
Jo
ur

na
l o

f C
el

l S
ci

en
ce

RESEARCH ARTICLE

Analysis of S. pombe SIN protein association to the SPB reveals
two genetically separable states of the SIN

Paulina Wachowicz1, Anastasia Chasapi2, Andrea Krapp1, Elena Cano del Rosario1, Daniel Schmitter3,
Daniel Sage3, Michael Unser3, Ioannis Xenarios2, Jacques Rougemont4 and Viesturs Simanis1,*

ABSTRACT

The Schizosaccharomyces pombe septation initiation network (SIN)

regulates cytokinesis, and asymmetric association of SIN proteins

with the mitotic spindle pole bodies (SPBs) is important for its

regulation. Here, we have used semi-automated image analysis to

study SIN proteins in large numbers of wild-type and mutant cells.

Our principal conclusions are: first, that the association of Cdc7p

with the SPBs in early mitosis is frequently asymmetric, with a bias

in favour of the new SPB; second, that the early association of

Cdc7p–GFP to the SPB depends on Plo1p but not Spg1p, and is

unaffected by mutations that influence its asymmetry in anaphase;

third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p

and by activation of the spindle assembly checkpoint, and is

promoted by Rad24p; and fourth, that the length of the spindle,

expressed as a fraction of the length of the cell, at which Cdc7p

becomes asymmetric is similar in cells dividing at different sizes.

These data reveal that multiple regulatory mechanisms control the

SIN in mitosis and lead us to propose a two-state model to describe

the SIN.
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INTRODUCTION
Asymmetric events are of fundamental importance in biology.

Asymmetry of centrosome behaviour and inheritance is also

implicated in an increasing number of cellular and developmental

processes (Knoblich, 2010; Tajbakhsh et al., 2009).

Schizosaccharomyces pombe is an excellent model for the

analysis of the conserved basic mechanisms of cell division. S.

pombe cells are rod-shaped, grow by tip-elongation and divide by

binary fission. As in higher eukaryotes, a contractile actomyosin

ring (CAR) is important for cytokinesis (reviewed by Ishiguro,

1998; Pollard and Wu, 2010) and acts as a ‘guide’ for synthesis of

the division septum (Proctor et al., 2012). The position of the

division plane is determined by signalling from the nucleus and

the cell tips (reviewed by Goyal et al., 2011; Oliferenko et al.,

2009). The coordination of cytokinesis with other mitotic events

is assured by a conserved network of protein kinases known as

the septation initiation network (SIN). The SIN is one of two

conserved nuclear Dbf2-related (NDR) kinase signalling

pathways in S. pombe, the other being the morphology network

(MOR). As in other eukaryotes, they control cell proliferation and

growth (reviewed by Gupta and McCollum, 2011). Loss of SIN

signalling causes failure of cytokinesis, generating multinucleated

cells (Nurse et al., 1976). In contrast, continuous SIN signalling

results in multiseptated cells (Minet et al., 1979). Ectopic

activation of SIN signalling induces CAR and septum

formation during any stage of the cell cycle (Schmidt et al.,

1997), emphasising the importance of coordinating cytokinesis

with mitosis.

The SIN plays multiple roles during cytokinesis (reviewed by

Goyal et al., 2011; Johnson et al., 2012; Roberts-Galbraith and

Gould, 2008) and mitotic commitment (Grallert et al., 2012). The

spindle pole body (SPB) serves as a microtubule-organising

centre, and coordination point for cell cycle regulators (Grallert

et al., 2012; Grallert et al., 2013; Hagan, 2008). Association of

SIN proteins to the SPB plays an important part in the regulation

of the SIN (reviewed by Johnson et al., 2012; Simanis, 2003). SIN

proteins associate with a tripartite scaffold (Cdc11p–Sid4p–

Ppc89p), which is essential for signalling (Chang and Gould,

2000; Krapp et al., 2001; Morrell et al., 2004; Rosenberg et al.,

2006; Tomlin et al., 2002). The core SIN components are three

protein kinases (Cdc7p, Sid1p and Sid2p), and their regulatory

subunits (Spg1p, Cdc14p and Mob1p, respectively) (Fankhauser

and Simanis, 1993; Fankhauser and Simanis, 1994; Guertin et al.,

2000; Hou et al., 2000; Salimova et al., 2000; Schmidt et al.,

1997; Sparks et al., 1999). Signalling is mediated by the small

GTPase Spg1p, which is regulated by the GTPase-activating

protein (GAP) Cdc16p that interacts with Spg1p through the

scaffold Byr4p, (Fankhauser et al., 1993; Furge et al., 1998;

Minet et al., 1979; Song et al., 1996), Etd1p (Daga et al., 2005;

Garcı́a-Cortés and McCollum, 2009; Lahoz et al., 2010) and the

conserved kinase Plo1p (Rachfall et al., 2014; Tanaka et al.,

2001). Immunoelectron microscopy has shown that Ppc89p,

Sid4p (Rosenberg et al., 2006) and Sid2p (Sparks et al., 1999) are

localized at the cytoplasmic side of the SPB, suggesting that SIN

signalling is activated in the cytoplasm.

The intensity of some SIN protein SPB-associated signals

changes during mitosis (Cerutti and Simanis, 1999; Feoktistova

et al., 2012; Garcı́a-Cortés and McCollum, 2009; Simanis, 2003;

Sohrmann et al., 1998; Wu and Pollard, 2005). In anaphase B,

Cdc7p (Grallert et al., 2004; Sohrmann et al., 1998) and Sid1p

(Guertin et al., 2000) associate with the new SPB (nSPB),

whereas Byr4p and Cdc16p associate with the old SPB (oSPB)

(Cerutti and Simanis, 1999; Li et al., 2000). Mutants that

compromise asymmetric distribution of SIN proteins on the

SPBs during mitosis deregulate septation (Garcı́a-Cortés and

McCollum, 2009; Singh et al., 2011; Sohrmann et al., 1998). If
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the SIN fails to signal, then SIN protein asymmetry in anaphase is
not established. Therefore, it has been proposed that there is a

feedback loop within the SIN, mediated by Sid2p and that
phosphorylation of the scaffold protein Cdc11p by Sid2p
contributes to this regulation (Bajpai et al., 2013; Feoktistova
et al., 2012; Johnson et al., 2012).

The data presented in this study suggest there are at least two,
genetically separable, states of the SIN; an early state that is
dependent upon Plo1p for its establishment, and a late state,

which is dependent upon Spg1p.

RESULTS
The RodCellJ ImageJ plugin (Schmitter et al., 2013) was used to
examine large numbers of mitotic S. pombe cells. The cells express

a tagged SIN protein together with mCherry-tagged Pcp1p (Pcp1p–
CHY hereafter) to visualise SPBs, and the kinetochore marker

mCherry-tagged Cnp1p as required (Cnp1p–CHY hereafter)
(Alvarez-Tabarés et al., 2007); the different intensity of the
Cnp1p–CHY and Pcp1p–CHY signals allows them to be
differentiated in early mitosis. To facilitate comparison between

cells of different size, the data are presented as the ratio of the SPB
intensities plotted against the separation of the SPBs, expressed as
a fraction of the cell length (length fraction; LF; Fig. 1C). The raw

data were divided into ten bins with a step size of LF0.1. To
facilitate the analysis and presentation of the data, three states were
defined; symmetry as ƒ2-fold difference between the GFP signals

on the two SPBs; transition as .2-fold but ,4-fold; asymmetric as
§4-fold difference.

