An anatomically-informed 3D CNN for brain
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Abstract. A commonly adopted approach to carry out detection tasks
in medical imaging is to rely on an initial segmentation. However, this ap-
proach strongly depends on voxel-wise annotations which are repetitive
and time-consuming to draw for medical experts. An interesting alterna-
tive to voxel-wise masks are so-called “weak” labels: these can either be
coarse or oversized annotations that are less precise, but noticeably faster
to create. In this work, we address the task of brain aneurysm detection as
a patch-wise binary classification with weak labels, in contrast to related
studies that rather use supervised segmentation methods and voxel-wise
delineations. Our approach comes with the non-trivial challenge of the
data set creation: as for most focal diseases, anomalous patches (with
aneurysm) are outnumbered by those showing no anomaly, and the two
classes usually have different spatial distributions. To tackle this frequent
scenario of inherently imbalanced, spatially skewed data sets, we propose
a novel, anatomically-driven approach by using a multi-scale and multi-
input 3D Convolutional Neural Network (CNN). We apply our model to
214 subjects (83 patients, 131 controls) who underwent Time-Of-Flight
Magnetic Resonance Angiography (TOF-MRA) and presented a total
of 111 unruptured cerebral aneurysms. We compare two strategies for
negative patch sampling that have an increasing level of difficulty for
the network and we show how this choice can strongly affect the results.
To assess whether the added spatial information helps improving per-
formances, we compare our anatomically-informed CNN with a baseline,
spatially-agnostic CNN. When considering the more realistic and chal-
lenging scenario including vessel-like negative patches, the former model
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attains the highest classification results (accuracy~95%, AUROC=~0.95,
AUPR=~0.71), thus outperforming the baseline.

Keywords: 3D-CNN - Negative Sampling - Weak Labels - Magnetic
Resonance Angiography - Aneurysm Detection.

1 Introduction

Cerebral aneurysms (CA) are abnormal focal dilatations in brain arteries caused
by a weakness in the blood vessel wall. The overall population prevalence of CA
ranges from 5% to 8% [I] and CA rupture is the predominant cause of nontrau-
matic subarachnoid hemorrhages (SAH) [2]. The mortality rate of aneurysmal
SAH is around 40% and only half of post-SAH patients return to independent
life [34]. Considering that the workload of radiologists is steadily increasing [5l0]
and the detection of CAs is deemed a non-trivial task (especially for small
aneurysms) [7], the development of an automatic tool able to detect aneurysms
before they become symptomatic would be highly beneficial, both to reduce false
negative cases, and to speed up the daily workflow in radiology departments.

Nowadays, non-enhanced Time-Of-Flight Magnetic Resonance Angiography
(TOF-MRA) is routinely used for CA detection because of its high sensitivity
(~ 95%) and pooled specificity of 89% [g]. Also, it has the advantage of being
non-invasive and without radiation exposure, as opposed to Digital Subtraction
Angiography (DSA) or Computed Tomography Angiography (CTA).

In the last few years, several medical imaging tasks such as classification, de-
tection and segmentation have been profoundly revolutionized by the application
of deep learning (DL) algorithms [9] which have shown a noteworthy potential.
However, DL has to deal with the recurrent challenge of limited availability of
(labelled) training examples, for building predictive algorithms that do not suf-
fer from overfitting [I0]. This is especially true in radiology where the voxel-wise
manual annotation of medical images is commonly considered a tedious and
time-consuming task [I1] which often takes away precious time from experts.

