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Abstract

Introduction: This study employed an integrative system and causal inference

approach to explore molecular signatures in blood and CSF, the amy-

loid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI)

conversion to Alzheimer’s disease (AD), and genetic risk for AD.

Methods: Using the European Medical Information Framework (EMIF)-AD cohort,

we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma

(n=972), 611metabolites in plasma (n=696), and genotypedwhole-blood (7,778,465

autosomal single nucleotide epolymorphisms, n = 936). We investigated associations:

molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4

genotypes, molecular hubs to MCI conversion and probed for causality with AD using

Mendelian randomization (MR).

Results:AT(N) framework associatedwith protein and lipid hubs. In plasma, Proprotein

Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD.

AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association

driven by the APOE isoform.

Discussion: This study reveals multi-omics networks associated with AT(N) and causal

ADmolecular candidates.

KEYWORDS

Alzheimer’s disease, AT(N) framework, Mendelian randomization, multimodal biomarker, multi-
omics, polygenic risk score

1 INTRODUCTION

Alzheimer’s disease (AD) is characterized by the presence of β-amyloid

(Aβ) containing plaques, and neurofibrillary tangles composed of mod-

ified tau protein together with the progressive loss of synapses and

neurons.1 The National Institute on Aging and Alzheimer’s Associa-

tion (NIA-AA) have proposed to classify AD based on biomarkers of

amyloid pathology (A), tau pathology (T), and neurodegeneration (N)

(the ATN framework).2 Yet, despite their diagnostic utility, these three

markers reflect only a portion of the complex pathophysiology of AD.

In prodromal stages, the interplay betweenAT(N) changes, genetic fac-

tors and peripheral molecular changes may affect the rate of disease

progression.

Conducting unbiased and high-throughput omics-based research

in biological fluids and human brain tissues provides a data-driven

approach to identify the many processes involved in AD pathogen-

esis and to prioritize links to relevant clinical and neuropathological

traits. For example, an increasing number of proteomics studies,3–5

including ours,6–8 have identified AD pathophysiological pathways

related to immune response and inflammation, oxidative stress, energy

metabolism, and mitochondrial function. Metabolomics studies have

also identified such pathways related to AD.9–11 A combination of

omics, also called multi-omics or deep phenotyping studies, provides

an opportunity to explore the molecular interplay with both genotypic

and phenotypic variability in AD, bringing in new findings and uncov-

ering novel pathways. Finally, causal inferences approaches allow to
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scrutinize the causal relationship between molecular markers and AD,

highlighting potential interventional targets. Therefore, in this study,

weconductedmulti-omics analyseswith fourmodalities (cerebrospinal

fluid [CSF] proteomics, plasma proteomics, plasma metabolomics,

and whole blood genetics) from the European Medical Information

Framework (EMIF)-AD multimodal biomarker discovery (MBD) study,

followed byMendelian randomization (MR) analyses (Figure 1).

We had four objectives: First, we wanted to test if proteomic and

metabolomic molecular signatures were associated with AD endophe-

notypes including amyloid, CSF total tau (T-tau), CSF phosphory-

lated tau (P-tau), white matter hyperintensity volume, CSF YKL-40,

Mini-Mental State Examination (MMSE) score, and mild cognitive

impairment (MCI) conversion. Second, we wanted to investigate the

associations between molecular signatures and molecular hubs (main

molecules driving associations) with APOE4 genotypes and AD poly-

genic risk scores (PRS). Third, we wanted to query our findings in

prodromal AD by extracting and integrating hub molecules in MCI

individuals that converted to AD by computing a network forMCI con-

verters versus non-converters. Finally, MR analyses interrogated the

causal relationship between hubmolecules and AD.

2 METHODS

2.1 Participants: EMIF-AD MBD study

The EMIF-AD MBD study is part of the European Medical Informa-

tion Framework for Alzheimer’s disease (EMIF; http://www.emif.eu/

emif-ad-2/); a public-private partnership funded through the Innova-

tive Medicines Initiative (IMI). The design of the EMIF-ADMBD study

has been described previously.12 Briefly, 1221 samples from three

groups of people (cognitively normal controls [CTL],MCI, andAD)were

chosen from pre-existing cohorts with the goal of including samples

from people with pathology as well as those without. All participat-

ing centers have agreed to share data as part of the EMIF-AD MBD

study.

