
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Efficient and Transparent Wi-Fi Offloading for
HTTP(S) POSTs

Kévin Huguenin, Member, IEEE, Erwan Le Merrer, Nicolas Le Scouarnec, Member, IEEE,
Gilles Straub, Member, IEEE

Abstract—With the emergence of online platforms for (social) sharing, collaboration and backing up, mobile users generate
ever-increasing amounts of digital data, such as documents, photos and videos, which they upload while on the go. Cellular Internet
connectivity (e.g., 3G/4G) enables mobile users to upload their data but drains the battery of their devices and overloads mobile
service providers. Wi-Fi data offloading overcomes the aforementioned issues for delay-tolerant data. However, it comes at the cost of
constrained mobility for users, as they are required to stay within a given area while the data is uploaded. The up-link of the broadband
connection of the access point often constitutes a bottleneck and incurs waiting times of up to tens of minutes. In this paper, we
advocate the exploitation of the storage capabilities of common devices located on the Wi-Fi access point’s LAN, typically residential
gateways, NAS units or set-top boxes, to decrease the waiting time. We propose HOOP, a system for offloading upload tasks onto such
devices. HOOP operates seamlessly on HTTP(S) POST, which makes it highly generic and widely applicable; it also requires limited
changes on the gateways and on the web servers and none to existing protocols or browsers. HOOP is secure and, in a typical setting,
reduces the waiting time by up to a factor of 46. We analyze the security of HOOP and evaluate its performance by correlating mobility
traces of users with the position of the Wi-Fi access points of a leading community network (i.e., FON) that relies on major national
ISPs. We show that, in practice, HOOP drastically decreases the delay between the time the photo is taken and the time it is uploaded,
compared to regular Wi-Fi data offloading. We also demonstrate the practicality of HOOP by implementing it on a wireless router.

Index Terms—Wi-Fi offloading; Web technologies; Delay-tolerant networking;

F

1 INTRODUCTION

With the advent of mobile devices, both in terms of their
functionalities and of their connectivity, users generate ever-
increasing amounts of digital data while on the go. For
instance, they take photos and videos with their smart-
phones and produce or edit possibly large documents on
their tablets and laptops. The data is then uploaded (often
automatically) to online services, typically through web
applications, native apps or system services. They do so for
various purposes ranging from social sharing (e.g., sharing
photos on Facebook or Flickr, or videos on YouTube) to
increasing availability and backup (e.g., uploading all sorts
of documents to a cloud storage service such as Dropbox
or iCloud). Another example is the case of medical data for
the continuous biomedical monitoring of non-hospitalized
patients [2] and sportsmen. In many cases, the upload to
the online service is performed through HTTP(S) POST oper-
ations (e.g., using a browser, or with applications relying on
HTTP-based APIs).

• Manuscript received: June 1, 2015;
• This article is a revised and extended version of a paper that appears in

the Proceedings of the IEEE International Conference on Web Services
(ICWS’14) Huguenin et al. [1].

• K. Huguenin is with LAAS-CNRS, Toulouse, France. Parts of this work
have been done while the author was with EPFL, Lausanne, Switzerland
(e-mail: kevin.huguenin@laas.fr).

• E. Le Merrer, N. Le Scouarnec and G. Straub are with Tech-
nicolor, Rennes, France (e-mail: {erwan.lemerrer, nicolas.lescouarnec,
gilles.straub}@technicolor.com)

To upload the data they produce while on the go, users
rely on the connectivity of their mobile devices, namely
3G/4G and Wi-Fi capabilities. To do so, they are offered
essentially two options, both with noticeable drawbacks.
Cellular Internet connectivity enables mobile users to up-
load their data from virtually anywhere (and while moving)
but drains the battery of their devices [3], [4] and overloads
mobile Internet service providers, that, in response, impose
data caps (and either, block the traffic, reduce the bandwidth
or over-charge the traffic beyond the limit) much to the
detriment of the users. Data offloading at Wi-Fi access
points [5] (or 3G DropZones as advocated in [6]), be they
public (e.g., AT&T WiFi [7]), business (e.g., Starbucks) or
community (e.g., FON [8]) hotspots or personal or corpo-
rate access points, overcomes the aforementioned issues
for delay-tolerant data. This, however, comes at the cost
of constrained mobility and/or significant delays for users.
Indeed, the users are required to stay in the vicinity of the
access point while the data is being uploaded. In the case
of personal or corporate access points, the data is uploaded
only when the user reaches the corresponding location (i.e.,
home and work place respectively). A determining factor
of the upload time is the up-link speed of the Wi-Fi access
point’s Internet connection (typically 1 Mbps [9], [10]) which
often constitutes a bottleneck compared to the Wi-Fi con-
nection (typically 50 Mbps1). The waiting time can reach ten
minutes for 20 high-definition photos uploaded on a 1 Mbps

1. A study [3] from 2010 shows that an average Wi-Fi data rate of
1.2 Mbps can be achieved in urban areas, which means that the data
rate is often higher than that of the broadband connection; this number
should be even higher with the next-generation of Wi-Fi technologies.

2 IEEE TRANSACTIONS ON MOBILE COMPUTING

Internet link.
In this paper, we propose to leverage on the processing

and storage capabilities of common devices located on the
Wi-Fi access point’s local area network (LAN) to implement
a sort of store-and-forward HTTP(S) proxy, thus decreasing
the waiting time to the point where the Wi-Fi connection
of the access point becomes the bottleneck. First-class can-
didates for implementing such a scheme include always-
on residential gateways [11], [12], routers, network-attached
storage (NAS) units, and set-top boxes. One major design
challenge, which is paramount for a wide adoption, is to
provide a solution that is completely transparent for the
users and that requires as-small-as-possible changes to exist-
ing software and protocols. We propose HOOP, a system for
offloading upload tasks onto devices, such as gateways, in a
secure and seamless way. Essentially, when a user reaches an
HTML upload form on a HOOP-enabled website, her browser
looks for a device running HOOP on the local network (say
a gateway) to offload the uploading task. If such a device is
found, the user’s browser, instead of directly uploading the
file to the online service, encrypts and uploads the file to the
gateway, together with an authentication token, at a speed
determined by the Wi-Fi connection of the access point. At
this point, the user can disconnect from the access point and
potentially move and switch off her device, while the file is
being asynchronously uploaded by the gateway.

HOOP operates seamlessly–from the standpoint of the
user–on HTTP(S) POST and relies only on existing web
standards (e.g., JavaScript and AJAX) and network protocols
(e.g., HTTP(S) and DNS), thus making it highly generic and
widely applicable. More specifically, it can be used (through
its open API) by any application that relies on HTTP(S) POST
to upload data (e.g., HTML forms, Flash/Java uploaders,
native apps). HOOP requires only limited changes on the
gateways and on the web server and none at the client side
(i.e., at the mobile device’s operating system and browser).
HOOP is secure and it significantly reduces the users’
waiting time. Unlike previous works that maintain end-to-
end connections between mobile users and online servers
despite network disruption (e.g., [13] at the transport layer),
HOOP makes the most of connectivity windows by fully
exploiting local network connections (at the application
layer).

We analyze the security of HOOP and show that HOOP
guarantees the confidentiality and the integrity of the up-
loaded data, with respect to various attackers, including
the gateway and eavesdroppers. In addition, we show that
HOOP does not create new opportunities for an attacker to
disrupt the upload or attack the online service. We evaluate
the performance of HOOP in two scenarios. We consider a
static user uploading data at a HOOP-enabled Wi-Fi access
point and show experimentally that the waiting time is
reduced by a factor of 46, compared to regular Wi-Fi data
offloading. We consider a mobile user who uploads data
while moving, through a network of hotspots, and we
show through trace-driven simulations (i.e., by correlating
mobility traces with the positions of the Wi-Fi hotspots from
a leader ISP), that HOOP increases the upload capacity by
a factor of 42. We demonstrate the practicality of HOOP
by implementing it on a high-end set-top box and on
a wireless router (for the code running on the gateway)

and on various websites, including a minimal HTML form-
based uploader, the Flash and HTML 5 uploaders of the
Gallery [14] web photo organizer and the Java uploader
of the ResourceSpace [15] web data management service.
Finally, we discuss potential business models for HOOP and
show that the involved parties, in particular the users, the
online service providers, the Internet service providers (ISP),
and the access point operators, all have incentives to adopt
HOOP.

The rest of the paper is organized as follows. In Section 2,
we survey the related work. In Section 3, we introduce
the system model and we give some background about
HTTP(S) uploads. In Section 4, we present and describe
HOOP. We analyze the security of HOOP and we report on
its performance evaluation in Section 5. Finally, we discuss
the incentives and the economics behind HOOP in Section 6
and we conclude the paper in Section 7.

