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Abstract
There is a continuous flow of articles published in legal and scientific journals that recite out-

worn direct or subtle attacks on Bayesian reasoning and/or the use of the subjective or personalistic
interpretation of probability. An example is the recent paper written by Kaplan et al. [1] who, by
referring to Kafadar’s review paper [2], opined, but did not justify, that there is a ‘[...] need to
reduce subjectivity in the evaluation of forensic science’ and argued that ‘[...] the view presented
here supports the use of objective probabilities.’ [1, at p. 108]. To understand why the objection on
the use of subjective probability is not persuasive and why the widely claimed objective probabil-
ities do not exist, one must first scrutinise the historically competing interpretations of probability
and their associated definitions. The basis of the defence of the use of the subjectivist interpretation
of probability is the understanding of the simple points, misunderstood by critics, that subjectivity
is not a synonym for arbitrariness and that the implementation of subjectivism does not neglect
the use of the acquired knowledge that is often available in terms of relative frequencies. We will
illustrate these points by reference to practical applications in forensic science where probabilities
are often represented by relative frequencies. In this regard, our discussion clarifies the connec-
tion and the distinction between probabilities and frequencies. Specifically, we emphasise that
probability is an expression of our personal belief, an interpretation not to be equated with relative
frequency as a mere summary of data. Our argument reveals the inappropriateness of attempts to
interpret relative frequencies as probabilities, and naturally solves common problems that derive
from such attempts. Further we emphasise that, despite the fact that they can be given an explicit
role in probability assignments, neither are relative frequencies a necessary condition for such
assignments nor, in forensic applications that consider events for which probabilities need to be
specified, need they be meaningfully conceptualised in a frequentist perspective.
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1. Introduction

As mentioned by Lindley [3], any kind of uncertainty is assessed in the light of the knowledge10

possessed at the time of the assessment. This idea is not new. The Italian mathematician de Finetti
(1930, reprinted in [4]) defined probability – the measure of uncertainty – as a degree of belief,12
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insisting that probability is conditional on the status of information of the subject who assesses it.
So, if a given person is interested in the probability of an event, say E, that person’s probability,2

Pr(E), should be written as Pr(E | Is,t) where Is,t is the information available to subject s at time
t.1 The subjective nature of probability has lived in many scientific areas. In physics, for example,4

Schrödinger [6] wrote :

Since the knowledge may be different with different persons or with the same person at6

different times, they may anticipate the same event with more or less confidence, and
thus different numerical probabilities may be attached to the same event. (at p. 53)8

He, then, added that :

Thus whenever we speak loosely of the probability of an event, it is always to be under-10

stood: probability with regard to a certain given state of knowledge. (at p. 54)

Some people think that probability exists as an objective feature of phenomena that can happen12

following an intrinsic randomness, and they may think that quantum mechanic probabilities are
instantiations of these ‘objective’ probabilities. Let us suppose that they are right. Then we should14

ask ourselves: what is the bearing of this intrinsic randomness associated with the observation
of a particular DNA allele in the biological material from a person (e.g., blood)? or with the16

guilt of a defendant? A relevant consideration here is Laplace’s well-known infamous assertion
that if he would have known all the initial conditions, he would have been able to calculate the18

entire future of the universe. Suppose this assertion is true and that, in the future, a quantum
supercomputer will allow us, if we knew all the microscopic objective (perhaps to be thought of as20

‘ultimate’) probabilities, to calculate the exact probability of observing a DNA profile and even that
of the defendant’s liability, if you are sympathetic with reflections of this kind of science fiction.22

However, this conjecture still leaves unsolved the problem of what to do now2. Let us notice that
not only we know today neither these ultimate probabilities nor the scientific laws (if any) for24

doing any associated calculations. We do not know for sure that these ultimate probabilities exist:
we do not know that quantum mechanics is true, we can at best only believe that it is true – and we26

have strong reason to believe that something is not quite right, because we do know that quantum
mechanics and general relativity are mutually incoherent. Thus, even if you agree with the idea28

of intrinsic randomness in nature, the existence of objective probabilities can only be a matter of
belief, not of fact.30

De Finetti [8] approached this aspect by affirming:

[...] most confusion is often arising from mistaking subjective data (like Probabilities32

and Expectations, concerned always and exclusively with a single event and random
quantity), with objective data, like observed successes or failures of single events or34

observed frequencies, correlations, etc.; many attempts to construct a meaningful notion
of ‘objective probability’ (seemingly: a mythical idealization of an observed frequency)36

1In [4] (English translation of [5]), de Finetti expressed the concept in the following terms: “Instead of asking ourselves ‘what is probability’ we
shall examine the meaning implicit in the use we intend to make of it and, for this purpose, we shall ask the following three questions: ‘probability
of what?’, and to this shall all answer ‘of an event’; and then ‘in what circumstances?’, and here it is natural to answer ‘taking into account all the
circumstances known to be relevant at the time’; and lastly ‘evaluated by whom?’ to which the only possible answer is ‘by the subject considering
them’; if we like, we could each reply ‘by me’. These are the three answers a subjectivist like me would give [...]”.

2As insisted by Allen [7], the law does not have the privilege to postpone inference and decision: “The law has to decide at the moment in
question; it cannot suspend belief while a series of tests is conducted to see if anything useful emerges.” (at p. 139)
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have been done, but they could not and cannot lead to any outlet, as any strange attempt
to construct a ‘spherical cube’. (at p. 1)2

In the same perspective, it is useful to remember de Finetti’s widely known sentence ‘Probabil-
ity does not exist’ (in things) ([9] in the Preface at p.x). Probability is not something that can be4

known or not known: probabilities are states of mind, not states of nature3.
Probability represents our assessment about the truth or otherwise of events that may be located6

in the past, the present or the future, about which our state of knowledge is generally incomplete
and about which we are, therefore, uncertain. Probability is our expression of uncertainty about8

the truth of a proposition, that is about the occurrence of an event described by a proposition,
either because that event will occur in the future or it occurred in the past, but the occurrence of10

which is unknown to us. The offer of a probability as an autonomous conception, independent
from individuals, has no meaning. A telling expression of this view can be found in [14]:12

[...] Probability (with a capital P) as a metaphysical entity that exists in abstract is like
thinking that it is possible (without being Alice in Wonderland) that the cat’s smile can14

remain and continue to be visible even after the cat has disappeared. (at p. 199)