Fig. 1. Analysis of the distribution
of Cdc7p–GFP in wild-type and
mutant cells. (A) Images of the
indicated strain were captured at 1-
min intervals. The yellow asterisks
indicate early mitotic cells in which
the intensity ratio of Cdc7p–GFP at
the SPBs differs significantly. The
blue dot indicates anaphase B onset.
(B) cdc7-GFP pcp1-CHY cells were
filmed through mitosis after
synchronisation. The intensity of the
Cdc7p–GFP signal at the oSPB (red)
and nSPB (green) was determined,
and plotted against time. The plots for
multiple cells were aligned using the
increase of intensity at the nSPB. For
clarity, the data for oSPB and nSPB
are plotted on separate axes. Note
that the ‘wishbone’ as the SPBs
separate is not symmetrical. The
dotted lines indicate the region of the
graph used to calculate the rate of
change. (C) Left, cartoon
representation of ‘length fraction’
(LF). To facilitate comparison
between cells of different length,
spindle length is expressed as a
fraction of cell length. Right, the
indicated strain was analysed as
described in the Materials and
Methods. The ordinate indicates the
length fraction and the abscissa the
fraction of cells in which the ratio of
the SPB-associated signals are
symmetric, asymmetric, transition or
lacking a detectable signal. The
colour key is shown underneath.
LF0.1 indicates 0.1ƒLF,0.2. The
bars labelled ‘early’ and ‘late’ indicate
the SIN states proposed in the
discussion. (D) Histogram
representing the initial association of
Cdc7p–GFP with the SPB (LF,0.1)
in wild-type and selected mutant cells.
The colour code is the same as B.
(E) Nmt41-slp1 cells expressing
mCherry-tagged Atb2 (hereafter
Atb2-CHY) and Cdc7–GFP were
arrested as described in the Materials
and Methods. Scale bars: 10 mm.
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SIN protein association with the SPB in mitosis in
wild-type cells
Sid4p–GFP, Cdc11p–GFP, Spg1p–GFP and Cdc7p–GFP
The SPB-associated signals of Cdc11p–GFP (supplementary
material Fig. S1A) and Sid4p–GFP (supplementary material
Fig. S1B) were symmetric in the vast majority of cells throughout

mitosis, as described previously (Chang and Gould, 2000; Krapp
et al., 2001). Spg1p–GFP is symmetrical in the majority of
cells throughout mitosis (supplementary material Fig. S1C);

its intensity increased 1.5-fold at both SPBs during mitosis
(supplementary material Fig. S1D,E). Cdc11p–GFP showed a
similar increase, whereas Sid4p–GFP remained constant (data not

shown). This is consistent with the slow turnover of Sid4p–GFP
(Feoktistova et al., 2012) and indicates that the asymmetry of SIN
proteins is not due to changes in the level of scaffold proteins at

the SPBs.
The essential effector of Spg1p, Cdc7p (Schmidt et al., 1997),

was chosen as the primary reporter of SIN protein behaviour. It
associates with both SPBs in early mitosis, then only with the

nSPB during anaphase B (Grallert et al., 2004; Sohrmann et al.,
1998) (Fig. 1A).

As cells progressed through mitosis, the Cdc7p–GFP signal at

the oSPB decreased, whereas the nSPB brightened (Fig. 1B),
consistent with previous studies (Cerutti and Simanis, 1999;
Garcı́a-Cortés and McCollum, 2009). The rate was similar at

both SPBs (3.660.5 AU min21 for the nSPB and 24.16

0.6 AU min21 at the oSPB). The signal at the oSPB began to
decline 2 min before the nSPB brightened, suggesting that

asymmetry initiates at the oSPB.
In wild-type cells, the fraction of asymmetric Cdc7p–GFP

signals increased with SPB separation (Fig. 1C). At LF0.6
(<8.5 mm spindle in a 14 mm wild-type cell) .95% of cells

showed an asymmetric signal, rising to .99% at LF0.8
(<11.5 mm spindle in wild-type). These data are consistent
with previous analysis of wild-type cells (Feoktistova et al.,

2012).

SPB association of Cdc7p–GFP in early mitosis is asymmetric
Filming revealed an initial asymmetric SPB association of
Cdc7p–GFP in 25 of 33 cells (76%); two cells (6%) had signals
on both SPBs, with asymmetric intensity, and six cells (18%)
showed a symmetric signal. Cdc7p–GFP associated with the

nSPB first in 21/27 cells (78%) (Fig. 1D). Examples of Cdc7p–
GFP loading first to the nSPB (supplementary material Fig. S1F)
and oSPB (Fig. 1A) are presented. Thus, the initial association of

Cdc7p–GFP with SPBs is asymmetric in <80% of cells, with a
<3:1 bias towards the nSPB.

These films also revealed transient fluctuations in the relative

intensity of the SPB-associated Cdc7p–GFP signal in some
(Fig. 1A) but not all cells (supplementary material Fig. S1F),
which might explain why ,40% of cells in single timepoint

images showed a significantly asymmetric signal in early mitosis
(Fig. 1C; LF0.2 to 0.3, corresponding to SPB separation of ,3–
4 mm in a 14 mm wild-type cell). This might not have been
observed previously because they were performed by indirect

immunofluorescence (Sohrmann et al., 1998).
Given that Cdc7p–GFP asymmetry occurs in anaphase, a

conditionally expressed allele of slp1 (also known as CDC20)

(Petrova et al., 2013) was used to investigate whether SPB
association of Cdc7p–GFP requires the anaphase-promoting
complex/cyclosome containing Slp1p (APC/CSlp1p). Expression

of slp1 was silenced in the strain atb2-CHY cdc7–GFP (hereafter

referred to as slp1-OFF). Cdc7p–GFP associated with both SPBs
in 95% of the arrested cells (240 of 253 cells; Fig. 1E); 85% of

these showed a symmetric signal (LF0.1 and 0.2; data not shown).
Given that the initial SPB association of Cdc7p–GFP is often
asymmetric, the difference between these data and those in
Fig. 1C might have arisen because the slp1-OFF cells are arrested

for an extended period in metaphase, giving sufficient time for
the Cdc7p–GFP to equalise on the SPBs.

