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ABSTRACT
Background: Cardiac output (CO) perturbations are common and
cause significant morbidity and mortality. Accurate CO assessment is
crucial for guiding treatment in anaesthesia and critical care, but
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R�ESUM�E
Contexte : Les perturbations du d�ebit cardiaque sont fr�equentes et
associ�ees à des taux �elev�es de morbidit�e et de mortalit�e. Une
�evaluation juste du d�ebit cardiaque est essentielle pour orienter le
Cardiac output (CO) determines tissue oxygen delivery and
can change rapidly during anaesthesia and surgery. In anaes-
thesia and critical care, CO assessments guide therapeutic
decision-making and responses to treatment. CO assessment
by clinical examination is difficult, even for experienced cli-
nicians, especially in the early stages of deterioration.1 Registry
data show that 67% of anaesthesia-related paediatric cardiac
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measurement is difficult, even for experts. Artificial intelligence
methods show promise as alternatives for accurate, rapid CO
assessment.
Methods: We reviewed paediatric echocardiograms with normal CO
and a dilated cardiomyopathy patient group with reduced CO. Experts
measured the left ventricular outflow tract diameter, velocity time in-
tegral, CO, and cardiac index (CI). EchoNet-Dynamic is a deep learning
model for estimation of ejection fraction in adults. We modified this
model to predict the left ventricular outflow tract diameter and
retrained it on paediatric data. We developed a novel deep learning
approach for velocity time integral estimation. The combined models
enable automatic prediction of CO. We evaluated the models against
expert measurements. Primary outcomes were root-mean-squared
error, mean absolute error, mean average percentage error, and co-
efficient of determination (R2).
Results: In a test set unused during training, CI was estimated with the
root-mean-squared error of 0.389 L/min/m2, mean absolute error of
0.321 L/min/m2, mean average percentage error of 10.8%, and R2 of
0.755. The Bland-Altman analysis showed that the models estimated
CI with a bias of þ0.14 L/min/m2 and 95% limits of agreement -0.58
to 0.86 L/min/m2.
Conclusions: Our model estimated CO with strong correlation to
ground truth and a bias of 0.17 L/min, better than many CO mea-
surements in paediatrics. Model pretraining enabled accurate esti-
mation despite a small dataset. Potential uses include supporting
clinicians in real-time bedside calculation of CO, identification of low-
CO states, and treatment responses.

choix du traitement anesth�esique et des soins critiques. Or, il est
difficile de mesurer le d�ebit cardiaque, même pour les experts. Les
m�ethodes fond�ees sur l’intelligence artificielle semblent toutefois
prometteuses pour �evaluer le d�ebit cardiaque avec exactitude et
rapidit�e.
M�ethodologie : Nous avons analys�e des �echocardiogrammes
p�ediatriques chez des personnes dont le d�ebit cardiaque est normal
ainsi que chez des patients qui �etaient atteints d’une cardiomyopathie
dilat�ee et dont le d�ebit cardiaque �etait r�eduit. Des experts ont mesur�e
le diamètre de la voie d’�ejection ventriculaire gauche, l’int�egrale de la
vitesse par rapport au temps (IVT), le d�ebit cardiaque et l’index car-
diaque. L’outil EchoNet-Dynamic est un modèle d’apprentissage pro-
fond qui donne une estimation de la fraction d’�ejection chez les
adultes. Nous avons modifi�e ce modèle afin qu’il puisse pr�edire le
diamètre de la voie d’�ejection ventriculaire gauche et l’avons entraîn�e
à l’aide de donn�ees p�ediatriques. Nous avons �egalement mis au point
une nouvelle approche d’apprentissage profond pour l’estimation des
valeurs d’IVT. La combinaison de ces modèles a permis de pr�edire de
façon automatique le d�ebit cardiaque, et nous avons �evalu�e les
r�esultats obtenus par rapport à ceux des experts. Les principaux cri-
tères d’�evaluation �etaient l’erreur moyenne quadratique (EMQ), l’erreur
moyenne absolue (EMA), le pourcentage d’erreur moyen (PEM) ainsi
que le coefficient de d�etermination (R2).
R�esultats : Dans un ensemble d’essais n’ayant pas �et�e utilis�e au cours
de l’entraînement du modèle, l’index cardiaque a �et�e estim�e avec une
EMQ de 0,389 L/min/m2, une EMA de 0,321 L/min/m2, un PEM de
10,8 % et un R2 de 0,755. Selon l’analyse de Bland-Altman, le biais
pour les estimations de l’index cardiaque �etait deþ 0,14 L/min/m2, et
les limites de concordance à 95 % �etaient de e0,58 à 0,86 L/min/m2.
Conclusions : Les estimations g�en�er�ees par le modèle pour le d�ebit
cardiaque montraient une forte corr�elation avec les valeurs de
r�ef�erence et un biais à 0,17 L/min, ce qui est mieux que bien des
mesures du d�ebit cardiaque utilis�ees en p�ediatrie. Malgr�e un petit
ensemble de donn�ees, le modèle entraîn�e a permis de produire une
estimation juste. Les utilisations potentielles comprennent l’aide aux
cliniciens dans le calcul du d�ebit cardiaque en temps r�eel et au chevet
du patient, le d�epistage d’un faible d�ebit cardiaque et l’�evaluation de la
r�eponse au traitement.
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arrests are related to underestimating CO, inappropriately
treating low-CO states, or medication-related low-CO
states.2,3 Early reversal of low-CO states improves outcomes in
adult, paediatric and neonatal sepsis, adult high-risk surgery,
vascular surgery, and trauma.4e6 Incorrect, inadequate, or
excessive treatment with vasopressors or inotropic agents can
worsen CO.