Several papers have been published in scientific and legal journals, such as Science & Justice16

and Law, Probability & Risk, offering a broad discussion about the role of probabilities in forensic
science and their interpretation. The subjectivist point of view is supported by some quarters, while18

others perceive it with skepticism, especially whenever subjectivity is understood as a synonym
for arbitrariness. However, suppose for the moment that we are able to overcome the divergences20

over opposing definitions of probability. Suppose also that, after incoherencies or limitations
characterizing alternative definitions have been pointed out, scientists could find an agreement22

on a subjectivist interpretation of probability for forensic science applications. Then, there is
still another potentially unresolved problem: the assignment of a subjective probability. So, even24

admitting the feasibility of this interpretation, how ought a degree of belief be quantified?4 How
is the strength of our belief in something to be quantified? A standard answer to this question26

is that subjective probabilities represent degrees of belief conditional on available information,
though it needs to be acknowledged that the expression available information is rather vague.28

What does it mean? Available information may consist of personal experience, knowledge from
past experience, witnesses and so on. Further, there are many examples of applications where30

available information takes the form of relative frequencies. Thus a supplementary question is
‘how may knowledge in the form of relative frequencies be used to inform probabilities?’ One32

tempting solution is the equivalence of the relative frequency with a probability, a shortcut widely
observed and taught in forensic science.34

Strictly speaking, frequency is a term that refers to data, whereas probability is a term which
refers to personal belief. Statistical and forensic literature have already emphasized an antagonism36

3This aphorism can also be found in de Morgan [10]: ‘Probability is the feeling of the mind, not the inherent property of a set of circumstances’
(at p. 7). Analogously, Maxwell [11] wrote: ‘The true logic for this world is the calculus of Probabilities, which takes account of the magnitude
of the probability which is, or ought to be, in a reasonable man’s mind’ (at p. 197). Jevons [12] explains that ‘Probability belongs wholly to the
mind. This is proved by the fact that different minds may regard the very same event at the same time with widely different degrees of probability.
[...] Probability thus belongs to our mental condition, to the light in which we regard events, the occurrence or non-occurrence of which is certain
in themselves’ (at p. 198). More recently, Jaynes [13] reinforced this view by affirming that probabilities express ignorance, states of partial
information and if one is ignorant of a phenomenon, that is a fact about one’s state of mind, not a fact about the phenomenon.

4One possibility, not pursued here, is based on the interpretation of probability assertions as decisions, using proper scoring rules. See [15] for
discussion in the context of forensic science.
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between subjective probabilities and frequencies. As mentioned by La Caze [16, at p. 358],
there are compelling reasons not to identify probabilities with hypothetical frequencies in infinite2

sequences. Probabilities and hypothetical frequencies are linked but they are not the same; they
have a different meaning. There is a certain opposition between the subjectivist and the frequentist4

interpretation of probability, but this does not have to be interpreted as an opposition between
the subjective probabilities and the relative frequencies. As mentioned by Cooke [17], such an6

opposition

[...] is nonsense. Subjective probabilities can be, and often are, limiting relative fre-8

quency. In particular, this happens when a subject’s belief state leads him to regard the
past as relevant for the future in a special way. (at p. 108)10

This point regarding the relationship between frequency and probability has also been raised in
the discussion paper [18]. Forensic scientists often rely on the combination of data on the occur-12

rence of target features, summarized in terms of relative frequencies, and personal knowledge of
task-relevant circumstances for a particular case. Unfortunately, from analysis of the discussion14

and critiques of [18], the paper’s message appears to have been understood in some quarters as a
philosophical (and puzzling) ban on everything that it is objective. Such an understanding masks16

a confusion about the personal interpretation of probability, an interpretation that does not pre-
vent the exploitation of information in terms of relative frequencies whenever available [19]. The18

distinction and the connection between probabilities and frequencies are the main themes of this
paper.20

To overcome misunderstandings and to clarify our position regarding these aspects, this paper
is structured as follows: Section 2 presents a brief summary of the two major alternative definitions22

of probability other than that of subjectivity. The important role of frequencies is introduced in
Section 3 to show that it makes sense to compute relative frequencies for observations and events24

of interest, and why and how relative frequencies should affect one’s beliefs. As noted by de
Finetti [5], the convergence of one’s personal probabilities towards the value of observed relative26

frequencies, as the number of observations increases, is a logical consequence of Bayes’ theorem
if a condition called exchangeability is satisfied.28

The hypothesis, or, better, the condition which constitutes our starting point, is instead
very clear and simple. From it follows all the conclusions of the ordinary theory of a30

posteriori probabilities, and particularly those that allow the probability to be evaluated
on the basis of frequency. It will not be out of place to repeat that its task is this: to32

show that our mental disposition to expect the future frequency not to differ much from
that of the past - unless the fact of having obtained that frequency appeared to us a34

priori as unlikely and exceptional - is justified as much as it is meaningful to ask for a
justification, and is explained as much as it is meaningful to ask for an explanation, if36

we feel that we are in the following state of mind: of judging two sequences of trials
which differ only in their order as equally probable. ([4] at p. 201)5

38

This concept is presented in Sections 4 and 5. Section 6 introduces the statistical syllogism that
is required to clarify how a conclusion on a probability may be reached when there is information40

on a relative frequency and personal knowledge. Conclusions are presented in Section 7.