The initial SPB association of Cdc7p–GFP is not influenced by
mutants affecting its anaphase B asymmetry
The STRIPAK-related SIN-inhibitory phosphatase complex (SIP)

is required to establish Cdc7p–GFP and GFP–Sid1p asymmetry
in anaphase (Singh et al., 2011). The SPB association of Cdc7p–
GFP in early mitosis was asymmetric in seven of eight csc1-D

cells examined (Fig. 1D). Cdc7p–GFP remained symmetric in the
majority of cells in the later stages of mitosis, as expected
(Fig. 2C), although a minority of cells displayed a Cdc7p–GFP
signal that differed by .4-fold. Consistent with earlier studies

(Singh et al., 2011), the signal intensity increased at both SPBs as
cells progressed through mitosis (data not shown).

As described previously (Schmidt et al., 1997; Sohrmann et al.,

1998), association of Cdc7p–GFP with the SPBs in anaphase was
mostly symmetric in cdc16-116 (compare Fig. 2B,D). As cells
entered mitosis 17 of 21 cdc16-116 cells (79%) showed an

asymmetric SPB association of Cdc7p–GFP with the SPBs, one
cell (5%) showed association with both SPBs, with a stronger
signal on one pole than the other, and three cells (14%) showed a

symmetric signal (Fig. 1D). Therefore, despite the reduction of
GAP function, the initial association of Cdc7p–GFP with the SPBs
was asymmetric in .80% of the cells. No Cdc7p–GFP signal was
observed prior to SPB separation (data not shown). Given that the

Cdc7p–GFP signal is symmetric in the majority of cdc16-116 cells
in anaphase compared to Cdc7p–GFP in wild-type cells at 36 C̊, it
was not possible to determine which SPB initially loaded Cdc7p–

GFP. The Cdc7p–GFP signal reached maximum intensity more
rapidly in cdc16-116 than in wild-type cells (Fig. 2G; LF0.1–0.4).

The early loading of Cdc7p–GFP was still asymmetric in sid2-

250 cells at 36 C̊ (eight of 14 cells), indicating that Sid2p is not
obligatory for the asymmetric early loading of Cdc7p–GFP
(Fig. 1D). Consistent with previous studies (Feoktistova et al.,
2012; Mishra et al., 2005), Cdc7p–GFP remained largely

symmetric in sid2-250 anaphase cells both at 25 C̊ (Fig. 2E)
and 36 C̊ (Fig. 2F). The intensity increased at both SPBs until
LF0.3 and then plateaued (Fig. 2H). Taken together, these data

are consistent with the idea that the association of Cdc7p with the
SPB early in mitosis is not affected by the regulators of its
asymmetric distribution in anaphase. However, although the csc1-

D mutant is a null allele, sid2-250 and cdc16-116 are ‘tight’
conditional alleles. Thus, we cannot formally exclude the
possibility that the latter mutants have residual activity that still

permits normal loading of Cdc7p–GFP at mitotic onset. Future
analysis of null mutants will be necessary to examine this.

Spg1 is not required for Cdc7p association with the SPB in early
mitosis
Inactivation of Spg1p revealed that Cdc7p–GFP was still
associated with the SPB in early mitosis in spg1-B8 at 36 C̊

(compare Fig. 2I with Fig. 2B). In late mitosis, the intensity of
the signal at the nSPB became fainter, rather than brighter
(Fig. 2H), and the signal remained symmetrical in .30% of cells

(Fig. 2I). Cytokinesis failed in the mutant cells, indicating that
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Spg1p had been inactivated (data not shown). If cells were
incubated for 5 h at 36 C̊ before analysis, we did not observe any
SPB-associated Cdc7p–GFP signal (data not shown), consistent

with previous studies (Sohrmann et al., 1998). Thus, in the first
cycle after inactivation of Spg1p, the early mitotic association of
Cdc7p-GFP with the SPB is independent of Spg1p, and the late

mitotic association and transition to asymmetry requires Spg1p
function.

The kinase POLO is required for Cdc7p–GFP SPB association in early
mitosis but not in anaphase
The conserved POLO-like kinase Plo1p has multiple roles during
mitosis (Bähler et al., 1998; Ohkura et al., 1995). Epistasis

analysis places plo1 upstream of the SIN (Tanaka et al., 2001);
Plo1-ts4 is a hypomorphic allele whose primary defect is in SIN
regulation. There was no detectable Cdc7p–GFP signal at the

SPBs in a large fraction of early mitotic plo1-ts4 cells at 36 C̊
[Fig. 3A,B; 79% of LF0.1 cells (n5279), and 73% of LF0.2

(n5193)]; when a signal was observed, it was asymmetric. This
was recapitulated in the plo1-as3 mutant (Grallert et al., 2012)
(data not shown). Mixing of early mitotic cdc7-GFP and cdc7-

GFP plo1-ts4 cells at 36 C̊ showed that Cdc7p–GFP was
detectable in wild-type cells at 36 C̊ (Fig. 3C). However, by
LF0.6, more than 80% of cells had an asymmetric signal with

Cdc7p–GFP on one SPB in anaphase B (compare Fig. 3B with
Fig. 2B). The signal intensity in anaphase was comparable to
wild-type (Fig. 3D). Thus, Plo1p is required for the SPB

recruitment of Cdc7p–GFP at the onset of mitosis. Furthermore,
the appearance of Cdc7p at one SPB in anaphase B does not
require SPB association of Cdc7p earlier in mitosis.

Symmetric SPB association of Mob1p–GFP in early mitosis
requires Plo1p
The Mob1p–Sid2p complex (Hou et al., 2000; Salimova et al., 2000)

was examined using mob1-GFP (Salimova et al., 2000), because
sid2-GFP (Sparks et al., 1999) is functionally compromised

Fig. 2. Analysis of Cdc7p–GFP
distribution in wild-type and
mutant cells. Cells of the indicated
strains were synchronised and
analysed at the indicated
temperatures as described in the
Materials and Methods.
(A–F, I) Analysis of Cdc7p–GFP SPB
localisation presented as described
for Fig. 1C. A is identical to Fig. 1B,
and is re-presented here for
convenience. (G,H) Box plots of the
intensity of Cdc7p–GFP at the
brighter SPB. Cells were
synchronised and samples were
taken for analysis as they progressed
through mitosis. The intensity
(A.U., arbitrary units) is plotted on the
ordinate, LF on the abscissa. The box
shows 25–75% range for the
population, the line indicates the
median. The bars indicate 10% and
90% range for the population, and
dots indicate more extreme
individual values.
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(Grallert et al., 2012; Salimova et al., 2000). Mob1p–GFP associated
with both SPBs in most cells, exceeding 98% by LF0.7 (Fig. 3F,G),
consistent with previous observations (Hou et al., 2000; Salimova
et al., 2000). Filming of Mob1–GFP revealed some fluctuations in

the relative intensity of the two SPBs throughout mitosis (Fig. 3E).
In the early stages of mitosis, the Mob1p–GFP signal was seen on
both SPBs in <75% of cells and on one SPB in <25% cells. This

was not noted previously (Hou et al., 2000; Salimova et al., 2000),
and is most likely due to improvements in detection. Reduction of
Plo1p activity increased the fraction of cells with asymmetric and

transition Mob1p–GFP early in mitosis (LF0.1–0.4) compared to
wild-type (compare Fig. 3H to Fig. 3G). Furthermore, no signal was
detected in ,25% of LF0.1 cells, compared to 2% in wild-type.