A common indication of inadequate CO is hypotension,
which may be due to decreased preload, systemic vasodilation,
or decreased cardiac function. In paediatrics, fluid adminis-
tration is a mainstay of haemodynamic resuscitation and CO
augmentation, although not all children respond to fluid, and
excess fluid administration can be harmful.7,8 Excess fluid
administration increases endothelial permeability,8 delays
wound healing, impairs respiratory function parameters,9 and
is an independent predictor of death in critically ill children
and adults.10,11 Dynamic variables of heart-lung interactions
are good predictors of fluid responsiveness in adults, but not
children.12 Aortic blood flow peak velocity12 and stroke vol-
ume index13 have been shown to predict fluid responsiveness
in children, but acquiring and interpreting these measure-
ments is difficult and prone to error.

Many noninvasive CO measuring systems are available, but
few are validated in paediatrics14,15 or sufficiently accurate,16,17

despite the acceptable mean percentage error of � 30%.18

Echocardiography is recognized as the clinical gold standard
for measuring CO, and the superior haemodynamic monitor in
critically ill paediatrics.19,20 Noncardiologists are availing
themselves of the increased availability of point-of-care ultra-
sound machines to perform focused echocardiography
(FoCUS) to guide management of low-CO states. Paediatric
image acquisition and interpretation can be challenging.

EchoNet-Dynamic21 is a deep-learning algorithm trained
on adult echocardiograms to calculate ejection fraction. In this
study, we modified EchoNet-Dynamic to predict a different
metric, left ventricular outflow tract (LVOT) diameter, from
videos acquired in a different view than the original model and
retrained it on paediatric data. We developed a novel deep-
learning approach for the estimation of velocity time inte-
gral (VTI). The combination of these models enables
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automatic estimation of CO. Our model estimated CO in a
collection of anatomically normal paediatric echocardiograms
with normal and reduced CO, within clinically acceptable
diagnostic accuracy.

Deep-learning models are trained by example, repeatedly
adjusting model parameters to better fit the data. This
learning process is controlled by fixed hyperparameters, whose
values can greatly affect the accuracy of the trained model.
Methods
After research ethics board approval and waiver of consent,

we identified a convenience sample of echocardiograms of
children (1 day to 18 years old, 260 in total, acquired between
2005 and 2020) with normal cardiac anatomy or haemody-
namically insignificant anomalies (e.g., patent foramen ovale
and small atrial septal defect). Echocardiograms were chosen
from a healthy population with normal CO and a group with
dilated cardiomyopathy with reduced CO. Subject charac-
teristics are given in Table 1. Echocardiograms were acquired
on General Electric Vivid7, Vivid E9, and Vivid E95 (GE
HealthCare, Waukesha, WI) by expert sonographers (C.S.
and L.M.).