5See Sections 20 to 23 of [4] for an extended description.
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2. Classical and frequentist definitions of probability and their limitations

According to the classical definition, probability is defined as the ratio between the number of2

favorable cases and the number of possible cases, provided that all cases are equally probable. To
overcome the evident problem of circularity that affects this interpretation, the term probable is4

often replaced by the term possible (or likely), though it seems that the term possible (likely) is just
a synonym of probable. In essence, the statement does not define probability, it only offers a way6

of evaluating it.
The frequentist definition of probability is the limit of the relative frequency of a target event8

that has occurred in a large number of trials if it is conceivable that the same experiment may
be repeated under identical conditions a very large number of times. As well as the problem of10

circularity, it is clear that this definition limits the range of applications since to use frequency as a
measure of probability it must be possible to repeat the experiment a large number of times under12

identical conditions. In a coin-toss scenario, this is equivalent to saying that the probability of a
head (tail) is assessed by imagining that one is able to repeat the tosses a large number of times14

under identical conditions (e.g., with the same force), and to note the number of times a head has
been observed.16

This frequentist account of probability is inconceivable operationally for applications in foren-
sic science. Two well-known challenges to the frequentist view is given by Lindley and by de18

Finetti:

There is nothing wrong with the frequency interpretation, or chance. It has not been20

used in this treatment because it is often useless. What is the chance that the defendant
is guilty? Are we to imagine a sequence of trials in which the judgements, ‘guilty’ or22

‘not guilty’, are made and the frequency of the former found? It will not work because
it confuses the judgement of guilt, but, more importantly, because it is impossible to24

conceive of a suitable sequence. Do we repeat the same trial with a different jury;
or with the same jury but different lawyers; or do we take all Scottish trials; or only26

Scottish trials for the same offence? The whole idea of chance is preposterous in this
context. ([3] at p. 48)28

and

Finally, even granting the legitimacy of evaluating the frequency-limit by the observed30

frequency, one would only get back to an intermediate conclusion, which would not
constitute a goal having any practical value. Indeed, even those who define probability32

as the limiting value of the frequency, apply these notions in life and practical examples
with a sense of thereby justifying the likelihood of certain forecasts concerning single34

events, or of combinations of a finite number of single events (that is to say still of single
events). On this account, the theory of probability, even for those who do not admit it,36

will always have as its object the probability of single events; what is only concealed in
the steps of the arguments criticized, in which one substitutes for direct arguments about38

subjective probabilities so defined, formal calculations of fictitious entities (frequency-
limits), is rejoined in the premises as much as in practical conclusions to considerations40

which can only be incomplete as long as one tries to ignore subjective value. ([20] at
pp. 188–189).42
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These examples clarify that the long-run relative frequency definition of probability is inappli-
cable in many situations arising in real life.2

There are implicit assumptions that must apply in each of the classical and frequentist defini-
tions. These assumptions are that according to our state of knowledge, all cases are equally likely4

and it is theoretically conceivable to perform an experiment a large number of times under iden-
tical conditions. Use of these assumptions to assign a numerical value to a probability implies6

a judgement that these assumptions are satisfied. Definitions that seek to avoid subjectivism are
based on acceptance of conventions that are inherently subjective. Scozzafava [21] emphasised8

this aspect in the following terms:

Emphasis is usually given to the wider meaning of subjective probability to make up10

for the lack of objectivity: but even the so-called objective approach involves genuinely
subjective aspects (sometimes in a disguised form), and so subjective probability must12

not be seen as the opposite of the ‘objective’ one. (at p. 685).

Historically, a critical remark has also been provided by Poincaré [22]:14

The definition, it will be said, is very simple. The probability of an event is the ratio
of the number of cases favourable to the event to the total number of possible cases. A16

simple example will show how incomplete this definition is: ... We are therefore bound
to complete the definition by saying ‘... to the total number of possible cases, provided18

the cases are equally probable.’ So we are compelled to define the probable by the
probable. How can we know that two possible cases are equally probable? Will it be by20

convention? If we insert at the beginning of every problem an explicit convention, well
and good! We then have nothing to do but to apply the rules of arithmetic and algebra,22

and we complete our calculation, when our result cannot be called in question. But if we
wish to make the slightest application of this result, we must prove that our convention is24

legitimate, and we shall find ourselves in the presence of the very difficulty we thought
we had avoided. (at p. 185)26

The frequentist view presumes the possibility of the performance of a long sequence of trials6

under identical conditions, with each trial being physically independent of all other trials. These28

assumptions are typically unachievable in many different applied contexts such as history, law,
economy, medicine and, especially, forensic science. In these contexts the entities or events of30

interest are usually not the result of repetitive or replicable processes. On the contrary, they are
unique. Such complications do not arise with the personalistic interpretation of probability because32

it does not consider probability as a feature of the external world. Instead probability is understood
as a notion that describes the relationship between a person, you (the reader, us and anybody34

else), issuing a statement of uncertainty, and the real world to which that statement relates, and in
which a person acts. For the subjectivist perspective, it is therefore perfectly reasonable to assign36

probability to non-repeatable events as in given judicial contexts.
A direct implication of the consideration of probability as a personal degree of belief is that38

all the knowledge, experience and information on which the individual relies become important.

6Note that ‘trial’ here means an experiment, that is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes,
not a judicial trial.
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More explicitly formulated, this means that an individual assessment of the degree of belief in
the truth of a given statement or in the occurrence of an event (i) depends on information, (ii)2

may change as the information changes, and (iii) may vary amongst individuals because different
individuals may have different information or assessment criteria. A relevant question is how we4

can quantify our beliefs. Literature on this topic is abundant; for example [23, 24] deal with a
deep discussion about different methodologies to offer an operational perspective for subjective6

probabilities7. A widely known possibility is to measure probabilities maintained by an individual
in terms of bets that the individual is willing to accept (e.g., the probability of a proposition can8

be elicited by comparing two lotteries of the same price). The betting scheme is particularly
useful here as it allows the introduction and analysis of the very closely related question of the10

appropriateness of a probability (or set of probabilities related to a sequence of events) held by
a particular individual. De Finetti [25] showed that coherence, a simple economic behavioral12

criterion, implies that a given individual should avoid a combination of probability assignments
that is guaranteed to lead to loss. All that is needed to ensure such an avoidance is for uncertainty14

to be represented and manipulated using the theory of probability. In this context, the possibility
of representing subjective degrees of belief in terms of betting odds is often forwarded as part of a16

line of argument to require that subjective degrees of belief should satisfy the laws of probability.
This line of argument takes two parts. The first is that betting odds should be coherent, in the sense18

that they should not be open to a sure-loss contract. The second part is that a set of betting odds is
coherent if and only if it satisfies the laws of probability. The Dutch Book argument encompasses20

both parts: the proof that betting odds are not open to a sure-loss contract if and only if they are
probabilities is called the ‘Dutch book Theorem’. Thus, if an individual translates his state of22

knowledge in such a manner that the assigned probabilities, as a whole, do not respect the laws of
probability (standard probability axioms), then his assignments are not coherent.24

