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Abstract

Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated
poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we
describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara
strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human
monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and
triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules.
Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated
with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary
macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell
activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8
T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost
combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with
effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/
MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of
MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the
world.
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Introduction

While a vaccine against HIV/AIDS has remained elusive since

the pandemic first appeared, the recent findings from the phase III

Thailand clinical trial with the combination of a canary poxvirus

vector (ALVAC) and purified protein gp120 (RV144) giving

31.2% protection against HIV infection [1], while it was not

sustain, it open the possibility of improving HIV/AIDS efficacy

through modification of some of the vaccine components similar as

those used in the Thai trial. Potential vaccine improvements

include the use of other attenuated poxvirus vectors, like MVA

and NYVAC [2,3], genetic modification of the poxvirus vectors

through deletion of viral immunomodulatory genes [4,5,6,7,8] and

prime/boost combination with heterologous vectors with or

without adjuvants and co-stimulatory molecules [9,10,11]. A

number of phase I/II clinical trials have been performed or are

on-going with poxvirus vectors administered alone or in prime/

boost combination (http://www.iavi.org). The clinical findings

obtained thus far revealed that attenuated poxvirus vectors when

used alone induced lower immune responses that when combined

in prime/boost protocols with heterologous vectors [9,12]. As yet

it remains unclear which of the poxvirus vectors is optimal in

triggering immune responses. A deep understanding on the

immune characteristics of these vectors is needed, as each vector

might impact the immune system differently. This has been

highlighted for NYVAC and MVA vectors [13,14], as these

vectors have differential deletions of viral immunomodulatory

genes. One of the attenuated poxvirus vectors that is going to enter
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phase I clinical trials is based on MVA expressing HIV antigens

for subtype C, i.e, Env gp120 as a cell released product and the

fusion polyprotein Gag-Pol-Nef as intracellular component

(referred as MVA-C). As yet, there is limited information on the

characteristics of this vector. Herein, we use systems biology to

characterize the global immune response and provide in-depth

characterization of the biological and immune features of MVA-C

in human cells and in animals. Our results showed that MVA-C is

an excellent immunogen, as it expresses at high levels the HIV-1

antigens in human moDCs, triggers DC maturation, activates

wide expression of immunostimulatory molecules, induces cross-

presentation and CD8+ T cell proliferation and, in vaccinated

mice by prime/boost protocols, activates HIV-1-specific CD4 and

CD8 memory responses that are polyfunctional and with effector

memory phenotype (TEM). These observations point MVA-C

vector as promising HIV/AIDS vaccine candidate.

Results

Expression of HIV antigens in DCs infected with MVA-C
We have previously described that MVA-C infection of human

HeLa cells in culture induces the expression of gp120 and of the

polyprotein Gag-Pol-Nef as determined by Western blot [15]. The

organization of the HIV genes in the TK locus of the MVA

genome is shown as scheme in Fig. 1A. To define the gene

expression capacity of MVA-C in human monocyte-derived

dendritic cells (moDCs), we evaluated the expression levels of

HIV Gag by flow cytometry. As shown in Fig. 1B, Gag expression

increases with time of infection. Of relevance, 60% of the cells

expressed Gag by 2 h post infection and the levels were reduced by

24 h, possibly due to apoptosis induction at late times post

infection [16]. The high levels of HIV antigen expression in

moDCs early in infection is due to the nature of the promoter, as

both gp120 and Gag-Pol-Nef genes expression is driven by a

synthetic early/late virus promoter. These findings showed the

high capacity of MVA-C to express HIV antigens in human DCs,

which are critical cells in the activation of innate immune

responses.

Transcriptional analyses of mDC and pDC infected with
MVA-C revealed the global induction of innate and
adaptive immunoregulatory pathways

In order to characterize the global response elicited by MVA-C

in ex vivo purified human myeloid (mDCs) and plasmacytoid

(pDCs) dendritic cells, we determined the transcriptional profiles

using gene array analysis. We compared the transcriptional

profiles of MVA-C infected mDCs and pDCs (n = 6) to mock

infected cells (n = 14). Unsupervised clustering using multidimen-

sional scaling (MDS) revealed, as expected, distinct transcriptional

profiles between mDCs and pDCs either in the mock- or MVA-C-

infected subsets (Fig. S1). This confirms our previous reports

showing differences in the transcriptional signatures of mDCs and

pDCs in response to viral infection [7]. We then examined

separately the gene expression of mDC and pDC in response to

MVA-C infection. We show that infection of MVA-C significantly

induces the expression of more than 5500 genes in mDCs and

4500 genes in pDCs when compared to mock infection (adjusted

p-value of ,0.05 false discover rate FDR). Complete lists of all

significant genes that are induced following MVA-C infection of

mDCs and pDCs are presented in tables S1 and S2, respectively.