Measurement of the LVOT diameter and VTI

The LVOT diameter was measured in a parasternal long-
axis view within 0.5 cm of the aortic annulus at mid-systole
by 2 investigators (C.S. and M.Z.). Either 1 or 2 cardiac
cycles were examined, within which 3 measurements were
made. The average was taken as the ground truth LVOT
diameter and used to calculate the LVOT cross-sectional area
(CSA ¼ p*(d/2)2). The LVOT VTI measurements were
calculated from an apical 5-chamber view (5Ch) using a pulse
wave Doppler across the LVOT sampled immediately below
the aortic valve. An expert sonographer (C.S.) selected and
traced 2 or 3 typical velocity peaks in every Doppler image,
and VTI was calculated as the average of the areas under the
curves. To evaluate inter-rater reliability of VTI measurement,
a second expert rater (M.Z.) evaluated VTI in a subset of these
images. Heart rate was measured at the time of the Doppler
ultrasound. CO was calculated as the product of LVOT CSA,
LVOT VTI, and heart rate. We present CO results in terms
of cardiac index (CI), defined as CO divided by body surface
area estimated using the Haycock formula.

Machine learning model

We designed a 2-part model for the calculation of CO
from 5Ch echocardiography videos and pulse wave Doppler
images. First, a deep-learning approach was used to calculate
the LVOT diameter from 5Ch video. Secondly, a deep-
learning approach was used to trace modal velocity curves in
Doppler images, the areas under which were used to estimate
VTI. All models were built using the Python library PyTorch.

Each subject was randomly assigned to 1 of 3 groups: 75%
to a training set, whose data were used to train the models;
12.5% to a validation set, whose data were used to select pa-
rameters for the final models but not used to train models
directly; and 12.5% to a test set, whose data were used for
validation after all trained models were finalized. The numbers
of subjects with each image type in each group are summarized
in Table 1. Every available 5Ch video and Doppler image were
used in its corresponding model. The subjects included in the
CO model were those with both 5Ch video and Doppler
images. Subject characteristics and cardiac metrics were
compared between the 3 groups using analysis of variance.

LVOT diameter calculation

To calculate the LVOT diameter from 5Ch videos, we
modified the EchoNet-Dynamic deep-learning model, which
was originally trained to calculate the left ventricular ejection
fraction from 4-chamber apical view echocardiogram videos
of 10,030 adults.21 The EchoNet-Dynamic model consists
of a sequence of 5 R(2þ1)D convolutional blocks.22 Each
block performs 2D convolutions in space to extract and
generate maps of spatial image features, followed by 1D
convolutions in time, which extract temporal features. By
composing spatial and temporal image features detected in
previous blocks, successive blocks detect increasingly com-
plex features. The convolutional blocks are followed by a
pooling layer, which reduces the resolution of the feature
maps. Finally, a fully connected layer combines the spatial
and temporal features to output an estimation of the LVOT
diameter.

Before being input to the model, 5Ch videos were pre-
processed by the same procedure as the EchoNet dataset;
videos were cropped around the scan region, converted to
AVI, and normalized by subtracting the mean and dividing by
the standard deviation of the videos in the training set.

The model was trained to minimize the mean squared error
(MSE) between the estimated and actual LVOT diameter
values using the Adam algorithm.23 Training hyperparameters
were selected by sequential model-based optimization using
tree-structured Parzen estimators.24 Additional details of the
training procedure are given in the Supplemental Materials.

VTI calculation

To estimate VTI from Doppler images, we developed a 2-
step method. The Doppler spectrum was first automatically
split into segments, each corresponding to a cardiac cycle. A
deep-learning model then traced the modal velocity curve in
each segment. The areas under the tracings were averaged to
obtain the final VTI estimate.

Velocity peak extractor

Before splitting the Doppler spectrum, the portion of the
spectrum corresponding to motion away from the sensor was
automatically cropped using data in the image header (Fig. 1).
Heartbeat data overlapping the spectrum were automatically
blackened using a colour filter. The resulting spectrum was
converted to greyscale.

To identify velocity curves corresponding to each cardiac
cycle, a band of velocities between one-fourth and two-thirds of
the maximum velocity was examined (Fig. 1B). Within this
band, columns of pixels with average intensity greater than the
average of the band were marked as potentially overlapping
velocity peaks. Contiguous marked columns were grouped to
form initial guesses of the time ranges corresponding to velocity
peaks. For a given image, time ranges shorter than 80% of the
length of the longest time range were dropped. The remaining
time ranges were padded to prevent the removal of peak edges.