The task of automated brain aneurysm detection with DL algorithms has
already been addressed by several research groups. For instance, [12] used 2D
patches and a ResNet-like model to detect aneurysms from TOF-MRA. Simi-
larly, 2D Maximum Intensity Projection (MIP) patches with Convolutional Neu-
ral Network (CNN) have been proposed by [7I13]. In [I4], 2D nearby projection
(NP) images extracted from 3D CTA are fed as input to a Region-CNN (R-CNN)
to detect aneurysms. Other works rather use 3D patches to perform aneurysm
detection either in MRA or CTA imaging [I5/T6]. Though many of these works
present encouraging results for the development of a Computer-Assisted Diagno-
sis (CAD) system for aneurysm detection, most of them [ZUT3IT5IT6] build their
supervised models starting from voxel-wise manual annotations. From these an-
notations, they either carry out plain aneurysm segmentation [16], or they first
perform a segmentation and then refine it with post-processing steps [TUI3JI5],
in order to obtain detection bounding boxes.
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Differently from previous approaches, our work investigates the task of brain
aneurysm classification exploiting “weak” labels. In our application, these cor-
respond to manual annotations which are not drawn with voxel-wise precision,
but rather consist of spheres enclosing the aneurysms which are faster to create
for the expert with respect to a slice-by-slice labelling. The concept of “lazy”
or “weak” labels has already been used in previous works, in particular for seg-
mentation [I7JI8], or cell type concentration prediction [I9] where full labelling
would be infeasible. However, while [I7J19] exploited under-labelled data, we use
over-labelled (more labelled voxels than actual true positives) data to perform
aneurysm classification.

The goal of this study is three-fold: first, we assess the capability of a custom
CNN to distinguish 3D TOF-MRA patches positive/negative for aneurysms, us-
ing weak labels. Second, we show the substantial impact that negative sampling
can have on classification performances. Lastly, we propose an anatomically-
driven solution to mitigate the problem of negative sampling for our dataset and
for similar medical imaging tasks.

2 Materials and Methods

2.1 Data set

A retrospective cohort of 214 subjects who underwent clinically-indicated TOF-
MRA between 2010 and 2012 was used. Out of these 214 subjects, 83 had one
(or more) aneurysm(s), while 131 did not present any. For the former group,
patients with one or more unruptured intracranial aneurysms were included,
while patients with treated and ruptured aneurysms were excluded. Different
aneurysms of the same patient were treated as independent, but most patients
(81%) had only one aneurysm. Similarly, for patients with multiple sessions, we
treated each session independently. The overall number of aneurysms included in
the study is 111 and their anatomical location distribution is shown in Table
A 3D gradient recalled echo sequence with Partial Fourier technique was used
for all subjects (see MR acquisition parameter details in Table . Aneurysms
were annotated by one radiologist with 4 years of experience in neuroimaging.
The Mango software was used to create the aforementioned weak labels which
correspond to spheres that enclose the whole aneurysm, regardless of the shape
(i.e. saccular, fusiform or multilocular). All TOF-MRA subjects included in the
study were double checked by a senior neuroradiologist with over 14 years of ex-
perience, in order to exclude potential false positives or false negatives that might
have been present in the original medical reports. The data set was organized
according to the Brain Imaging Data Structure (BIDS) standard [20].

2.2 Image processing

Two preprocessing steps were carried out for each subject. First, we performed
skull-stripping with the Brain Extraction Tool [2I] to remove regions such as


http://ric.uthscsa.edu/mango/

4 Di Noto et al.

Table 1. Spatial distribution of aneurysms. MCA = Middle Cerebral Artery, ACOM
= Anterior Communicating Artery, PCOM = Posterior Communicating Artery.

Count| %

MCA 22 [19.8
ACOM 20 [18.0
Intradural carotid other| 13 |11.7
Carotid extra 13 |11.7
MC other 8 7.2
Carotid tip 8 7.2
Pericallosal 8 7.2
PCOM 7 6.3
Basilar tip 5 4.5
Ophthalmic 4 3.6
Post other 3 2.7

Table 2. MR acquisition parameters of TOF-MRA scans used for the study population.

