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Background & Aims: Increased plasma ammonia concentration and consequent disruption of brain energy metabolism could
underpin the pathogenesis of hepatic encephalopathy (HE). Brain energy homeostasis relies on effective maintenance of brain
oxygenation, and dysregulation impairs neuronal function leading to cognitive impairment. We hypothesised that HE is
associated with reduced brain oxygenation and we explored the potential role of ammonia as an underlying pathophysio-
logical factor.
Methods: In a rat model of chronic liver disease with minimal HE (mHE; bile duct ligation [BDL]), brain tissue oxygen
measurement, and proton magnetic resonance spectroscopy were used to investigate how hyperammonaemia impacts
oxygenation and metabolic substrate availability in the central nervous system. Ornithine phenylacetate (OP, OCR-002; Ocera
Therapeutics, CA, USA) was used as an experimental treatment to reduce plasma ammonia concentration.
Results: In BDL animals, glucose, lactate, and tissue oxygen concentration in the cerebral cortex were significantly lower than
those in sham-operated controls. OP treatment corrected the hyperammonaemia and restored brain tissue oxygen. Although
BDL animals were hypotensive, cortical tissue oxygen concentration was significantly improved by treatments that increased
arterial blood pressure. Cerebrovascular reactivity to exogenously applied CO2 was found to be normal in BDL animals.
Conclusions: These data suggest that hyperammonaemia significantly decreases cortical oxygenation, potentially compro-
mising brain energy metabolism. These findings have potential clinical implications for the treatment of patients with mHE.
Lay summary: Braindysfunction is a serious complication of cirrhosis and affects approximately30%of these patients; however,
its treatment continues to be anunmet clinical need. This study shows that oxygen concentration in the brainof an animalmodel
of cirrhosis ismarkedly reduced. Lowarterial blood pressure and increased ammonia (a neurotoxin that accumulates in patients
with liver failure) are shown to be themain underlying causes. Experimental correction of these abnormalities restored oxygen
concentration in the brain, suggesting potential therapeutic avenues to explore.
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Introduction
Hepatic encephalopathy (HE) in chronic liver disease (CLD) is
characterised by a spectrum of neuropsychiatric symptoms that
include impairment of cognitive function.1,2 This is a serious but
potentially reversible condition that severely limits the patient’s
quality of life and long-term prognosis. HE can progress quickly,
resulting in coma with mortality rates of up to 50%3 without liver
transplantation. For some patients, despite successful trans-
plantation, the neuropsychiatric symptoms can persist indefi-
nitely.4 Blood ammonia concentration is one of the main
mechanisms thought to underlie the development of HE5 and is
an important therapeutic target.6 However, the exact mechanism
of how hyperammonaemia leads to this complex neuropsychi-
atric syndrome is still unclear. What is known is that excess
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ammonia in the central nervous system (CNS) impacts both
astrocytic and neuronal function to impair cognitive processing
in a graded, progressive fashion.7 A more granular understanding
of the pathophysiology could inform better treatment regimens
and identify additional drug targets.

Cognitive impairment seen in HE may be the result of several
related factors, including altered glutamatergic8 and GABAergic
neurotransmission,9 as well as (early) compromised brain energy
metabolism,10–12 all of which are affected by or correlated with
hyperammonaemia. The latter will impair all aspects of brain
function as neurotransmission is a particularly metabolically
demanding activity.13 A characteristic decline of whole-brain
oxidative metabolism has been seen in patients with HE, which
implicates changes of neurons and their energy turnover, rather
than a malfunction of oxidative metabolism in astrocytes.14 An-
imal models using bile duct ligation (BDL)-induced elevation in
ammonia have reported mitochondrial dysfunction, a reduction
in both mitochondrial membrane potential and respiratory chain
enzymes, and swelling of mitochondria.15 This culminates in
impaired ATP generation and oxidative stress, which in turn
leads to compromised brain energy metabolism.11,16

Oxygen is the key metabolic substrate within the CNS, but
only a 1-s buffer in supply is continuously maintained. It is
therefore necessary to tightly control delivery of this resource,
and mechanisms have evolved to closely regulate blood flow to
match oxygen supply with demand.17,18 Long-term impairment
of cerebral blood flow (CBF) control and therefore oxygen de-
livery has been linked to the development and/or progression of
cognitive impairment during ageing and Alzheimer’s disease.19,20