Further analysis of the top 30 genes induced by MVA-C in mDCs

revealed the increased expression of interferon (IFNB1) and IFN-

induced genes (IFIT2, IFIT3, OASL, GBP4), inflammatory

molecules (CXCL9, CXCL10, and TNF-a) and antiviral genes

such as ZC3HAV1 that has been shown to have a potent anti-

retroviral activity [17] (Fig. 2A). Similarly, in pDCs the top 30

genes showed the increased expression of IFN genes (IFNB1,

IFNA2, IFNA16), IFN-induced genes (IFIT3) and anti-retroviral

genes such as TRIM5 (Fig. 2B). We then analysed significant genes

that are associated with specific immune function in mDCs and

pDCs infected with MVA-C. Fig. 3A shows that MVA-C induced

the expression of genes that are associated with DC maturation

and activation including CD40, CD80 and cytokines that are

critical for T cell and B cell responses including IL-6, IL12, and

IL-28. Furthermore, we examined genes that are critical for

antiviral activity. Fig. 3B shows significant induction of more than

15 genes that are associated with IFN response in mDCs. Similar

induction was also observed in pDCs (Fig. 3C). In addition,

infection with MVA-C induced the expression of genes associated

with inflammatory response such as CXCL9 and CXCL10 in

mDC and pDC (Fig. 3D and Fig. 3E, respectively).

Overall, these results demonstrate that MVA-C induces the

expression of large number of biologically significant genes in

mDC and pDC subsets. These induced genes play an important

role in regulating adaptive immune response as well as in exerting

antiviral effect.

While gene transcription does not provide functional informa-

tion, however it gives an indication of how genes can be placed

into specific cellular pathways. Thus, we investigated signaling

pathways induced upon infection of mDC and pDC subsets with

MVA-C. We observed the activation of multiple innate and

adaptive immunoregulatory pathways in mDC and pDC com-

partments. Fig. 4A depicts a list of top signaling pathways that are

elicited in mDC following infection with MVA-C. For example,

MVA-C infection induces IFN signaling, antiviral and IRF

pathways. Selective genes were depicted in each of these pathways

including IFIT3, IFIT1, IFITM for IFN signaling; TRAF5,

APAF1, IRF7 for antiviral, and ADAR, IRF7, IFIH1 and DDX58

for IRF pathways (Fig. 3). We also observed the induction of

pathways associated with the activation of the adaptive immune

response including CD28 signaling, IL-6 signaling, and antigen

presentation. Similar innate and adaptive pathways were also

induced in pDC infected with MVA-C (Fig. 4B).

Maturation of DCs after infection with MVA-C
Since previous studies have shown that infection of human DCs

with the non-recombinant MVA leads to an increase in

upregulation of CD86 and HLA-DR molecules [18,19] and in

order to confirm our gene expression data, we next determined the

effects of MVA-C on moDC maturation through the analyses of

several cellular surface markers. As shown in Fig. 5, expression

levels of HLA-DR, CD86, CD40, HLA-A2 and CD80 were all

increased in MVA-C-infected cells. These results demonstrate that

MVA-C is able to induce enhanced phenotypic DC maturation in

the absence of other stimuli.

Enhanced cytokine and chemokine production after
infection with MVA-C

To further characterize the effects of MVA-C infection on

human cells, we next defined the expression levels of some selected

cytokines, chemokines, signaling and accessory molecules in

primary human macrophages. We first examined by RT-PCR

the mRNA levels of these molecules in cells infected with MVA-C

(5 pfu/cell) for 3 h. As shown in Fig. 6A, mRNA levels of genes

encoding for chemokines (CXCL1 and CXCL5), cytokines (IL-10,

IL-15 and IL-32), pattern recognition receptors (TLR1) and innate

signaling molecules like IRAK3 and TRAF6, were all increased

after MVA-C infection in comparison with MVA-WT-infected
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cells. Moreover, MVA-C induced the expression of CD80, ILT4,

ILT5 and ETS2 mRNAs, suggesting an increased capacity to

induce T cell signaling. Then, cell-free supernatants from primary

human macrophages infected for 24 h with parental or recombi-

nant MVA-C viruses (1 and 5 pfu/cell) were used to quantify by

ELISA cytokine and chemokine production. As shown in Fig. 6B,

there was an increase in the levels of type I IFNs (IFNa and IFNb),

chemokines (IP-10, MIP-1a and RANTES) and cytokines (IL-8

and IL-1b) secreted in the MVA-C-infected cells at the two

different multiplicities compared with the control. Similar

increases of chemokines and cytokines were obtained after

MVA-C infection (24 h with 1 and 5 pfu/cell) of whole human

blood (not shown).