General clinical and demographic information were available for all

subjects (including APOE ε4 genotype data). Furthermore, each par-

ticipant had a measure of brain amyloid load, using either CSF Aβ or
amyloid positron emission tomography (PET) imaging. CSFT-tau andP-

tau analysis data were available for over 90% of the subjects. We used

CSF (or where not available, PET) amyloid as “A”, CSF P-tau 181 as “T”

and CSF T-tau as “N” to define the AT(N) framework. The classification

of the status (abnormal/normal) of amyloid, P-tau, and T-tau has been

described previously.12 We dichotomized these biomarkers as nor-

mal or abnormal and categorized them into four groups: no pathology

(A-T-N-, referring as “A-TN-”), amyloid positive but both T and N nega-

tive (A+T-N-, referring as “A+TN-”), amyloid positive and T/N positive

(including A+T-N+, A+T+N- andA+T+N+, referring as “A+TN+”) and

SuspectedNon-Alzheimer Pathology (SNAP, includingA-T-N+, A-T+N-

, and A-T+N+). In addition, the following AD-related endophenotypes

were also measured for the majority of the subjects: (i) CSF YKL-40;

(ii) MRI measures of white matter hyperintensities; (iii) clinical assess-

RESEARCH INCONTEXT

1. Systematic Review: Conducting unbiased and high-

throughput omics-based research in biological fluids

provides a data-driven approach to identify processes

involved in Alzheimer’s disease (AD) pathogenesis. How-

ever, few studies conduct multi-omics or deep pheno-

typing studies in the same cohort to explore molecular

interplay with both genotypic and phenotypic variability

in AD.

2. Interpretation: Our findings offer new insights into

changes in individual proteins/metabolites and networks

linked to various AD pathology markers as well as the

ATN framework.We also found that one protein (Propro-

tein Convertase Subtilisin/Kexin Type 7, PCSK7) showed

evidence for causal associationswithAD.Our study is one

of the largest and most comprehensive study of multi-

omics relating to various AD pathology markers to our

knowledge.

3. Future Directions: Our study reveals multi-omics net-

works associated with AT(N) and MCI conversion. Fur-

thermore, our results suggest a new potential drug target

(PCSK7) to treat AD.

ments including baseline diagnosis, baseline MMSE score, and MCI

conversion12.

2.2 Omics analyses

We performed multi-omics analyses for these subjects including

CSF proteomics, plasma proteomics, and metabolomics as well as

genome-wide single nucleotide polymorphism (SNP) genotyping anal-

yses (Figure 1).

2.2.1 CSF proteomics

Weused tandemmass tag (TMT) technique tomeasure proteins inCSF.

More details can be found elsewhere.13 We imputed proteins using K-

nearest neighbor (K = 10) and removed any missing > 70%, leading to

a total of 696 proteins in 371 samples for further analysis.

2.2.2 Plasma proteomics

We used the SOMAscan assay platform (SomaLogic Inc.) to measure

proteins in plasma. SOMAscan is an aptamer-based assay allowing for

the simultaneous measurement and quantification of large number of

proteins. Here, we measured 4001 proteins in 972 individuals. The

details have been described previously.14
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F IGURE 1 Flowchart of study design. CTL, cognitively normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; Aβ,
β-amyloid; CSF, cerebrospinal fluid; A, amyloid pathology; T, tau pathology; N, neurodegeneration; PRS, polygenic risk score;MR, mendelian
randomization

2.2.3 Plasma metabolomics

We measured plasma metabolites using Metabolon platform

(Metabolon Inc.). Metabolites with more than 70% missing were

excluded and we imputed the missing metabolites using K-nearest

neighbor (K = 10), resulting in 611 metabolites in 696 subjects for

further analysis. More details can be found elsewhere.11

2.2.4 SNP genotyping

A detailed account of the genotyping procedures and subsequent

bioinformatic workflows can be found elsewhere.15 Briefly, a total

of 936 DNA samples were sent for genome-wide SNP genotyping

using the Infinium Global Screening Array (GSA) with Shared Cus-

tom Content (Illumina Inc.). After quality control (QC) and imputation,

a total of 7,778,465 autosomal SNPs with minor allele frequency

(MAF) ≥0.01 were retained in 898 individuals of European ancestry

for downstreamanalyses and genetic principal components (PCs)were

computed.15

2.3 Statistical analysis

All statistical analyses were completed using R (version 4.1.2). To com-

pare baseline cohort characteristics across three different diagnostic

groups (CTL, MCI, and AD), we used one-way analysis of variance

(ANOVA) and chi-squared tests to compare continuous and binary

variables, respectively.

2.3.1 Weighted Gene Correlation Network
Analysis (WGCNA)

We used the R package WGCNA16 to construct a weighted and

unsigned co-expression network for each individual omics layer. This

clustering method is based on calculating correlations between paired

variables. The resulting modules or groups of co-expressed analytes

were used to calculate module eigenprotein/eigenmetabolite metrics.

Theeigenprotein/eigenmetabolite-basedconnectivity (kME) valuewas

used to represent the strength of an analyte’s correlation with the

module. Analytes with high intramodular kME (ranging from top 90th

percentile to top 98th percentile depending on module sizes) within a

module were considered as hub proteins/metabolites.

The correlations between eigenprotein/eigenmetabolite and AD

endophenotypes were calculated using Spearman’s correlation, the

p values were corrected with false discovery rate (FDR) and cor-

rected p values are presented in a heat map. Associations between

AD endophenotypes and modules by controlling for age, sex, educa-

tion, and APOE ε4 genotype were also investigated. Furthermore, we

used one way ANOVA test to assess pairwise difference of eigenpro-

tein/eigenmetabolite among different AT(N) framework. Analysis of
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covariance (ANCOVA) test was also employed to assess the impact of

baseline difference for age, sex, and education.