Similarly, acute impairment can have long-term consequences
on neurological function.21 In patients with liver cirrhosis and
HE, cerebral metabolic rate of oxygen (CMRO2) and CBF are
decreased when compared to those patients with cirrhosis but
without HE and also to healthy controls.14,22,23 It has not yet been
possible to determine if these derangements are associated with
brain hypoxia and whether hyperammonaemia contributes to
this reduction.24

In this study, we hypothesised that HE is associated with
brain hypoxia as a consequence of the high concentrations of
circulating ammonia. Using the BDL rat model of CLD with
minimal HE (mHE), we investigated the mechanism of HE-
related low brain oxygen concentration by manipulating pe-
ripheral and cerebral perfusion. Additionally, we sought to clarify
the role of ammonia in altering brain oxygenation during HE
using the drug ornithine phenylacetate (OP, OCR-002; Ocera
Therapeutics, CA, USA), which is known to reduce plasma and
brain ammonia concentrations.25
Materials and methods
All experiments were performed in accordance with the Euro-
pean Commission Directive 2010/63 (European Convention for
the Protection of Vertebrate Animals used for Experimental and
Other Scientific Purposes) and the UK Animals in Scientific Pro-
cedures Act 1986 (amended 2012), with project approval by the
Institutional Animal Welfare and Ethical Review Board. All ex-
periments were designed and reported in adherence to ARRIVE
guidelines.26 Some experiments were performed in collaboration
with the Center for Biomedical Imaging (CIBM), MRI Ecole Pol-
ytechnique Fédérale de Lausanne (EPFL) section, Animal Imaging
and Technology (AIT), Lausanne, Switzerland, owing to the
availability of proton magnetic resonance spectroscopy (1H-MRS)
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and were approved by the Committee on Animal Experimenta-
tion for the Canton of Vaud, Switzerland (VD3022.1). In both
cases, experimental subjects were obtained from a commercial
supplier, Charles Rivers Laboratories, Inc. Animals were group-
housed in individually ventilated cages, enriched with rails and
cardboard tubes, in a room of 20–22�C, relative moisture 50–60%,
and 12-h light–dark cycle (light 7 am to 7 pm).

Animal model of HE
HE in experimental animals was induced by BDL procedure as
described previously.10,27 Briefly, under surgical anaesthesia (5%
isoflurane in oxygen for induction and 2% isoflurane in air for
maintenance), rats underwent triple ligation of the bile duct via a
small laparotomy to induce advanced chronic liver injury. Con-
trol groups underwent a sham surgical procedure where the bile
duct was exposed for equal time, before closure of the incision.
Body temperature was monitored via a rectal probe and main-
tained at 37 ± 0.5�C with a Homeothermic Blanket Control Unit
(Harvard). At the end of the experiments, blood was collected
from the left ventricle of the heart under anaesthesia, and
biochemical measurements were performed using a Cobas
Integra II system (Roche Diagnostics) with plasma or Pock-
etChemTM (BA PA-4140) with fresh blood (Table S1). Plasma
bilirubin was measured using a Cobas Integra II system (Roche
Diagnostics) or a Reflotron® Plus system (F. Hoffmann-La Roche
Ltd) as indicated in Table S1.

Brain tissue partial pressure of oxygen (pO2) measurements
were performed in Sprague Dawley rats at 28 days post-surgery.
1H-MRS experiments were performed in Wistar rats at 42 days
post-surgery, as previous studies have shown slower progression
of liver disease development.10,28 Despite the difference in strain
and duration post-surgery, the selected time points have previ-
ously been defined as the time required for each animal model to
develop similar degree of severe fibrosis with manifestation of
severe cholestasis, portal hypertension, and cerebral dysfunc-
tion,10,29 as well as similar ammonium and bilirubin concentra-
tions (Table S1). The study overview and experimental design is
schematised in Fig. 1.

OP treatment
Combined doses of L-ornithine and phenylacetate (0.3 g/kg; OP)
were given twice daily, by i.p. injections, 23 days after the sur-
gery, �7 h apart for 5 days. This dosing regime has previously
been shown to reduce plasma ammonia concentration by
�50%.30 The rats were studied on day 28 after the BDL surgery,
within 3 h of the last OP injection.

