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Abstract

This paper studies a risk measure inherited from ruin theory and investigates some
of its properties. Specifically, we consider a VaR-type risk measure defined as the
smallest initial capital needed to ensure that the ultimate ruin probability is less than
a given level. This VaR-type risk measure turns out to be equivalent to the VaR of
the maximal deficit of the ruin process in infinite time. A related tail-VaR-type risk
measure is also discussed.
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1 Introduction and motivation

The Value-at-Risk (VaR) quantifies how much an economic agent can expect to lose in one
day, week, year, . . . with a given probability. In today’s financial world, VaR has become
the benchmark risk measure. In insurance for instance, regulators often require that the
available capital in the company, that is, the surplus of assets over liabilities (reserves), has
at least to be equal to some appropriate VaR of the one-year risk. This capital is used as a
buffer against the risk that the premiums and reserves combined with the investment income
turn out to be insufficient to cover future claims, making the probability that the insurer
becomes technically insolvent small enough. We refer the reader e.g. to Volume 35, Issue 1
of the Geneva Papers on Risk and Insurance - Issues and Practice for articles dealing with
regulation and solvency for insurance companies. Also, readers interested in studies using
the VaR concept could see, e.g., Luciano & Kast (2001) for a derivation of insurance con-
tracts which are Mean-VaR efficient, Huang (2006) and the references therein for a study of
optimal insurance under a VaR constraint or Embrechts & Puccetti (2006) for the com-
putation of VaR-based minimum capital requirement for a portfolio of operational risk losses.

However, the appropriateness of risk measures defined over fixed time horizons usually
advocated in both actuarial theory and practice can be questioned. It is not obvious that
a time horizon of, say, 1 year for assessing the safety of a business activity is appropriate
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when uniformly applied to all companies (as is usual under the current regulation practice).
Roughly speaking, the insurance risk over a horizon of 1 year of an insurance company is
comparable with the one of a company with n times as many policies (of the same kind) but
a time horizon of 1/n years. This becomes obvious when comparing the corresponding sur-
plus processes. The presence and potential role of operational (or business) time as opposed
to real (physical) time was already noticed by Filip Lundberg as early as 1903 in the ruin
theory framework and may put into perspective the role of time in the context of risk mea-
sures. Lundberg’s conclusion from this observation was that the actual assumptions behind
the classical collective risk model are in fact less restrictive when time-invariant quantities
like the infinite-time ruin probability are considered (in particular, from this perspective the
assumption of having a constant Poisson intensity in the model which will appear later in
the paper can be weakened without changing the results). The choice of an appropriate time
horizon for measuring risk as a function of the size of the company is not the topic of this
paper, but this aspect gives additional motivation to investigate both the potential and the
limits of time-invariant measures of solvency risk and to investigate ruin theory concepts as
measurement tools in the framework of risk measures.

Whereas VaR is usually defined in terms of a given time horizon, as explained above, in
certain applications it may be more natural to look for measures that give a more robust
reflection of the risk inherent in a business activity in a random environment. In particular,
the VaR for a given time horizon does not reflect the possible adverse financial situations in
between or beyond the specified time interval. On the other hand, in an insurance context,
starting with the work of Filip Lundberg and Harald Cramér in the early 20th century, ruin
theory has always studied somewhat robust measures of insurance risk. In particular, the
probability of ruin can be interpreted as the continuous alternative to the VaR.

One historical purpose of studying ruin probabilities was to obtain the amount of initial
capital needed to guarantee a certain probability of solvency throughout the lifetime of the
process, given that both the premium strategy and the aggregate claim process are stationary
over time. In that sense the ruin probability might be interpreted as a measure of dynamic
risk in a static environment (meaning that the initial capital and the premium strategy are
fixed and later on one is not able to or does not want to interfere during the lifetime of the
process). In particular, the correspondingly allocated capital will then suffice to cope with
the involved insurance risk at all times according to some acceptance level of ε. It is this
type of robustness that makes the ruin probability still nowadays an interesting quantity in
this context. Most of all, the type of thinking coming from ruin theory is often considered
important by practitioners.