However, in late anaphase cells (LF.0.8), the fraction of cells with
a symmetrical signal was similar to wild-type. Thus, decreased plo1

activity affects the early, but not the late mitotic SPB association of
Mob1p–GFP, as observed for Cdc7p–GFP.

The association of GFP–Sid1p with the SPB is spatially unstable in
early mitosis
Approximately 90% of cells had an asymmetric GFP–Sid1p
signal at the SPB at LF0.6, rising to .98% at LF0.7 (Fig. 4A–C),

consistent with previous studies (Guertin et al., 2000). However,
.50% of cells with short spindles (LF0.1–0.3) displayed an SPB-
associated GFP–Sid1p signal (Fig. 4B,C). Filming revealed that

the association of GFP–Sid1p with the SPB was spatially unstable
in early mitosis, with a signal seen at one SPB, both SPBs or not
at all, in sequential frames (Fig. 4A), before stabilising at the

nSPB in anaphase B (note that ‘stable’ in this context indicates a
fixed location for the protein). Faint, symmetric signals in early

Fig. 3. Analysis of SIN proteins in
mitosis and effect of loss of plo1
function. The marked strains were
analysed at the indicated
temperature. The graphs in B and F–
H are presented as described for
Fig. 1C. (A) Localisation of Cdc7p–
GFP in plo1-ts4 cells. Cells were
synchronised and images were taken
every minute as cells progressed
through mitosis. The blue dot
indicates anaphase onset. Note the
absence of Cdc7p–GFP in early
mitosis, followed by the asymmetric
appearance of Cdc7p–GFP in
anaphase B. (B) Analysis of Cdc7p–
GFP in plo1-ts4 at 36˚C; the wild-type
control is shown in Fig. 2B. (C) plo1-
ts4 cdc7-GFP pcp1-CHY cnp1-CHY

cells were mixed with plo1+ cdc7-

GFP pcp1-CHY hht1-CFP cells,
synchronised, incubated at 36˚C and
images were taken in mitosis. Note
the presence of a Cdc7p–GFP signal
on the SPBs of the plo1+ cell (blue
nuclear signal) and its absence from
the plo1-ts4 cell. (D) Box plot of the
Cdc7p–GFP signal in the indicated
mutants presented as described in
Fig. 2G. (E) Analysis of Mob1p–GFP.
Cells were synchronised and images
were taken every minute as cells
progressed through mitosis. Note the
transient fluctuation of signal intensity
in frames 11, 23 and 24. The blue dot
indicates anaphase onset. (F–H) The
distribution of Mob1p–GFP was
analysed in the indicated strains.
Scale bars: 10 mm.
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noted previously (Guertin et al., 2000). Inactivation of Plo1p
decreased the number of cells with a GFP–Sid1p signal in early
mitosis (LF,0.4), and increased the number of cells without a

detectable signal in anaphase (Fig. 4D; supplementary material
Fig. S2A). GFP–Sid1p was absent from the SPBs in most slp1-

OFF cells [Fig. 4E; no signal in 93% of cells (n5269); signal on

one SPB in 2% of cells; signal on both SPBs in 5% of cells].
This demonstrates that the APC/CSlp1p must function for stable
recruitment of GFP–Sid1p to the SPB.

The GAP Byr4p–Cdc16p
The signal of Cdc16p–GFP became very faint or undetectable on
both SPBs shortly after SPB separation (Fig. 4G), reappearing on
the oSPB in anaphase, as described previously (Cerutti and

Simanis, 1999). A significant fraction of cells in early mitosis had
no detectable Cdc16p–GFP signal. The fraction of cells with an
asymmetric signal increased as cells progressed through mitosis

(Fig. 4F).
Filming of GFP-byr4 cells revealed that it remained associated

with the SPBs early in mitosis, then became faint or undetectable

Fig. 4. Analysis of GFP–Sid1p and
Cdc16p–GFP. (A) Localisation of
GFP–Sid1p during mitosis. Cells
were synchronised and images were
taken every minute as cells
progressed through mitosis. The blue
dot indicates anaphase B onset. In
frames 10–29, the red asterisks
indicate the presence of GFP–Sid1p
on the SPB. (B–D) Cells were
synchronised and the intensity of
GFP–Sid1p was analysed. The
graphs are presented as described
for Fig. 1C. (E) The indicated strain
was arrested as described in the
Materials and Methods. Note the
absence of GFP–Sid1p from the
SPB. (F) The indicated strain was
synchronised and the intensity of
Cdc16p–GFP was analysed. The
graph is presented as described for
Fig. 1C. (G) Localisation of Cdc16–
GFP. Cells were synchronised and
images were taken every minute as
cells progressed through mitosis. The
blue dot indicates anaphase B onset.
Scale bars: 10 mm.
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and subsequently reappeared at the oSPB (Fig. 5A). Some spatial
instability of the GFP–Byr4p signal was seen as the signal

declined. In LF,0.1 cells, 52% of signals were symmetric, 19%
were transition and 26% were asymmetric; no signal was
observed in 3% of cells. No signal was detected in 18 and 15%
of LF0.2 and LF0.3 cells, respectively (Fig. 5B). Cells with

longer spindles (Fig. 5B; LF§0.6) showed predominantly
asymmetric signals, as described previously (Cerutti and
Simanis, 1999; Li et al., 2000), and the fraction of cells with

no detectable signal decreased to ,2%.
Surprisingly, given that Byr4p and Cdc16p are interdependent

for localisation (Cerutti and Simanis, 1999), the numbers of

asymmetric cells did not match those observed for GFP–Cdc16p
in anaphase. This discrepancy might arise because the cdc16-

GFP allele is partially compromised (the cdc16-GFP cdc16-D

strain becomes multiseptated at .34 C̊; data not shown).
GFP–Byr4p was associated with both SPBs in 95% of

metaphase-arrested slp1-OFF cells (Fig. 5C; n5111), which
is consistent with localisation of Byr4p by indirect

immunofluorescence in nda3-KM311 arrested cells (Krapp
et al., 2003). The intensity of the GFP–Byr4p signal in the
arrested cells was significantly lower than that seen in late

anaphase (Fig. 5D; P,0.001). Taken together, these data indicate
that the removal of Byr4p from the SPBs requires APC/CSlp1p

function. Comparison with Cdc7p–GFP showed that GFP–Byr4p

becomes asymmetric significantly before Cdc7p–GFP (compare
Fig. 1C with Fig. 5B; LF0.4, P50.045), confirming earlier
analysis by indirect immunofluorescence (Cerutti and Simanis,

1999). Given that the steady state level of Cdc16p at the SPBs is
very low from the onset of mitosis, whereas Byr4p persists until
metaphase, these data also show that the interdependence of
localisation of the GAP proteins does not apply in early mitosis in

wild-type cells.
The behaviour of GFP–Byr4p was significantly altered in the

plo1-ts4 mutant. Over 50% of cells of LF§0.6 still showed

symmetric GFP–Byr4p (compare Fig. 5E with Fig. 5G).
Quantification of GFP–Byr4p at the SPBs confirmed the
decrease in signal intensity at constant spindle length in wild-

type (LF0.2 and 0.3) followed by an increase at one SPB
(Fig. 5F). In contrast, in plo1-ts4 the decrease at LF0.2 and LF0.3
and the subsequent asymmetry was less apparent (Fig. 5H;
supplementary material Fig. S2B). Cdc16p–GFP could not be

analysed in plo1-ts4 as the tagged protein is thermosensitive.
Thus, Plo1p is required to establish the asymmetric localisation of
Byr4p in anaphase, consistent with recent studies (Rachfall et al.,

2014).