MVA-C infection induces cross-presentation to CD8 T
cells and T cell proliferation

We have previously described an assay to determine the ability

of moDCs to cross-present antigens from apoptotic infected HeLa

cells [7]. Human moDCs were incubated with apoptotic infected

HeLa cells before an HIV-specifc CD8 T cell clone was added

and, after overnight incubation, cells were harvested and among

Figure 1. MVA-C induces the expression of HIV gag antigen early after infection of human DCs. A) Schematic diagram of MVA-C
genome. B) Histograms show anti-Gag KC57 staining of infected moDCs. Cells were infected at 1 pfu/cell and at different times after infection cells
were harvested and stained for Gag expression by ICS as described under Materials and Methods. Percentage of Gag-expressing cells is indicated.
doi:10.1371/journal.pone.0035485.g001
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the lymphocyte population, CD8 T cells were gated and analyzed

for IFN-c, TNF-a, IL-2 and MIP-1b production. The results

shown in Fig. 7A with percentages of CD8 T cells producing any

cytokine revealed cross-presentation to HIV-specific CD8 T cell

clone triggered by MVA-C infection, in contrast with the control.

This cross-presentation was virus multiplicity-dependent.

Furthermore, we also measured the HIV-specific proliferative

capacity of CFSE-labeled human PBMCs from an HIV-infected

long-term non-progressor upon infection with MVA-C or MVA-

WT, as described under Materials and Methods. Fig. 7B

represents CD8 T cell proliferation as determined by CFSE

dilution measured at day 6 after stimulation with MVA-C at

different virus multiplicities. High proliferation up to 20% was

observed after infection with 106 pfu of MVA-C. Together, the

data of Fig. 7 revealed that both cross-presentation and

proliferation of CD8 T cells are induced by MVA-C infection of

human immune cells.

MVA-C infection activates memory HIV-1-specific T cell
immune responses

Since triggering of both humoral and cellular arms of the

immune system might be needed for HIV prevention in humans

[20] and activation of T effector memory cell (TEM) response has

been associated with protection in NHP model [21,22], we next

characterized the ability of MVA-C to activate HIV-1-specific

immune responses in mice using a DNA prime/Pox boost

approach. Thus, Balb/c mice were inoculated by intramuscular

route (i.m.) with two plasmid DNA vectors expressing gp120 and

GPN of clade C or with sham DNA and boosted two weeks later

by intraperioneal route (i.p.) with MVA-C or parental MVA-WT.

Vaccine-induced T cell immune responses were evaluated at 53

days after the booster by polychromatic ICS assay after the

stimulation of splenocytes with a panel of 464 peptides (15 mers

overlapping by 11 amino acids) grouped in three pools: Env (112

peptides), Gag (121 peptides) and GPN (231 peptides). The

peptides encompassed the Env, Gag, Pol, and Nef proteins of

HIV-1 and were designed based on the sequence of the

immunogens expressed by MVA-C. As shown in Fig. 8A, the

magnitude of the HIV-1-specific CD4+ and CD8+ T cell

responses, determined as the sum of the individual responses

obtained for Env, Gag and GPN peptide pools, was significantly

higher in mice that received DNA-C prime/MVA-C boost than

that obtained in the control group DNA-w/MVA-WT (p,0.05).

The CD4+ T cell responses were mainly directed against the Env

pool whereas the CD8+ T cell responses were higher in magnitude,

and broader, triggered by both Env and GPN pools. On the basis

of the analysis of IL-2, TNF-a and IFN-c secretion, seven distinct

HIV-1-specific CD4+ and CD8+ T cell populations were identified

(Fig. 8B). Vaccine-induced CD4+ and CD8+ T cell responses were

polyfunctional, with more than 40% of antigen-specific T cells

exhibiting two or three functions. We also determined the

phenotype of the memory responses by measuring the expression

of CD62L and CD44 in the HIV-1-specific T cells. The effector

memory T cells (TEM) have a CD44highCD62L2 phenotype

whereas the central memory T cells (TCM) are CD44highCD62L+.

As shown in Fig. 8C, the HIV-1-specific CD4 and CD8 T cells

have a TEM phenotype, since more than 90% of the responding

cells were CD44highCD62L2. Similar findings were observed in

two independent experiments. Overall, the results revealed that

MVA-C positively impacts on the CD4+ and CD8+ T cell memory

phase of the immune response.