The purpose of this paper is to consider certain properties of risk measures that are
motivated by ruin theory. The goal is not so much to advocate them for practical use in
risk management, but rather to improve the understanding of the connections between these
fields and to see whether the quite active research field of ruin theory can offer additional
insight for people dealing with practical risk management of insurance companies as well.
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This paper discusses risk measures for insurance portfolios which are derived from ac-
tuarial ruin theory. Dhaene, Goovaerts & Kaas (2003) give ample motivation for an
exponential risk measure inherited from the Cramér-Lundberg upper bound for the ruin
probability in a discrete-time ruin model. Cheridito, Delbaen & Kupper (2006) men-
tion (in an application of their study on coherent risk measures for unbounded stochastic
processes) a VaR-type risk measure based on the infinite-time ruin probability itself. In gen-
eral, over the last years the relative position and relation between (insurance) risk measures
that fulfill a certain list of axioms on the one hand, and classical tools in ruin theory to
assess the riskiness of an insurance activity in the collective framework on the other hand,
has often been a matter of debate. In this paper we would like to take up this issue and
investigate in more detail some properties of the VaR-type risk measure based on the ruin
probability that is mentioned in Cheridito, Delbaen & Kupper (2006). For ease of
exposition, we will restrict the considerations to the classical compound Poisson process.
Note that Geman (1998) also emphasized the usefulness of the actuarial ruin paradigm and
Embrechts & Samorodnitsky (2004) demonstrated that ruin theory can be especially
useful for operational risk.

Our paper is organized as follows. In Section 2, we set up the scene by recalling some
properties and tools of the compound Poisson risk model. In Section 3, we derive various
properties of a VaR-type risk measure, which is defined as the smallest amount of capital
needed to ensure a ruin probability below a given probability level. In Section 4 we then
discuss the corresponding Tail-VaR-type risk measure. The final Section 5 concludes.

2 Risk model and harmonic mean residual life order

2.1 Compound Poisson surplus model

This section recalls some basic results about ruin probabilities, which will be useful in our
analysis. For more details, we refer the interested reader, e.g., to Asmussen (2000). The
surplus process (or risk process) is defined as

Ut = u+ c t− St, t ≥ 0, (2.1)

where Ut is the insurer’s capital at time t starting from some initial capital U0 = u, c is the
(constant) premium income per unit of time and St =

∑Nt

k=1Xk is the total claim amount
up to time t, with Nt the corresponding number of claims, and Xk the size of the kth claim,
assumed to be non-negative. The claim number process {Nt, t ≥ 0} is assumed to be Pois-
son with constant rate λ. The Xks are independent and distributed as X, with distribution
function FX . They are furthermore assumed to be independent of {Nt, t ≥ 0}. We as-
sume that the premium rate is of the form c = (1 + η)λE[X] where η > 0 is called the safety
loading. Henceforth, η is assumed to be the same for all the risk processes used in this paper.

The ruin time T is defined as

T =

{
min{t ≥ 0 |Ut < 0},
+∞ if Ut ≥ 0 for all t,

(2.2)
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and the ruin probability is ψ(u) = Pr[T <∞]. If needed, we will denote the ruin probability
as ψX to make explicit the dependence on X. Let Lt = St− c t be the aggregate loss at time
t, i.e. the amount by which the insurance claims exceed the collected premiums at some
time t, the ruin time T can also be expressed as

T = min{t ≥ 0|u− Lt < 0}. (2.3)

Correspondingly, ψ(u) = Pr[L > u], where L = maxt≥0 Lt denotes the maximal aggregate
loss of the process.

2.2 Compound geometric representation of the ruin probability

It is well-known that ψ coincides with the tail function of a compound geometric distribution
since L can be decomposed as

L =
M∑
j=1

Dj, (2.4)

whereM follows the geometric distribution with success probability 1−ψ(0) = η
1+η

and where
D1, D2, . . . are the ladder heights of the loss process which are independent and identically
distributed. In the compound Poisson model, the common distribution function of the Djs
is given by the integrated tail distribution

FD(y) =

∫ y

0

1− FX(x)

E[X]
dx, y > 0. (2.5)

The non-ruin probability is then given by

1− ψ(u) =
∞∑
m=0

p(1− p)mF
?(m)
D (u), (2.6)

where p = η
1+η

and F
?(m)
D is the m-fold convolution of FD.