Table 1. Characteristics of subjects in the training, validation, and test sets

Training Validation Test Total P value

Has 5Ch video 195 32 32 259 e
Has Doppler 162 29 28 219 e
Has 5Ch video & Doppler 161 29 28 218 e
Dilated cardiomyopathy 47 (24.0) 5 (15.6) 4 (12.5) 56 (21.5) 0.24
Male 105 (53.6) [1] 17 (53.1) 16 (50.0) 138 (53.1) [1] 0.92
Age (y) 7.23 (3.04-11.35) [1] 7.07 (3.99-13.05) 10.42 (4.98-13.80) 7.42 (3.24-12.66) [1] 0.19
Weight (kg) 27.5 (18.5-39.7) [47] 29.1 (17.8-48.8) [5] 41.0 (21.6-53.4) [4] 28.8 (18.6-46.3) [56] 0.21
Height (cm) 130 (107-152) [47] 131 (106-155) [5] 148 (114-161) [4] 131 (108-157) [56] 0.28
Body mass index (kg/m2) 16.8 (15.6-18.6) [47] 17.2 (15.3-20.3) [5] 17.9 (16.2-20.8) [4] 17.1 (15.6-19.2) [56] 0.26
Body surface area (m2) 0.95 (0.63-1.28) [2] 0.97 (0.66-1.32) 1.25 (0.78-1.54) 0.95 (0.65-1.34) [2] 0.14
Heart rate (bpm) 83 (70-104) [30] 82 (69-97) [2] 77 (68-87) [3] 82 (70-102) [35] 0.40
LVOT diameter (mm) 15.2 (12.1-17.7) [1] 16.0 (13.5-17.8) 15.6 (13.4-19.5) 15.5 (12.7-18.0) [1] 0.30
VTI (cm) 19.4 (15.6-22.6) [34] 19.5 (15.6-22.7) [3] 21.7 (19.1-23.2) [4] 19.6 (15.7-22.8) [41] 0.04
CO (L/min) 3.05 (2.07-3.85) [35] 2.98 (2.27-4.39) [3] 3.43 (2.58-4.27) [4] 3.09 (2.18-3.93) [42] 0.15
CI (L/min/m2) 3.01 (2.51-3.61) [36] 3.14 (2.67-3.82) [3] 3.13 (2.62-3.61) [4] 3.06 (2.52-3.67) [43] 0.90

Values are reported as number (%) or median (interquartile range), with the number of missing data points given in square brackets.
The P values compare the training, validation, and test sets using the analysis of variance.
5Ch, 5-chamber view; CI, cardiac index; CO, cardiac output; LVOT, left ventricular outflow tract; VTI, velocity time integral.
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The spectrum was split into segments defined by the time
ranges, each intended to correspond to a cardiac cycle.

Modal velocity curve-tracing model

Each spectrum segment was input to a convolutional neural
network model based on the ResNet-18 architecture.25 The
model consists of a sequence of 2D convolutional layers, which
extract increasingly complex image features. A fully connected
layer combines these features and outputs a vector of velocities
representing the estimated curve tracing. Negative velocity esti-
mates were set to zero. Velocities were estimated in pixels and
later converted to cm/s. For each subject, the areas under the
estimated curves were averaged to obtain the final VTI estimate.

Before being input to the model, each spectrum segment
was rescaled to the size of the largest segment, 417 � 286
pixels, and then normalized by subtracting the mean and
dividing by the standard deviation of the segment.
Figure 1. Velocity peak extraction and modal velocity curve tracing. The origi
the region outlined in red is the portion of the Doppler spectrum in which the a
peaks; the regions outlined in blue are the spectrum segments identified by
and model-calculated tracing (blue) of the modal velocity curve for each ext
The model was trained to minimize the MSE between
the velocities in the estimated and expert-traced curves,
using the AdamW algorithm.26 Training hyperparameters
were selected by sequential model-based optimization us-
ing tree-structured Parzen estimators.24 Additional details
of the training procedure are given in the Supplemental
Materials.

Model evaluation

For each model, we computed the root MSE (RMSE),
mean absolute error (MAE), mean absolute percentage error
(MAPE), and coefficient of determination (R2) between the
estimated and actual values for each subject group. To eval-
uate clinical applicability, we performed the Bland-Altman
analysis of each model in the test set, comparing estimated
values with those of the primary expert rater (C.S.). The
Bland-Altman analysis was also used to assess inter-rater
nal Doppler image (A) was cropped below the horizonal axis (B). In (B),
verage intensities of columns of pixels were used to locate the velocity
the velocity peak extractor. (C-E) depict the expert rater’s tracing (red)
racted cardiac cycle.