In many forensic fields (e.g., DNA) the bets and lottery schemes to assign probabilities are
– from a practical point of view – difficult to apply, especially when the events of interest are26

considered rare. A typical example for this is the assignment of a probability for the event of
observing a particular DNA profile in a person of interest. It is thus tempting to ask if this signifies28

the end of an approach to probability based on personal beliefs. We do not think so even if
probability elicitation is not a simple task for practitioners [26]. Some of the current controversies30

are linked to this question. Setting aside these controversies, in many cases the so-called ‘state of
knowledge’ consists of a relative frequency (e.g., the relative frequency of individuals in a sample32

from a population, presenting a target characteristic of interest). Discarding such information
on the grounds of a philosophical objection to a frequentist interpretation of probability would be34

unwise, and is not what is meant by embracing a subjectivist position. It thus becomes fundamental
and unavoidable to take a closer look at how relative frequencies can be used to help individuals36

in their belief assignment. It is also important to distinguish between a frequentist interpretation
of probability and a relative frequency that can be used to help quantify one’s degrees of belief.38

7De Finetti framed the operational perspective as follows: ‘However, it must be stated explicitly how these subjective probabilities are defined,
i.e. in order to give an operative (and not an empty verbalistic) definition, it is necessary to indicate a procedure, albeit idealized but not distorted,
an (effective or conceptual) experiment for its measurement.’ [14, at p. 212]
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3. Frequency and belief

Many scientists equate subjective probability with the arbitrary expression of belief of an in-2

dividual about events or characteristics of interest, quantified somehow, according to their state
of knowledge8. Such an equation amounts to the consideration of the assignment of a proba-4

bility as an unfounded (i.e., arbitrary) guess. Following the same argument, acceptance of such
a probability could be considered a statement of faith, with all the associated personal bias. The6

characterisation of the personalistic view of probability as arbitrary suggests that the use of relative
frequencies to inform a probabilistic view would be an implicit rejection of the personalistic view.8

On the contrary, consideration of relative frequencies within a subjective view of probability is to
use available information to help quantify personal degrees of beliefs in probabilistic terms. A key10

misunderstanding is concerned with the apparent relationship between frequencies and beliefs, a
misunderstanding which regards frequencies and beliefs as equivalent, since frequency data can12

be used to inform probabilities. Lindley has noted [3] :

There are, as we have seen with the defendant’s guilt, occasions where probability exists14

but [frequency] does not. There are other situations where both exist but are different
[...] All that you can do is use the chance [...] as data, or evidence, to help assess your16

belief. (at p. 49)

He also remarks:18

There are occasions where probability and [frequency] are numerically the same. A case
was encountered earlier. A forensic scientist’s belief that a stain will be of a particular20

blood type may be the frequency of that type in the population. (The population acting
as a sequence of people.) There is nothing wrong with this. What is happening is that22

the (frequency) data of blood type is being used as a basis for the beliefs. In our notation,
if I is the event of having that blood type, Pr(I | K) = p, where K is the data on the24

population and p is the frequency from that data. (at p. 49)

In the Bayesian framework, the expression of degrees of belief as proportions (i.e., relative26

frequencies) is not only fully acknowledged as reasonable but takes the form of a mathematical
theorem, the de Finetti representation theorem [28]. The theorem says that the convergence of28

one’s personal probabilities of an event E towards the values of observed proportions (e.g. the
probability to observe a given DNA genotype of interest converges towards a relative frequency),30

as the number of observations increases9, is a logical consequence of Bayes’ theorem if a condition
called exchangeability is satisfied by our degrees of belief prior to observations.32

De Finetti’s theorem enables one to say that a probability assignment located around the value
of an empirical proportion (relative frequency) is objective in the sense that several persons, whose34

a priori probabilities were different, would converge towards the same posterior probabilities, were
they to know the same data and share the same likelihoods. This usually happens in the conduct36

of statistical inference, where likelihoods are provided by the choice of appropriate probability
distributions, that is statistical models, so that they are the same for any observer who agrees on38

the choice of the statistical model.

8See also [27].
9See D’Agostini [29] for a discussion on this aspect. He noticed that ‘It is a matter of fact that (relative) frequency and probability are somehow

connected within probability theory, without the need for identifying the two concepts.’ (at p. 13).
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4. Bayes’ paradigm and subjective probability

The fundamental element of the Bayesian paradigm states that all uncertainties characterizing2

a problem can be described by probabilities or probability distributions. A probability is inter-
preted as a conditional measure of uncertainty associated with the occurrence of a particular event,4

a proposition of interest (e.g., the values that a hypothetical unknown quantity of interest may
assume), or a future or a missing observation. Probability is conditioned on the available infor-6

mation, the observed data, whenever available, and in some cases the underlying statistical model
describing the randomness of the observed data. Probabilities provide a measure of personal de-8

grees of belief in the occurrence of an event under these conditions, or in the range of values a
quantity of interest may assume, and so on.10

Imagine the quantity of interest is the proportion, say ✓, of individuals sharing a given trait of
interest. A Bayesian statistical model may be specified by means of two ingredients: a parametric12

statistical model, f(x | ✓), ✓ 2 ⇥, modelling the randomness that is associated with observa-
tions x, and a prior probability distribution ⇡(✓) on the parameter, ✓. Hence, under the Bayesian14

paradigm, the uncertainty about a parameter ✓ is modeled through a probability distribution ⇡ on
✓, called the prior distribution, that summarizes the knowledge that is available on the value that16

the parameter ✓ may assume, before data are obtained. While the prior distribution is a measure of
personal degree of belief about ✓ prior to observing the data, the function f(x | ✓) represents the18

probability of observing data taking certain values given the hypothetical information that ✓ takes
a certain value. Sometimes the Bayesian approach is criticised because it involves a prior distri-20

bution which influences the posterior distribution. Others consider the Bayesian approach to be of
value precisely because it offers the possibility to take into account prior information. Although22

there are problems of inference where the available information is minimal, or where the results of
scientific experiments must be reported as general results, minimally dependent on personal prior24

beliefs, this is not a hindrance in principle for the Bayesian approach. In fact, efforts have been
devoted towards the proposal and construction of prior distributions on the choice of which most26

observers might agree, so-called non-informative, vague or objective priors. It is important to note,
however, that the latter terminology is misleading in the sense that there are no ‘non-informative’28

or ‘objective’ priors [30]: each prior, by definition, just reflects a well defined opinion which is
as distinctive as any other way of expressing prior belief. It should also be pointed out that, even30

when theoretically admitting objectivity to a prior distribution thus obtained, the model choice
itself still represents another source of subjectivity10