2.3.2 Pathway enrichment analysis

Protein pathway enrichment analysis was performed using

WebGestalt software (http://www.webgestalt.org/). Briefly, pro-

teins within a module were assembled into a “protein list” and all

proteins measured were used as “background”. This enrichment

analysis was performed on the KEGG database. Metabolite enrich-

ment analysis was performed using the hypergeometric test. The

original 60 sub-pathways pre-defined by Metabolon based on the

KEGG database were employed as reference.17 We further per-

formed cell type enrichment analysis for CSF proteins using BEST tool

(http://best.psych.ac.cn/#).

2.3.3 AD PRS calculation

The genome-wide association study summary statistics from Kunkle

et al.18 (N = 63,926; 21,982 AD clinically ascertained cases, 41,944

controls) were used as the reference data. PRSwere constructed using

PRSice-2,19 with andwithout SNPs in theAPOE region (chr19,GRCh37

coordinates44912079 to45912079)20 where theEMIF-ADMBDindi-

vidual level genotyping data was used as the target PRS dataset. AD

PRS were computed using two p-value thresholds (PT), previously rec-

ommended for PRS including and excluding the APOE region: 5 × 10−8

(APOE region included) and 0.1 (APOE region excluded).21 SNPs in link-

age disequilibrium (r2> 0.001within a 250 kbwindow) were clumped,

retaining the SNPwith the lowest p-value.

2.3.4 Association of AD PRS and AT(N) with
modules and hubs

We used linear regression analyses to investigate the association of

AD PRS (as predictor) with eigenprotein/eigenmetabolite of AT(N)

framework-related modules and hub proteins/metabolites (with kME

varying from top 90th percentile to top 98th percentile) in these mod-

ules, adjusting for sex, age, and genetic PC1 to PC522 (to control

for population stratification). We used logistic regression analyses to

explore the association of AT(N) markers (as binary outcome) with

hubs, adjusting for sex, age, and APOE ε4 genotype.

2.3.5 Partial correlation network

We used age, sex, APOE genotype, AD PRS (PT = 0.1, APOE region

excluded) and all hub proteins/metabolites (with kME in the top 90th

percentile) as input features for the graphical LASSO algorithm and

extended Bayesian information criterion to determine the model com-

plexity for MCI conversion using the R package ‘huge.t’23 LASSO anal-

ysis was conducted using overlapping samples between proteomics

and metabolomics modalities (N = 154, with 77 individuals for each

of the non-converter and converter groups). Data were auto-scaled

prior to model-fitting. Partial correlation network of selected metabo-

lites, proteins, and genetic variables was computed and visualized with

R package ‘qgraph’. More details about the analysis are described in

Supplementarymethods.

2.3.6 Mendelian randomization

We finally investigatedwhether any of theA/T/Nhubs correlatingwith

MCI conversion status were causally linked to AD, by performing bi-

directional two-sampleMendelian randomization (MR) analyses imple-

mented in the “TwoSampleMR” R package24 and theMRpackage.25 All

MR analyses using AD as the outcome excluded the APOE region (see

above in the “AD PRS calculation” section for co-ordinates), whereas

MR analyses using AD as the exposure were performed both includ-

ing and excluding theAPOE region. A number of sensitivity analyses for

both single cis instrument MR and multiple (cis) instruments MR (Sup-

plementary methods) were applied to determine the robustness of the

MR findings.

3 RESULTS

3.1 Subject demographics

Table 1 shows the demographic information of subjects for each indi-

vidual omics analysis. Despite the difference in sample size for each

omics layer analysis, no significant difference was observed in the dis-

tribution of sex across different diagnostic groups. However, controls

(CTL group)were younger and had a lower proportion ofAPOE ε4 carri-
ers compared with theMCI and AD groups. Furthermore, controls had

longer education and higher MMSE score. In terms of AD pathology

markers, the ratio of abnormality of amyloid, P-tau, andT-tau inADand

MCI individuals was, as expected, significantly higher than in controls.

3.2 Co-expression network analysis of individual
omics modalities reveals modules linked to AD
endophenotypes

We first performed network analysis of the CSF proteome using

WGCNA. We found four modules (M) of co-expressed proteins. We

ranked modules based on size from largest (M1 turquoise; n = 526

proteins) to smallest (M4 yellow; n = 51 proteins) (Figure 2A). We

further investigated the biological significance of proteins in eachmod-

ule and found that three modules (M1 turquoise, M2 blue, and M4

yellow modules) were enriched in various pathways after FDR correc-

tion (Figure 2B). When checking cell type enrichment, we found that

all four modules were enriched with endothelial cells. Furthermore,

M1 turquoise module was enriched with oligodendrocytes, neurons,
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TABLE 1 Demographics of participants included inmulti-omics analysis by diagnosis