2 RELATED WORK

The problem of mobile data upload has received a great
deal of attention from the research community over the
last few years. More specifically, Balasubramanian et al.
first proposed [16] to augment the 3G capacity in mobile
scenarios by exploiting Wi-Fi access points. They imple-
ment a software solution for delaying data exchanges and
fast-switching between 3G and Wi-Fi, and they assess the
potential of their approach. In [3], Lee et al. perform a
large-scale experimental performance evaluation of data
offloading over Wi-Fi that demonstrates the benefits of this
approach, both in terms of the amount of data offloaded
from 3G and of battery power. In [6], Trestian et al. study
the data generation and upload patterns of mobile users
and advocate the use of cells with disproportionally up-
graded bandwidth, called Drop Zones, for offloading the
content generated by mobile users while on the go. In
addition, they tackle the problem of the optimal placement
and of the dimensioning of the Drop Zones. In [13], Go
et al. propose a practical implementation of mobile Wi-Fi
offloading where they use a transmission protocol that en-
ables mobile devices to maintain an end-to-end connection
with a server despite network disruption. As the proposed
solution operates at the transport layer, it is transparent to
the applications, and thus it is quite generic. However, it
requires modifications of the network interface at the client
side. Beyond academic contributions, some companies (e.g.,
GoNet2) have successfully designed and deployed Wi-Fi
networks for 3G offloading. Finally, some pieces of work,
such as [17], complement data offloading with device-to-
device communications. In [18], Han et al. survey existing
offloading techniques. In all these works, it is assumed that
the data is offloaded directly over Wi-Fi, at the speed of the
access point’s connection to the Internet, which constitutes
a bottleneck. Although HOOP relies on the same approach,
i.e., offloading traffic at Wi-Fi access points, it goes beyond
by exploiting the storage capacity at the access points to
fully take advantage of the Wi-Fi connectivity for delay-
tolerant uploads. In [19], the authors study the trade-off
between data downloading delays and user satisfaction in

2. https://www.winncom.com/en/success-stories/73 (Last visited
Jan. 2015)

https://www.winncom.com/en/success-stories/73

HUGUENIN ET AL.: EFFICIENT AND TRANSPARENT WI-FI OFFLOADING FOR HTTP(S) POSTS 3

the case of 3G offloading; they show that, by predicting the
users’ offloading potential and by using appropriate incen-
tives, data downloads can be efficiently delayed without
sacrificing the users’ satisfaction. Finally, in [20], Kim et al.
propose an analytical framework to study the performance
of mobile data offloading. One of their main findings is
that existing Wi-Fi infrastructures deployed in metropolitan
areas are sufficient to offload, within reasonable delays,
most of the mobile user traffic.

Several works, e.g., [11], [12], advocate the use of the
storage capacity of gateways–and other always-on devices
with storage capacity–to offload data transfer from user
devices. Technical solutions have been proposed and im-
plemented on gateways, set-top boxes and networked area
storage units. For instance, many such devices offer HTTP
download services and run BitTorrent clients (e.g., Synology
NAS). Closer to our work, the Fonera [21] enables users to
asynchronously upload files to a number of online services
(including YouTube, flickr, and Facebook) by simply copy-
ing them over, e.g., ftp, to specific folders. Unlike HOOP,
such solutions have major drawbacks that prevent wide
adoption in the public domain: The device is trusted with
the users’ credentials for these online services; the device is
given the users’ data, in clear, which it can alter; the solution
is dependent on the online service (as it relies on their
proprietary APIs) and it requires explicit user interactions,
as opposed to HOOP that is generic and seamless.

3 SYSTEM MODEL AND BACKGROUND

We consider a system composed of the following entities:
(1) a local area network (LAN) connected to the Internet
by an ISP, (2) a mobile device, controlled by the user, and
(3) an online web service, as described in Figure 1. The
local network is composed of a router (typically a gateway)
that connects the different devices to the Internet, a device
with computational and storage capabilities to run HOOP
(typically a set-top box or the gateway), and an access
point that enables users with wireless-equipped devices to
connect to the local network. The user connects to the Inter-
net (through the local network) with her wireless-equipped
mobile device and makes use of web services through her
installed browser and native apps. We consider an online
web service that enables users to upload data through
HTTPS3 POST operations, from an HTML form (potentially
with AJAX), a Flash uploader, or a native app. Throughout
the paper, we focus on the case of HTML forms; the other
cases are in fact simpler, as the service provider controls the
application, whereas for HTML forms the service provider
does not control the browser.

In a typical HTML scenario (without HOOP), a user
connects to the web service and requests the upload page,
through HTTP(S), from the browser installed on her mo-
bile device. The web service returns a HTML webpage in-
cluding a form (e.g., see Figure 2) that contains at least
one form element to select the data (typically some files,
e.g., photos) to be uploaded, some extra information (e.g.,

3. We focus on HTTPS throughout the paper: The case of unsecured
HTTP can be solved by implementing a proxy at the IP level; this is not
possible for HTTPS, as TLS layer protections rely on session keys that
are periodically renewed.

Broadband Internet connection
(up-link 1-5 Mbps)

Mobile devices

Internet router
Gateway

HTTPS Web service
w/ upload capabilities

Other devices
e.g., set-top box, NAS

Mobile devicesM bil d i

rnet router
Gateways

Other devices
e.g., set-top box, NAS

Local Area Network

r
G

Inter
G

Wi-Fi n (up to 300 Mbps)
Ethernet (100-1000 Mbps)

Fig. 1. Setup of Hoop.

a caption), an authentication token, and the target page
(https://www.service.com/post.php) to which the data will
be posted. The user then selects the file(s) to upload and sub-
mits the form by clicking on the corresponding button, and
the data is posted to the target page (typically a php page).
The user must stay connected until the data is uploaded.
Once the data is uploaded, the target page checks that the
user is authenticated (e.g., based on an authentication token
stored in a hidden field of the HTML form), and it retrieves
and processes the data (e.g, adds the photos to the user’s
profile in the service’s database); then a message confirming
the upload is shown to the user. The whole process is
depicted in Figure 3.

<form id="upload form" action="post.php" method="post">
<input type="file" name="data">
<input type="text" name="caption">
<input type="hidden" value="..." name="token">
<input type="button" value="Upload"

id="upload_button" onclick="upload_form.submit();">
</form>

Fig. 2. HTML upload form.

Consider the typical scenario of a native mobile ap-
plication, written in Java, for the Android platform. The
application communicates with the web service through
HTTP(S) in order to use the same interface as for the
website: The application collects data from the local file
system, as well as from various elements of the graphical
user interface (GUI); the application embeds the data in
an HTTP(S) request that it POSTs to the target URL (e.g.,
https://www.service.com/post.php) by using a dedicated
library (e.g., org.apache.http.client).

4 HOOP: DESIGN AND IMPLEMENTATION

In this section, we describe HOOP, a system for offloading
upload tasks onto devices located on the same LAN as the
user’s mobile device in a store-and-forward fashion. HOOP
involves three different entities, as described in the sys-
tem model: a software component on the device running
HOOP (say a gateway), the application running on the
user’s mobile device, and the web service. We describe the
functioning of HOOP by listing and explaining the different
operations performed by each of the three aforementioned
entities. HOOP operates as follows: The mobile device (be it
a script executed by the browser or a native app) searches

https://www.service.com/post.php
https://www.service.com/post.php

4 IEEE TRANSACTIONS ON MOBILE COMPUTING

User’s mobile device (trusted) Gateway (not trusted) HTTPS Server (trusted)
https://www.service.com/

GET https://www.service.com/ (trusted)

POST data + token TO https://www.service.com/post.php

<form id=‘up_form’ action=‘post.php’ method=‘post’>
 <input type=‘file ’ name=‘data’>
 <input type=‘text’ name=‘caption’>
 <input type=‘hidden’ value=‘...’ name=‘token’>
 <input type=‘button’ value=‘Upload’
 onclick=‘up_form.submit();’>
</form>

click

select files

Fig. 3. System overview without Hoop.

for a device running HOOP on the local network and, if
any such device is found, it processes (i.e., re-formats and
encrypts) the data to be sent and directs the upload to this
device (instead of to the web service). The device running
HOOP stores the data received from the mobile device and
asynchronously uploads it to the web service that handles
the data as for a regular upload. We first describe the general
functioning of HOOP, depicted in Figure 5; then we describe
the specifics of its implementation on the mobile device as a
web application running in a browser and as a native app.

4.1 System Description

The HOOP component running at the gateway essentially
consists of a daemon acting as both an HTTP server bound to
a fixed pre-defined port and an HTTP client. At the startup,
the HOOP component registers the hostname hoop.local on
the local network through the DHCP protocol [22]. Note that
as gateways often host a DHCP/DNS server, the hostname
registration can be done locally, and the gateway can make
sure that no other device on the LAN registers as hoop.local.
The HTTP server implemented by the HOOP component can
be accessed at http://hoop.local/ and offers two services:
test (accessible at http://hoop.local/test4) that allows de-
vices on the LAN to detect its presence and test its avail-
ability, and offload that implements the store-and-forward
operation, as we describe below. In order to allow scripts
originating from HOOP-compatible web services to connect
to the gateway’s HTTP services, the latter implements a
cross-origin resource sharing (CORS [23]) policy by adding
the rule Access-Control-Allow-Origin:* to the HTTP header
(or a similar rule in the crossdomain.xml file for Flash
applications).

The HOOP-compatible web service hosts, in addition to
the traditional page post.php, a page post_hoop.php that
handles the uploads that are offloaded to and forwarded
by the HOOP component running at the gateway. Although
these two pages differ in the way they retrieve and pre-
process the uploaded data, they process this data in the

4. Note that we omit the port for the sake of clarity.

same way by relying on the same php function. Thus, the
modifications required at the web service are limited. The
web service has a secret key Kws for symmetric authenti-
cated cryptography. Upon login, the mobile device obtains
an authentication token T from the web service. When an
upload operation is initiated, the mobile device obtains a
fresh random secret key K for symmetric authenticated
encryption, together with a version of the key encrypted
with the secret key of the web service, i.e., EKws

(K) where
E denotes the encryption operation (typically AES in OCB,
CCM or EAX mode), from the web service.