MVA-C induces humoral response to Env
Since induction of antibodies to gp120 has been associated with

a reduced risk of HIV infection in humans [23], we next evaluated

the antibody levels in serum from mice vaccinated in a DNA

prime/MVA boost protocol. An ELISA test with plates coated

with purified gp140 CN54 protein was used for antibody

specificity. As shown in Fig. 9A, anti-gp140 IgG binding

antibodies were detected only in animals that received DNA-C

prime/MVA-C boost, indicating that the released gp120

expressed during infection with MVA-C triggered specific

humoral responses. Almost all the anti-Env IgG binding antibodies

detected in MVA-C immunized animals were of IgG1 subtype

(Fig. 9B), indicating a Th2 response.

Discussion

At present, there is limited number of attenuated poxvirus

vectors expressing several HIV antigens considered as candidate

vaccines against HIV/AIDS that have entered phase I/II/III

clinical trials. The most advanced poxvirus vector with an

attenuated phenotype is the canarypox ALVAC expressing

gp120/Gag-Pro that has shown partial efficacy when combined

with the protein gp120 in the phase III clinical trial in Thailand

[1]. Other attenuated poxvirus vectors like NYVAC [9,24], MVA

[12,25,26,27,28,29,30] or Fowlpox [31] have shown different

immunogenic profiles when used alone or in combination with

other heterologous vectors in clinical trials, probably due the

nature of the vector, virus dose and HIV antigens being expressed.

We have previously shown that when poxvirus vectors MVA and

NYVAC expressing gp120/Gag-Pol-Nef are compared head-to-

head, there are clear differences in the induction of cellular genes

in response to virus infection that might lead to differences in the

activation of host cell immune responses [14,32]. Hence, the

immune response induced by each single poxvirus vector strain

must take into account those observations, as the immunological

properties might differ. In addition, replication competent

poxvirus vectors are also sought as vaccine candidates that might

be able to enhance the specific HIV immune responses, an aspect

that will be known in future clinical trials. From the point of view

of attenuated MVA vectors, many different vaccine candidates

expressing diverse HIV antigens have moved into clinical trials

with encouraging results [12,25,26,27,28,29,30]. We have recently

described the results of a phase I clinical trial with an MVA vector

expressing gp120 and Gag-Pol-Nef of HIV-1 from clade B (MVA-

B). We showed that MVA-B was safe, well tolerated and highly

immunogenic, inducing broad, polyfunctional, and long-lasting

CD4+ and CD8+ T cell responses to HIV-1 antigens, with

preference for effector memory T cells. Moreover, the vaccination

regimen also induced antibody responses to Env in the 95% of

volunteers [26,27].

As a new step to move forward with an MVA candidate for

clade C, the most prevalent in parts of Africa and Asia, here we

Figure 2. Genes induced by MVA-C in human mDCs and pDCs. A) Gene expression heatmap using the top 50 differentially expressed genes
resulting from comparing myeloid DCs infected with MVA-C (MDC_MVC) and mock-infected (MDC_Mock) groups. B) Gene expression heatmap using
the top 50 differentially expressed genes resulting from comparing plasmacytoid DCs infected with MVA-C (PDC_MVC) and mock-infected
(PDC_Mock) groups. Genes selected as differentially expressed based on the following criteria: adjusted p-value,0.05 and |FC|.1.3. The scale shows
the level of gene expression where Red and Blue correspond to up- and down-regulation respectively.
doi:10.1371/journal.pone.0035485.g002
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Figure 3. Significant genes associated with specific immune function in MVA-C-infected mDCs and pDCs. A) Gene expression heatmap
using selected set of immune related genes resulting from comparing myeloid DCs infected with MVA-C (MDC_MVC) and mock-infected
(MDC_Mock) groups. B) Gene expression heatmap using selected set of IFN-induced genes resulting from comparing myeloid DCs infected with
MVA-C (MDC_MVC) and mock-infected (MDC_Mock) groups. C) Gene expression heatmap using selected set of IFN signaling genes resulting from
comparing plasmacytoid DCs infected with MVA-C (PDC_MVC) and mock-infected (PDC_Mock) groups. D) Gene expression heatmap using selected
set of inflammation associated genes resulting from comparing myeloid DCs infected with MVA-C (MDC_MVC) and mock-infected (MDC_Mock)
groups. E) Gene expression heatmap using selected set of inflammation associated genes resulting from comparing plasmacytoid DCs infected with
MVA-C (PDC_MVC) and mock-infected (PDC_Mock) groups. The genes selected are differentially expressed (FC.1.3 and adjusted p-value,0.05). Red
and Blue correspond to up- and down-regulation respectively.
doi:10.1371/journal.pone.0035485.g003
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have performed an in depth characterization of the biological and