Brain tissue oxygen measurements
Brain tissue oxygen was measured in vivo in BDL and sham-
operated animals (Fig. 1). Anaesthesia was induced by iso-
flurane as stated above and maintained with a-chloralose
(100 mg/kg, i.v.). Supplementary doses of a-chloralose
(10–20 mg/kg, i.v.) were given as required. The depth of anaes-
thesia was assessed by the stability of cardiovascular and respi-
ratory variables being recorded. The right femoral artery was
cannulated for the measurement of blood pressure (BP) and for
sampling arterial blood for analysis of pH and blood gases.
Samples were collected at regular intervals and analysed using a
pH/blood gas analyser (Siemens Rapidlab 248; Siemens Health-
care, Sudbury, UK). Blood gases and pH were maintained within
the physiological range (pO2 100–120 mmHg, partial pressure of
carbon dioxide [pCO2] 30–40 mmHg, pH 7.35–7.40, and
2vol. 4 j 100509
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proton magnetic resonance spectroscopy; ATZ, acetazolamide; BDL, bile duct ligation; OP, ornithine phenylacetate; PE, phenylephrine; pO2, partial pressure of
oxygen.
calculated bicarbonate between 22 and 26 meq/L) by adjusting
the rate and/or stroke volume of the ventilator and by supple-
mentary oxygen in the inspired room air. Body temperature was
monitored via a rectal probe and maintained at 37 ± 0.5�C using a
Homeothermic Blanket Control Unit (Harvard). BP was measured
using a pressure transducer (Neurolog, Digitimer, UK), and heart
rate was derived electronically from the BP signal.

Animals were placed in a stereotaxic frame, and a limited
craniotomy was performed to access the somatosensory (fore-
limb) region of the cortex (S1FL �0.5 mm below the cortical
surface; Fig. 1). pO2 was monitored using optical fluorescence
technology that allows real-time detection of pO2 in vivo (Oxy-
liteTM, Oxford Optronics), as previously described.31,32 Following
the insertion of the sensor, the craniotomy was sealed from the
air with petroleum jelly, preventing diffusion of ambient oxygen.
Following a 15-min recovery period, parenchymal pO2 sampling
was started until a stable reading was achieved.

Pharmacological and blood gas manipulations
To investigate cerebrovascular reactivity and the role of periph-
eral and cerebral perfusion in altering cerebral cortical oxygen
concentration, pharmacological and blood gas manipulations
were performed. Systemic hypercapnia was induced by switch-
ing the input to the ventilator from room air to a compressed gas
source that comprised 21% O2 and 10% CO2, with the balance
made of nitrogen. Animals were exposed to this gas mixture for a
period of 5 min after baseline pO2 was recorded. In a separate
group of animals, sham-operated and BDL subjects (Fig. 1)
received the carbonic anhydrase inhibitor acetazolamide (ATZ33;
10 mg/kg, i.v.) dissolved in 100% DMSO (maximum volume 25 ll)
after baseline pO2 was recorded. Peripheral vessel tone under
anaesthesia was manipulated by infusion of the alpha1-
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adrenoceptor agonist phenylephrine (PE). PE was infused at a
rate of 5–10 lg/min to maintain a mean arterial pressure (MAP)
in the BDL subjects of �100 mmHg for a period of approximately
10 min.
In vivo 1H-MRS at 9.4 T
To investigate the characteristic metabolic changes known to
occur in HE7 and validate our model, sham-operated and BDL
rats (Fig. 1) were anaesthetised with isoflurane (5% for induction
and 2% for maintenance in 50% air and 50% oxygen) and un-
derwent 1H-MRS. 1H-MRS spectra were acquired on a 9.4 T
system (Varian/Magnex Scientific) using the spin echo full in-
tensity acquired localised (SPECIAL) sequence (echo time [TE] =
2.8 ms) as previously described.10 Volume of interest (VOI) was
selected in S1 primary somatosensory cortex (1.3 × 2 × 3 mm3).
LCModel was used for quantification using water as internal
reference, allowing the quantification of a total of 18 metabolites.
Body temperature of animals was monitored via a rectal probe
and maintained at 37 ± 0.5�C by means of a heated MRI-
compatible animal cradle.
Data analysis and statistics
Physiological variables were digitised using a Power 1401 inter-
face (CED) and stored on a PC for offline processing using Spike 2
software (CED). Statistical analysis was performed using Graph-
Pad Prism (v9 for Mac, San Diego, CA, USA). Data are expressed as
mean ± SEM. Differences were ascertained using the Kruskal–
Wallis test followed by Dunn’s multiple-comparison post hoc
test or a paired/unpaired t test and the Mann–Whitney U test,
where appropriate. Differences with a p value of <0.05 were
considered significant.
3vol. 4 j 100509
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Results
Biochemistry
Compared with sham surgery, the BDL procedure resulted in a
significant increase in plasma ammonia, alanine transaminase
(ALT) and bilirubin (p <0.001), indicating impaired liver function,
whereas albumin and total protein concentrations were signifi-
cantly decreased (p <0.001). Treatment of BDL animals with OP
lowered plasma ammonia concentration, which was similar to
that measured in sham-operated animals (p = 0.3), but had no
effect on other parameters; ALT, bilirubin, albumin, and total
protein concentrations remained unchanged from the untreated
BDL group. Plasma biochemistry and ammonia concentration
data are summarised in Tables S1 and S2.
Brain tissue pO2 and cerebrovascular CO2 reactivity
Following placement of the oxygen sensor in the cerebral cortex
(Fig. 1), blood pO2 and pCO2 were measured, and no significant
differences were detected between groups (Table 1). Brain pO2