The mobile device (i.e., a web-application running in the
browser, a Flash application, or a native app) searches for
a device running HOOP on the local network by sending
an HTTP request to http://hoop.local/test. If the request
returns successfully (i.e., the host hoop.local is resolved
and found, and the request returns the HTTP success code
200–the gateway returns the HTTP service unavailable 503
code if its upload buffer is full), the mobile device sets the
target URL to http://hoop.local/offload, so as to offload the
upload to the device running HOOP, sets a GET parameter
to the target URL of the web service (i.e., http://www.
service.com/post_hoop.php), and generates the following
post data: Z = EKws(K) || EK(T || D), where E denotes
the encryption operation (e.g., AES in OCB, CCM or EAX
mode), T is the authentication token provided by the web
service, and D is the data the user wants to upload (e.g.,
a photo and a caption). Note that as the content sent by
the mobile device to the device running HOOP and by the
device running HOOP to the web service is encrypted, there
is no need to use TLS encryption (i.e., HTTP suffices); this
alleviates the need for certificate management at and for
the gateway. Finally, the mobile device posts the data Z to
the offload URL http://hoop.local/offload. As the mobile
device and the device running HOOP are on the same
local network, the speed at which the data is transferred
is determined by the technology used on the LAN (typically
100/1000 Mbps Ethernet or Wi-Fi g/n/ac) but is indepen-
dent from the speed of the Internet connection.

When the gateway receives a request to its offload
service, it first extracts the target URL of the web ser-

http://hoop.local/offload
http://www.service.com/post_hoop.php
http://www.service.com/post_hoop.php
http://hoop.local/offload

HUGUENIN ET AL.: EFFICIENT AND TRANSPARENT WI-FI OFFLOADING FOR HTTP(S) POSTS 5

vice from the GET parameters (i.e., http://www.service.
com/post_hoop.php). Then it extracts the POST data (i.e.,
EKws

(K) || EK(T || D)) and passes this data to its HTTP
client that (re-)posts the data to the target URL of the
web service. When the device running HOOP has limited
processing and memory capabilities (e.g., a wireless router
as described in Section 5), the HOOP component is imple-
mented as a stand-alone native executable file that provides
basic HTTP server and client features for receiving and (re-
)posting offloaded data. When running on a more powerful
device (e.g., a set-top box, a NAS, a dedicated server), the
HOOP component can also be integrated into an existing
HTTP server, e.g., as a module in the Apache HTTP server.

The post_hoop.php page hosted by the web service
parses the POST data. It first obtains the symmetric key K
by decrypting EKws

(K) with its secret key Kws. Then, it
decrypts the data and the authentication token by using
the key K and passes them to the script used to handle
regular uploads (i.e., those that do not make use of HOOP).
Note that when decrypting the different parts of the POST
data, the php script checks the integrity of the data and
drops the request if it fails the integrity test. Figure 4 gives
a simplified version5 of a typical post_hoop.php page (note
that any language, such as Java or Python could be used for
implementing the post_hoop). Note that the web service
relaxes its CORS policy for the post_hoop.php page by
accepting any origin for this page.

function hoopReceive(){
$fd = fopen("php://input", "r")
$k = hoopReadAndDecipherSessionKey($kws,$fd)
$data = hoopDecipher($k,$fd)
list ($_POST, $_FILE) = hoopMultipartDecode($data)

}
hoopReceive();
include("post.php");

Fig. 4. Hoop upload php script.

4.2 Implementation

The implementation of HOOP as a native app on the mo-
bile device is straightforward: Preparing and sending HTTP
requests is achieved by using a dedicated library such as
org.apache.http.client for Java on Android; the encryption
is performed by using a dedicated library as well, e.g.,
javax.crypto. The authentication token and the encryption
key are obtained from web service through HTTPS (e.g.,
returned in the XML or JSON format).

However, the implementation of HOOP as a web appli-
cation, is challenging as the web application runs within the
browser over which the developer has no control. The code
executed by the browser is provided by the web service
as a JavaScript. The script contains, in two variables, the
symmetric keyK and its encrypted versionEKws

(K). When
the JavaScript is loaded, it searches for a device running
HOOP by making an asynchronous XMLHttpRequest to

5. For the sake of clarity, the snippets do not exactly match the actual
implementation. In particular, we omit error-handling code as well as
diverse optimizations.

http://hoop.local/test. If the request returns successfully,
the JavaScript modifies the upload form in order to offload
the upload to the device running HOOP. This is achieved by
setting the target URL of the HTML form (i.e., its action at-
tribute) to the empty string, and by setting instead, through
the onsubmit attribute of the submit button, a JavaScript
function to be executed when the form is submitted (see Fig-
ure 6). This function accesses the data from the files through
the HTML 5 File API, performs the encryption by using a
dedicated JavaScript library6 (e.g., crypto-js [25]), and it
sends the encrypted POST data to the device running HOOP
at http://hoop.local/offload by making an XMLHttpRe-
quest with the GET parameter set to the target URL of the
web service (see Figure 7). When the upload terminates, the
user is redirected to a dedicated web page by changing the
location header.

button = document.getElementById("upload_button");

function hoopSetup(){
// search for a device running Hoop
req = new XMLHttpRequest();
req.open("GET", "http://hoop.local/test", true);
req.onreadystatechange=function(){

if (req.readyState==4 && req.status==200){
// switch the upload method to Hoop
button.onClick = "hoopSend();";

}
}
req.send();

}

Fig. 6. Hoop JavaScript function for activating Hoop, if a device running
Hoop is found on the LAN.

k = " ... " // symmetric key (in clear)
ek = " ... " // symmetric key (encrypted)
dest = "http://www.service.com/post_hoop.php"
form = document.getElementById("upload_form");

function hoopSend(){
data = hoopMultipartEncode(form) // extract the data
cipher = hoopCipher(data, k) // encrypt the data
req = new XMLHttpRequest();
req.open("POST", "http://hoop.local/offload?dest=" +

urlencode(dest), false);
req.send(ek + cipher);
window.location = "..." ;

}

Fig. 7. Hoop JavaScript function for preparing and offloading the data to
a device running Hoop.

4.3 Additional Features
In addition to its core offload functionality, HOOP offers
side features that enable users to monitor their offloaded
uploads, at the gateway and at the web service. Upon a
successful offload onto the gateway, the user is provided

6. Note that the W3C is currently working on the specification and
the implementation of a JavaScript cryptography API named WebCryp-
toAPI [24].

http://www.service.com/post_hoop.php
http://www.service.com/post_hoop.php

6 IEEE TRANSACTIONS ON MOBILE COMPUTING

User’s mobile device (trusted) Gateway running Hoop (not trusted)
https://hoop.local/

HTTPS Server (trusted)
https://www.service.com/

GET https://www.service.com/ (trusted)

POST data + token TO https://www.service.com/post.php

<form id=‘up_form’ action=‘post.php’ method=‘post’>
 <input type=‘file ’ name=‘data’>
 <input type=‘text’ name=‘caption’>
 <input type=‘hidden’ value=‘...’ name=‘token’>
 <input type=‘button’ value=‘Upload’
 onclick=‘up_form.submit();’>
</form>

form id=‘up form’ action=‘post php’ method=‘post’><

<

form id= up_form action= post.php method= post >
<
<
<
<

/

k = ...; ek = ...; dest = ‘post_hoop.php’
function hoopSetup(){
 req = new XMLHttpRequest();
 req.open(’GET’, ’http://hoop.local/test’, false);
 req.send();
 if(req.readyState==4 && req.status==200)
 button.onClick = ’hoopSend();’;
}

GET http://hoop.local/test

OK (HTTP 200) or Error (e.g., HTTP 503)

hoopSetup()

click

If OK
(Hoop)

If Error
(no Hoop)

POST Z = ek + EK(data, token) TO http://hoop.local/offload?
dest=http://www.service.com/hoop_post.php

POST Z TO http://www.service.com/hoop_post.php
hoopReceive()

include(‘post.php’)

Fig. 5. System overview with Hoop

with a link of the form hoop.local/monitor?ID=..., where
ID is a random identifier assigned to the offload, to monitor
(i.e., see the current upload status) the (re-)posting of the
uploaded data. The operator of the local network can make
the monitoring service accessible from outside the LAN;
in this case, the local hostname must be replaced by a
fully qualified hostname. The monitoring service can be
implemented at the web service as well: When an upload
is offloaded to a device running HOOP, the web service
is notified by the user’s mobile device through an HTTPS
request that includes the key K and the meta-data (e.g.,
the caption and the names of the files). The user can sub-
sequently monitor, through her account on the web service,
the list of her offloaded uploads and monitor/control (i.e.,
pause, resume, stop) them.

Finally, the user can specify, in her account settings on
the web service, certain policies for deciding whether to
use HOOP for offloading her uploads. For instance, the user
can decide to never use HOOP, to always use HOOP, or to
be asked (through e.g., a check-box) whether to use HOOP
when a device running HOOP is found on the local network.
More complicated policies can be used so as to, for example,
make the decision based on the sizes and types of the files
to be uploaded.