immune properties of the MVA-C vaccine vector that will enter

soon in phase I clinical trials. We showed that MVA-C is an

excellent immunogen, since it expresses at high levels the HIV

antigens in human moDCs, triggers DC maturation, activates the

expression of immunostimulatory molecules, induces cross-prim-

ing and CD8+ T cell proliferation and, in mice vaccinated by

prime/boost protocol, induces antibodies and activates HIV-1-

specific CD4 and CD8 T cell memory responses that are

polyfunctional and of effector memory phenotype. In the context

of HIV vaccines, these biological and immune characteristics

might be relevant in the control of an HIV infection. In fact, it is

generally assumed that both humoral and cellular arms of the

immune system need to be activated in order to control HIV

infection, either through neutralizing antibodies, ADCC, or

cytotoxic T cells [20]. From the Thai trial and after examining

a large population of vaccinated individuals, it has been suggested

that production of antibodies, specifically directed to the V2 loop,

might be needed to control HIV infection, while high levels of IgA

are detrimental [23]. In the Thai trial the T cell responses were

low and, hence, it has not been as yet possible to conclude that this

arm of the immune system is dispensable or required. In fact, from

the NHP studies with a cytomegalovirus vector expressing SIV

antigens, it has been proposed that immune protection against a

virulent SIV challenge required activation of T cells of an effector

memory phenotype (TEM) [21,22]. In view of the fact that, as

shown here, MVA-C activates both in vitro and in vivo different

components of the immune system that might be needed for

protection against a pathogen, our immunogenicity study in mice

establish that MVA-C is an excellent HIV vaccine candidate with

production of both antibodies and T cell responses to HIV

antigens. It is significant the polyfunctional and broad nature of

the immune response triggered in mice, with preferential

activation in a DNA-C prime/MVA-C boost of memory T cell

responses of TEM phenotype. The vaccine-induced CD4+ T cell

response was preferentially against Env whereas the CD8+ T cell

response was directed against GPN and Env antigens. This is

particularly important when considering vaccination protocols, as

multiple challenges with the same immunogen might not be

required. Future animal studies should elucidate the optimal

combination of MVA-C with other vectors (i.e., Env protein,

heterologous viral vectors, adjuvants) that trigger enhanced B and

T cell responses. Overall, the results reported here points MVA-C

vector as promising HIV/AIDS vaccine candidate and support the

future phase I clinical trials with MVA-C.

Materials and Methods

Ethics statement
The animal studies were approved by the Ethical Committee of

Animal Experimentation (CEEA-CNB) of Centro Nacional de

Biotecnologia (CNB-CSIC) in accordance with national and

international guidelines and with the Royal Decree (RD 1201/

2005). Permit numbers: 152/07 and 080030.

Cells and viruses
Monocyte derived dendritic cells (moDCs) were obtained from

cryopreserved or freshly isolated peripheral blood mononuclear

cells (PBMCs) from buffy coats of healthy blood donors. CD14+

monocytes were isolated from PBMCs by positive selection with

CD14 microbeads (Miltenyi Biotech, Bergisch Gladbach, Ger-

many). The obtained monocytes were plated at 16106 cells/ml

and subsequently cultured with GM-CSF (800 U/ml) and IL-4

(500 U/ml) for 5 days to differentiate into moDCs as described

previously [7]. Fresh medium containing GM-CSF and IL-4 was

added at day 2. Human myeloid DCs (mDCs) and plasmacytoid

DCs (pDCs) were obtained from freshly isolated PBMCs by

positive selection as previously described [7]. Purity of sorted DC

populations was over 99%.

Macrophages were obtained by culturing adherent PBMCs cells

for 6 days in RPMI 1640 with Glutamax (Invitrogen) and 10%

heat-inactivated FCS (Sigma-Aldrich). Human whole blood assay

was performed as described [33].

HeLa cells (ATCC, Manassas, VA) were cultured in IMDM

containing 8% fetal bovine serum (PAA) and 80 IU/ml Natrium-

penicillin (Astellas Pharma).

HIV-specific CD8 T cells were obtained from an HIV-1

seropositive long-term non-progressor [7]. First, total PBMCs were

depleted for CD4 T cells using CD4 dynabeads (Dynal) according

to the manufacturer’s protocol. The enriched CD8 T cell

population was subsequently treated as previously described [7].