was obtained over a period of at least 5 min of stable recording.
An average of this period revealed a significantly lower brain pO2

(BDL: 14 ± 1 mmHg, n = 36; sham-operated controls: 27 ±
1 mmHg, n = 36; p <0.001; Fig. 2).

To investigate the role of hyperammonaemia in brain oxygen
impairment seen in our model of HE, we lowered ammonia by
treating the BDL animals with OP, which had no significant effect
on any other plasma biochemistry parameters (Table S1). OP
treatment of BDL rats significantly improved brain pO2 (22 ±
p <0.001 p >0.99 p = 0.6
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Fig. 2. Cortical pO2 in an animal model of HE. Summary data illustrating
basal pO2 in the somatosensory cortex of sham-operated, BDL, sham-OP, and
BDL-OP-treated animals. Data are expressed as mean ± SEM and compared
using the Kruskal–Wallis test followed by Dunn’s multiple-comparison post
hoc test. Values of p indicate differences from sham-operated rats. BDL, bile
duct ligation; OP, ornithine phenylacetate; pO2, partial pressure of oxygen.

Table 1. Arterial blood pO2 and pCO2 in an animal model of HE, indicating
no statistically significant differences between the groups.

Arterial blood pO2 (mmHg) Arterial blood pCO2 (mmHg)

Sham 121 ± 2 32 ± 1
BDL 114 ± 3 33 ± 1
Sham-OP 116 ± 2 34 ± 2
BDL-OP 115 ± 5 31 ± 2

Data are expressed as mean ± SEM and compared using 1-way ANOVA. BDL, bile duct
ligation; HE, hepatic encephalopathy; OP, ornithine phenylacetate; pCO2, partial
pressure of carbon dioxide; pO2, partial pressure of oxygen.
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1 mmHg, n = 6), increasing the oxygen concentration similar to
that recorded in sham-operated (27 ± 1 mmHg; p = 0.6) and
sham-OP rats (27 ± 2 mmHg, n = 7; p >0.1; Fig. 2).

To evaluate the ability of cerebral vessels to respond to a
known vasodilatory stimulus, hypercapnic acidosis was induced
by changing the inspired gas mixture to include 10% CO2. Hy-
percapnic acidosis led to a significant increase in parenchymal
pO2 from baseline in both BDL (p <0.001) and sham-operated rats
(p <0.001; Fig. 3A and C), that is, 15 ± 2 to 36 ± 4 mmHg (n = 6)
and 26 ± 1 to 46 ± 3 mmHg (n = 8), respectively. Despite the
lower baseline pO2 (p = 0.007), CO2 reactivity was preserved in
BDL animals, with an increase in pO2 (by 20 ± 3 mmHg, 80%
increase) not significantly different to that observed in sham-
operated animals (by 21 ± 2 mmHg, 132% increase, p = 0.9;
Fig. 3B). This indicates that it is possible to restore brain
oxygenation by cerebrovascular dilation as there was no differ-
ence (p = 0.1) between the peak tissue pO2 measured in BDL and
sham-operated controls (Fig. 3A) during hypercapnic acidosis.