Characteristics Sample size CTL MCI AD pValue

CSF proteomics

n 371 123 154 94 NA

Agemean (SD), y 371 64.4 (7.8) 69.0 (7.4) 68.1 (8.1) <0.001

Male sex N (%) 371 66 (54) 77 (50) 49 (52) 0.83

APOE ε4+N (%) 371 45 (37) 78 (51) 59 (63) <0.001

MMSE (SD) 370 28.7 (1.3) 26.5 (2.7) 22.1 (3.8) <0.001

Educationmean (SD), y 371 12.4 (3.5) 10.8 (3.6) 10.1 (3.8) <0.001

Amyloid+N (%) 371 41 (33) 77 (50) 81 (86) <0.001

P-tau+N (%) 367 29 (24) 87 (58) 69 (73) <0.001

T-tau+N (%) 365 28 (23) 82 (55) 74 (80) <0.001

Plasma proteomics

n 972 372 409 191 NA

Agemean (SD), y 972 64.6 (8.0) 69.9 (8.0) 70.5 (8.8) <0.001

Male sex N (%) 972 209 (56) 216 (53) 103 (54) 0.64

APOE ε4+N (%) 972 139 (37) 195 (48) 116 (61) <0.001

MMSE (SD) 967 28.8 (1.2) 26.2 (2.6) 21.4 (4.7) <0.001

Educationmean (SD), y 972 12.8 (3.7) 11.0 (3.7) 10.3 (3.9) <0.001

Amyloid+N (%) 972 112 (30) 254 (62) 168 (88) <0.001

P-tau+N (%) 876 53 (19) 215 (53) 128 (67) <0.001

T-tau+N (%) 880 54 (19) 235 (58) 152 (80) <0.001

Plasmametabolomics

n 696 284 275 137 NA

Agemean (SD), y 696 65.0 (7.9) 70.0 (8.1) 70.1 (8.5) <0.001

Male sex N (%) 696 155 (55) 141 (51) 81 (59) 0.60

APOE ε4+N (%) 696 111 (39) 153 (56) 84 (61) <0.001

MMSE (SD) 691 28.8 (1.1) 25.7 (2.8) 21.5 (4.8) <0.001

Educationmean (SD), y 696 12.8 (3.8) 11.1 (3.4) 10.4 (3.7) <0.001

Amyloid+N (%) 696 114 (40) 197 (72) 122 (89) <0.001

P-tau+N (%) 641 44 (19) 161 (59) 93 (68) <0.001

T-tau+N (%) 641 45 (19) 177 (65) 107 (79) <0.001

Abbreviations: +, abnormality; AD, Alzheimer’s disease; CTL, cognitively normal controls; CSF, cerebrospinal fluid; MCI, mild cognitive impairment; MMSE,

Mini-Mental State Examination; P-tau, phosphorylated tau; SD, standard deviation; T-tau, total tau.

Note: One-way analysis of variance (ANOVA) and chi-squared tests were used to compare continuous and binary variables, respectively. Percentage of cases

is shown in brackets for male sex, APOE ε4 carriers and the abnormality of amyloid, P-tau, and T-tau.

and astrocytes. M2 blue and M4 yellow modules were enriched with

microglia (Figure 2A).

We then assessed the module correlations to AD endophenotypes.

We used amyloid-β as “A”, CSF P-tau levels as a biomarker of tau (“T”),

CSF T-tau as biomarkers of neurodegeneration (“N”), white matter

hyperintensity (WMH) volume as a biomarker for vascular disease bur-

den (“V”), CSF YKL-40 as a biomarker of inflammation (“I”), and MMSE

score as “C” (Figure 2A). Overall, two (M1 andM4) and three (M1, M2,

andM3)moduleswere significantly associatedwith “T” and “N”, respec-

tively, after FDR correction. Furthermore, three (M1, M2, and M4)

moduleswere associatedwith “I”. Noneof themoduleswere correlated

with “A”, “V”, “C,” orMCI conversion.

We used the same approach to analyse plasma proteomics and

metabolomics data. We obtained nine modules from plasma proteins

(Figure 2C, previously published26). Four modules (M2, M3, M4, and

M8) had positive correlations with “A”, “T,” and “N”. One (M3) and

four (M1, M3, M8, and M9) modules were associated with “V” and

“I”, respectively. In comparison, most plasma modules were associated

with “C” and MCI conversion. Furthermore, such associations were in

concordance with AT(N) markers correlations. For example, M2, M3,

M4, and M8 modules were positively associated with “A”, “T,” and “N”

but were negatively correlated with MMSE score. Furthermore, they

were increased in MCI converters (n = 103) compared with MCI non-

converters (n=223) (Figure2C).We further investigated thebiological
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3356 SHI ET AL.