4.4 Extension to the Download Case

HOOP focuses on offloading upload tasks. As download
traffic is usually significantly higher than upload traffic,
adapting HOOP to handle download tasks is a natural and
interesting extension. This, however, is not trivial, especially
in a transparent fashion over HTTPS. In particular, it would
raise the following difficult question: How do we predict

which access points the user is going to connect to (in order
to pre-fetch the downloaded content at the access point)?
It would also require implementing some sort of “mailbox
pick-up” service in which a user has the content provider
push the content to an access point in such a way that when
she reaches the range of the access point it can download the
(pre-fetched) content by using the local link (thus, at a high
data rate). For instance, the service provider can push the
requested file, or some chunks of it, to the access point with
a specific ID (e.g., 4dsf4df2124sdfds2f4) and then redirect
the user to the URL http://hoop.local/4dsf4df2124sdfds2f4.
This require the users and/or the content provider to have
full knowledge of the list (and positions) of available access
points. Finally, because for broadband connection (unlike
Wi-Fi) the down-link speeds (typically 10 Mbps) are usually
much higher than the up-link speeds, such a protocol would
be less beneficial for downloads than for uploads. We leave
such an extension to future work.

5 EVALUATION

We evaluate HOOP with respect to its security (e.g., the con-
fidentiality and the integrity of the user’s data), its efficiency
(e.g., technical feasibility of HOOP on various devices), and
its efficacy (e.g., in terms of its offload potential). We do not
discuss the security of the features mentioned in Section 4.3
as they do not constitute the core of HOOP.

5.1 Security

We look at the security of HOOP by considering different
adversarial scenarios. As HOOP is designed for a wide de-
ployment in the public domain, neither the gateway nor the

http://hoop.local/4dsf4df2124sdfds2f4

HUGUENIN ET AL.: EFFICIENT AND TRANSPARENT WI-FI OFFLOADING FOR HTTP(S) POSTS 7

user is trusted, thus they constitute potential adversaries. In
addition, we consider (possibly active) adversaries such as a
jammer, an eavesdropper, or another user connected to the
LAN. We structure our security analysis with respect to the
three entities involved in HOOP.

Confidentiality and integrity of the users’ data. The
confidentiality and the integrity of the data (users’ data,
as well as the key K , and the JavaScript or HTML codes)
exchanged directly between the user’s mobile device and
the web service is guaranteed by the TLS encryption of
the HTTPS connection: Neither the router nor an eaves-
dropper (should it snoop on the LAN or on the Internet)
can read or stealthily (i.e., without being detected) tamper
with this data. The confidentiality and the integrity of
the data exchanged between the user’s mobile device and
the web service, through the HOOP on the gateway (over
unsecured HTTP), is guaranteed by the application-layer
encryption (i.e., an authenticated encryption (AEAD) such
as AES in OCB, CCM or EAX mode), the encryption key
K being known only to the user and to the web service as
it is exchanged over HTTPS. The authenticated encryption
implements integrity checks that prevent an attacker from
tampering with the data. Therefore, an adversary, such as a
malicious gateway, cannot tamper with the data (D||T) in
the post data as it does not know K .

Security of the gateway. An adversary can perform a
denial-of-service (DoS) attack against the gateway by issu-
ing a large number of offloading requests. In general, it is
difficult to defend against DoS attacks, however they are
not specific to the use of HOOP; this means that traditional
protection mechanisms can be used and that HOOP does not
create new opportunities to attack the gateway.

Security of the web service. Relaxing the CORS policy
for the hoop_post.php page exposes the web service to
cross-site scripting attacks (XSS), e.g., a third-party website
stealthily posting data to this page by relying on an existing
authentication cookie in the user’s browser. However, as
the hoop_post.php page authenticates users based on the
token T encrypted with the secret key K instead of using
cookies, such XSS attacks cannot succeed. Finally, an adver-
sary can carry out a DoS attack against the web service,
through HOOP, by offloading a large number of requests on
a gateway that runs HOOP. Such an attack, however, does
not give more power to the adversary as it is similar to
making the requests directly from the LAN.

5.2 Efficiency

We evaluate the efficiency of the HOOP components running
on the mobile device and on the gateway based on a real
implementation on various platforms.

Mobile device: encryption. Encryption (along with file
access and communication) constitutes a potential bottle-
neck when HOOP runs a mobile device. We considered both
OpenSSL and CryptoJS (v3.0) libraries for symmetric AES-
256 encryption, as they constitute natural candidates for an
implementation of HOOP as a native app and as a web
application respectively.7 We conducted our experiments

7. Note that other libraries for JavaScript encryption exist, e.g., [26].

on different devices and settings: a PC laptop (Core i5-
2520M) running Firefox 34 on Windows 7, a MacBookAir
Mid-2011 (Core i5-2467M) running Firefox 34 on OSX 10.10,
an iPhone 5S running Safari for iOS 8.1.2, an iPhone 4
running Safari for iOS 7.1.2, a Nexus 5 running Firefox 34
on Android 4.4.4, and a Galaxy S3 running Chrome 30 for
Android 4.2. The results, summarized in Table 1, show that
a native app can easily saturate a broadband connection
and, in most cases, saturate a LAN connection. The results
are not as good for JavaScript. However, they indicate that
laptops can saturate a local area network connection and
modern smartphones can saturate a Wi-Fi connection. Note
that service providers are most likely to provide native
apps on mobile devices (e.g., Dropbox, iCloud, YouTube
uploader), and the performance of JavaScript is good on
laptops, which are likely to use the web version of HOOP
within the browsers. Furthermore many factors foresee
significant improvements for JavaScript encryption: The
processing power of smartphones increases rapidly (the
iPhone 4 and the Galaxy S3 have been released in 2010
and 2012 respectively and their successors have significantly
improved processing capabilities); developers actively work
on improving the JavaScript performance of browsers in
general; and the WebCryptoAPI [24] specification of W3C
could lead to the use of native code for JavaScript encryption
for web applications.

TABLE 1
Benchmark of symmetric cryptographic libraries on various devices

(AES-256 encryption).

Device (Browser) Throughput (Mbps)
OpenSSL JavaScript

Laptop i5-2520M 640 138
MacBookAir i5-2467M (Mid-2011) 578 121
iPhone 5S NC 52.5
Nexus 5 NC 32.9
iPhone 4 968 5.45
Galaxy S3 4169 6.50

Gateway component: offload and upload. We imple-
mented the gateway component in charge of receiving and
(re-)posting offloaded data on two different devices: a wire-
less router running OpenWRT and a set-top box (see Table 2
for the detailed configurations). The set-top box has hard-
ware similar to a typical NAS. We implemented the HOOP
component in C and compiled it to a stand-alone native
executable linked against the libevhtp 1.2.6 (static link) and
libevent 2.0.5 (dynamic link) libraries. The implementation
has ∼350 source lines of code (excluding the libraries) that
compile to a binary of ∼60 KB (excluding a dynamic library
of ∼250 KB) on both platforms. The wireless router embeds
a Wi-Fi 802.11n access point and the set-top-box is connected
to the router/AP through a 100 Mbps Ethernet network
interface.

We conducted our experiments with HOOP running
either on the router or on the set-top box, and with our

8. Obtained from http://hmijailblog.blogspot.fr/2011/02/
openssl-speed-on-iphone-4.html (Last visited Oct. 2013)

9. Obtained from https://jve.linuxwall.info/ressources/taf/
aesmeasurements.txt (Last visited Oct. 2013)

http://hmijailblog.blogspot.fr/2011/02/openssl-speed-on-iphone-4.html
http://hmijailblog.blogspot.fr/2011/02/openssl-speed-on-iphone-4.html
https://jve.linuxwall.info/ressources/taf/aesmeasurements.txt
https://jve.linuxwall.info/ressources/taf/aesmeasurements.txt

8 IEEE TRANSACTIONS ON MOBILE COMPUTING

TABLE 2
Technical specifications of the devices used for the evaluation. These
two devices are representative of ISP-provided equipments: a modem

with limited capabilities and a high-end set-top box.

Dev. Arch. Proc. RAM HDD
Router MIPS Atheros AR7241@400 Mhz 32 MB USB 320 GB
Set-top x86 Intel Atom@1.66 Ghz 1 GB SATA 250 GB

Laptop Core i5-2520M connected to the local network ei-
ther over 100 Mbps Ethernet or over Wi-Fi 802.11n (the
actual negotiated link speed was 78 Mbps). Our experiments
with a wired connection between the mobile device and
the gateway enable us to assess the performance of the
HOOP component running at the gateway (as a wireless
connection could have constitute a bottleneck), whereas
our experiments with a wireless connection enable us to
assess the global performance of HOOP as a whole. We used
ApacheBench on our laptop to execute HTTP POST requests
and collect statistics.

We evaluate the performance of the HOOP component
running on the gateway, in a wired setting, along the
following metrics: (1) the offload speed (as a function of
the size of the POST, for different concurrency levels10), and
(2) the CPU usage (and the breakdown between system and
user time). The results are presented in Figure 8. It can be
observed on Figures 8a and 8b that for small POSTs (e.g., 50-
200 KB) offloaded onto the set-top box, sending concurrent
requests improves the offload speed as the requests are
processed concurrently at the gateway, thus amortizing the
connection delays. For large POSTs (i.e., > 1 MB), which
constitute the main use-case of HOOP, both the router and
the set-top box saturate the LAN connection (i.e., Ethernet
at 100 Mbps∼12 MBps) at 10 and 11 MBps respectively. The
bandwidth overhead of HOOP (cryptography and headers)
is negligible compared to the size of the files. The per-
formance of HOOP is not altered when concurrent POST
requests are issued. Figures 8c and 8d show that the system
accounts for a large proportion of the CPU usage; this means
that the CPU usage is mostly devoted to performing I/Os
(i.e., reading from and writing to the network and the disk).
It can be observed that, unlike for the set-top box, the CPU
of the router saturates; this explains the slight performance
gap between the two devices, with respect to the offload
speed, observed in Figures 8a and 8b.