Brain pO2 could also be partially restored by pharmacological
agents known to specifically dilate cerebral vasculature. The
carbonic anhydrase inhibitor ATZ was chosen as it known to
dilate the cerebrovasculature without significant effects on
arterial blood pressure. Blockade of carbonic anhydrase causes
an accumulation of extracellular protons to induce smooth
muscle relaxation34,35 in the CNS. Doses of 10 mg/kg were found
to significantly increase brain oxygenation in BDL animals, from
16 ± 4 to 21 ± 5 mmHg (n = 7, 28% increase, p = 0.02), although
this was not as effective as in sham-operated animals where it
increased from 28 ± 2 to 39 ± 3 mmHg (n = 7, 38% increase, p
<0.001; Fig. 3D and E).

It has been previously reported that MAP is lower in
conscious BDL animals.36 We confirmed this observation in the
anaesthetised animals; BDL animals had a significantly lower
MAP compared with sham-operated controls, with 60 ± 3 vs. 84
± 8 mmHg, respectively (p = 0.04; Fig. S1). To control for the
effects of a lower MAP on brain oxygenation, an infusion of the
a1-adrenergic receptor agonist PE was used to normalise MAP to
that of sham-operated animals (Fig. 3F and G). Increasing MAP in
BDL animals significantly increased brain pO2 by 6 ± 1 mmHg
from 14 ± 4 to 20 ± 4 mmHg (n = 6, 45% increase, p = 0.007).
Inducing a corresponding change in MAP in sham-operated rats,
brain oxygenation was increased by 16 ± 5 mmHg (n = 7, 55%
increase, p = 0.02) compared with baseline. Interestingly, BDL
animals receiving OP treatment did not show a significant
improvement in MAP, with 69 ± 5 mmHg (n = 5) compared with
60 ± 3 mmHg in untreated animals (p = 0.15). Again, arterial
blood pO2 and pCO2 were not different between groups
(Table 1).
In vivo 1H-MRS at 9.4T
The characteristic metabolic pattern of chronic HE was observed
in the somatosensory cortex of BDL rat (Fig. 4), characterised by a
significant increase of glutamine (sham-operated: 3.8 ± 0.7, BDL:
5.0 ± 0.7 mmol/kgww, +32%, p = 0.03). This increase was associ-
ated with no significant change in osmolytes. A significant
decrease in lactate (sham-operated: 2.0 ± 0.7, BDL: 0.9 ± 0.2
mmol/kgww, -55%, p = 0.03) was observed for BDL rats. In addi-
tion, BDL rats displayed a significant decrease in glucose (sham-
operated: 3.2 ± 0.8, BDL: 1.4 ± 0.15 mmol/kgww, -56%, p = 0.03)
and neurotransmitter c-aminobutyric acid (GABA; sham-
operated: 1.7 ± 0.2, BDL: 1.1 ± 0.2 mmol/kgww, -35%, p = 0.02).
4vol. 4 j 100509
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Fig. 4. In vivo brain 1H-MRS results obtained in the somatosensory cortex of BDL and sham-operated animals. (A) Grouped data comparing changes of
relevant metabolites and osmolytes in the somatosensory cortex of BDL and sham-operated control animals. (B) Representative 1H-MRS spectra measured in BDL
and sham-operated animals with the corresponding voxel location (top panel). Metabolite changes are visual in the spectra (i.e. Gln, GABA, and Lac) and are
highlighted in grey. Data are expressed as mean ± SEM and compared using an unpaired sample t test. 1H-MRS, proton magnetic resonance spectroscopy; Ala,
alanine; Asc, ascorbate; Asp, aspartate; BDL, bile duct ligation; Cr, creatine; GABA, c-aminobutyric acid; Glc, glucose; Gln, glutamine; Glu, glutamate; GPC,
glycerophosphocholine; GSH, glutathione; Ins, myo-inositol; Lac, lactate; NAA, N acetylaspartate; PCho, phosphocholine; PCr, phosphocreatine; PE, phenyl-
ephrine; Tau, taurine; tCho, total choline; tCr, total creatine.