F IGURE 2 Individual omics modules correlating to Alzheimer’s disease (AD) endophenotypes. (A)Weighted gene correlation network analysis
(WGCNA) of the CSF proteomics and cell type enrichment analysis of modules. (B) Enriched KEGG pathways of threemodules in CSF proteins. (C)
WGCNA of plasma proteomics. (D) Enriched KEGG pathways of threemodules in plasma proteins. (E)WGCNA of plasmametabolomics. (F)
Enriched KEGG pathways of twomodules in plasmametabolites. * and ** denote significant correlations p< 0.05 and p< 0.001 after false
discovery rate (FDR) correction respectively. CSF, cerebrospinal fluid; “A”, amyloid; “T”, tau; “N”, neurodegeneration; “V”, vascular; “I”, inflammation;
“C”, cognition;+, abnormality; P-tau, phosphorylated tau; T-tau, total tau;WMH, white matter hyperintensity; MMSE, mini mental state
examination; MCI, mild cognitive impairment
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SHI ET AL. 3357

significance of proteins in four AT(N) markers-related modules (M2,

M3, M4, and M8) and found that three of them were enriched in var-

ious pathways, including cytokine-cytokine receptor interaction and

metabolic pathways (Figure 2D).

For plasma metabolomics, we obtained seven modules (Figure 2E),

among which M4 module was negatively associated with “A”, “T,” and

“N” and M3 module was positively associated with “N”. Furthermore,

one (M1) and two (M1 andM4) modules were associated with “V” and

“I”, respectively. Two (M3 and M4) and four (M1, M5, M6, and M7)

modules were associated with “C” and MCI conversion respectively.

Furthermore, such associations were in concordancewith AT(N)mark-

ers correlations. We further investigated the biological significance of

metabolites in AT(N) markers-relatedmodules (M3 andM4) and found

that they were enriched in lipid pathways (Figure 2F).

When we further investigated the associations between AD

endophenotypes andmodules by controlling for age, gender, andAPOE

ε4 genotype, it was noticed that covariates affect the associations for

plasma metabolite modules, but not significantly for both plasma and

CSF protein modules (Table S1). The results remained the same when

education was added as an additional covariate (Table S2).

3.3 Correlation of individual omics modules with
the AT(N) framework

We dichotomized AT(N) biomarkers as normal or abnormal and cat-

egorized individuals into one of four groups: A-T-N- (no pathology),

A+TN- (amyloid pathology), A+TN+ (Alzheimer’s pathology), and

A-TN+ (SNAP).We then assessed the expressionof eachmodule eigen-

protein/eigenmetabolite across different ATN groups. For CSF protein

modules, we found that three modules (M1 turquoise, M2 blue, and

M4 yellow) showed a significant difference across ATN profiles from

one-way ANOVA test (Figure 3A-C). Four plasma proteinmodules (M2

blue,M3brown,M4yellow, andM8pink, Figure3D-G, adapted from26)

and three plasma metabolites modules (M4 yellow, M5 green, and

M3 brown, Figure 3H-J) showed a significant difference across ATN

profiles (results for pairwise comparison with FDR correction were

in Table S3).The results of ANCOVA test showed that these baseline

differences did not affect the results for CSF and plasma protein mod-

ules, however, the correlations with plasma metabolite modules were

attenuated except forM5 greenmodule.

3.4 Association between AT(N)
framework-related modules and AD PRS

We first selected AT(N) framework-related modules from each indi-

vidual omics for further analysis. We therefore selected three CSF

protein modules (M1 turquoise, M2 blue, and M4 yellow), four plasma

protein modules (M2 blue, M3 brown, M4 yellow, and M8 pink) and

three plasma metabolite modules (M3 brown mainly consisted of sph-

ingomyelins, plasmalogens, and ceramide; M4 yellow mainly consisted

of amino acids and plasmalogens; M5 green mainly consisted of phos-

phatidylethanolamine and phosphatidylcholine). The complete list of

proteins and metabolites that make up these modules are in Table

S4. We then analyzed the correlations between these ten modules as

well as between these modules and AD PRS. When analyzing asso-

ciations between modules, we found that the metabolite M5 green

module was negatively correlated with three plasma protein modules

(M2 blue,M3 brown, andM8 pink). Additionally, a negative correlation

was observed between metabolite M3 brown module and plasma pro-

tein M8 pink module. In contrast, a positive correlation was observed

between metabolite M4 yellow module and plasma protein M4 yel-

lowmodule as well as between metabolite M3 brownmodule and CSF

protein M4 yellow module. In addition, CSF protein M4 yellow mod-

ule was positively associated with plasma protein M3 brown module

(Figure 3K, Table S5-S7).

When we regressed these modules against AD PRS (adjusting for

sex, age, and genetic PC1 to PC5), we found that only plasma pro-

tein modules were significantly associated with AD PRS. In detail, two

plasma proteinmodules (M2 blue andM4 yellow)were positively asso-

ciated with PRS (APOE region included and excluded) at PT = 0.1.

Additionally, theM2bluemodulewas significantly associatedwith PRS

at 5×10−8 thresholdwithAPOE gene region included (Figure 3K, Table

S8). We also carried out a sensitivity analysis for education as an addi-

tional covariate, and the results remained the same as shown in Table

S9.