32

Bayesian statistical inference about ✓ is described as the modification of the uncertainty about
its unknown value in the light of evidence, and Bayes’ theorem specifies how this should be done.34

Bayes’ theorem allows initial information about the parameter ✓, represented by the prior dis-
tribution ⇡(✓), to be updated by incorporating information contained in the observations, say x.36

Inference is then based on the posterior distribution, ⇡(✓ | x), the distribution of ✓ conditional on
x:38

10‘Bayesian probabilities can be viewed as ‘subjective’ or ‘personal’ but it is not necessary. Or, to put it another way, if you want to label
my posterior distribution as ‘personal’ because it is based on my personal choice of prior distribution, you should also label inferences from the
proportionnel hagards model as ‘personal’ because it is based on the user’s choice of the parametrization of Cox (1972); you should also label any
linear regression (classical or otherwise) as ‘personal’ as based on the assumptions of additivity, linearity, variance function and error distribution;
and so on for all the very simplest models in existence.’ [31] (at pp. 114-115)
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⇡(✓ | x) = f(x | ✓)⇡(✓)R
f(x | ✓)⇡(✓)d✓

=
f(x | ✓)⇡(✓)

f(x)
, (1)

where f(x) is the marginal distribution of x. Statistical inference about the parameter ✓ is
based, thus, on the modification of the uncertainty about its value in the light of evidence.2

Consider the following hypothetical case example. A laboratory receives a consignment of
discrete items whose attributes may be relevant within the context of a criminal investigation.4

The laboratory is requested to conduct analyses in order to gather information that should allow
one to draw an inference about, for instance, the proportion of items in the consignment that6

are of a certain kind (e.g., counterfeit products). The term ‘positive’ is used here to refer to an
item’s property that is of interest (e.g., counterfeit); otherwise the result of the analysis is termed8

‘negative’. This allows the introduction of a random variable X that takes the value 1 (i.e. success)
if the analyzed unit is positive and 0 (i.e. failure) otherwise. This is a generic type of case which10

applies well to many situations, such as surveys or, more generally, sampling procedures conducted
to infer the proportion of individuals or items in a population who share a given property or possess12

certain characteristics (e.g., that of being counterfeit). Suppose now that n = 10 units are analyzed,
so that there are 2n = 1024 possible outcomes. The forensic scientist should be able to assign a14

probability to each of the 1024 possible outcomes. At this point, if it was reasonable to assume
that only the observed values x1, x2, . . . , xn matter and not the order in which they appear, the16

forensic scientist would have a sensibly simplified task. In fact, the total number of probability
assignments would reduce from 1024 to 11, since it is assumed that all sequences are assigned the18

same probability if they have the same number of 1’s, (i.e., successes). This is possible if it is
thought that all the items are indistinguishable in the sense that it does not matter which particular20

item produced a success (i.e., a positive response) or a failure (i.e., a negative response). Stated
otherwise, this means that one’s probability assignment is invariant under changes in the order of22

successes and failures. If the outcomes were permuted in any way, assigned probabilities would
be unchanged. For a coin-tossing experiment, Lindley has expressed this as follows [24]:24

One way of expressing this is to say that any one toss, with its resulting outcome, may
be exchanged for any other with the same outcome, in the sense that the exchange will26

not alter your belief, expressing the idea that the tosses were done under conditions that
you feel very identical. (at p. 148)28

Formally, this is captured by the notion of exchangeability. The set of observations x1, ..., xn is
said to be exchangeable – for you, under a knowledge base – if their joint distribution is invariant30

under permutation. A formal definition is as follows:

The random quantities x1, ..., xn, are said to be judged exchangeable under a probability32

measure Pr if the implied joint degree of belief distribution satisfies Pr(x1, ..., xn) =
Pr(x⇡(1), ..., x⇡(n)) for all permutations ⇡ defined on the set {1, ..., n}. [32, at p. 169]34

Exchangeability is discussed here because it allows one, as will be illustrated in the next section,
to understand how the implementation of relative frequencies to inform subjective beliefs can be36

justified.
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The notion of exchangeability can be generalized to one of partial exchangeability. An example
of the simplest extension of exchangeability, that of marginal partial exchangeability, is given by2

[32] and concerns laboratory measurements :

Suppose that x1, x2, ... are real-valued measurements of a physical or chemical property4

of a given substance, all made on the same sample with the same measurement pro-
cedure. Under such conditions, many individuals might judge the complete sequence6

of measurements to be exchangeable. Suppose, however, that sequences of such mea-
surements are combined from k different laboratories, the substance being identical but8

the measurement procedures varying from laboratory to laboratory. In this case, judg-
ments of exchangeability for each laboratory sequence separately might be appropriate,10

whereas such a judgment for the combined sequence might not be. (at p. 170)

Such a situation is known as one of ‘marginal partial exchangeability’ and, with slight adjustments,12

can also be considered in forensic science applications. Consider, for the sake of illustration, that
x1, x2, ... are real-valued measurements or observations of a genetical response in human subjects14

when a particular analysis is applied. If there are different ethnic groups, most individuals would
be very reluctant to make a judgment of exchangeability for the entire sequence of results in the16

general population. However, within each sub-population, a judgment of exchangeability might
be regarded as reasonable. Similarly, such a judgment may be made, depending on the type of18

analysis performed, within each combination of gender and defined age-group11.
The assumption of exchangeability of events is based upon the state of information of the20

subject: that is, the subject has no information on which to consider the order of the observations to
be relevant, though this consideration is subject to revision when available evidence changes (i.e.,22

the person’s knowledge base changes). Exchangeability is a qualified judgment of symmetry based
on information, and for this reason it does not suffer of the circularity of the classical definition of24

probability mentioned above in Section 2.