Figure 2. Estimated vs actual values of left ventricular outflow tract diameter, velocity time integral, and cardiac index in the training, validation, and
test sets.
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reliability of VTI measurement, comparing the 2 expert raters’
measurements in the test set.
Results
We found no significant differences in subject charac-

teristics or cardiac metrics between the training, validation,
and test sets, except VTI (P ¼ 0.04), with the test set
having larger values than the training and validation sets
(Table 1).

For each model and subject group, we compared estimated
and actual values in Figure 2. Performance metrics are sum-
marized in Table 2, and the Bland-Altman analysis results are
shown in Figure 3. In the test set, CO was calculated with the
RMSE of 0.503 L/min, MAE of 0.382 L/min, MAPE of
10.8%, and R2 of 0.909; CI was calculated with the RMSE of
0.389 L/min/m2, MAE of 0.321 L/min/m2, MAPE of
10.8%, and R2 of 0.755. The Bland-Altman analysis showed
that, in the test set, the LVOT diameter was predicted with a
bias of þ0.32 mm and 95% limits of agreement from -1.13 to
1.77 mm; VTI was predicted with a bias of þ0.20 cm and
95% limits of agreement from -2.38 to 2.77 cm; and CI was
predicted with a bias of þ0.14 L/min/m2 and 95% limits of
agreement from -0.58 to 0.86 L/min/m2 (Fig. 3).

The secondary expert rater evaluated VTI in 26 of the 28
test subjects. The Bland-Altman analysis comparing the 2
raters’ measurements showed a bias of 0.49 cm and 95%
limits of agreement from -1.97 to 2.95 cm. This inter-rater
bias is greater than that between our model and the primary
expert rater, and the 95% limits of agreement are of similar
size (4.92 cm between raters and 5.15 cm in our model).

An example of the velocity peaks detected by the peak
extractor is shown in Figure 1. The peak extractor identified
896 spectrum segments. From the original Doppler spectra,
the expert selected 594 peaks for tracing. Of the expert-
selected peaks, 16 were not automatically identified by the
velocity peak extractor. In no case did the velocity peak
extractor identify a spectrum segment whose boundaries
overlapped the expert’s tracing.
Discussion
Our model automatically estimates CO with a very strong

correlation and a bias of 0.17 L/min. The MAPE of 10.8%



Table 2. Performance metrics for models predicting the LVOT
diameter, VTI, CO, and CI in the training, validation, and test sets

Training Validation Test

LVOT diameter
RMSE (mm) 0.474 0.848 0.795
MAE (mm) 0.370 0.574 0.588
MAPE (%) 2.52 3.70 3.80
R2 0.991 0.954 0.964

VTI
RMSE (cm) 0.719 0.959 1.31
MAE (cm) 0.529 0.725 1.06
MAPE (%) 3.29 3.93 4.85
R2 0.982 0.972 0.930

CO
RMSE (L/min) 0.308 0.363 0.503
MAE (L/min) 0.199 0.263 0.382
MAPE (%) 6.81 8.80 10.8
R2 0.971 0.928 0.909

CI
RMSE (L/min/m2) 0.266 0.336 0.389
MAE (L/min/m2) 0.204 0.269 0.321
MAPE (%) 6.81 8.80 10.8
R2 0.932 0.823 0.755

CI, cardiac index; CO, cardiac output; LVOT, left ventricular outflow
tract; MAE, mean absolute error; MAPE, mean average percentage error; R2,
coefficient of determination; RMSE, root-mean-squared error; VTI, velocity
time integral.
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surpasses conventionally acceptable accuracy for clinical CO
measurement in paediatrics.20,27 The consistency between our
VTI model and expert measurement is comparable with the
consistency between expert raters. The LVOT diameter, VTI,
and combined CO models performed well over broad ranges of
their respective metrics, without noticeably larger inaccuracy at
extreme values. Although subjects in the test set had larger VTI
and CO values than the training set, the accuracy of the models
in the test set suggests robustness rather than a bias toward
training data trends. The performance of the LVOT diameter
model (MAPE 3.80%) was similar to that of the VTI model
(MAPE 4.85%). However, as CO is proportional to the
product of VTI and the square of the LVOT diameter, it is
Figure 3. Bland-Altman plots of the left ventricular outflow tract (LVOT) diame
in the test set. SD, standard deviation.
likely that much of the inaccuracy of the combined CO model
was due to inaccuracy in the LVOT diameter estimation.