3.5 Association of hub proteins/metabolites with
AT(N) markers and AD PRS

We selected hub proteins/metabolites within AT(N) framework-

related modules and analyzed the association between these hub

proteins/metabolites (with kME varying from top 90th percentile to

top 98th percentile, Table S4), as well as the association of these hub

proteins/metabolite with AT(N) markers and AD PRS. When checking

the associations between hubmetabolites and proteins, we found that

there was a strong correlation between metabolites and plasma pro-

teins. In detail, fivemetabolites (four phosphatidylethanolamines (Pes),

and one LysoPE) correlated with most hub proteins after controlling

for multiple testing. Two metabolites (sphingomyelins [SM] d40:2 and

d41:2) in M3 brown module were correlated with proteins in plasma

M8 pink module and CSF M4 yellow module. In contrast, relatively

week correlations were observed between CSF and plasma proteins.

(Figure 4A, Table S10).

We also investigated the association of these proteins/metabolites

with AD PRS (APOE region included and excluded (Table S11)). For

plasma hub proteins, all 23 proteins inM2 bluemodule were positively

associated with AD PRS both at PT = 5 × 10−8 (APOE region included)

and PT = 0.1 (APOE region included and excluded). Similar trends were

observed formost proteins inM4 yellowmodule, with only six proteins

being positively associatedwith ADPRS at PT = 5× 10−8 (APOE region

included), whereas most proteins, except for three, were associated

with the PT = 0.1 AD PRS (with APOE and without APOE) (Figure 4A).

For hub metabolites, three SMs in M3 brown module, and three PEs in
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3358 SHI ET AL.

F IGURE 3 Protein andmetabolitemodules correlate to AT(N) profile and Alzheimer’s disease (AD) polygenic risk score (PRS). The relationship
of the AT(N) framework with (A-C) three CSF proteinmodules, (D-G) four plasma proteinmodules, (H-J) three plasmametabolite modules. (K)
Relation of AT(N) framework-relatedmodules with AD PRS (with andwithout APOE region) at two thresholds (PT= 5× 10−8 & 0.1); red and blue
links denoted positive and negative correlations, respectively. CSF, cerebrospinal fluid; SNAP, suspected non-Alzheimer’s pathology
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SHI ET AL. 3359

F IGURE 4 (A) Relation of hub proteins/metabolites with AT(N) markers and PRS; hub proteins/metabolites from three CSF protein modules
(M1 turquoise, M2 blue andM4 yellow), four plasma proteinmodules (M2 blue, M3 brown,M4 yellow, andM8 pink), and three plasmametabolite
modules (M4 yellow,M5 green, andM3 brown); red, blue, light red and light blue squares denoted positive association at FDR level (pFDR< 0.05),
negative association at FDR level (pFDR< 0.05), positive association at nominal level (p< 0.05, pFDR> 0.05), and negative association at nominal
level (p< 0.05, pFDR> 0.05), respectively. (B) Partial correlation network selected for hubmetabolites/proteins, genetic factors, andMCI
conversion. CSF, cerebrospinal fluid; FDR, false discovery rate; PRS, polygenic risk score; MCI, mild cognitive impairment
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3360 SHI ET AL.

TABLE 2 Examination of the causal relationship between hub proteins/metabolites and Alzheimer’s using bidirectionalMendelian
randomization

Inverse varianceweighting (IVW) estimate (multiple SNPs) orWald ratio estimates (single SNPs)

Forward (hub proteins/metabolites

→Alzheimer’s disease)

Backward (Alzheimer’s disease→ hub

proteins/metabolites) (APOE region
included)

Backward (Alzheimer’s disease→ hub

proteins/metabolites) (APOE region
excluded)

Protein/

metabolite

No. of

SNPs Slope (95%CI) pValue
No. of

SNPs Slope (95%CI) pValue
No. of

SNPs Slope (95%CI) pValue

PCSK7 1 27 0.88 (0.79–0.99) 0.029 20 0.07 (−0.15–0.01) 0.081 14 0.007 (−0.14–0.15) 0.921

PCSK7 1 28 0.96 (0.93–0.99) 0.027 NA NA NA 14 NA NA

RCN2 1 27 1.04 (0.87–1.24) 0.648 20 0.09 (0.02–0.16) 0.009 14 0.026 (−0.11–0.16) 0.702

EFNA2 1 27 1.04 (0.81–1.34) 0.741 20 −0.02 (−0.09–0.06) 0.651 14 −0.048 (−0.17–0.07) 0.442

AP-1 1 27 0.84 (0.67–1.04) 0.114 20 0.01 (−0.07–0.09) 0.803 14 −0.073 (−0.23–0.09) 0.369

COL15A1 1 27 1.15 (1.01–1.30) 0.032* 20 −0.007 (−0.08–0.07) 0.852 14 −0.006 (−0.15–0.13) 0.935

SM 48 ** 51 0.98 (0.5–1.32) 0.800*** 21 0.135 (0.03–0.24) 0.011 14 0.024 (−0.01–0.06) 0.183

SM 4** 52 1.019 (0.85–1.22) 0.835 21 0.069 (0.01–0.13) 0.024 14 0.055 (−0.01–0.12) 0.106

*This association was not replicated inmultiple-cis instrumentMR.