5. De Finetti’s representation theorem26

An important consequence of exchangeability is that it provides an existence theorem for a
probability distribution ⇡(✓) on a parameter space ⇥. Dawid [33] illustrates the relevance of the28

concept in the following terms :

When considering a sequence of coin-tosses, for example, de Finetti does not assume30

– as would typically be done automatically and uncritically – that these must have the
probabilistic structure of Bernoulli trials12. Instead, he attempts to understand when32

and why this Bernoulli model might be reasonable. In accordance with his positivist
position, he starts by focusing attention directly on Your personal joint probability dis-34

tribution for the potentially infinite sequence of outcomes (X1, X2, ...) of the tosses –
this distribution being numerically fully determined (and so, in particular, having no36

11Analogously, see also [24]: ‘The records of the doctor observing the presence or absence of a symptom with a disease, you might think
exchangeable, though if you knew the sexes of the patients and thought the disease was sex-related, you might not. This example also serves to
illustrate an important point, that since the definition of exchangeable depends on your probabilities, it depends on your knowledge base, and a
series exchangeable under one base, without knowledge of sex, may fail to be under another, with knowledge of sex.’ (at p. 150)

12A Bernoulli trial is an experiment with two, and only two, possible outcomes; e.g., the coin toss will result in either a head or a tail.
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“unknown parameters”). Exchangeability holds when this joint distribution is symmet-
ric, in the sense that Your uncertainty would not be changed even if the tosses were first2

to be relabelled in some fixed but arbitrary way (so that, e.g., X1 now refers to toss 5,
X2 to toss 21, X3 to toss 1, etc.). In many applied contexts You would be willing to4

regard this as an extremely weak and reasonable condition to impose on Your personal
joint distribution, at least to an acceptable approximation. De Finetti’s famous repre-6

sentation theorem now implies that, assuming only exchangeability, we can deduce that
Your joint distribution is exactly the same as if You believed in a model of Bernoulli8

trials, governed by some unknown parameter p, and had personal uncertainty about p
(expressed by some probability distribution on [0, 1]). In particular, You would give10

probability 1 to the existence of a limiting relative frequency of H in the sequence of
tosses, and could take this limit as the definition of the “parameter” p. (at p. 45)13

12

This above provides a concise statement of de Finetti’s representation theorem, a mathematically
simple but powerful result providing a connection between the subjectivist and the objectivist14

perspective.
Consider a binary sequence (X1, X2, . . . ), that is values are taking only values 1 (i.e. success)16

and 0 (i.e. failure) representing, for example, the ‘presence’ or ‘absence’ of a given feature such
as a given DNA genotype, a Y-chromosome sequence, or a target substance in an item from a18

consignment. Note that experiments which lead to such events are called Bernoulli trials and the
sequence of Xis a Bernoulli sequence. The theorem can be stated informally as follows. If such20

sequence of observations is exchangeable, then any finite subset can be considered as a random
sample from a Bernoulli distribution, denoted Ber(✓), and there exists a prior distribution for ✓,22

where ✓ is the limiting relative frequency of the number of successes.
A note on terminology is necessary to clarify the language and to avoid misleading conclusions.24

In particular, there may arise a confusion between the meaning of exchangeability and that of
independence. The two concepts are not equivalent, and in fact the notion of exchangeability is26

stronger than the notion of independence. Under a frequentist perspective, consider a sequence of
trials (X1, X2, . . . ) and treat it as a sequence of independent and identically distributed Bernoulli28

trials, having some unknown success probability ✓. Consider, for sake of illustration, a coin-toss
scenario. If we consider the results, heads and tails, and consider such results as independent and30

identically distributed, this means that Pr(Xn = xn | X1 = x1, X2 = x2, . . . , Xn�1 = xn�1) =
Pr(Xn = xn), so that the results on the first n � 1 tosses, will not alter my uncertainty on the32

successive n
th toss. Independence implies that one believes that it is impossible to learn from

experience. In contrast, in the subjectivist point of view, probability is an expression of the degree34

of belief (uncertainty) of the experimenter rather than an attribute of the experiment itself, may
be evaluated by using available information, and will be updated as soon as new information is36

available (future trials). In this respect, [8] wrote:
‘independence’ does not exist, because the result of any ‘trial’ (to use once the current38

terminology) is informative, so that it modifies the probability of the future ‘trials’ as
evaluated by everybody in such a situation. (at p. 5)40

A simple learning scheme to revise personal probabilities after each trial is represented by the
Polya urn model. Consider an urn containing b black balls and w white balls. According to this42

13The personal pronoun ‘You’ is capitalised to indicate that it is the personal knowledge and probabilities of ‘You’, the reader, that are to be used.
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method, after each draw, the extracted ball is replaced and a ball of the same colour is also added,
increasing the number of balls in the urn by 1. In this way, the observation of a ball of a given2

colour, increases the degree of belief that a ball of the same colour is observed at the next draw.
Let Xi = 1 if the ith draw yields a white ball, and Xi = 0 otherwise. We can show that the original4

sequence is exchangeable, but events are not independent. Note for example the following:

Pr(1, 0, 1, 0) =
w

w + b
⇥ b

w + b+ 1
⇥ w + 1

w + b+ 2
⇥ b+ 1

w + b+ 3
6

Pr(0, 0, 1, 1) =
b

w + b
⇥ b+ 1

w + b+ 1
⇥ w

w + b+ 2
⇥ w + 1

w + b+ 3

The events are not independent since the observation of a ball of a given colour will alter the
probability a ball of the same colour is observed at the next trial, but events are exchangeable as8

their joint probability is invariant under permutation. Past results modify the current assignment
of probability. Assumption of a process of successive extraction with replacement of a ball from10

an urn of unknown composition implies that, as noticed by [34] ‘if it is hypothesised that the
successive extractions represents an “independent and identically distributed” process, we cannot,12

by logic, use the results of the previous extractions to infer the contents of the urn. We can do it if
we hypothesise that the process of the successive extractions is an exchangeable process, accepting14

not independence but only the condition that however you change the order of the random variables
of the process, the probabilities that characterise the process do not change.’ (at p. 51)14 The reader16

is referred to the Appendix for an example related to forensic science, where independence is not
needed for a solution to be obtained.18

More formally, de Finetti’s representation theorem states that if it is reasonable, for you, to
assume that, for any indefinitely extendible sequence of binary random quantities (x1, x2, ...), the20

order of the labelling of trials is irrelevant, then there exists a probability distribution F on the
interval [0, 1] such that, for any finite sequence of observations (x1, ..., xn),22

Pr(x1, x2, ..., xn) =

Z 1

0

nY

i=1

✓
xi(1� ✓)1�xidF(✓),

where F is the function of the limiting relative frequency

F(✓) = Pr(Y  ✓), with Y = lim
n!1

1

n

nX

i=1

Xi.