Research article
Discussion
Healthy brain function requires constant and sufficient supply of
oxygen and other metabolic substrates. Consequently, insuffi-
cient tissue oxygenation can have deleterious effects on all cell
types and their processes, which contribute to the development
of severe clinical symptoms of HE in the long-term. However, the
exact pathway by which ammonia affects brain oxygenation
remains unknown. In this study, we explored the effect of
hyperammonaemia on brain oxygenation in the somatosensory
cortex of an animal model of advanced CLD and HE. Hyper-
ammonaemia was associated with a marked reduction in CNS
tissue oxygenation, which can be considered a proxy of cerebral
perfusion/blood flow at constant levels of neural activity.37

Although several studies have reported compromised CBF and
CMRO2, data regarding actual brain oxygen concentration in HE
have thus far been lacking.22

The data described herein demonstrate that preventing
circulating ammonia from accumulating in BDL animals using
OP, a drug known to lower systemic and brain ammonia con-
centration,30 maintains brain oxygenation within the range
recorded in control animals. This clearly implicates ammonia as
the driving factor responsible for the reduction of CNS perfusion.
Furthermore, we also showed for the first time a reduction in
other critical metabolic substrates, such as glucose and lactate, in
JHEP Reports 2022
the somatosensory cortex of BDL animals using in vivo 1H-MRS.
In combination, this indicates the possibility that hyper-
ammonaemia, seen in HE, has a detrimental impact on the
supply of metabolic substrates.

A potential mechanism of how ammonia may impact brain
oxygenation was described in a recent study that showed
hyperammonaemia contributing to endothelial nitric oxide
synthase (eNOS) downregulation through induction of inflam-
mation and increased production of asymmetric dimethylargi-
nine, an endogenous inhibitor of eNOS.38 Nitric oxide (NO) plays
an important role in regulating functional microvascular perfu-
sion18 and preventing vascular and endothelial dysfunction,
which could contribute to HE. Correction of hyperammonaemia
with OP was previously shown to restore eNOS activity resulting
in improved NO metabolism.38

We next considered the mechanism behind the apparent
reduction in metabolic substrates in the CNS as their concen-
tration is a function of consumption and delivery. First, we asked
if tissue oxygenation can be improved by agents known to in-
crease cerebral perfusion.39 Indeed, BDL animals responded to
increased blood concentration of CO2 in a manner indistin-
guishable from control animals with identical increases of tissue
oxygen from their respective baselines. Additionally, ATZ was
found to significantly increase tissue oxygenation from baseline
6vol. 4 j 100509



in BDL animals, albeit not to the same level as that of controls.
These observations indicate that cerebrovascular reactivity and
capacity for blood vessels to dilate are intact, even during
hyperammonaemia, and supply of metabolic substrates is hin-
dered by abnormal cerebral vessel tone, thereby reducing
delivery.

Evidence exists pointing towards lactate as an important
energy substrate,11 as well as a mediator of vasodilation.40,41 In
HE, hyperammonaemia has been associated with an impaired
cortical hemichannel-mediated lactate transport, contributing to
the neuronal energy deficits involved in the pathogenesis of
HE.11 In this study, 1H-MRS data also revealed a significantly
lower concentration of lactate, glucose, and GABA in the cortex of
hyperammonaemic BDL rats, as well as elevated glutamine and
decreased osmoregulatory myo-inositol and taurine concentra-
tions (characteristic of HE10,28,37). Lactate has previously been
shown to increase in the cerebellum of BDL rats at 8 weeks after
ligation with minor changes in the hippocampus.42 On the other
hand, brain glutamine showed the largest increase in the cere-
bellum and the smallest in the striatum of BDL rats using iden-
tical magnetic resonance spectroscopy measurements,42

