach to the crosshole GPR travel-time580

tomography problem, where synthetic data were computed using the eikonal581

equation (detailed model) and a straight-ray assumption was made in the in-582

version procedure (approximate model). Using only roughly 100 detailed model583

calculations, the method allowed for a considerable reduction in posterior pa-584

rameter bias for three different parameterizations of the subsurface slowness585

field: (i) 5 homogeneous horizontal layers; (ii) 20 KLE coefficients; and (iii) a586

grid of 20× 40 pixels. For low dimensional problems it may be possible to even587

further reduce the computational cost by reducing the probability of enriching588

the model error dictionary. The choice of KNN could also be optimized in a de-589

tailed analysis that would depend on the forward solvers and parameterizations590

considered.591

Note that, in order to identify the model-error component in the residual592

with our method, we make the important assumption that it lies largely orthog-593

onal to both data measurement noise and errors related to the wrong choice of594

model parameters. Although the latter condition is likely to be not fully satis-595

fied in every iteration, experience suggests that the model- and parameter-error596

structures are typically distinct enough such that the model error can be ade-597

quately identified. In the worst case where this is not possible, the consequence598

is broadened posterior distributions that include sets of model parameters whose599

discrepancies cannot be distinguished from model error. Future work will in-600
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clude the application and testing of this methodology on other inverse problems,601

as well as in the context of other iterative inversion techniques such as ensemble602

Kalman smoothing.603
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Journal of Computational Physics 194 (2004) 773–794.742

[48] P. Dostert, Y. Efendiev, T. Y. Hou, W. Luo, Coarse-gradient Langevin743

algorithms for dynamic data integration and uncertainty quantification,744

Journal of Computational Physics 217 (2006) 123–142.745

[49] A. H. Elsheikh, M. D. Jackson, T. C. Laforce, Bayesian reservoir history746

matching considering model and parameter uncertainties, Mathematical747

Geosciences 44 (2012) 515–543.748

[50] C. V. Deutsch, A. G. Journel, GSLIB: Geostatistical Software Library and749

User’s Guide, Oxford University Press, 1992.750

[51] S. L. Cotter, G. O. Roberts, A. M. Stuart, D. White, et al., MCMC methods751

for functions: modifying old algorithms to make them faster, Statistical752

Science 28 (2013) 424–446.753

[52] A. Beskos, M. Girolami, S. Lan, P. E. Farrell, A. M. Stuart, Geometric754

MCMC for infinite-dimensional inverse problems, Journal of Computa-755

tional Physics 335 (2017) 327–351.756

[53] Y. Chen, D. Keyes, K. J. Law, H. Ltaief, Accelerated dimension-757

independent adaptive Metropolis, SIAM Journal on Scientific Computing758

38 (2016) S539–S565.759
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