Note that the mapping FX → FD is well-known in applied probability, where (apart from
the name integrated tail distribution) FD is often called the stationary forward recurrence
time, the equilibrium distribution or the residual lifetime in the literature. The relationship
between the moments of X and of D is given by

E[Dk] =
E[Xk+1]

(k + 1)E[X]
, k = 1, 2, . . .

An important result in our setting is as follows. Recall the definition of the stochastic
dominance and of the convex order. Given two random variables X and Y , X precedes Y
in the stochastic dominance, denoted as X ¹st Y , if the inequality E[g(X)] ≤ E[g(Y )] holds
for any non-decreasing function g such that the expectations exist. Similarly, X precedes
Y in the convex order, denoted as X ¹cx Y , if the inequality E[g(X)] ≤ E[g(Y )] holds for
any convex function g such that the expectations exist. Then, denoting as FE the integrated
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tail distribution associated to FY , and as E (resp. Y ) a random variable with distribution
function FE (resp. FY ), we have

X ¹cx Y ⇒ D ¹st E.

Henceforth, we will also need the increasing convex, or stop-loss, order defined as follows.
Given two random variables X and Y , X precedes Y in the increasing convex order, denoted
as X ¹icx Y , if the inequality E[g(X)] ≤ E[g(Y )] holds for any non-decreasing convex
function g such that the expectations exist.

2.3 Harmonic mean residual life order

Michel (1987) defined a stochastic order relation among claim size distributions by refer-
ence to the comparison of ruin probabilities. This order in fact compares the ladder-height
distribution FD of the renewal process describing claim occurrences. The harmonic mean
residual life order, which proves useful in reliability applications, naturally arises in this
context. For other applications of this ordering in actuarial science, we refer the interested
reader, e.g., to Lefèvre & Utev (2001).

Given two non-negative random variables X and Y , recall that X is said to be smaller
than Y in the harmonic mean residual life order (denoted as X ¹hmrl Y ) when

∫∞
t
FX(u) du

E[X]
≤

∫∞
t
F Y (u) du

E[Y ]
for all t ≥ 0, (2.7)

where FX = 1− FX and F Y = 1− FY . The inequality in (2.7) can be equivalently written
as

E[(X − t)+]

E[X]
≤ E[(Y − t)+]

E[Y ]
for all t ≥ 0. (2.8)

¿From (2.8) it follows that X ¹hmrl Y if, and only if,

E[g(X)]

E[X]
≤ E[g(Y )]

E[Y ]
(2.9)

for all non-decreasing convex functions g : R+ → R, provided the expectations exist.

A useful property for the present study is Theorem 2.B.16 in Shaked & Shanthikumar
(2007). It shows that any mixture of two distributions ordered in the ¹hmrl order is bounded
from above and from below by the components of the mixture. Formally, let X and Y be
such that X ¹hmrl Y and define the distribution function FZ = βFX + (1 − β)FY for some
β ∈ (0, 1). Then,

X ¹hmrl Z ¹hmrl Y. (2.10)
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Remark: Neither of the orders ¹st and ¹hmrl implies the other. It can nevertheless be
shown that

X ¹hmrl Y ⇒ E[X
∣∣X > 0] ≤ E[Y

∣∣Y > 0],

so that when X and Y are positive almost surely

X ¹hmrl Y ⇒ E[X] ≤ E[Y ]. (2.11)

If E[X] = E[Y ] then (2.9) ensures that

X ¹hmrl Y ⇔ X ¹cx Y. (2.12)

3 VaR-type risk measure

Whereas in Dhaene et al. (2003), essentially the risk measure is the necessary annual pre-
mium amount such that for a given initial capital u the resulting ruin probability is bounded
by ε, in this paper we would like to focus on another approach linking ruin probabilities
with the framework of risk measures. We consider the continuous-time risk model (2.1) and,
instead of fixing u, we assume that the safety loading η is fixed and ask for the amount of
initial capital needed in order to bound the ruin probability by ε. That is, we define now
the ruin-consistent VaR risk measure as

ρε[X] = inf{v ≥ 0|ψ(v) ≤ ε} = ψ−1(ε).