Specificity was confirmed after 4 weeks of culture. Although these

CD8 T cells are not cloned from a limiting dilution, 99.8% of the

T cells express the Vb22 TCR, suggesting that these cells are

obtained from a single precursor and can be considered clonal.

Cells were restimulated every two weeks. Cells were left untreated

for at least two weeks before use in antigen presentation assay.

Primary chicken embryo fibroblast cells (CEF) and DF-1 cells (a

spontaneously immortalized chicken embryo fibroblast cell line;

ATCC, Manassas, VA) were grown in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal calf serum

(FCS).

All cells were maintained in a humidified air 5% CO2

atmosphere at 37uC except DF-1, that were maintained at 39uC.

MVA-C, a recombinant vaccinia virus Ankara expressing in the

TK locus the HIV-1 clade C Gag, Pol, Nef and Env antigens

(Fig. 1A), was constructed by homologous recombination in CEF

cells. Gag-Pol-Nef is a fusion protein composed of gag, pol and nef

ORFs from HIV-1 clone CN54, which has been modified to

enhance its immunogenicity and removed, for safety consider-

ations, undesirable domains of the HIV antigens. Gp120 Env

protein belongs to the same HIV-1 isolate (CN54). In both cases,

the codon usage was adapted to highly express human genes. The

coding sequence, gene organization, generation and some of the

immunological properties of MVA-C have been described

previously [15]. The parental and recombinant MVA-C viruses

were grown in CEF cells, purified through two 36% (w/v) sucrose

cushions, and titrated by plaque immunostaining assay in DF-1

cells as previously described [34].

HIV-1 gag expression
The expression of gag protein was measured in moDCs at

different times post-infection as previously described [7]. Cells

were infected for 1 h at MOI 1 and subsequently washed

thoroughly. From 2 to 24 h of incubation, cells were harvested

and gag expression was determined by intracellular staining with

an anti-gag specific antibody (KC57, Beckman Coulter). Cells were

analyzed on a FACSCalibur using CellQuest (BD). FACS data

were analyzed with FlowJo (Tree Star, Inc.).

Gene array analysis
Isolated mDCs and pDCs subsets were infected with MVA-C or

mock-infected for 6 h before cells were harvested for gene

expression profiling as previously described [7]. Total RNA was

purified from DC subsets using DCsRNA extraction kits

(Qiagen,USA). Quantification was performed using a spectropho-

tometer (NanoDrop Technologies, Willington, DE) and RNA

quality was assessed using the ExperionTM Automated Electro-
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phoresis System (Bio-Rad, Hercules, CA). Total RNA was then

amplified and labeled using the IlluminaH TotalPrepTM RNA

Amplification kit (Illumina, Inc., San Diego, CA) as previously

described [7]. The biotinylated cRNA was then hybridized onto

Illumina Human RefSeq-8 V2 and V3 BeadChips expressing

more than 24000 probe sets spanning the whole human genome

(PBMC samples) and quantified using Illumina BeadStation

500GX scanner and Illumina BeadScan software.

Illumina probe data were exported from BeadStudio as raw

data and were screened for quality; samples failing chip visual

inspection and control examination were removed. Probeset from

the two Illumina platforms were mapped to a common probeset Id

using a mapping file provided by Illumina. A dataset containing

probeset common to both platforms was then used for subsequent

steps. Gene expression data was preprocessed.

Analysis was conducted using the R statistical language (R

Development Core Team) and various software packages from

Bioconductor, an open source project for the analysis and

comprehension of high-throughput genomic data [35]. First,

arrays displaying unusually low median intensity, low variability or

low correlation relative to the bulk of the arrays were discarded

from the rest of the analysis. Quantile normalization was applied,

followed by a log2 transformation. Bioconductor’s gene filter

package was then used to filter out genes with low expression and

insufficient variation in expression across all samples tested.

Expression values retained after this filtering process presented

intensities greater than 80 units in at least 2 samples and a log base

2 scale of at least 0.3 for the interquartile range (IQR) across all

samples tested. The LIMMA package from Bioconductor [36] was

used to fit a linear model to each probe and to perform a

(moderated) t-test on various differences of interest. The expected

proportions of false positives (FDR) were estimated from the

unadjusted p value using the Benjamini and Hochberg method

[37].

Pathway analysis
Ingenuity Pathway Analysis software (IngenuityH Systems,

www.ingenuity.com) was used to identify canonical signaling

pathways regulated by mDCs infected with MVA-C

(MDC_MVC) or pDCs infected with MVA-C (PDC_MVC).