Field TR | TE Pixel Slice Slice
# scans| Vendor Model |[Strength [ms] | [ms] spacing | Thickness| Gap
81 Philips Intera 3.0 18.3|3.40 |0.41x0.41 11 0.55
10 Siemens Aera 1.5 24.0| 7.0 |0.35x0.35 0.5 0.09
Healthineers
Siemens
21 |golihineers|  Skyra 3.0 21.03.43(0.27x0.27 0.5 0.08
Siemens
35 | Honlthimonps|Symphony| 1.5 39.05.020.39x0.39 1 0.25
28 Siemens sy 3.0 |23.0/4.18]0.46x0.46|  0.69 0.14
Healthineers
61 Siemens Verio 3.0 [22.0]3.95[0.46x0.46|  0.70 0.13
Healthineers

the skull or the eyes. Second, a probabilistic vessel atlas built from multi-center
MRA data sets [22] was co-registered to each patient’s TOF-MRA using the
Advanced Neuroimaging Tools (ANTS) [23]. Specifically, we first registered the
probabilistic atlas to the T1-weighted anatomical scan of each patient through a
symmetric diffeomorphic registration. Second, we registered the obtained warped
volume to the TOF subject space through an affine registration. The registered
atlas was used only to provide prior information about vessel locations for the
patch sampling strategy (see below). As for most of the previously mentioned
studies, we adopt a patch-based approach for the classification of aneurysms: we
use 3D TOF-MRA patches as input samples to our network, rather than the
entire volumes.

2.3 An anatomically-informed 3D-CNN

The task of aneurysm classification is extremely spatially constrained, since not
only aneurysms solely occur in arteries, but they also occur in precise locations
of the vasculature that have higher probability than others. Inspired by previous
works in neuroimaging [24I25], we decided to include this strong anatomical prior
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into our model. This was achieved in two ways: first, we designed a two-channel
CNN which analyzes patches of the input volume at different spatial scales, in
order to provide anatomical context on the vascular tree surrounding the patch
of interest. Second, we computed for each input sample a numerical vector D
containing tailored spatial features which is integrated in the fully connected
layers of the network; namely, the vector D includes the [x,y,z] coordinates of
the center of the input patch in MNI space, and the Euclidean distances from
this center to several coordinate and landmark points (also in MNI space). The
coordinate points belong to a cubic (6x6x6), uniformly-sampled grid superim-
posed on the TOF-MRA volume. The landmark points correspond to 24 arterial
locations where aneurysms are most recurrent; these were selected basing on
the literature [26] and on our data. The final dimension of D is 243. A 3D vi-
sual representation of these distances and of the creation of D are provided in

Figure [I}

Fig. 1. Computation of spatial features: for each input patch, we extract a feature
vector D which is composed of the [x,y,z] coordinates of the patch center (in purple),
the distances from this center to the points of a uniform grid (light green) and the
distances to some landmarks (red dots) recurrent for aneurysms (light blue). The main
brain arteries are segmented from the vessel atlas and are depicted in yellow.

Network architecture - We designed a custom CNN with building blocks
inspired by the VGG-16 network [27]. Figure [2] illustrates in detail the struc-
ture of our CNN. As already proposed in [28)29], we performed late fusion of
the features extracted from the input channels. Essentially, the same stack of
convolutional layers is applied in parallel both to the small-scale and large-scale
TOF-MRA patches. Then, feature vectors are merged, passed to a stack of fully
connected layers, and further concatenated with vector D. The rationale behind
the multi-scale approach is that the convolutions over the small-scale patches
produce aneurysm-specific features, whereas the large-scale patches provide con-



6 Di Noto et al.

16x30° .
R Multi-scale CNN

32x15°

64x7°
11728
. 1%3456

32x7%

[16%15°

11 Aneurysm

No

22x15° aneurysm

64x7° i >
1x1728 1 flatten

T:“_\., fs fully connected

=

concatenate

32x7° 33 Ix3Amax  fully
- conv pooling  connected
16x15~ downsample

Fig. 2. CNN architecture: features are extracted in parallel from small-scale and large-
scale TOF-MRA patches through a stack of convolutional layers. Then, they are merged
into a single fully connected layer. Later, the spatial information vector D is concate-
nated to a fully-connected layer.