In words, ρε[X] is the smallest amount of capital needed such that the ultimate ruin prob-
ability ψ for a risk process with individual claim sizes distributed as X is at most equal to
some specified probability level ε. Working directly on the basis of the ruin probability ψ
(instead of on the basis of Lundberg’s upper bound used by Dhaene et al. (2003)) has
the advantage that the risk measure is exact rather than a bound and secondly, and this
is also quite important, the method is then not restricted to insurance risk processes with
exponentially bounded claims for which a Lundberg exponent exists. In particular, many
realistic descriptions of risk processes are based on heavy-tailed (subexponential) claims for
which the Lundberg exponent does not exist.

One possible interpretation of this approach is as follows. Competition among companies
(market pressure, underwriting cycles, etc.) determines a safety loading η that can be
realized in the insurance market and then ρε[X] reflects the amount of capital needed to
ensure a stable business according to the safety level ε, assuming “stationary” insurance
business (the amount ρε[X] then puts the portfolio into an acceptable position with respect
to the safety measure ψ). So in this approach the premium income is considered to be
(the market-induced “balancing”) part of the insurance risk in the portfolio rather than
the control variable. Measuring risk by the infinite-time ruin probability ψ entails that we
deal with an unbounded time horizon. Hence an acceptable position in such a framework
reflects long-term stability thinking. Naturally, as time evolves, using claim experience and
further acquired information, the capital requirements will be readjusted. But compared
to the classical one-year time horizon VaR approach, in the above setup the incentive is to
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always maintain a (with respect to available information) sustainable strategy. It is worth
to mention that the vast majority of the results in risk theory consider η as fixed when the
effect of switching from one severity distribution to another is studied.

Remark: It may appear surprising that the risk measure ρε does not explicitly depend
on the claim frequency λ. This is because the ruin probability itself does not depend on λ
as we are allowed to switch to any operational time scale. Formally, this is clear from the
compound geometric representation (2.6). This means that ρε is not influenced by the vol-
ume of the portfolio reflected in λ, since the fixed value of η ensures that the corresponding
value of c compensates for the change in the portfolio volume. This is because the classical
risk model values “time diversification”. Hence, the number of policies does not matter, but
well the distribution of the claim amount they generate, i.e. ρε only depends on X (and
on η). Depending on the field of application, this may be considered as an advantage or
disadvantage for the applicability of ρε.

Another way to look at ρε is to consider it as a VaR applied to the transformed risk L
(the maximal aggregate loss). Specifically, for any probability level ε,

ρε[X] = F−1
L (1− ε) = inf{t ≥ 0|FL(t) ≥ 1− ε}.

Instead of taking the VaR of the claim severity X, we first transform X into L and then
compute the VaR of this geometric compound sum. The question now is to determine
whether this is a safe strategy, that is, whether L is more dangerous than X, in some sense.
To study this problem, let us decompose the switch from X to L in two steps: (i) a change
from FX to the corresponding integrated tail distribution FD followed by (ii) a geometric
compounding.

Step (i): Recall that a random variable is said to be NWUE (or New Worse than Used in
Expectation) if E[(X − t)+] ≥ E[X]FX(t) for all t ≥ 0. This basically means that X domi-
nates the Negative Exponential with the same expectation in the ¹cx sense. Many standard
claim size distributions fulfill this property (for appropriate values of their parameters). Ac-
cording to Theorem 1.A.31 in Shaked & Shanthikumar (2007), we have that X NWUE
⇒ X ¹st D. Hence, step (i) in the switch from X to L appears to be conservative since we
replace X with a “larger” D.

Step (ii): The second step consists in replacing D with
∑M

j=1Dj, where the Djs are in-
dependent copies of D. Assume that η ∈ (0, 1) so that E[M ] > 1 and 1 ¹icx M . As a
¹icx-ranking of the number of terms induces the same ordering for the resulting compound
sums, we get D ¹icx L so that step (ii) is also conservative. Combining the two steps reveals
that X ¹icx L holds, so that the risk X is first replaced with a more dangerous (in the
¹icx-sense) random variable L before taking a VaR.