The combination of our VTI and LVOT diameter models
enables rapid automatic estimation of CO. The combined
model is advantageous as it can be applied to various ultra-
sound devices without relying on manufacturer- or model-
specific proprietary software and can be used on basic com-
puters rather than being tied to ultrasound machines. How-
ever, because most of the images in this study were acquired
on the same ultrasound model, further study is needed to
verify our model’s performance on other ultrasound machines.
The model can be used to analyse previously acquired echo-
cardiographic data without access to the original hardware.
The deep-learning approaches allow the models to exploit
complex spatial and temporal features in the image data,
without the need to explicitly define them beforehand. By
retraining existing deep-learning models, we developed accu-
rate models using much smaller datasets than are typically
required when starting from random initial model parameters.
This has major implications for other applications in paedi-
atrics, in which large patient data sets are difficult to acquire
and few paediatric deep-learning models exist.

Although the Fick principle is considered the gold standard
of CO measurement, it is a difficult technique for clinical use,
especially in paediatrics. Although considered a reference
technique, it has important limitations, as it requires estima-
tion of oxygen consumption, which is very difficult to directly
measure. Oxygen-consumption data are typically based on the
Lafarge method, which is inaccurate in paediatrics.28,29

Thermodilution catheters may be too large for paediatric
use, require catheter manipulation, and are not generally used
in routine clinical practice.30 Transpulmonary techniques,
such as PiCCO (Pulsion Medical Systems, Munich, Ger-
many), are less invasive, validated methods, correlating well
with Fick in paediatrics.31 However, the requirement for an
internal jugular venous central line and a 4 F femoral arterial
catheter limits its use in practice and is often restricted to
intensive care units.32 Echocardiography offers a noninvasive,
ter, velocity time integral (VTI), and cardiac index (CI) model calculation



18 CJC Pediatric and Congenital Heart Disease
Volume 2 2023
readily available bedside measurement of CO33 but requires
expertise in image acquisition and interpretation. Accurate
measurement of the LVOT diameter is critical, as its value is
squared when computing CO, increasing the impact of its
measurement error. Doppler-based measurements have been
validated against the Fick principle.20 Paediatric CO mea-
surement using Doppler has an intraobserver repeatability of
2.1-22% and an interobserver repeatability of 3.1-21.7%.20

The mean percentage error of �30% in CO estimation is
acceptable for clinicians.18,34

In adult practice, LVOT VTI, alone, is regularly used to
estimate stroke volume,35 as the LVOT diameter remains
constant over time. The American Society of Echocardiogra-
phy recognizes a normal VTI >18 cm for monitoring CO
therapeutic interventions in adults.36 In healthy children,
normal values for the LVOT diameter and VTI vary with age
and body surface area, necessitating individual patient calcu-
lation to avoid overdiagnosing low-CO states,37,38 but
monitoring LVOT VTI can be a useful alternative monitor of
left ventricular performance in children >1 year of age.39 Our
future work includes developing a model to identify the most
appropriate images to measure the LVOT diameter and VTI.

Limitations

Thismodel was tested on a small group of patients who reflect
extremes of CO. Further modifications using intermediate re-
ductions in CO are warranted. However, we are encouraged by
the consistency of our predictions, suggesting likely generaliza-
tion beyond the observations we tested. As our model was tested
on images acquired by experts, further testing on images acquired
by nonexperts would improve generalizability of the model to
high-impact areas of use, enabling greater utilization of ECHO
across specialties. Model generalizability could also be improved
using images acquired from different ECHO machines and
different patient populations and pathologies.

The potential benefits of this model include supporting
clinicians in real-time bedside calculation of CO, identifica-
tion of low-CO states, and response to treatment. This model
may reduce operator error in the identification of the LVOT
diameter and VTI, and provide confirmation before insti-
gating treatment to modify CO. This is especially important
in patients for whom CO is difficult to measure accurately, or
in clinical areas where expert paediatric cardiology support
may not be available, such as operating rooms or emergency
departments. In paediatric emergency medicine, this might
include the treatment of systemic sepsis. In paediatric anaes-
thesia, this might include cases where hypotension and/or the
circulating volume might be difficult to estimate and the
treatment might include fluids, pressors and/or inotropes.
Examples include neonatal laparotomies, renal transplantation
recipients, or surgery for burn patient populations in which
there is a greater likelihood of harm from incorrect treatment.
Future work will test our model in these situations, to assess
its utility in clinical decision-making.
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