To conclude, both the mobile device component and
the gateway component of HOOP can run efficiently: the
processing capabilities of the devices and the gateways are
sufficient to take advantage of the offloading capabilities
offered by HOOP: In all configurations, the offloading is per-
formed at a speed significantly higher than the upload speed
of an average broadband connection (i.e., 1.15 Mbps). Note
that these performances are obtained for slightly outdated
devices running somewhat immature JavaScript libraries. In
most configurations, HOOP can saturate the local connection
(typically at 100 Mbps) hence fully taking advantage of the
potential of Wi-Fi offloading.

10. Browsers can issue requests in parallel by opening up to 6-8
concurrent connections.

0
2
4
6
8
10
12

100 1000 10000

O
ffl
oa
d
sp
ee
d
(M
B
/s
)

Size of a POST (KB)
(a) Offload speed (router)

0
2
4
6
8
10
12

100 1000 10000

O
ffl
oa
d
sp
ee
d
(M
B
/s
)

Size of a POST (KB)

conc.=1
conc.=5
conc.=20

(b) Offload speed (set-top)

0
20
40
60
80
100

0 2 4 6 8 10 12 14 16

C
PU
us
ag
e
(%
)

Time (s)
(c) CPU usage (router)

0
20
40
60
80
100

0 2 4 6 8 10 12 14 16

C
PU
us
ag
e
(%
)

Time (s)

system
user

(d) CPU usage (set-top)

Fig. 8. Performance of the Hoop component running at the gateway.
CPU usage is for POSTs of size 1,000 KB with a concurrency level of 1.

5.3 Efficacy

We evaluate the efficacy of HOOP: First experimentally in
a static setting where the users do not move and stay
connected to the same access point, and then through trace-
driven simulations in a mobile setting.

5.3.1 Experimental Results
We experimentally assess the global performance of HOOP
in terms of the time needed to complete an offload, based on
our implementation on a laptop/router as described in Sec-
tion 5.2. This metric reflects the immediate gain of a user in
a static setting, as it corresponds to the time after which the
user can switch off her mobile device and/or start moving
out of the range of the Wi-Fi access point. For the web ser-
vice, we enhance the Gallery [14] web photo organizer with
HOOP compatibility11, and we host it on a server connected
to the Internet through a dedicated symmetric connection
at 100 Mbps. The local network is connected to the Internet
through an ADSL broadband connection synchronized at
12 Mbps (down)/1.15 Mbps (up). Neither the LAN link
nor the broadband link has background traffic (i.e., other
applications that use the links). Figure 9 shows the results
for different POST sizes ranging from 1 to 50 MB in wired
and wireless settings (for the connection between the mobile
device and the gateway), with and without HOOP. It can
be observed that HOOP significantly outperforms regular
Wi-Fi offloading (i.e., without HOOP): The offload time is
reduced by up to a factor of 85 in a wired setting and by
up to a factor of 46 in the wireless settings. These factors
roughly correspond to the ratios between the LAN and
the broadband link speeds (100/1.15 ≈ 84 for Ethernet;

11. We implemented HOOP on ResourceSpace [15] as well, to demon-
strate HOOP’s feasibility for Java-based uploaders.

HUGUENIN ET AL.: EFFICIENT AND TRANSPARENT WI-FI OFFLOADING FOR HTTP(S) POSTS 9

the observed speed for Wi-Fi 802.11n is consistent with the
actual speed of a link at 78 Mbps taking into account the
MAC and TCP overheads).

0.1

1

10

100

1000

5 15 25 35 45

O
ffl
oa
d
tim
e
(s
)

Size of a POST (MB)
(a)

0.1

1

10

100

1000

5 15 25 35 45

O
ffl
oa
d
tim
e
(s
)

Size of a POST (MB)

w/ Hoop
w/o Hoop

(b)

Fig. 9. Global performance of HOOP compared to the baseline in a
(a) wired and (b) wireless setting.

5.3.2 Trace-Driven Simulation Results
Through trace-driven simulations, we evaluate the efficacy
of HOOP in the scenario of a mobile user, who is equipped
with a Wi-Fi/3G-enabled device, moving in a region cov-
ered by a community/commercial network of Wi-Fi access
points and a 3G network. When the user is in the range
of an access point of the network, her device connects
automatically to it; this is usually done by the mobile OS
(e.g., through the EAP-SIM [27] protocol for AT&T [7] or
Swisscom [28] hotspots) or by a dedicated app (e.g., the
FON app [8] that uses the user’s credentials). The APs are
assumed to have an unlimited storage capacity. In addition,
the user could have a 3G data plan that enables her to
connect to the Internet from anywhere in the region.
Dataset. The evaluation is based on a dataset of Wi-Fi access
points from the FON network [8]. FON is a large community
network with over 14 million hotspots worldwide12 (most
of them are located in Belgium, France, Japan, Portugal,
and the UK–and soon in Germany and in the Netherlands
– due to to strategic partnerships with leader national
ISPs). The access points composing the FON network are
mostly routers and set-top boxes provided and operated
by the ISPs that hold total control over them (through
automatic firmware updates); as such, they constitute first-
class candidates for running HOOP. Users who host a FON
access point at their home places or pay a subscription
can connect (automatically) to the FON hotspots through a
dedicated mobile app. The map of FON hotspots is available
at http://corp.fon.com/maps. In early 2013, we collected
the geographic coordinates of the Wi-Fi access points from
SFR, a leading French ISP, which is part of the FON network.
In urban and residential areas, the density of the network
ranges from one hundred to more than a thousand hotspots
per square kilometer. In Paris, France, the average density
is 853±346 APs/km2; 77% of the area is covered by at least
one access point and the number of visible access points
in covered areas is 6.70 ± 4.62 on average, assuming a
communication range of 50 m.

In order to build connectivity traces, we correlate the co-
ordinates of the Wi-Fi access points with synthetic mobility

12. In fact, 10 million hotspots at the time of the data collection.

traces of users moving in the Paris area, France. Our dataset
comprises two sets of traces: five tourist paths and five
commuter paths. The first type corresponds to pedestrians
who explore the city by hopping from one point of interest
(POI) to another (including the Eiffel Tower, Notre-Dame,
and the Arc de Triomphe). To generate these paths, we
obtained the list of the points of interest in Paris from Tri-
pAdvisor, and we computed itineraries connecting them by
using GoogleMap. We assumed an average walking speed
of ∼2.5 km/h with 20-minute stops at POIs. The latter type
corresponds to workers who commute between their homes
and their work places by using the street public transport
system (i.e., bus and tram). To generate these paths, we
identified bus itineraries connecting residential areas with
business and activity districts. We obtained the path and
times from the Paris street transportation system (itineraries
and time tables of RATP buses). We assumed that buses
make 30-second pauses at stops. The average speed of the
buses, determined from the official time tables, is ∼6 km/h.
Methodology. We developed a trace-based discrete-event
simulator to compute the various metrics along which we
evaluate HOOP. The mobility traces provide discrete sam-
ples of the user’s position over time. We model the commu-
nication range of the access points with a fixed-radius (i.e.,
R) disc and we use a simple connectivity model13. Initially,
users are connected to the closest access point in their range:
in practice, this would correspond to the visible access point
with the strongest received signal strength indication (RSSI),
if any. When a user remains in the range of the access point
her device is connected to, it does not change access point.
As a user moves out of the range of the access point her
device is connected to, the connection is interrupted and her
device connects to the visible access point with the strongest
RSSI, if any. Connecting to a new access point is assumed to
take a constant time δt. When connected to an access point,
a mobile device can communicate with the access point (and
the devices on the same local network) at speed bLAN(·),
which depends on the distance to the access point and the
devices on the local network (including the mobile device)
can communicate with remote Internet hosts at speed bWAN.
We assume that there is no background traffic on the LAN
and on the Internet connection, and that the upload buffers
of the gateways are empty. We denote by b3G the speed
of the 3G connection. Users from tourist traces generate
photos of size Spic at a rate rgopic while moving, and at a
rate rPOI

pic when at a point of interest. Users from commuter
traces generate documents (or edit documents and upload
the modified versions, e.g., to Dropbox or iCloud) of size
Sdoc at a rate rdoc. The generated files are stored in a buffer
on the mobile device and uploaded to a web service in first-
in first-out order. When the connection to an access point is
lost, the on-going upload is aborted and it is restarted when
the mobile device establishes a new connection. Table 3
summarizes the different simulation parameters together
with a brief description and the value used in the evaluation.

13. In practice, wireless communications significantly differ from the
unit-disc communication model. To obtain more realistic results, one
could perform real-world experiments or use a more realistic network
simulator such as NS-3. As we believe that such practical aspects do
not alter the core aspects of HOOP and the associated benefit, in this
paper, we use a simple communication model.

10 IEEE TRANSACTIONS ON MOBILE COMPUTING

We consider the following connectivity scenarios and
upload strategies:

• Wi-Fi only (always mobile): Users always move
according to their mobility trace and upload their
data (w/ or w/o HOOP) over Wi-Fi whenever they
are connected to an access point.

• Wi-Fi + 3G (always mobile): Users always move
according to their mobility trace and upload their
data (w/ or w/o HOOP) over Wi-Fi whenever they
are connected to an access point, otherwise over 3G.

• Wi-Fi (mobile + static): Users move according to
their mobility traces and upload their data (w/ or
w/o HOOP) over Wi-Fi whenever they are connected
to an access point. When connected to an access
point, users move only when their upload buffer is
empty (i.e., they wait until their upload buffers are
empty before moving).