Pom1p inhibits, and Rad24p promotes, the transition to
SIN asymmetry
Phosphorylation of the Sid2p consensus creates a 14-3-3-protein-
binding site (Gupta et al., 2013; Mah et al., 2005).

Phosphorylation of Cdc11p by Sid2p helps promote Cdc7p–
GFP asymmetry in anaphase (Feoktistova et al., 2012), and SPB
localisation of the 14-3-3 protein Rad24p in mitosis is dependent
on Cdc11p (Mishra et al., 2005). In rad24-D, more cells with long

spindles showed a symmetrical distribution of Cdc7p–GFP
(Fig. 6B), implicating Rad24p in promoting Cdc7p–GFP
asymmetry during anaphase.

The conserved DYRK family protein kinase Pom1p is required
for bipolar growth, septum positioning and is also implicated in
mitotic commitment (Bähler and Pringle, 1998; Martin and

Berthelot-Grosjean, 2009; Moseley et al., 2009). The onset of

Cdc7p–GFP asymmetry occurred earlier in pom1-D cells
(Fig. 6C; P50.01 for LF0.4, P50.05 for LF0.5). Pom1p

associates with the plasma membrane to form a cortical
gradient that emanates from the cell tips (Bähler and Pringle,
1998; Hachet et al., 2011), and gradient formation requires the
scaffold protein Wsh3p/Tea4p (Hachet et al., 2011). Analysis of

Cdc7p–GFP in wsh3-D cells revealed no significant difference
from wild-type (Fig. 6D) indicating that the effect of Pom1p upon
the SIN is not mediated by its cortical gradient.

The effect of cell size and regulators of mitotic commitment
upon Cdc7p–GFP asymmetry
Given that plo1 affects SIN protein behaviour during mitosis, we
studied the effect of the gain-of-function cut12-s11 mutant, which
promotes premature recruitment of Plo1p to the SPB in interphase

(Bridge et al., 1998; Grallert and Hagan, 2002). The distribution
of Cdc7p–GFP was not altered significantly in cut12-s11 cells
(Fig. 6E), no association of Cdc7p–GFP was seen with interphase
SPBs and the initial asymmetric loading of Cdc7p was also

unaffected (data not shown).
Fin1p regulates SIN signalling (Grallert et al., 2004), and Sid2p

phosphorylates and activates Fin1p at the G2-M transition

(Grallert et al., 2012). However, analysis of Cdc7p in a fin1

mutant that cannot be phosphorylated by Sid2p revealed no
significant difference in the distribution of Cdc7p (Fig. 6F). This

indicates that the proposed feedback loop promoting SIN protein
asymmetry in anaphase does not require Sid2p to phosphorylate
Fin1p.

Previous studies have implicated PP2A in SIN regulation
(Alcaide-Gavilan et al., 2013; Goyal and Simanis, 2012; Jiang
and Hallberg, 2001; Le Goff et al., 2001; Singh et al., 2011); Loss
of Ypa2p or Ppa2p function delay the onset of Cdc7p–GFP

asymmetry (Goyal and Simanis, 2012). Mutation of the PP2A B9

subunit par1 rescues some SIN mutants (Jiang and Hallberg,
2001; Le Goff et al., 2001). 50% of par1-D cells showed

symmetric Cdc7p–GFP late in anaphase (compare Fig. 6H with
Fig. 6G), implicating PP2A–Par1p in the establishment of
Cdc7p–GFP asymmetry in anaphase B. Loss of the other B9

subunit Par2p had no significant effect (Fig. 6I). The CDC14
family phosphatase Flp1p/Clp1p influences mitotic commitment
and mitotic exit and affects SIN signalling (Chen et al., 2013;
Cueille et al., 2001; Esteban et al., 2004; Mishra et al., 2004;

Trautmann et al., 2001; Wolfe and Gould, 2004). However, loss
of Clp1p/Flp1p did not alter the Cdc7p–GFP distribution
significantly (Fig. 6J).

Previous studies have revealed an intramitotic control in S.

pombe (Hagan et al., 1990). To investigate whether cell size
affected the asymmetric transition of the SIN, Cdc7p–GFP was

analysed in wee1-6 and cdc25-22 cells (Russell and Nurse, 1986;
Russell and Nurse, 1987). Plotting the intensity of Cdc7p–GFP
against spindle length revealed that .95% of 9 mm spindles

showed an asymmetric signal in wild-type cells (supplementary
material Fig. S3A). This threshold was reached at 6 mm
(supplementary material Fig. S3B) in the loss-of-function wee1-

6 mutant, which divides at a reduced size (supplementary

material Fig. S3E). The cdc25-22 mutant, is partly defective at
25 C̊ (Fantes, 1979), increasing its cell length at division; in these
cells, the .95% threshold was not reached until spindle lengths

of .18 mm (supplementary material Fig. S3C). When the length
fraction at which asymmetry was established was considered, in
order to account for the length of the cell in which the spindle was

present, the profile of Cdc7p–GFP distribution in wee1-6 and
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cdc25-22 did not differ significantly from wild-type (compare
Fig. 6K and Fig. 6L with Fig. 6A). Taken together, these data
suggest that the control mechanism over Cdc7p–GFP asymmetry
in anaphase scales with cell size.

Elongated cells were also generated by treating wild-type cells
with hydroxyurea. Analysis of Cdc7p–GFP after release from the
arrest revealed that the threshold for 95% asymmetry was not

reached until a spindle length of 21 mm (supplementary material
Fig. S3D). Expressing the data in terms of the length fraction,

revealed a slight but significant delay in establishment of
asymmetry (Fig. 6M LF0.6; P50.02). Previous studies have
noted mitotic delays after release from hydroxyurea-mediated
arrest (Tange and Niwa, 2007), which are likely to result

from chromosomal rearrangements following homologous-
recombination-mediated replication restart (reviewed by Carr
and Lambert, 2013). Whether the DNA structure checkpoint

affects SIN protein localisation will be the subject of future
studies.