The long-run relative frequency is treated itself as a random variable. This result allows it to be
shown that a subjective assessment regarding a sequence of exchangeable observations is equiva-24

lent to placing a prior probability distribution on the long-run relative frequency. The probabilities

14Note also, as done by [20] for the example of an urn of unknown composition, that ‘what is unknown is the composition of the urn, not the
probability: the latter is always known and depends on the subjective opinion about the composition, which opinion is modified as new drawings
are made, and observed frequencies are taken into account’ (at p. 214). On the same line of reasoning, see [35] who wrote ‘we must not speak
of independent events with constant but unknown probability, but of drawing out of an urn with constant but unknown percentage, which is
independent - subordinate to the hypothesis - of a given percentage (for example, the real one if we could say which it is)’ (at p. 14).
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a forensic scientist is interested in can then be assigned with the use of a relative frequency. For-
mally, from a frequentist perspective, a forensic scientist will assign2

Pr(X = x | ✓) = ✓,where ✓ =

Pn
i=1 xi

n
.

Alternatively, from a Bayesian perspective, the forensic scientist will assign Pr(X = x) as

Pr(X = x) =

Z 1

0

✓dF(✓),

where F is a beta prior distribution with parameters ↵ =
Pn

i=1 xi and � = n�
Pn

i=1 xi. It can be4

shown (see the Appendix in [18]) that

Pr(X = x) =

Pn
i=1 xi

n
.

In other words, if you assign the same probability to all the sequences of length n with the same6

number of 1s, that is, only the number of 1s in n trials matters, and not the order in which they
are observed, then any finite sequence of observations can be considered as a unique ‘weighted’8

mixture of draws with replacement from a possibly infinite set of urns, containing balls marked 1
and 0 in different proportions ✓ (these fictional ‘proportions’ are mathematical limits but, as such,10

the theorem proves that they exist). The ‘weights’ are the probabilities F expressing your beliefs
about the ‘true’ urn from which the drawing is made.12

De Finetti’s approach provides a subjective explanation for the existence of objective chance.
In this respect, Zabell [36] noticed:14

The existence of limiting frequencies (Z) emerges as a mathematical consequence of
the qualitative symmetry assumption of exchangeability, rather than as a dubious (in16

part because untestable) physical assumption about the existence of infinite limiting
frequencies. (at p. 328)18

6. Exchangeability in practice

Comprehension of the nature of probability as an individual’s belief, reflecting a person’s20

knowledge base, is both an insightful and valuable perspective for forensic scientists. This ap-
proach to probability can cope with a combination of personal knowledge of circumstances for a22

particular case and, where available, relative frequencies observed in relevant databases. Clearly,
if relative frequencies are available, personal degrees of belief should take them into account [19].24

However, consideration of relative frequencies and databases implies strong and highly idealised
assumptions, for example of replicable experiments under identical conditions and of a meaning-26

ful selection of databases from relevant populations. While such thinking may be feasible where
the focus is on the occurrence (e.g. rarity) of selected features of interest, there is a large number28

of practical situations both in forensic science and beyond, where events for which probabilities
need to be assigned are conditioned on unique and non-replicable sets of circumstances, requiring30

other methods based on, for example, scoring rules [15].
The use of available data does not mean that a probability assignment based upon relative fre-32

quencies is objective in the sense that there exists some kind of intrinsic link between frequencies
14



and probabilities which is independent of all non-frequency related information. Any probability
judgment in a particular case, even when the judgment is frequency-based, has a component based2

on personal knowledge. A singular probability judgment is subsumed under a statistical law by an
argument which is sometimes called the statistical syllogism, namely that there is a major premiss,4

a minor premiss and a conclusion. Consider situations involving individuals where, for example,
the practitioners are interested in a given DNA genotype, or situations involving objects such as6

footwear mark of a given size. The framework of the argument is as follows, where (1)–(3) are
premisses and (4) is the conclusion:8

1. The relative frequency of property Q in a sample from a population R is �.
2. a is an individual or object in the population R.10

3. Nothing else is known about a which is relevant with respect to possession of property Q by
a.12

4. The probability that a has property Q is �.

A practical example is the following:14

1. The relative frequency of DNA profile Q in a sample from the population R is �.
2. The unknown criminal is an individual in the population R.16

3. Nothing else is known about the criminal which is relevant with respect to possession of
profile Q.18

4. The probability that the criminal has profile Q is �.

It is at the third premiss that personal knowledge, separate from the relative frequency, may20

be used in consideration of the probability. In these examples, the premiss is that there is no
relevant personal knowledge. The conclusion given then follows. The conclusion does not follow22

necessarily from the premisses even though it is the conclusion that would be accepted by most
people. If someone believes that the probability is different from �, this would sound unreasonable.24

However, it would not be a logical contradiction because people are free to make their own choice
of probability. The subjectivist Bayesian version of the statistical syllogism is as follows:26

1. The relative frequency of property Q in a sample from the population R is �.
2. a is an individual or object in the population R.28

3. a has, for you, the same probability of possessing property Q as any other individual in the
population R (exchangeability condition, a qualified judgement of symmetry).30

4. The probability, for You, that a has property Q is �.

In the Bayesian version of the statistical syllogism, when the population is finite, the conclusion32

does follow from the premisses because, if you believe (3), then (4) is the conclusion of a mathe-
matical deduction; (4) is the only coherent conclusion with premiss (3) and the laws of probability34

calculus. An example is presented in the Appendix.
Therefore, if probabilities are given a subjectivist interpretation, relative frequencies are known36

and the probabilities of possession of property of Q for all members of R are taken to be equal,
then relative frequencies determine the individual probabilities. On the other hand, if one would38

have evidence that individual ai belongs to a subpopulation S of R, with different characteristics
which are relevant with respect to Q, then the probability that ai is Q would not be equal to the40

probability that an individual in the general population R is Q. One should change one’s premisses
15



to obtain a new, valid, argument of the same form (as presented in footnote 9), by substituting S

for R and a new value, say �
0, for �, corresponding to the relative frequency of Q’s in S, if it is2

known.
Note that a relative frequency (something observed from an available database from a relevant4

population) of a particular characteristic is not to be equated with the proportion of the relevant
population with that characteristic. The proportion is not known, nor can it be known in many6

cases, and the relative frequency is only an estimate of it.