• 3G Only: Users always move according to their
mobility trace and upload their data over 3G (i.e.,
they never connect over Wi-Fi, hence they do not
make use of HOOP).

TABLE 3
Simulation parameters: description and values.

Param. Description Value
R Wi-Fi communication range 50 m
δt Wi-Fi connection establishment delay14 10 s
bWiFi Wi-Fi connection speeds (by range)15 10–97.5 Mbps
b3G 3G connection speed (upload) 0.8 Mbps
bWAN Broadband connection speed (upload) [10] 1.15 Mbps
Spic Picture size 3 MB
Sdoc Document size 1 MB
rgopic Picture generation rate (on-the-go) 0.2/min
rPOI
pic Picture generation rate (at POIs) 5/min
rdoc Document generation rate (e.g., auto-save) 1/min

Metrics. We assess the performance of HOOP according
to the following metrics. Together, they reflect the gains
and costs of using HOOP for the mobile users, in different
scenarios:

• Per-session Wi-Fi offload capacity: The maximum
amount of data a mobile user can offload/upload
over Wi-Fi during the connection time at an access
point.

• Total Wi-Fi offload capacity: The maximum amount
of data offloaded/uploaded over Wi-Fi (i.e., assum-
ing that the upload buffer on the user device is never
empty).

14. We experimentally estimated the value of this parameter .
15. In our simulations, the Wi-Fi speed is a (decreasing) function of

the distance to the access point. We use the link speeds of 802.11n with
3 antennas, 20 MHz channels and a guard interval of 800 ns. The speed
at the HTTP layer is assumed to be 50% of the speed at the link layer,
as observed in our experiments (see Section 5.3). More specifically, in
our simulations, the upload speeds are set as follows: 97.5 Mbps below
1 meter, 88 Mbps below 2.5 m, 76 Mbps below 5 m, 36 Mbps below 13 m,
29 Mbps below 19 m, 19 Mbps below 30 m, and 10 Mbps below 50 m
(=R). Because in certain environments and under certain conditions
the effective data rates and the communication range could be lower,
we also run experiments with lower values. We show the results in
Appendix A of the supplemental material.

• Delay: The delay between the time a file is generated
(e.g., the photo is shot) and the time it is uploaded
on the web service.

• Wi-Fi usage: The amount and the fraction of data
uploaded to the web service over Wi-Fi and the time
spent uploading it.

• 3G usage: The amount and the fraction of data
uploaded to the web service over 3G and the time
spent uploading it (in the Wi-Fi + 3G scenario).

• Waiting time: The time spent waiting for the offload
or upload to complete (in the Wi-Fi: mobile + static
scenario).

• Energy consumption: The energy consumed by the
network interface to offload/upload the data.

Note that we distinguish between offloaded and uploaded
data. Offloaded data corresponds to the data that has
been transferred from the mobile device onto the gateway,
whereas the uploaded data corresponds to the data that
has been effectively transferred from the gateway to the
online service. Without HOOP, these two quantities are the
same. With HOOP, however, the amount of offloaded data
is always higher than that of uploaded data, as some of the
offloaded data could still be in the buffer of the gateway
(and thus not effectively uploaded to the online service yet)
at the end of the simulation. All of the offloaded data will
eventually be uploaded to the online service, without the
need for any further action from the mobile device, that
could very well be switched off.
Results. Figure 10 shows the Wi-Fi offload capacity per
session. This metric is directly proportional to the duration
of the Wi-Fi sessions while moving. It can be observed that
without HOOP, the 80-th percentile of the amount of data a
user can upload is 4 MB for the tourist trace (slightly more
than one photo) and 1 MB (the size of a document). This
means that, without HOOP, the users from the commuter
trace can upload a complete document in only 20% of the
sessions. Finally, we note that the capacity is significantly
higher (i.e., ×2.5) for the tourist trace than for the commuter
trace; this is because users from the tourist trace move more
slowly than for the commuter trace (pedestrian vs. public
transportation passengers), hence the sessions are longer.

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120

C
D

F

Capacity (MB)

(a)

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120

C
D

F

Capacity (MB)

w/ Hoop
w/o Hoop

(b)

Fig. 10. Wi-Fi offload capacity per session for the (a) tourist and the
(b) commuter traces.

We now look at the total Wi-Fi offload capacity, i.e., the
total amount of data that is offloaded over Wi-Fi, assuming
that mobile users have an infinite number of files to upload,

HUGUENIN ET AL.: EFFICIENT AND TRANSPARENT WI-FI OFFLOADING FOR HTTP(S) POSTS 11

normalized by the total time of the simulation. Note that
this metric takes into account only the amount of useful
offloaded data: the offloads that are aborted due to Wi-Fi
connection loss are not taken into account.16 We also look
at the total upload capacity, that takes into account only the
amount of data that is actually uploaded to the web service
during the time of the simulation. The results are shown
in Figure 11. The goal of this simulation is to assess the
raw offload/upload potential. In practice, however, mobile
users might not reach the offload capacity as the upload
buffer could be empty if they produce only a small amount
of data. For instance, in [20], the authors show that, in a
practical scenario, upgrading the Wi-Fi data rate beyond
1 Mbps does not significantly increase the total amount of
uploaded data. However, with the increase of the resolution
of the cameras embedded on smartphones, the rate at which
mobile users generate data is expected to grow significantly.
It can be observed that the offload and upload capacities
are zero for the commuter trace. This is because the Wi-Fi
sessions are too short to upload even a single document
(as shown in Figure 10). Finally, we observe that for the
tourist trace HOOP increases the upload capacity by a factor
of 50 and the offload capacity by a factor of 54. Note that
the upload capacity with HOOP is significantly higher than
the speed of the Internet up-link (i.e., 1.15 Mbps), which
corresponds to the upload capacity in a static scenario where
the users stay connected to the same access point during the
entire experiment. This is because mobile users offload their
data on different access points; therefore the uploads are
performed simultaneously, thus increasing the total upload
capacity. When users generate small amounts of data, the
benefits of HOOP lie in the decrease of delays and energy
savings, which we investigate in the next paragraphs.

0

3

6

9

12

15

w
/ H

oop

w
/o

H
oop

C
ap

ac
it

y
(M

b
p

s)

(a)

0

3

6

9

12

15

w
/ H

oop

w
/o

H
oop

C
ap

ac
it

y
(M

b
p

s) Upload Wi-Fi
Offload Wi-Fi

(b)

Fig. 11. Total Wi-Fi upload and offload capacities for the (a) tourist and
the (b) commuter traces.

Figure 12 shows the cumulative distribution functions
(CDF) of the delay in the different connectivity scenarios.
In this scenario, we no longer assume that the users gen-
erate an infinite amount of data. Instead, we use the data
generation model described in the methodology section:
Users generate files of a fixed size (Spic for the tourist
trace and Sdoc for the commute trace) at a fixed rate (rpic
for the tourist trace and rdoc for the commute trace). It
can be observed that the delays are drastically reduced

16. Note that in the case of mobile applications that support resuming
aborted uploads (e.g., YouTube uploader [29]), all the uploaded data is
useful.

with HOOP. Surprisingly, we observe shorter delays in the
“w/ HOOP always mobile” scenario than in the “mobile +
static” (i.e., Wait) scenarios. This is because, in the mobile
scenario, users offload the different files in their buffers
to different access points. Hence, the files are uploaded
simultaneously, whereas in the wait scenario, the files are
uploaded sequentially as they are all offloaded at the same
access point. Finally, the results show that 3G connectivity
helps reduce the delays. This is because it enables the user
to upload some of the files as soon as they are produced
while the user stays at a point of interest with no Wi-Fi
coverage. Note that with HOOP, the delays are comparable
to or shorter than those observed when the users use only
3G, thus offering the users a similar quality of service while
reducing her data plan usage. Therefore, unlike previous
proposal of Wi-Fi offloading, the use of an active caching
equipment prevents the increase of delays.

0

0.2

0.4

0.6

0.8

1

0 2000 4000

C
D

F

Delay (s)

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100

Delay (s)

w/ Hoop 3G
w/ Hoop

w/ Hoop Wait
w/o Hoop Wait

3G Only
w/o Hoop 3G

w/o Hoop

(b)

Fig. 12. Delay between the content generation and the upload in different
connectivity scenarios for the (a) tourist and the (b) commuter traces.

In order to analyze the effect of the data rates and
of the communication range on HOOP, but also to take
into account the fact that, in practice, some environments
could have communication performances lower than those
considered in our first set of experiments, we run these
experiments with lower values of the data rates and of the
communication range. The results, shown in Appendix A
of the supplemental material, show that the conclusions
remain unaltered: HOOP still outperforms traditional Wi-Fi
offloading and remains beneficial to the users (to a lower
extent though).

We now look at the active time (i.e., the time spent
uploading/offloading data over Wi-Fi or 3G). Figure 13
summarizes the results for different scenarios: it can be
observed that HOOP consistently decreases the active time
while increasing the amount of data offloaded. This is
consistent with the increase of the amount of data sent over
Wi-Fi (and the decrease of the amount of data sent over 3G).
This translates into energy savings as the consumption per
MB is lower for Wi-Fi than for 3G [4]. Note that the results
from the two traces are not directly comparable because the
traces have different durations, and that the users generate
files of different sizes, at different rates. Note also that for
the same trace, the duration of the experiment is longer in
the “Wait” scenario. In our simulations, the waiting periods
increase the duration of the experiment by 8% with HOOP,
and by 10% without HOOP, for the tourist trace.