Properties of ρε

The risk measure ρε possesses the following properties.
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Property 3.1. (i) The risk measure ρε is positively homogeneous, that is, ρε[aX] = aρε[X]
for any constant a > 0.

(ii) The risk measure ρε agrees with the stop-loss order, that is X ¹icx Y ⇒ ρε[X] ≤ ρε[Y ].

(iii) If Y and Z are identically distributed and if Z is more positively dependent on X than
Y , in the sense that the inequality Pr[X ≤ x, Y ≤ y] ≤ Pr[X ≤ x, Z ≤ y] holds for
all x and y, then the risk measure ρε expresses the fact that X + Z is more dangerous
than X + Y as ρε[X + Y ] ≤ ρε[X + Z].

(iv) If Z is a mixture of X, Y and X+Y (that is, FZ = p1FX +p2FY +p3FX+Y with pi ≥ 0

for i = 1, 2, 3 and
∑3

i=1 pi = 1) such that αεZ ¹hmrl Y , where αε = ρε[Y ]
ρε[X]+ρε[Y ]

, then

ρε[Z] ≤ ρε[X] + ρε[Y ].

Proof. Item (i) is obvious since multiplying the annual claim amount by a has the same effect
on the annual premium income, so that the initial capital needed to have an ultimate ruin
probability of ε is also multiplied by a. Formally, replacing X with aX changes L into aL
which results in aρε[X]. Considering item (ii), we know that X ¹icx Y ⇒ ψX(u) ≤ ψY (u) for
all u. This classical result of risk theory can be found, e.g., in standard textbooks as Kaas
et al. (2008, Section 7.4.2). Next, item (iii) is deduced from (ii) since X + Y ¹cx X + Z.
Finally, for item (iv), coming back to the compound geometric representation of the ruin
probability, we can write

αεZ ¹hmrl Y ⇒ ψαεZ(ρε[Y ]) ≤ ψY (ρε[Y ]).

Now, multiplying the claim sizes by a fixed coefficient αε is equivalent to dividing the initial
capital by the same factor. Hence,

ψZ(ρε[X] + ρε[Y ]) = ψZ

(
ρε[Y ]

αε

)
= ψαεZ (ρε[Y ]) ≤ ψY (ρε[Y ]) ≤ ε

so that the inequality ρε[Z] ≤ ρε[X]+ρε[Y ] indeed holds true, which completes the proof.

In particular, it is clear, from (iii), that ρε is comonotonicity-consistent (in the terminol-
ogy of Dhaene et al. (2003)). Furthermore, from (iv), it also follows that ρε recognizes
diversification effect under conditions of exchangeable risks, negative quadrant dependent
risks with equivalent sizes, and risks that are members of scale family distributions, what-
ever the dependence between them. Let us formally establish these results.

Property 3.2. (i) The risk measure ρε is subadditive for exchangeable risks, that is,
ρε[X + Y ] ≤ ρε[X] + ρε[Y ] if X and Y satisfy Pr[X ≤ t1, Y ≤ t2] = Pr[X ≤ t2, Y ≤ t1]
for all t1 and t2. This is in particular the case if X and Y are independent and iden-
tically distributed.

(ii) If X and Y are negatively quadrant dependent and identically distributed, that is, the
inequality Pr[X ≤ x, Y ≤ y] ≤ Pr[X ≤ x] Pr[Y ≤ y] holds for all x and y then the risk
measure ρε is subadditive, that is, ρε[X + Y ] ≤ ρε[X] + ρε[Y ].

8



(iii) If X = βV1 and Y = γV2, where V1 and V2 are identically distributed as V , then the
risk measure ρε is subadditive, that is, ρε[X + Y ] ≤ ρε[X] + ρε[Y ].

Proof. Let us consider Property 3.1 (iv) with p1 = p2 = 0. Then, as αε = 1
2
, item (i) is obvious

since X+Y
2

¹cx Y . Next, considering (ii), since αε = 1
2
, it suffices to note that X+Y

2
¹cx

X⊥+Y ⊥
2

¹cx Y , where (X⊥, Y ⊥) has independent components with the same marginals as
(X,Y ). Finally, for item (iii), we have to show that βV1 +γV2 ¹cx (β+γ)V , since αε = γ

β+γ
.