Canonical pathway analysis identified the pathways from the

Ingenuity Pathway Analysis library of canonical pathways that

were most significant to the dataset. Illumina Probe IDs were

imported into the Ingenuity software and mapped to the Gene

Symbol from Ingenuity database. Genes that had adjusted p-

value,0.05 and |FC|.2 and associated with a canonical

pathway in Ingenuity’s Knowledge Base were used for pathway

analysis. Over-representation Fisher’s exact test was used to

calculate a p-value determining the probability that the association

between the genes in the dataset and the canonical pathway is

explained by chance alone. The pathways were ranked by -log p-

Figure 4. Signaling pathways induced upon MVA-C infection of mDCs and pDCs. Selected significant top 10 pathways and their genes
members resulting from comparing myeloid DCs infected with MVA-C (MDC_MVC) and mock-infected (MDC_Mock) groups (A) or plasmacytoid DCs
infected with MVA-C (PDC_MVC) and mock-infected (PDC_Mock) groups (B). Each row is an upregulated canonical pathway for innate immunity
(Ingenuity software); each column represents an up- (red) or down- (blue) regulated gene (p,0.05 and |FC|.2) included in 1 or more regulated
pathway(s). The over-representation test was performed using Fisher Exact Test and the significance, displayed on the right side, is achieved for
p,0.05 (-log(p).1.3).
doi:10.1371/journal.pone.0035485.g004

Figure 5. MVA-C induces maturation of human moDCs. Cells were infected with 5 pfu/cell and expression of different membrane surface
markers was determined by flow cytometry at 24 h.p.i. The shaded graphs represent cells infected with a parental WT strain. Mean fluorescence
intensity is indicated in the plots. Data are representative of at least five independent experiments.
doi:10.1371/journal.pone.0035485.g005
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Figure 6. MVA-C induces cytokine and chemokine production in human primary macrophages. A) Human primary macrophages were
infected at 5 pfu/cell with MVA-WT or MVA-C. At 3 h.p.i., cells were collected, RNA extracted and levels of different mRNAs were defined by RT-PCR. B)
Human primary macrophages were infected (1 or 5 pfu/cell) with MVA-WT or MVA-C. Supernatants were collected at 24 h and used to quantify IL-1b,
IL-8, IFNb, MIP-1a, RANTES, IP-10 and IFNa by ELISA. Experiments were performed in triplicate samples from two human donors. Data are means and
standard deviation from one experiment representative of at least two experiments.
doi:10.1371/journal.pone.0035485.g006
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value. This score was used as the cut-off for identifying canonical

pathways significantly (p value,0.05).

Infection of DCs and flow cytometry
Freshly isolated moDCs were infected with the different viruses

at MOI 5 [7]. After 1 h of incubation, the cells were washed

extensively and plated into 24-well plates. Cells were harvested at

24 h.p.i. and fixed in 4% paraformaldehyde and subsequently

incubated with the following antibodies: a-CD86 PE-Cy5 (clone

IT2.2), a-CD80 PE-Cy5 (clone 2D10.4), a-CD11c Alexa Fluor

700 (clone 3.9) (all from eBiosciences), a-CD40 APC, a-HLA-A2

FITC and a-HLA-DR PE (all from Becton Dickinson). Cells were

analyzed on a LSRII flow cytometer using DIVA (BD). FACS data

were analyzed with FlowJo.

RNA analysis by quantitative real-time polymerase chain
reaction

Total RNA was isolated from primary human macrophages

using the RNeasy kit (Qiagen). Reverse transcription and real-time

PCR (RT-PCR) was performed with a 7500 Fast Real-Time PCR

System (Applied Biosystems, Rotkreuz, Switzerland) using the

Power SYBR Green PCR Master Mix (Applied Biosystems) and

primer pairs previously described [33]. All samples were tested in

triplicates. Gene specific expression was expressed relative to the

expression of HPRT in arbitrary units (AU). Gene specific over

HPRT ratios were validated using the house-keeping gene ACTB.

Measurement of cytokine and chemokine production
The concentrations of human IL-1b (Bender MedSystems,

Vienna, Austria), IL-8 (BD Biosciences), RANTES, IP-10, MIP-1a
(R&D), IFNa and IFNb (PBL Biomedical Laboratories, Piscat-

away, NJ) in whole blood assay and in cell culture supernatants

were measured by ELISA as previously described [33].

Antigen presentation assays
Antigen presentation to HIV-specific CD8 T cells was studied

using moDCs cross-presenting antigens from HeLa cells that were

infected at different MOIs. In addition, the cytokine production of

HIV-specific CD8 T cells was assessed as previously described [7].