Finally, we evaluate the energy consumption of the
data uploads in different scenarios. We look at the energy

12 IEEE TRANSACTIONS ON MOBILE COMPUTING

0

10,000

20,000

30,000

0

1,000

2,000

3,000
T
im

e
(s
)

D
a
ta
(M

B
)

Active Time
Data Wi-Fi

Data 3G

0

250

500

w
/ H
oop

w
/o
H
oop

w
/ H
oop

3G

w
/o
H
oop

3G

3G
only

w
/ H
oop

W
ait

w
/o
H
oop

W
ait

0

20

40

T
im

e
(s
)

D
at
a
(M

B
)

Fig. 13. Time spent sending data and amount of useful data upload-
ed/offloaded over Wi-Fi and 3G for the tourist (top) and the commuter
(bottom) traces.

consumption only of the mobile devices (i.e., we disregard
that of the gateway component and that of the web server)
and we focus on the data transmission.17 To do so, we rely
on the values of energy consumption of smartphones’ 3G
and Wi-Fi network interfaces18 from [4] (including active
time and scan energy consumption for Wi-Fi), summarized
in Table 4. We further assume that smartphones perform
1-second scans every 8 seconds. We show the results in

TABLE 4
Energy consumption of smartphones network interfaces [4].

Transfer (J/MB) Idle (W) Scan (W)
Wi-Fi 5 0.77 1.29
3G 100 0 0

Figure 14. It can be observed that HOOP consistently reduces
energy consumption. The first reason is that the amount
of aborted data uploaded (hence the amount of wasted
energy) is reduced with HOOP. Secondly, in the case where
3G is used when there is no Wi-Fi connectivity, HOOP also
reduces the energy consumption. This is due to the fact that
HOOP offloads larger amounts of data over Wi-Fi (because it
offloads data at a higher speed); therefore it uploads lower
amounts of data over 3G (which is more energy consuming
that Wi-Fi). We also observe the price to pay, in terms of
energy consumption, for the delay improvement brought
by the use of 3G connectivity (shown in Figure 12).

5.3.3 Discussion: Scalability
In the previous sub-sections, we evaluate the performance
of HOOP in a single-user context. In this sub-section, we
discuss the scalability of HOOP in a multiple-user context. In
particular, we discuss how the performance of HOOP would
be affected by the number of users who connect to the access
points and transfer data concurrently.

17. With the use of native code for JavaScript encryption (through the
WebCryptoAPI), we expect the energy consumption of the encryption
to be equivalent to that of HTTPS; in the case where HOOP is used,
HTTPS is not needed for the communication between the mobile device
and the gateway.

18. Note that 4G LTE is less power efficient than 3G [30].

0

40

80

120

E
n

er
g

y
(J

/
M

B
)

Wi-Fi
3G

0

40

80

w
/ H

oop

w
/o

H
oop

w
/ H

oop
3G

w
/o

H
oop

3G
3G

only

w
/ H

oop
W

ait
w

/o
H

oop
W

ait

E
n

er
g

y
(J

/
M

B
)

Fig. 14. Energy consumptions of the network interfaces for data upload,
per sent KB, over Wi-Fi (incl. active time and scans) and 3G for the
tourist (top) and the commuter (bottom) traces.

We consider a mobile user and look at the effect of an-
other user connecting to the same access point. In this case,
the users have to share the Wi-Fi connection, which result
in lower data rates. However, the broadband connection
is shared as well, in such a way that, if the second user
also upload data, the ratio between the Wi-Fi speed and
the broadband up-link speed is not affected. In addition, if
the second user does not make use of HOOP, this ratio will
in fact increase, as the relative effect on the Wi-Fi speed is
lower than on the broadband up-link speed. For instance,
if the second user uploads data (without HOOP) at a rate of
0.5 Mbps, the broadband up-link speed is divided by two for
the first user, but the Wi-Fi speed is almost not affected (de-
crease of 10% for a connection at 50 Mbps), which increases
the benefits of HOOP. Finally, it should be noted that in the
case where the gateway faces scalability issues (e.g., because
its buffer is full), it can disable HOOP and switch to tradi-
tional offloading. To conclude, scalability can decrease the
performance of HOOP in some cases by decreasing the ratio
between the Wi-Fi speed and the broadband up-link speed;
in general, however, an upload system with HOOP enjoys
the same scalability properties as a system without HOOP.
Formally analyzing the performance of HOOP in a multiple-
user context, as in [31] for Delay-Tolerant Networks (DTN)
or in [20] for mobile data offloading, is a very interesting
problem, that we leave to future work.

6 DISCUSSION: ADOPTION AND INCENTIVES

In this section, we discuss the incentives for users to use
HOOP; and the incentive and the costs, for the commercial
parties involved (e.g., the web service), to implement and to
deploy HOOP. These factors are key to its wide deployment
and adoption. We also discuss additional features that make
HOOP more attractive to the different parties.

HOOP is beneficial for the users, as shown in Section 5.3,
and it does not require any user intervention as it operates
seamlessly. As such, HOOP increases the brand/product
value (1) of gateway/access point/NAS/set-top box man-
ufacturers, (2) of the ISPs that provide gateways and/or set-
top-boxes to their subscribers, and (3) of Wi-Fi access point

HUGUENIN ET AL.: EFFICIENT AND TRANSPARENT WI-FI OFFLOADING FOR HTTP(S) POSTS 13

(network) operators. The cost of deploying HOOP on such
devices is minimal: The implementation is simple (∼350
source lines of code) and can be easily deployed via (au-
tomatic) firmware updates or via third-party applications
available on specific repositories (e.g., optware packages
and Synology’s third-party packages [32]). The fact that
HOOP is generic, and thus can be used by any web service,
alleviates the need for the manufacturers and third-party
application developers to implement ad-hoc solutions for
each service (e.g., YouTube, Flickr, Picasa and Facebook up-
loaders implemented on the Fonera [21]). HOOP constitutes
an interesting marketing argument for service providers
as well and offers them an efficient ready-to-use solution
that requires only limited changes to the web service. Fur-
thermore, HOOP offers a unique opportunity for ISPs and
service providers to control a fraction of their traffic, because
they can delay the HOOP uploads. This enables them to
smoothen the traffic peaks hence reduce the investments for
dimensioning their equipment, as well as their bandwidth
costs in the case where burstable billing (e.g., 95-th per-
centile [33]) is used. Finally, should the use of HOOP be more
beneficial to the web service than for the ISP, the web service
could pay the ISP for the offloaded uploads (as advocated
and studied in [34], [35]), either directly (i.e., in currency)
or through advertisement. For instance, we can envision a
business model in which the photos uploaded to Facebook
through HOOP are displayed with an icon “Uploaded by
a Synology NAS” or “Uploaded from AT&T WiFi”. The
use of HOOP at some businesses could also be included in
the framework of existing partnerships between business
owners and web-services (e.g., Foursquare discounts [36]
and Facebook Wi-Fi [37]).

7 CONCLUSION

In this paper, we have presented HOOP, a system for of-
floading data uploads on devices with storage capabilities,
e.g., gateways, in a store-and-forward fashion. Our system
enables mobile users to fully exploit the Wi-Fi link by
relaxing the speed constraints due to the link that connects
the LAN to the Internet. Unlike existing systems, HOOP
operates transparently–from the stand point of the users–
and provides a ready-to-use, secure and generic solution to
data uploads offloading: The mobile users are not required
to trust the gateway with their credentials and the gateway
can neither see nor alter their data. We have reported on
our performance evaluation of HOOP, demonstrating its ef-
ficiency and its efficacy: HOOP can run on devices with very
limited capabilities (e.g., MIPS processor at 400 MHz with
32 MB of RAM) and decreases the waiting time of mobile
users by up to a factor of 46. We intend to conduct a real-
world field experiment to further assess the upload perfor-
mance of HOOP, as well as the potential energy savings. In
addition, we plan to perform a sensitivity analysis to study
the effect of the different parameters (including the number
of concurrent users) on the performance of HOOP, both
experimentally and theoretically (e.g., by building a formal
framework as in [20]). Finally, we intend to investigate the
feasibility of extending HOOP to handle download tasks.

8 ACKNOWLEDGMENTS

The authors are very grateful to Olivier Heen, Sébastien
Henri, Julien Herzen and to the anonymous reviewers for
their insightful comments.

REFERENCES

[1] K. Huguenin, E. Le Merrer, N. Le Scouarnec, and G. Straub,
“Hoop: HTTP POST Offloading from User Devices onto Residen-
tial Gateways,” in ICWS’14: Proc. of the 21st IEEE Int’l Conf. on Web
Services, 2014, pp. 654–661.

[2] F. Guidec, D. Benferhat, and P. Quinton, “Biomedical monitoring
of non-hospitalized subjects using disruption-tolerant wireless
sensors,” in MobiHealth’12: Proc. of the 3rd Conf. on Wireless Mobile
Communication and Healthcare, vol. 61, 2012, pp. 11–19.

[3] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile Data Offload-
ing: How Much Can WiFi Deliver?” IEEE/ACM Transactions on
Networking, vol. 21, no. 2, pp. 536–550, 2013.

[4] N. Ristanovic, J.-Y. Le Boudec, A. Chaintreau, and V. Erramilli,
“Energy Efficient Offloading of 3G Networks,” in MASS’11: Proc.
of the 2011 IEEE 8th Int’l Conf. on Mobile Ad-Hoc and Sensor Systems,
2011, pp. 202–211.