Fig. 5. Analysis of GFP–Byr4p in
wild-type and mutant cells. (A) The
indicated strains were imaged at 1-
min intervals. The blue dot
represents anaphase B onset. Note
that the GFP–Byr4p signal is initially
present on both SPBs, and then
decreases in intensity. From frame 9
onwards, the red asterisks indicate
SPBs with a GFP–Byr4p signal. A
faint signal can also be detected at
the other SPB in frames 11 to 15. The
signal is very faint or undetectable
from frame 17 to 29; it reappears
thereafter on one SPB. Note that the
other SPB reacquires a signal from
frame 36 onwards. See text for
details. (B,E,G) The indicated strains
were synchronised and the
distribution of GFP–Byr4p on the
SPBs was analysed. The graphs are
presented as described for Fig. 1C.
(C,D) The indicated strain was
arrested as described in the Materials
and Methods. Note the presence of a
weak SPB-associated GFP–Byr4p
signal (C); the signal intensity in the
arrested cells is compared to that
observed at the brightest SPB in
anaphase and presented as
described in Fig. 2G (D). (F,H) The
intensity of SPB-associated GFP–
Byr4p is plotted and presented as
described in Fig. 2G. Scale bars:
10 mm.

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 741–754 doi:10.1242/jcs.160150

748

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.160150/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.160150/-/DC1


Jo
ur

na
l o

f C
el

l S
ci

en
ce

The spindle assembly checkpoint affects Cdc7p–GFP SPB
association in anaphase
Previous studies have suggested that the onset of asymmetry of

Cdc7p–GFP in anaphase B is delayed by the presence of
unsegregated DNA (Mayer et al., 2006). To investigate this
further, we examined mutants in which lagging chromosomes are

observed on an extended anaphase spindle.
We first analysed pcs1-D, which ablates the monopolin

complex, and generates merotelically attached chromosomes
(Gregan et al., 2007). Examination of pcs1-D cdc7-GFP cnp1-

CHY cells revealed that the timing with which Cdc7p–GFP
became asymmetric was similar, whether the cells had a lagging
kinetochore or not (Fig. 7A,B).

The kinesin-8 protein Klp5p is required for microtubule–
kinetochore attachment, chromosome congression in metaphase
(Garcia et al., 2002a; Garcia et al., 2002b; West et al., 2002) and

spindle assembly checkpoint (SAC) silencing (Meadows et al.,
2011). In klp5-D cdc7-GFP cnp1-CHY cells (LF.0.5), the
Cdc7p–GFP signal was symmetric in cells with long spindles (LF

.0.5) that had lagging kinetochores, and asymmetric in those that
did not (Fig. 7C,D).

The apparent contradiction between these mutants might be

because the SAC is activated in klp5-D (Garcia et al., 2002b)
but not in pcs1-D cells (Gregan et al., 2007). Analysis of
klp5-D cdc7-GFP cnp1-CHY pcp1-CHY mad2-D cells showed
that the percentage of cells with asymmetric Cdc7p–GFP at

a LF.0.5 was similar whether lagging kinetochores were
present or not (Fig. 7E,F), and deletion of mad2 did not
affect the onset of asymmetry (Fig. 7G,H). These data indicate

that the delay in establishing the asymmetry of Cdc7p–GFP in
cells that have lagging kinetochores is due to activation of the
SAC.

Fig. 6. Analysis of Cdc7p-GFP in
wild-type and mutant cells. The
intensity of Cdc7p–GFP was
analysed in the indicated strains. The
graphs are presented as described
for Fig. 1C. The 25˚C wild-type
control (A) is duplicated from Fig. 1,
for convenience. Par1-D was
analysed using asynchronous
cultures, as its abnormal shape and
asymmetric division preclude efficient
synchronisation by elutriation.
Hydroxyurea (HU) indicates that cells
were arrested by addition of 12 mM
HU to for 5 h. Cells were analysed in
the first mitosis after removal of HU.
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DISCUSSION
A ‘two state’ representation of the SIN
This study has revealed several new aspects of SIN regulation.
The data point to the existence of two states of the SIN during
mitosis, which are referred to herein as ‘early’ and ‘late’. The

early state is typified by a mixture of symmetric, transition and
asymmetric signals and corresponds to LF,0.5. Many SIN
protein signals are positionally mutable, meaning that the

signal intensity varies at a given location during continuous
observation. The late state is characterised by the asymmetric
association of Cdc7p, Sid1p, Byr4p and Cdc16p with one SPB in

.80% of cells, which had a positionally stable signal, meaning
that it was seen at one principal location; this corresponds
to LF§0.6 in wild-type cells. The intensity of the SPB signal

is greater in the late than early state. This is summarised in
Fig. 7I.

What regulates the early–late transition?
The data presented here show that the control governing
the transition between the states of the SIN scales with cell
size and can be altered. The transition is inhibited by an active
SAC. Previous studies have shown that Cdc2p inactivation

promotes the transition to the asymmetric state of the SIN (Chang
et al., 2001; Dischinger et al., 2008; Yamano et al., 1996),
suggesting that the SAC effect results from delayed inactivation

of Cdc2p.
Deletion of the DYRK family protein kinase pom1, accelerated

the transition to the late state of the SIN, implying that Pom1p

inhibits it. Interestingly, mutation of Sid2p sites on Cdc11p also
results in an earlier transition to Cdc7p–GFP asymmetry
(Feoktistova et al., 2012) and, hence, it will be of interest to

determine whether Pom1p regulates SIN asymmetry through
Cdc11p.

Fig. 7. Analysis of Cdc7p distribution in anaphase in cells
with lagging chromosomes and data summary. (A–H) The
strains were analysed at the indicated temperature. The graphs
are presented as described for Fig. 1C. For clarity only LF.0.4
are shown. (I) Cartoon summarising the two-state model of the
SIN. In the early state (yellow), the proteins are positionally
mutable, whereas in the late state, their position is fixed and
asymmetric. Factors which promote these states (arrow) or
inhibit (ball) the transition between them are shown in boxes
above. See text for additional details. The lower part shows
cartoons of S. pombe cells at different stages of mitosis.
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Ablation of the 14-3-3 protein Rad24p delayed the onset of
asymmetry, although not as substantially as loss of Sid2p, SIP or

GAP functions; it is possible that the other 14-3-3 protein Rad25p
compensates for the loss of Rad24p. A non-exclusive alternative
is that not all the effects of Sid2p are mediated by the creation of
14-3-3-binding sites. After reduction of GAP function (cdc16-

116), the intensity of the Cdc7p–GFP signal reached late-
anaphase levels earlier than in wild-type cells, indicating that
the GAP proteins also inhibit the transition from the early to the

late state.
Deletion of the principal PP2A B9 regulatory subunit Par1p

delayed the onset of Cdc7p asymmetry, consistent with previous

studies conducted by indirect immunofluorescence (Jiang and
Hallberg, 2001). Previous studies have shown that mutation of the
regulatory B subunit Pab1p does not affect the appearance of

Cdc7p–GFP at one SPB in anaphase (Lahoz et al., 2010),
suggesting that that PP2A–Par1p is involved in promoting the
asymmetry of Cdc7p–GFP in anaphase. Previous studies have
implicated other PP2A complexes and regulators in promoting

the asymmetry of Cdc7p (Goyal and Simanis, 2012; Singh et al.,
2011).