text/spatial descriptors. Since most of the aneurysms in our dataset (92%) had
an equivalent diameter smaller than 30 voxels, we decided to fix the side of the
small-scale input patches to 30. Instead, a side of 80 was set for the large-scale
patches in order to include even the largest aneurysm (equivalent diameter =
58 voxels) and some context around it. All patches were standardized to have
mean 0 and variance 1 before being fed to the CNN as suggested by [30]. The
standardization was also performed to mitigate intensity differences which are
inherently present across different patients and scanners [31]. A kernel size of
3x3x3 was used in all convolutional layers, with padding and a stride=1 in all
directions. We applied the Rectified Linear Unit (ReLU) activation function for
all layers, except for the last fully connected layer which is followed by a sigmoid
function. To fit the model, the Adam optimization algorithm [32] was applied
with variable learning rate, together with the binary cross-entropy loss. More-
over, we used the Xavier initialization [33] for all the layers of the CNN. Biases
were initialized to 0 and a batch size of 4 was chosen. The final output of the
CNN is simply the class probability p of the input sample: positive (patch with
aneurysm) if p > 0.5 or negative (without aneurysm) if p < 0.5.

To elucidate whether the injection of anatomical and spatial information
into the model can improve classification results, we compare two distinct archi-
tectures: the anatomically-informed 3D-CNN illustrated in Figure |2/ and a
baseline CNN which is identical to the previous one, but has one input channel
(i.e. only the small-scale TOF-MRA) and no spatial features (i.e. no vector D).
The former has 884,529 trainable parameters, while the latter has 448,417.
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2.4 Patch sampling strategy

In addition to the comparison between models (anatomically-informed and base-
line), we also investigated the influence that negative sampling can have on clas-
sification performances. Indeed, while for the minority class (i.e. patches with
aneurysm) the sampling is restricted by the availability of positive cases, extrac-
tion of negative samples (majority-class sampling) necessarily entails the choice
of one (or more) extraction criteria. Therefore, we chose two different sampling
criteria for extracting negative patches:

1) Random sampling: negative samples were extracted randomly within
the skull-stripped brain, without overlapping with the positive patches.

2) Intensity-matched sampling: we imposed intensity constraints for the
extraction basing on the co-registered vessel atlas. More specifically, with an
iterative search, we only extract the negative sample when the corresponding
(i.e. same center coordinates) vessel patch has both a local (patch-wise) and
global (volume-wise) brightness that are higher than some specific thresholds.
These thresholds, in turn, were chosen empirically according to the local and
global brightness of all positive patches in the vessel atlas. First, this sampling
strategy avoids extracting patches that are too dark with respect to positive
ones. Second, it allows us to extract patches which always include part of the
vasculature. Needless to say, this sampling creates both more realistic and more
difficult negative samples for the CNN.

Instead, positive patches were extracted around the aneurysms in a non-
centered fashion, but ensuring that the aneurysm mask was always completely
included in the small-scale patch. As last step, regardless of the sampling strat-
egy, we combined the samples (negative and positive) of all subjects into a unique
dataset that was fed as input to the CNN. We decided to extract 8 negative sam-
ples per subject. This led to a final dataset composed of 1808 negative and 111
positive samples (ratio ~ 1 : 16). During training, a series of data augmentation
techniques were applied on positive patches: namely, rotations (90°,180°,270°),
horizontal flip, elastic deformation and contrast adjustment. Training and eval-
uation were performed with Tensorflow 2.0 and a GeForce RTX 2080TI GPU.