[5] I. IntelliNet Technologies, “Mobile data offload for 3G networks,”
White paper, 2009.

[6] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Taming the
mobile data deluge with drop zones,” IEEE/ACM Transactions on
Networking, vol. 20, no. 4, pp. 1010–1023, 2012.

[7] “AT&T WiFi,” http://www.att.com/gen/general?pid=5949, Last
visited: Jan. 2015.

[8] “FON,” http://www.fon.com, Last visited: Jan. 2015.
[9] M. Dischinger, A. Haeberlen, K. P. Gummadi, , and S. Saroiu.,

“Characterizing Residential Broadband Networks,” in IMC’07:
Proc. of the 7th ACM Int’l Conf. on Internet Measurement, 2007, pp.
43–56.

[10] OECD, “OECD Broadband portal,” http://www.oecd.org/sti/
broadband/oecdbroadbandportal.htm, Last visited: Jan. 2015.

[11] S. Defrance, A.-M. Kermarrec, E. Le Merrer, N. Le Scouarnec,
G. Straub, and A. Van Kempen, “Efficient peer-to-peer backup
services through buffering at the edge,” in P2P’11: Proc. of the 11th
IEEE Int’l Conf. on Peer-to-Peer Computing, 2011, pp. 142–151.

[12] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez,
“Greening the Internet with Nano Data Centers,” in CoNext’09:
Proc. of the 5th ACM Int’l Conf. on Emerging networking experiments
and technologies, 2009, pp. 37–48.

[13] Y. Go, Y. Moon, G. Nam, and K. Park, “A disruption-tolerant
transmission protocol for practical mobile data offloading,” in
MobiOpp’12: Proc. of the 3rd ACM International Workshop on Mobile
Opportunistic Networks, 2012, pp. 61–68.

[14] “Gallery: open source web based photo album organizer,” http:
//galleryproject.org/, Last visited: Jan. 2015.

[15] “ResourceSpace: an Open Source Digital Asset Management,”
http://www.resourcespace.org/, Last visited: Jan. 2015.

[16] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Aug-
menting mobile 3G using WiFi,” in MobiSys’10: Proc. of the 8th
ACM Int’l Conf. on Mobile systems, applications, and services, 2010,
pp. 209–222.

[17] X. Bao, Y. Lin, U. Lee, I. Rimac, and R. Choudhury, “Exploiting
naturally clustered mobile devices to offload cellular traffic,” in
INFOCOM’13: Proc. of the 32nd IEEE International Conference on
Computer Communication, 2013.

[18] T. Han, N. Ansari, M. Wu, and H. Yu, “On accelerating content de-
livery in mobile networks,” IEEE Communications Surveys Tutorial,
vol. 15, no. 3, pp. 1314–1333, 2013.

[19] X. Zhuo, W. Gao, G. Cao, and S. Hua, “An incentive framework for
cellular traffic offloading,” IEEE Transactions on Mobile Computing,
vol. 13, no. 3, pp. 541–555, 2014.

[20] Y. Kim, K. Lee, and N. B. Shroff, “An analytical framework to
characterize the efficiency and delay in a mobile data offloading
system,” in MobiHoc’14: Proc. of the 15th ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing, 2014, pp. 267–
276.

[21] “Fonera 2.0n,” http://www.fon.com/en/product/
fonera2nFeatures, Last visited: Jun. 2014.

[22] M. Stapp, B. Volz, and Y. Rekther, “The Dynamic Host Config-
uration Protocol (DHCP) Client Fully Qualified Domain Name
(FQDN) Option,” IETF RFC 4702, October 2006.

http://www.att.com/gen/general?pid=5949
http://www.fon.com
http://www.oecd.org/sti/broadband/oecdbroadbandportal.htm
http://www.oecd.org/sti/broadband/oecdbroadbandportal.htm
http://galleryproject.org/
http://galleryproject.org/
http://www.resourcespace.org/
http://www.fon.com/en/product/fonera2nFeatures
http://www.fon.com/en/product/fonera2nFeatures

14 IEEE TRANSACTIONS ON MOBILE COMPUTING

[23] W3C Working Draft, “Cross Origin Resource Sharing,” http://
www.w3.org/TR/cors/, April 2012.

[24] ——, “Web Cryptography API,” http://www.w3.org/TR/
WebCryptoAPI/, June 2013.

[25] “CryptoJS,” https://code.google.com/p/crypto-js/, Last visited:
Jan. 2015.

[26] “Stanford Javascript Crypto Library,” https://crypto.stanford.
edu/sjcl/, Last visited: Jan. 2015.

[27] Cisco Systems, “Extensible Authentication Protocol Method for
GSM Subscriber Identity Modules (EAP-SIM),” http://tools.ietf.
org/html/rfc2616, January 2006.

[28] “Swisscom Public Wireless LAN,” http://www.swisscom.ch/en/
residential/internet/internet-on-the-move/pwlan.html, Last vis-
ited: Jan. 2015.

[29] “YouTube API v2.0 - Resumable Uploads,” https:
//developers.google.com/youtube/2.0/developers_guide_
protocol_resumable_uploads, Last visited: Jan. 2015.

[30] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of
4g lte networks,” in MobiSys’12: Proc. of the 10th Int’l ACM Conf. on
Mobile Systems, Applications, and Services, 2012, pp. 225–238.

[31] A. Krifa, C. Barakat, and T. Spyropoulos, “Optimal buffer man-
agement policies for delay tolerant networks,” in SECON’08: Proc.
of the 5th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, 2008, pp. 260–268.

[32] “Synology DSM Packages,” https://www.synology.com/en-us/
dsm/app_packages, Last visited: Jan. 2015.

[33] “Burstable Billing,” http://en.wikipedia.org/wiki/Burstable_
billing, Last visited: Jan. 2015.

[34] W. Dong, S. Rallapalli, R. Jana, L. Qiu, K. Ramakrishnan, L. Ra-
zoumov, Y. Zhang, and T. W. Cho, “ideal: Incentivized dynamic
cellular offloading via auctions,” in INFOCOM’13: Proc. of the 32nd
IEEE Int’l Conf. on Computer Communications, 2013, pp. 755–763.

[35] S. Paris, F. Martignon, I. Filippini, and L. Chen, “A bandwidth
trading marketplace for mobile data offloading,” in INFOCOM’13:
Proc. of the 32nd IEEE Int’l Conf. on Computer Communications, 2013,
pp. 430–434.

[36] “Foursquare 101: Get a Discount,” http://aboutfoursquare.com/
foursquare-101/, Last visited: Jan. 2015.

[37] “Facebook Wi-Fi,” https://www.facebook.com/help/
facebookwifi, Last visited: Jan. 2015.

Kévin Huguenin is a permanent researcher at
LAAS-CNRS, which he joined in 2014. Prior to
that, he worked as a post-doctoral researcher
at EPFL and at McGill University. He also col-
laborated with Nokia Research and he worked
as an intern at Telefonica Research. He earned
a M.Sc. degree from École Normale Supérieure
de Cachan and the Université de Nice – Sophia
Antipolis, France, in 2007 and a Ph.D. in com-
puter science from the Université de Rennes,
France, in 2010. His research interests include

performance, security and privacy in networks and distributed systems.

Erwan Le Merrer is a researcher at Technicolor
in Rennes, which he joined in 2009. Prior to
that, he was a post-doctoral researcher at IRISA,
France (2007–2009). He earned a Ph.D. in com-
puter science from the Université de Rennes in
2007 (funded with an industrial grant from Or-
ange labs). His research interests include large-
scale distributed systems and applications.

Nicolas Le Scouarnec is a researcher at Tech-
nicolor in Rennes, which he joined in 2010. He
earned a M.Sc. degree from INSA de Rennes
in 2007 and a Ph.D. in computer science from
INSA de Rennes, France in 2010 (funded with
an industrial grant from Technicolor). His re-
search interests include efficiency and reliability
of cloud-based storage and computing systems.

Gilles Straub earned his engineer degree from
École Nationale Supérieure des Telecom Bre-
tagne in 1991. He started with Thomson-CSF
and worked on ATM switching and network
adaptation for professional video equipments.
He joined Thomson/Technicolor Rennes in 1996
where he now is senior scientist. He actively con-
tributed in the fields of home networking, wire-
less and broadband standards; he received the
Broadband Forum Circle of Excellence Award in
2008 for his involvement in TR-135, which is a

TR-069 data model of a set-top box. Since 2008, he has contributed to
develop various technologies including large-scale distributed systems,
unified content access, and cloud-based dynamic ad insertion.

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/WebCryptoAPI/
https://code.google.com/p/crypto-js/
https://crypto.stanford.edu/sjcl/
https://crypto.stanford.edu/sjcl/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.swisscom.ch/en/residential/internet/internet-on-the-move/pwlan.html
http://www.swisscom.ch/en/residential/internet/internet-on-the-move/pwlan.html
https://developers.google.com/youtube/2.0/developers_guide_protocol_resumable_uploads
https://developers.google.com/youtube/2.0/developers_guide_protocol_resumable_uploads
https://developers.google.com/youtube/2.0/developers_guide_protocol_resumable_uploads
https://www.synology.com/en-us/dsm/app_packages
https://www.synology.com/en-us/dsm/app_packages
http://en.wikipedia.org/wiki/Burstable_billing
http://en.wikipedia.org/wiki/Burstable_billing
http://aboutfoursquare.com/foursquare-101/
http://aboutfoursquare.com/foursquare-101/
https://www.facebook.com/help/facebookwifi
https://www.facebook.com/help/facebookwifi