**The APOE region was excluded for all hub→ADMR analysis.

***Cochran’s Q p< 0.001.

M5 green module were associated with AD PRS (PT = 5 × 10−8) with

and without APOE region respectively. However, such associations did

not pass FDR correction (Figure 4A in light red). No associations were

observed between CSF hub proteins and ADPRS.

When investigating the association of hub proteins andmetabolites

with AT(N) markers, we found that most CSF and plasma hub pro-

teins were positively associated with amyloid, P-tau, and T-tau after

FDR correction. In contrast, hub metabolites were negatively associ-

ated with amyloid, P-tau, and T-tau only at nominal level except for

sphinganine (Figure 4A) (Table S12).

As an additional sensitivity analysis, we have also assessed the asso-

ciations between ATN markers and AD PRS (PT = 5 × 10-8 with APOE

region included and PT = 0.1withAPOE region excluded) after baseline

characteristics adjustment. The results showed that there were strong

associations between ATN markers and AD PRS (PT = 5 × 10−8) with

APOE region included, and such association depleted when the APOE

region was excluded (PT = 5× 10−8) (Table S13).

3.6 Hub molecules integration in MCI conversion

Having demonstrated the association of hub proteins/metaboliteswith

AT(N) markers and AD PRS, we then sought to find a multimodal sig-

nal that might shed insights on MCI conversion. To do this, we first

used LASSO algorithm and extended Bayesian information criterion to

select features fromage, sex, ADPRS (PT =0.1, APOE region excluded),

APOE ε4 genotype and all plasma hub metabolites/proteins (with kME

in the top 90th percentile, Table S14) to predict MCI conversion. As

a result, AD PRS, APOE ε4 genotype and several metabolites/proteins

were selected from LASSO. Of the metabolites/proteins, two SMs,

two Pes, and one protein (proprotein convertase subtilisin/kexin type

7 [PCSK7]) from the blue module were negatively correlated with

MCI conversion, while the rest of the four selected proteins were

positively associated with MCI conversion, including reticulocalbin 2

(RCN2) from the blue module, and three proteins from the brown

module: ephrin receptor tyrosine kinase A2 (EFNA2), collagen alpha-

1(XV) chain (COL15A1) andAP-1 complex subunit gamma-like2 (AP-1)

(Figure 4B, Table S15). In addition, correlations were also observed

between metabolites/proteins and AD PRS and APOE ε4 genotype

(Figure 4B).

3.7 Causal links of hub proteins/metabolites with
AD

We finally used a bidirectional two-sample MR to determine whether

there was evidence for a causal relationship ofMCI conversion related

hub proteins/metabolites with Alzheimer’s disease. Using the Wald

ratio estimate, we observed evidence for associations between PCSK7

and AD, as well as between COL15A1 and AD using summary pQTL

data from Sun et al.27. In sensitivity analyses, the causal relationship

between PCSK7 and AD was replicated using summary data from

an independent pQTL study by Suhre et al.28 (Table 2). Further sup-

port for causal effects for the association of PCSK7 with AD came

from multiple-cis instrument MR (p < 0.001 for IVW, 95% CI = 0.8

to 0.9, N SNPs = 4, Figure S4), although this was not the case for

COL15A1 (Table S16). Multiple-cis instrument MR robust methods

(MR-Egger andweighted-medianMR) and leace-one-out analyses indi-

cated that the estimates for PCSK7 were consistent with the Wald

ratio estimates in both direction and magnitude, and showed no evi-

dence for horizontal pleiotropy or evidence of heterogeneity, further

supporting the validity of the MR assumptions (Table S16). In reverse

 15525279, 2023, 8, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.12961 by B

cu L
ausanne, W

iley O
nline L

ibrary on [15/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SHI ET AL. 3361

MR analysis, we identified a causal association between Alzheimer’s

disease, RCN2 and SM; however, these associations were driven by

the APOE isoform (Table 2, Figure S1-3). Robust methods and sen-

sitivity analyses provided additional support for such causal effects

(Table S16).

4 DISCUSSION

Alzheimer’s disease is characterized by non-linear and heterogeneous

biological alterations. Multi-level biological networks underlie AD

pathophysiology, including but not limited to proteostasis (amyloid-β
and tau), synaptic homeostasis, inflammatory and immune responses,

lipid and energy metabolism, and oxidative stress.29 Therefore, a

systems-level approach is needed to fully capture AD multifaceted

pathophysiology. Here we used unbiased and high throughput multi-

omics profiling of AD. We applied correlation network analysis to

identify modules linked to a variety of AD endophenotypes includ-

ing “A”, “T”, “N”, “V”, “I,” and “C”. We found that four modules obtained

fromCSF proteins were associated with at least one pathology marker

of “T” (P-tau), “N” (T-tau), and “I” (YKL-40). Furthermore, the three

“I” related modules (M1 turquoise, M2 blue, and M4 yellow) were

enriched in either microglia or astrocytes, which are key cellular

drivers and regulators of neuroinflammation,30 further indicating the

consistency between correlation network analysis and cell type enrich-

ment analysis. In addition, of the four modules, three were enriched

in various pathways which have been reported to be associated

with Alzheimer’s, such as Ras signaling pathway,31 axon guidance,32

cell adhesion molecules (CAMs)33, and lysosome pathway,34 further

demonstrating the relatedness of these proteins with AD.