2.5 Evaluation approach

We evaluated all different scenarios through a nested stratified Cross Validation
(CV), with 5 external folds and 3 internal folds. This ensured that the patches
in every test fold were always unseen samples with respect to the training set
and to the chosen hyperparameters. The only hyperparameter that was tuned
in the internal CV is the learning rate: 0.00001, 0.0001 and 0.001 were tested.
All other hyperparameters were fixed, so as not to excessively lengthen training
time. We set a dropout rate of 0.2, a sample weight factor of 3 to give more
importance to the minority class and we trained the CNN for 50 epochs with
an early stopping condition on the validation/test set. To statistically compare
classification results, Wilcoxon signed-rank tests were performed [35]. For sim-
plicity, the tests only accounted for the area under the PR (AUPR) curve of the
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classifiers, since this metric is particularly suited when working with imbalanced
data sets [34]. A significance threshold level & = 0.05 was set for comparing P
values. First, we saved the best hyperparameters for each experiment. Then, we
re-ran the training/test of the CNN 10 times. For each of the 10 realizations we
always changed the patient order and ensured that the two models (baseline and
anatomically-informed) were evaluated against the exact same samples.

3 Results

Overall, 4 experiments were carried out: the two networks (anatomically-
informed and baseline) were evaluated first against the dataset with random
negative samples and then against the dataset with intensity-matched negative
samples. Classification results of the four experiments are reported in Table
Training the model took about 2 hours for the baseline model and 3 hours for the
anatomically-informed one. The most frequent learning rate across the external
test folds was 0.0001. The Wilcoxon tests performed on the AUPRs distributions
highlighted two main findings: first, both for the baseline and the anatomically-
informed model, AUPRs were statistically higher when random negative sam-
pling was used with respect to the intensity-matched sampling (P = 0.01). This
proves how one task is evidently easier than the other. Second, when comparing
the baseline model and the anatomically-informed model against the intensity-
matched dataset (difficult scenario), AUPR distributions were again significantly
different (P = 0.01), suggesting that the proposed anatomically-informed CNN
indeed outperforms the baseline.

Table 3. Classification results of baseline and anatomically-informed models both
with random negative patches and with intensity-matched (IM) ones. Acc=accuracy,
Sens=sensitivity, Spec=specificity, PPV=positive predictive value, NPV=negative pre-
dictive value, AUC=Area Under ROC Curve, AUPR=Area Under PR curve.

Network g’:ﬁi’;g’s Acc (%) |Sens (%) [Spec (%)|PPV (%)|NPV (%)|AUC|AUPR
oot |Random| 05 87T 6.2 597 99.0 | 961 | 779
™ 93.2 775 941 158 98.6 | .949 | .608
Anatomically| Random 97.3 91.9 97.7 72.6 99.5 .979 .875
Informed ™ 94.7 775 5.7 53.6 98.6 | .046 | 714

4 Discussion

This work presented an alternative approach for performing cerebral aneurysm
detection when voxel-wise annotations are not available. To this end, we pro-
posed a binary classification method, making use of weak labels enclosing the
aneurysms of interest. In addition, we shed light over the recurrent problem of
negative sampling in imbalanced and spatially-skewed data sets, showing how
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this step can dramatically alter final results. Lastly, we devised a tailored CNN
able to mitigate the negative sampling problem, by incorporating spatial anatom-
ical information. This CNN was able to outperform its baseline counterpart de-
spite the small sample size and having about twice the number of parameters.
We believe this general principle is applicable to several other brain diseases
with sparse spatial extent.

Our work is limited by the relatively high number of false positive cases even
for the anatomically-informed CNN (see low PPV in Table [3). In addition, a
separate analysis should be performed to understand whether the added dis-
tances of vector D are indeed helpful: these might be redundant with respect to
the [x,y,2] center coordinates of the patches, which could already be informative
enough. Though the presented patch-wise analysis is useful to gain insights on
the network performances, it cannot be easily exploited in a clinical scenario.
Thus, future work will aim at shifting towards a patient-wise analysis. Lastly,
we acknowledge that the dataset size is still limited and it should be increased.
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