A minor population of cells showed asymmetric Cdc7p signals

in the absence of GAP or SIP function. This might indicate that
the individual proteins that influence asymmetry cooperate to
bring about asymmetry. In this context, it is noteworthy that there

is a negative genetic interaction between a SIP-complex-null
mutant and cdc16-116 (Singh et al., 2011), and PP2A subunits
and cdc16-116 (Goyal and Simanis, 2012; Le Goff et al., 2001).

Previous studies have indicated that Etd1p is required both for
maintenance of Cdc7p–GFP at the SPBs in anaphase and for the
intensity increase of Cdc7p–GFP in anaphase (Alcaide-Gavilan
et al., 2013; Daga et al., 2005; Lahoz et al., 2010). Although these

studies differ qualitatively in their conclusions, they both
implicate Etd1p in establishing the late state of the SIN. Etd1p
interacts with Spg1p in vitro, (Garcı́a-Cortés and McCollum,

2009), suggesting that they cooperate to establish this state of the
SIN (Fig. 7I).

Compromising plo1 function has multiple effects upon the

behaviour of SIN proteins. Association of Cdc7p–GFP with the
SPB is abolished in early mitosis, but it then appears at one SPB
in anaphase. These data imply that association of Cdc7p–GFP
with the SPB in early mitosis is not required for its asymmetric

SPB association in anaphase, suggesting that these events are
controlled differently and perhaps independently. Reduced Plo1p
activity resulted in a more asymmetric SPB association of

Mob1p–GFP in the early state of the SIN. The penetrance was
incomplete, which might reflect differences in SPB age, or the
hypomorphic plo1-ts4 allele. The different effects of plo1-ts4

upon Mob1p–GFP and Cdc7p–GFP might reflect differences in
how SPB association of these two proteins is mediated.

Cdc7p–GFP did not show a significant increase in asymmetric

signals at LF§0.6 in spg1-B8 cells at 36 C̊, retaining a
distribution similar to that in early mitosis. The intensity of the
Cdc7p–GFP signal was similar with and without Spg1p until
LF0.5, after which the signal became brighter in the spg1+ cells,

and fainter in the spg1-B8 cells. This is consistent with the idea
that establishment and/or maintenance of the late state requires
Spg1p.

Previous studies have shown that there is no SPB-associated
Cdc7p signal in spg1-B8 cells in the second mitosis at the
restrictive temperature (Sohrmann et al., 1998). It was therefore

surprising to find that inactivation of Spg1p did not compromise

the association of Cdc7p–GFP in the early stages of mitosis in the
first cycle after the shift to the restrictive temperature.

Given that Cdc7p associates directly with the scaffold protein
Cdc11p (Feoktistova et al., 2012), as well as Spg1p (Mehta and
Gould, 2006; Schmidt et al., 1997), these data could be explained
if the association of Cdc7p with the SPB before anaphase depends

principally upon binding to Cdc11p. The subsequent absence of
Cdc7p from the SPBs in the second mitosis could be explained by
postulating that Cdc7p cannot reload to the SPB unless the SIN

has signalled during the first mitosis. This view is supported by
previous studies showing that Byr4p is not seen on all interphase
SPBs in tetranucleate SIN mutant cells (Li et al., 2000), and that

functional Sid2p is required to establish SIN asymmetry in
anaphase (Feoktistova et al., 2012). The first-cycle block to
septation in spg1-B8, and the fact that Spg1-B8p–GFP is not

associated with the SPB (A.K. and V.S., unpublished data;
Krapp et al., 2008), argue that SIN signalling is not functional.
Nonetheless, we cannot formally exclude that spg1-B8 is a
hypomorphic allele and that the presence of the Cdc7p of the SPB

in the first mitosis reflects residual Spg1-B8p function. Future
analysis of spg1-D will resolve this.

In summary, the ‘early’ state of the SIN requires Plo1p, but not

Spg1p for establishment. In contrast, Spg1p becomes important
after LF0.5, when it is required to generate Cdc7p–GFP
asymmetry and to maintain a strong asymmetric Cdc7p–GFP

signal at the SPB.
Analysis of the S. cerevisiae mitotic exit network (MEN) has

shown that CDC15p (Cdc7p) requires inputs from both CDC5p

(Plo1p) and TEM1p (Spg1p) for SPB association in anaphase
(Rock and Amon, 2011). Although the SIN and MEN differ in
their ‘wiring’ (reviewed by Simanis, 2003; Weiss, 2012), this
points to a conserved role for Spg1p/TEM1p and Plo1p/CDC5p in

regulating the SPB association of Cdc7p family kinases.

Spatial instability of SIN proteins in the early state
A defining characteristic of the early state is spatial instability of
the signals of some SIN proteins. The GFP–Sid1p was unstable
in the early stages of mitosis, in the sense that its location varied

between images, appearing at one, two or no SPBs, before
finally stabilising at the nSPB in anaphase. No significant signal
was seen in most slp1-deficient cells, indicating that the APC/
CSlp1p must function for GFP–Sid1p to associate stably with the

SPB.
Spatial instability of the Cdc7p signal was also observed in

early mitosis, and has recently been observed in anaphase in a

byr4 mutant that cannot be phosphorylated by Cdc2p (Rachfall
et al., 2014). Interestingly, Mob1p–GFP showed much less
variability in the early state than Cdc7p–GFP, GFP-Sid1p or

GFP–Byr4p, suggesting that it might be regulated differently.
The reason for the instability of the early SIN is presently

unclear; several non-exclusive possibilities can be considered. In

S. cerevisiae, the MEN effector CDC14p is activated in a two-
step process; the FEAR network promotes transient release from
the nucleolar RENT complex, priming it for activation. The
release becomes definitive following activation of the MEN, and

promotes mitotic exit. If the MEN is not activated, CDC14p
release is only transient (reviewed by Weiss, 2012). This has
some similarity with the unstable SPB association of SIN

proteins, particularly GFP–Sid1p. It is therefore possible that
the early state of the SIN reflects ‘preparatory’ events prior to its
full activation at the end of anaphase B. Given that the activity of

all the core SIN proteins and scaffolds is required for CAR
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assembly, the early state might be a manifestation of this
function.

Laser ablation of the nSPB in anaphase results in increased
Cdc7p–GFP association with the oSPB, and it has been proposed
that this indicates feedback between the SPBs in anaphase, so that
each maintains its character with respect to SIN proteins

(Magidson et al., 2006). The flickering of the SIN signals
earlier in mitosis might reflect the initiation of these feedback
loops. It is also possible that the identity of the SPBs with regard

to SIN protein association is less well defined (or less respected)
in metaphase than in anaphase.

The spatial instability might also reflect ‘vetoing’ of premature

attempts to initiate SIN signalling by mitotic checkpoints. The
SAC can be reactivated even after proteolysis of cyclin B begins
(Clute and Pines, 1999), so the unstable SIN protein signals

might reflect SAC reactivation following transient chromosome
detachment from the spindle. The changes may also be produced
by the early mitotic casein kinase I (Dma1p)-dependent
checkpoint (Johnson et al., 2013).