For plasma metabolomics, we found that the M3 brown module

was associated with “N” (T-tau) and “C” (cognition) and enriched for

sphingolipid and ceramide metabolism. These findings align with liter-

ature report as the lipids within this module have been reported being

associatedwith cognitive progression35 and hippocampal atrophy.36 In

addition, the M4 yellow module was associated with five AD pathol-

ogy markers (“A”, “T”, “N”, “I,” and “C”) and enriched in three pathways

including gamma-glutamyl amino acid, plasmalogen, and polyamine

metabolism. These findings are also consistent with previous reports

showing that these pathwayswere associatedwith AD pathogenesis37

and inflammatory cascade.38

Overall, adjustments for age and sex did not affect any of the

associations of AD endophenotypes/AT(N) markers with CSF and

plasma protein modules, although some of the associations with

plasma metabolite modules were attenuated. Nevertheless, covariate

adjustments did not affect any of the associations at hub level.

Two modules (M2 blue and M4 yellow) derived from plasma pro-

teomics were associated with AD PRS (both with and without APOE

gene) at 0.1 level. Of the twomodules, theM2 bluemodule was associ-

atedwith PRS at 5×10−8 thresholds onlywhen the PRS included SNPs

in the APOE region, indicating that such association may be driven by

APOE. Hub proteins in the M2 blue module were also correlated with

the PRS at 5 × 10−8 threshold only when SNPs in the APOE region

were included, further indicating that associations may be driven by

APOE. For plasma metabolomics, three sphingomyelins (SMs) from the

M3 brownmodulewere associated PRS (PT = 5× 10−8) nominally only

when the APOE region was included, also indicating APOE gene depen-

dence. This is in line with literature findings that nominal association

between SMs and PRSwas reported.39

Using the Lasso algorithm, wewere able to identify themain closely

correlated networks for hub metabolites, proteins, and genetic fac-

tors that associated withMCI conversion. Interestingly APOE andMCI

conversion status were correlated to PCSK7 and sphingomyelins. SMs

are lipids that have been previously associated with cognitive pro-

gression in AD.40–42 AD PRS was associated with a different lipid

class, which are the plasmalogen phosphatidylethanolamines.43,44 The

protein EFNA245 was associated to bothMCI converter and ADPRS.

Since we wanted to explore these associations further, we proceed

to investigate the causal relationship between selected molecules that

associated withMCI conversion status and AD. OurMR analyses high-

lighted a potential causal relationship between plasma PCSK7 and AD,

which was robust in both single and multiple cis instruments MR anal-

yses and was replicated using an independent pQTL dataset. We also

found a causal relationship in the opposite direction, whereby AD sta-

tus is potentially causally linked to RCN2. This protein is known to be

involved in vascular disease and it has been proposed as a therapeu-

tic target for atherosclerosis.46 Finally, although we didn’t have GWA

summary data for the SM and PE hubs examined in this study, our MR

analyses showed that ADwas causally linked to SMNMR levels, as pre-

viously shown.47 In further sensitivity analyses, it was shown that the

MR associations between AD, RCN2, and SM were attenuated when

we removed variants in the APOE locus, highlighting that genetic liabil-

ity to AD via the APOE is associated with the levels of RCN2 and SM.

While the association of AD and SM was validated in one additional

cohort (Table 2), the findings with RCN2 need further exploration.

Our findings have translational potential, particularly for PCSK7

for which studies in Alzheimer’s disease are lacking. The gene that

encodes this convertase, also named prohormone convertase 7, is

found in the BACE1 locus region which encompasses several genes

(PCSK7, RNF214, BACE1, CEP164).48 PCSK7 has also been proposed

as a key protein for endoproteolytic activation of ADAM10.49 Remark-

ably, Yang et al.50 reported a causal association between CSF PCSK7

levels and age of Alzheimer’s disease onset.

There are limitations for our study. First, the population in this

study is of European ancestry and mainly included participants who

had high ratio of amyloid pathology and APOE ε4 carriers. Therefore,

they are not necessarily representative of the broader community. Val-

idation in independent cohorts and particularly in other ethnic groups

and community-based populations are needed to see if the results are

generalizable.

Despite this, our study is the largest studywe are aware of to report

multi-omics relating to AD endophenotypes, particularly to the AT(N)

framework. Our findings offer new insights into changes in individual

proteins/metabolites linked to AD endophenotypes, the AT(N) frame-

work and AD PRS. The nominated causal proteins/metabolites may

be tractable targets for mechanistic studies of AD pathology. Further-
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more, they may represent promising drug targets in the early stages

of AD.
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