Now, as Pr[βV ≤ x, γV ≤ y] ≥ Pr[βV1 ≤ x, γV2 ≤ y] holds for all x and y, we have that, by
equation 9.A.19 in Shaked & Shanthikumar (2007), βV1 + γV2 ¹cx (β + γ)V .

Application in terms of portfolios

Now, let us define the two processes S
(1)
t =

∑N
(1)
t +Nt

i=1 Xi and S
(2)
t =

∑N
(2)
t +Nt

i=1 Yi, where

{Nt, t ≥ 0}, {N (1)
t , t ≥ 0} and {N (2)

t , t ≥ 0} are independent Poisson processes with constant
rates λ, λ1 and λ2 respectively, and the Xks (resp. Yks) are independent and distributed
as the generic random variable X (resp. Y ). Furthermore, Xks and Yks are assumed to be

independent of {Nt, t ≥ 0}, {N (1)
t , t ≥ 0} and {N (2)

t , t ≥ 0}. Then, the properties of ρε allow
us to deduce some cases where merging two portfolios with cumulative losses described by
S

(1)
t and S

(2)
t is beneficial.

Assume that the Xks are independent of the Yks. Then, S
(1)
t + S

(2)
t is a compound

Poisson process with intensity λ+λ1 +λ2 and generic claim size Z with distribution function
FZ = p1FX + p2FY + p3FX+Y , where p1 = λ1

λ1+λ2+λ
, p2 = λ2

λ1+λ2+λ
and p3 = λ

λ1+λ2+λ
. Hence, if

αεZ ¹hmrl Y , then, by Property 3.1 (iv), a diversification effect at level ε is recognized. The
next result gives an illustration.

Proposition 3.3. Let X = βV1 and Y = γV2, with β ≤ γ, where V1 and V2 are independent
and identically distributed. Then αεZ ¹hmrl Y .

Proof. Obviously, we have X ¹hmrl Y ⇔ β ≤ γ. Hence, it is easily seen from (2.8) that
αεX ¹hmrl Y and αεY ¹hmrl Y . Now, we also know by the proof of Property 3.2(iii) that
αε(X + Y ) ¹hmrl Y . Hence, we necessarily have αεZ ¹hmrl Y . Indeed,

E[(αεZ − t)+]

E[αεZ]
=

E[(αεX − t)+] p1 + E[(αεY − t)+] p2 + E[(αε(X + Y )− t)+] p3

E[αεX] p1 + E[αεY ] p2 + E[αε(X + Y )] p3

=

E[(αεX−t)+]
E[αεX]

E[αεX] p1 + E[(αεY−t)+]
E[αεY ]

E[αεY ] p2 + E[(αε(X+Y )−t)+]
E[αε(X+Y )]

E[αε(X + Y )] p3

E[αεX] p1 + E[αεY ] p2 + E[αε(X + Y )] p3

≤
E[(Y−t)+]
E[Y ]

(E[αεX] p1 + E[αεY ] p2 + E[αε(X + Y )] p3)

E[αεX] p1 + E[αεY ] p2 + E[αε(X + Y )] p3

=
E[(Y − t)+]

E[Y ]
,

which ends the proof.
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Assume that λ = 0. Hence, S
(1)
t and S

(2)
t are independent. Then, in this particular case, we

have the following result.

Proposition 3.4. Assume that λ = 0. If X ¹hmrl Y , then αεZ ¹hmrl Y .

Proof. ¿From (2.10), we have that X ¹hmrl Y ⇒ Z ¹hmrl Y . Also, it is easily seen from
(2.8) that αεZ ¹hmrl Z so that X ¹hmrl Y ⇒ αεZ ¹hmrl Y .

Let us give some examples taken from Heilmann & Schröter (1991) where X ¹hmrl Y
holds true:

(1) If X is Uniformly distributed over the interval (a, b) and Y is Uniformly distributed
over the interval (a′, b′), then X ¹hmrl Y ⇔ a+ b ≤ a′ + b′ and b ≤ b′.

(2) If X is Exponentially distributed with mean 1/a and Y is Exponentially distributed
with mean 1/a′ then X ¹hmrl Y ⇔ a ≥ a′.