7. Conclusion8

In the Bayesian paradigm, the tendency to base degrees of belief upon relative frequencies, as
previously discussed, is not only fully acknowledged as reasonable, but takes the form of a math-10

ematical theorem, de Finetti’s representation theorem. The theorem says that the convergence of
one’s personal probabilities towards the values of observed frequencies, as the number of observa-12

tions increases, is a logical consequence of Bayes’ theorem if a condition called exchangeability
is satisfied by our degrees of belief, prior to observations.14

Despite the mathematical elegance of this argument, it is important to avoid shortcomings in
practical proceedings. First and foremost, the possibility to give relative frequencies an explicit16

role in probability assignment does not imply that probabilities can only be given when relative
frequencies are available. Typically, relative frequency information is not available in cases of non-18

replicable, singular events, so that other methods of elicitation (based, e.g. on scoring rules) should
be implemented to manage these situations. Second, and related to the previous observation, is20

the understanding that relative frequency, strictly speaking, is a summary of data. It conditions
probability assignments, but does not define them [19]. In essence, thus, the mere feasibility of22

using relative frequencies in the assignment of probabilities should not be taken as a suggestion
that the debate about the role of probability in forensic science is a debate about the role of relative24

frequencies – at best the latter can help where they are available, but they are by no means a
necessary condition.26

Besides de Finetti’s theorem, other so-called convergence theorems have been proved lately
demonstrating a generalization of de Finetti’s exchangeability [37, 38, 39, 40]. These results justify28

the assertion that a probability assignment close to the value of an empirical frequency is objective
in the sense that several persons, whose a priori probabilities were different, would converge30

towards the same a posteriori probabilities, were they to know the same data and share the same
likelihoods. This usually happens in the conduct of statistical inference, where likelihoods are32

provided by the choice of appropriate probability distributions (i.e., statistical models), so that
they are the same for any observer who agrees on the choice of the model. This confirms what34

Mondadori [41] has elegantly expressed as follows:

It is not possible to break every link between probability and frequency. After all, each36

of us feels a degree of confidence in the occurrence of a future event as the number of
‘analogous’ events that have occurred in the past grows; more generally, it is simply a38

fact that we tend to evaluate the probability of a future event very close to the frequency
of ‘analogous’ events passed by now. (at p. xx, translation by the authors)15

40

15Original quote: “Ma non è possibile spezzare ogni legame tra probabilità e frequenza. Dopo tutto, ciascuno di noi sente crescere il proprio
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Appendix

Two examples are given of exchangeability in practice. In the first example, there is a popu-12

lation that consists of three individuals, A,B and C. You16 only know that two have a property
Q and one does not. It is not known which two possess Q. In the second example, there is a14

population of small size N of which R possess Q and (N � R) do not but R is not known. A
sample of size n is taken.16

Example 1:
The population consists of three individuals, A,B and C. Two have a property Q and one does18

not. For You, the three individuals have the same probability of possessing Q. Notice that You do
not make any assumption about the numerical value of this probability: You are only saying that20

Pr(�) is the same, whatever the value of Pr(�).

(i) Pr(A) = Pr(B) = Pr(C).22

There are three possible combinations of observations (outcomes), given the knowledge You have
about the population R (the known frequency):24

(ii) C1 = (A is Q,B is Q, and C is not Q); C2 = (A is not Q,B is Q, and C is Q); C3 =
(A is Q,B is not Q, and C is Q).26

Therefore, by propositional logic and the addition law of probability for mutually exclusive events:

(iii) Pr(A) = Pr(C1 or C3) = Pr(C1) + Pr(C3); Pr(B) = Pr(C1 or C2) = Pr(C1) + Pr(C2);28

Pr(C) = Pr(C2 or C3) = Pr(C2) + Pr(C3).

From (i) and (iii) it follows immediately:30

(iv) Pr(C1) + Pr(C3) = Pr(C1) + Pr(C2) = Pr(C2) + Pr(C3),

and thus (the exchangeability condition):32

(v) Pr(C1) = Pr(C2) = Pr(C3).

One and only one of the combinations is true, so that, by the probability axioms, it must hold:34

(vi) Pr(C1) + Pr(C2) + Pr(C3) = 1.

Therefore, the only numerical evaluation of the individual probability that is coherent with the36

probability laws and Your opinion (Premise 3) is:

16The personal pronoun ‘You’ is capitalised to indicate that it is the personal knowledge and probabilities of ‘You’, the reader, that are to be used.

18



(vii) Pr(C1) = Pr(C2) = Pr(C3) = 1/3,

and hence, from (iii), conclusion (4) follows:2

(viii) Pr(A) = Pr(B) = Pr(C) = 2/3.

Any other numerical estimate would be logically incoherent. The same argument can be extended4

to any larger but finite population. No assumption of independence of the characteristics of A,B
and C has been made.6

Example 2
There is a population of small size N of which R possess Q and (N � R) do not but unlike8

Example 1 R is not known. A sample of size n is taken. As an example of what Q might be,
consider tablets in a consignment of drugs; the tablets may be either illicit (Q) or licit. The10

descriptor ‘small’ for the population size is used to indicate that removal of a member from the
population, as in selection without replacement, effects the probability of possession of Q when12

the next member is selected for removal. If the first member selected from the population possesses
Q, the probability the next member selected also possesses Q is (R� 1)/(N � 1). The population14

size N is sufficiently small that (R� 1)/(N � 1) cannot be approximated meaningfully by R/N .
Successive draws from the consignment are not independent.16

Let X be the number of members of the sample of size n that possess Q. The probability
distribution for X is the hypergeometric distribution and

Pr(X = x) =

�
R
x

��
N�R
n�x

�
�
N
n

� .

This distribution does not depend on the order in which the n members are drawn from the popu-
lation, only on the number x which possess Q and the number (n�x) which do not. The property18

that the distribution is independent of the order is that of exchangeability. As R is not known, it
is not possible to determine Pr(X = x). However, it is possible given values for n,N and x to20

make inferences about R. A comparison of the frequentist and Bayesian approaches to this small
consignment sampling problem is given in [42].22
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