confirming the already suspected brain metabolic regional dif-
ference in cirrhosis-induced HE.10 In parallel, decreased glucose
uptake has previously been measured ex vivo (brain tissue)15 and
in vivo ([18F]-fluorodeoxyglucose positron emission tomography
[18F-FDG PET]43; plasma and cortex) using animal models similar
to those used in the present study. These brain alterations indi-
cate a dysmetabolic state and dysfunctional neurotransmission
that could be arising owing to impaired delivery production and/
or release of these energy substrates/neurotransmitters. Such
metabolic alterations could be the cause or consequence of the
reported brain hypoxia, as brain oxygenation is crucial for the
production of key metabolic substrates.44 The combination of
these factors is expected to contribute to the development of HE-
associated neuropsychiatric alterations (as seen in neurodegen-
erative diseases45,46), such as memory deficits, which have pre-
viously been reported in the same animal models and at the
same time point as the present recordings.10,29

Finally, we considered the possibility that lower MAP could be
responsible for the apparent decrease in central perfusion rather
than a CNS-intrinsic mechanism of altered central vessel tone.
Restoring MAP by infusion of a peripheral vasoconstrictor agent
successfully increased brain pO2 in BDL animals. This observation is
in keeping with the effect of systemic vasoconstrictors on renal
perfusion in patients with cirrhosis, making terlipressin or
noradrenaline the drug of choice to treat hepatorenal syn-
drome.47,48 However, increasingMAPdid not completely normalise
the oxygenation to the same levels recorded in sham-operated
controls. This suggests that hypotension is not solely responsible
for the decreased brain oxygenation observed in animals with HE
and central vessel tone remains a major factor in determining the
supply ofmetabolic substrates in conditions of hyperammonaemia.
JHEP Reports 2022
Taken together, these data suggest that compromised systemic and
cerebralperfusioncontribute to the lowbrainoxygenconcentration
in BDL animals. The exact mechanism of the role of ammonia will
need to be explored in future studies.

The limitations of the present study are that it only includes
measures of tissue pO2 and uses this to infer changes in cere-
bral blood flow/perfusion. Tissue oxygenation is not solely a
function of blood flow and will also be sensitive to the basal
metabolic rate of oxygen. CBF measurements using functional
magnetic resonance imaging (fMRI) would be the only possi-
bility to determine brain perfusion in a way that would allow
comparisons between groups of animals but were not per-
formed in this particular study. However, CBF is known to be a
significant component of brain tissue oxygenation, and we have
recently shown that pO2 changes in the cortex of experimental
animals show excellent correlation with blood oxygen level-
dependent (BOLD) signals obtained using an fMRI scanner.49

Additionally, neuropsychological data were not collected from
the subjects in the present study; however, this has been
detailed in several previous publications,10,29 including the ef-
fect of OP on cognitive performance in the BDL model.50 In this
study, we observe brain hypoperfusion at time points corre-
sponding to previous reports of cognitive task performance
impairment.10,29 We rely on the logical extension that a
reduction in availability of metabolic substrates will lead to
neuronal dysfunction manifesting neuropsychological
impairment.51

Supporting the results of our study, Clément et al.50 recently
demonstrated that in HE the brain, which is already compro-
mised (decreased oxygenation and metabolic dysregulation),
becomes susceptible to hypotensive insults resulting in neuronal
cell death. Treating BDL rats with OP, which as we have shown
here improves brain oxygenation, protected the brain against
hypotension-induced neuronal cell degeneration. This provides
the rationale to explore the role of drugs often used in clinical
practice to increase brain perfusion, in combination with
ammonia-lowering interventions, as potential therapeutic
agents for treatment of HE.

In conclusion, the results presented in this study suggest
that HE is associated with reduced brain tissue pO2 and cor-
responding reduction in other metabolic substrates driven by
hyperammonaemia, which can be prevented with OP treat-
ment. Although the exact mechanism of the reported pheno-
type is still unclear, it is proposed that ammonia could act by
increasing central vascular tone, possibly via NO dysregulation.
The hypoxic conditions reported in this study are sufficient to
trigger astrocytic activation,52 as well as neuronal death,53

which are hypothesised to contribute to the pathogenesis of
HE. This study offers the novel prospect that cerebral vascular
tone could be a potential therapeutic target alongside
ammonia-lowering strategies to specifically target neuronal
dysfunction.
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