(3) If X is Pareto distributed with parameters a and b, that is, X has distribution
function 1− ( a

x+a
)b, x > 0, and if Y is Pareto distributed with parameters a′ and b′

with min(b, b′) > 1, then X ¹hmrl Y ⇔ b−1
b′−1

≥ max( a
a′ , 1)

Notice that the second example is a particular case of the equivalence X ¹hmrl Y ⇔ β ≤ γ,
where X = βV1 and Y = γV2, with V1 and V2 are independent and identically distributed.

4 Tail-VaR-type risk measure

Finally, we would like to point out that a natural extension of ρε is the Tail-VaR (or average
VaR) defined as

ρε[X] =
1

ε

∫ ε

0

ρw[X] dw,

where ρw is the VaR-type risk measure at level w discussed in the previous section. By
definition we can write

ρε[X] =
1

ε

∫ ε

0

ψ−1(w) dw,

where ψ−1(w) is the inverse function of the ruin probability, or further

ρε[X] =
1

ε

∫ ε

0

F−1
L (1− w) dw.

Hence, ρε[X] appears to be the Tail-VaR of L. Under the conditions discussed above, we
now have

X ¹icx L⇒ TVaR[X; ε] ≤ TVaR[L; ε] = ρε[X].
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Alternatively one can rewrite

ρε[X] =
1

ε

∫ ψ−1(ε)

ψ−1(0)

w dψ(w)

= ψ−1(ε) +
1

ε

∫ ε

0

w dw

|ψ′(ψ−1(w))|
= ψ−1(ε) +

1

ε
E

[
(L− ψ−1(ε))−

]

= E[L
∣∣L > F−1

L (1− ε)].

The last two equalities follow from general properties of Tail-VaR, as e.g. given in Denuit
et al. (2005, Section 2.4) or in Pflug & Römisch (2007).

¿From the above it becomes clear that the measure ρε[X] represents the amount of capital
needed to be able to cope “in expectation” also with the insurance loss in those problematic
cases that occur with probability less than ε. One also observes that explicit knowledge
of the ruin probability expression can tremendously simplify the calculations of this risk
measure. In Cheridito et al. (2006) it is shown that ρε[X] is coherent and hence satisfies
several desirable properties. However, on a computational level, ρε will typically be harder
to deal with than ρε and, as often in related contexts, in practice there will be a trade-
off between the gain in theoretical attractiveness and the lowering of practicability of the
resulting expressions when choosing feasible measures for the insurance risk.

5 Conclusion

In this paper we discussed the classical concept of the ruin probability of an insurance port-
folio in the framework of risk measures and established some properties of the corresponding
naturally motivated VaR-type risk measure ρε. The crucial assumption in this approach is
that the collective insurance business in the portfolio has a certain degree of stationarity
and that the safety loading is fixed (for instance, determined by market conditions). Note
that apart from that the results are quite general as they are expressed through the ruin
probability directly. This may for instance be particularly welcome in situations with de-
pendence among the insurance risks for which still some results on the ruin probability are
available. Finally, we would like to emphasize once more that the purpose of this paper is
not to advocate the practical use of ρε, but rather to clarify some relations that might be
helpful when assessing the riskiness of certain financial positions in the insurance context.

The present approach is somewhat different from Dhaene et al. (2003). Apart from
the fact that these authors use the Lundberg bound instead of the ruin probability itself,
they fix the initial capital and determine the annual premium in their discrete-time model
according to the required level of the ruin probability. Here, we fix the safety loading (and
hence the premium relative to the claim rate λ) and try to allocate the appropriate initial
capital for the required level of the ruin probability. Motivation for that approach has been
given in terms of market competition.
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The risk measures discussed in the present paper enjoy nice properties and appear natural
in the classical framework of risk measures: they are just a VaR and a Tail-VaR of a random
variable, namely the minimum L of a stochastic process. Some of the results established
in the present paper might be extended to general renewal models. For instance, the ruin
probability is then still obtained from the tail function of a geometric compound distribution,
although the ladder height distribution is in general not the integrated tail and not explicitly
available anymore.
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