Regulators of the GTPase Cdc42p show periodic oscillations
between the tips of the cell. This is governed by a combination of
feedback loops (Das et al., 2012). Given that there is no clear

periodicity in the fluctuations GFP–Sid1p signal, it seems
unlikely that these mechanisms govern the appearance of GFP–
Sid1p at the SPBs in early mitosis.

Asymmetric SPB association of Cdc7p at mitotic entry
This study has revealed that the initial SPB association of Cdc7p–

GFP is asymmetric in <80% of cells, biased at 3:1 to the nSPB.
SPB duplication is conservative, and analysis of Fin1p has
suggested that SPBs mature fully over two cell cycles (Grallert
et al., 2004). Given that Cdc7p–GFP associates asymmetrically

with the SPBs during spindle formation, the choice of SPB might
reflect the age of the SPB.

Asymmetric association of Cdc7p and Sid1p with the nSPB is

widely considered to represent ‘active’ SIN signalling. However,
our data indicate that SPB association of Cdc7p–GFP in anaphase
is insufficient to promote cytokinesis if Plo1p activity is reduced,

even though ectopic SIN activation places spg1 and cdc7

downstream of plo1 (Krapp et al., 2003; Tanaka et al., 2001).
This might be because the level of signalling that can be achieved
is low compared to constitutive activation of Spg1p in cdc16-116.

Alternatively, since the SIN cooperates with Mid1p in CAR
assembly (Hachet and Simanis, 2008; Huang et al., 2008), failure
of an early mitotic Plo1p- and/or Cdc7p-dependent event might

prevent cytokinesis.

Is Cdc7p asymmetry mediated by regulation of Byr4p?
The data presented here also show that GFP–Byr4p disappears
transiently from both SPBs as cells progress into anaphase, and
then reappears on the oSPB. This might account for the failure to

detect Byr4p at SPBs in cells with metaphase-length spindles in
some studies (Johnson and Gould, 2011; Li et al., 2000; Rachfall
et al., 2014). However, if the APC/CSlp1p is blocked, then GFP–
Byr4p is still seen at the SPBs, although the signal was much less

intense than in anaphase, indicating that its removal from
the SPBs requires APC/CSlp1p function. This is also consistent
with SPB localisation of Byr4p as determined by indirect

immunofluorescence in nda3-KM311 arrested cells (Krapp
et al., 2003).

Previous studies of SIN proteins in fixed cells revealed the

presence of early mitotic cells in which Cdc7p was detected at

both SPBs, whereas Byr4p was present on one SPB (Cerutti and
Simanis, 1999). Consistent with this, the GFP–Byr4p signal

becomes asymmetric before Cdc7p–GFP. The decrease in
intensity at the oSPB initiated before any increase was seen at
the nSPB. This is consistent with a model in which the initiation of
asymmetry in wild-type cells is mediated by regulation of Byr4p,

and begins at the oSPB. The transition between the two SIN states
requires the action of the APC/CSlp1p, although it is presently
unclear whether this is due to a direct action of APC/CSlp1p or

whether it is due to a downstream event.
GFP–Byr4p remained associated with both SPBs throughout

mitosis in plo1-ts4 cells, indicating that the asymmetric

distribution of Byr4p to the oSPB requires Plo1p function. This
is consistent with data showing that Cdc2p and Plo1p cooperate
to regulate Byr4p localisation (Rachfall et al., 2014) and poses an

interesting conundrum – if removal of Byr4p from the SPB is
required for association of Cdc7p with the SPB in anaphase
(Rachfall et al., 2014), then how does Cdc7p associate with the
SPBs in plo1-ts4? It is possible that removal of Byr4p from the

SPB is not required for Cdc7p to associate with it if Plo1p has not
made modifications at the SPB earlier in mitosis. Alternatively,
because there are <400 molecules of Cdc7p–GFP at the nSPB in

late mitosis (Wu and Pollard, 2005), it is likely that there are a
similar number of signalling scaffold complexes at the SPB.
The presence of both Cdc7p–GFP and Byr4p–GFP in these

cell populations might therefore reflect heterogeneity of the
complexes at the SPBs in the plo1-ts4 mutant.

Summary
The data presented in this study are consistent with the notion of
two, genetically separable, states of the SIN; an ‘early’ state,
which is dependent upon Plo1p for its establishment, and a ‘late’

state, which is dependent upon Etd1p and Spg1p. Future studies
will investigate how the transition occurs.

MATERIALS AND METHODS
Standard techniques were used for the growth and manipulation of fission

yeast (Moreno et al., 1991). Unless indicated otherwise, cells were grown

in yeast extract (YE) medium. Briefly, cells were grown in liquid

medium to a density of 3.56106–66106 cells/ml, and centrifugal

elutriation (Beckman JS-5.0 system) was used to isolate G2 cells

(Schmidt et al., 1997). Cells were concentrated by filtration to minimise

stress. After 1 h recovery, the first and second mitoses after elutriation

were imaged. There was no significant difference between whether the

data were collected from cells in the first or second cycle. Data from

biological repeats for a given cell type were also found to have no

statistical differences, so data from multiple experiments have been

pooled to generate the graphs presented for each marker or mutant. The

majority of GFP-tagged strains used in this study have been described

previously (see Krapp and Simanis, 2014 and references therein). Strains

expressing slp1+ from the nmt41 promoter were grown in EMM2

minimal medium without thiamine and supplemented with amino acids

(100 mg/l) as required. To repress slp1 expression, the cells were

incubated for 5 h in 29 C̊ in YE medium (Petrova et al., 2013). For

hydroxyurea arrest and release, 12 mM hydroxyurea was added to

exponentially growing cells. After 5 h, cells were released from the arrest

by washing twice in medium.

Microscopy
Living cells were imaged using a U-Plan-S-Apo 606N.A. 1.42 objective

lens mounted on a Perkin-Elmer or an Olympus IX-81 spinning disc

confocal microscope. The temperature was maintained using a custom-

built heating system. The presence of a cytoplasmic signal of Cdc7p–

GFP limits the intensity difference estimations to ,10-fold, as the signal

associated with the oSPB reaches the cytoplasmic background.
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Image analysis and processing
Images were analysed using RodCellJ (Schmitter et al., 2013). The

background was set by averaging the cytoplasmic signal in .100 mitotic

cells. Only signals that were at more than a 90% confidence interval were

considered significant. For analysis, these background values were

subtracted from the intensity values of SPBs. Images were processed in

ImageJ and Adobe Photoshop CS6, and assembled in Powerpoint.

Statistical analysis
The statistical analysis was performed using GraphPad Prism v6.03. For

comparison between strains, data from at least two experiments (n.500

cells) were pooled and binned for the length fractions. The distribution of

ratios of SPB intensities was compared for each length fraction using a

two-tailed non-parametric Mann–Whitney test.
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