For that, HeLa cells were harvested by EDTA and infected with

MVA-C or MVA-WT at different MOIs for 1 h. Cells were

extensively washed to remove residual virus. After overnight

incubation, cells were irradiated with UV-C (200 mW/cm2) to

ensure that no residual virus and no viable cells were present and

thus exclude direct presentation. Apoptotic virus-infected HeLa

cells were harvested and added to moDCs at a 2:1 ratio. After 6 h

incubation, HIV- or VACV-specific CD8 T cells were added (at

approximately 5 T cells : 1 DC ratio) followed by overnight culture

at 37uC/5%CO2. Brefeldin A (10 mg/ml, Sigma-Aldrich) was

added to retain cytokines within the T cells allowing the detection

of multiple cytokines. After 18 hours, intracellular cytokine

staining (ICS) was performed as described. Cells were fixed and

permeabilized using Cytofix/CytopermTM Fixation/Permeabili-

zation Solution Kit (BD). Cells were then incubated with a-TNF

PE-Cy7 (clone MAb11, eBiosciences), a-IFN-c FITC, a-IL-2

APC, a-MIP-1b PE (all three from BD) and a-CD8 PerCP (Dako)

antibodies. After washing, cells were analyzed on a LSRII flow

cytometer using DIVA (BD). FACS data were analyzed with

FlowJo. Net accumulation is the percentage of live CD8+ cells

expressing a specific cytokine upon stimulation with moDCs

loaded with apoptotic virus-infected HeLa cells.

Ex vivo proliferation assay
Overnight-rested cryopreserved PBMCs from an HIV-1

seropositive long-term non-progressor were washed twice, resus-

pended at 16106 cells/ml in PBS and incubated for 79 at 37uC
with 0.25 mM 5,6-carboxyfluorescein succinimidyl ester (CFSE,

Molecular Probes, USA) as described [38]. Then, the reaction was

quenched with one volume of FCS and cells were washed twice.

Cells were then cultured (16106 cells in 1 ml of complete medium)

in the presence of MVA-WT or MVA-C vectors at different

MOIs, medium alone (negative control) or Staphylococcal

enterotoxin serotype B (SEB, 40 ng/ml, positive control). At day

6, cells were harvested, stained for dead cells using the Aqua

LIVE/DEAD stain kit (Invitrogen) and then with anti-CD3, -CD4

and -CD8 antibodies. After fixation, cells were acquired on an

LSRII flow cytometer using DIVA (BD). FACS data were

Figure 7. MVA-C infection induces antigen cross-presentation
to CD8 T cells and T cell proliferation. A) Human moDCs were
incubated with apoptotic infected-HeLa cells before a CD8 T cell clone
was added. After overnight incubation, cells were harvested and among
the lymphocyte population, CD8 cells were gated and analyzed for IFN-
c, TNF-a, IL-2 and MIP-1b production. Cytokine production by HIV-
specific CD8 T cells was determined. Percentages of CD8 T cells
producing any cytokine are indicated at the various virus multiplicities.
B) MVA-C and parental MVA-WT were evaluated in vitro using
cryopreserved PBMCs from an HIV-1-infected subject. Cell proliferation
using the CFSE dilution assay was measured 6 days after stimulation. At
the end of the stimulation period, cells were stained for CD3, CD4, CD8
and a viability marker and analyzed by flow cytometry. Mean values and
standard deviation of at least three experiments are shown in panels A
and B.
doi:10.1371/journal.pone.0035485.g007
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analyzed with FlowJo (8.8.2). The number of lymphocyte-gated

events ranged between 16105 and 56105 in all experiments.

Mice immunization schedule
Balb/c mice (6–8 weeks old) were purchased from Harlan.

DNA prime/Poxvirus boost immunization protocol was per-

formed as previously described [15]. Groups of animals (n = 4)

received 100 mg of DNA-C (50 mg of pcDNA-CN54gp120 +50 mg

of pcDNA-CN54GPN) by intramuscular route (i.m.) and two weeks

later received an intraperitoneal (i.p.) inoculation of 16107 pfu of

the corresponding virus. Animals primed with sham DNA (DNA-

w) and boosted with the non-recombinant MVA-WT were used as

control group. At 53 days after the last immunization, animals

were sacrificed and spleens processed for Intracellular Cytokine

Staining (ICS) assays to measure the HIV-1-specific memory

immune responses. Two independent experiments have been

performed for the different groups.

Intracellular cytokine staining assay (ICS)
The magnitude, polyfunctionality and phenotype of the HIV-1

specific T cell responses were analyzed by ICS. After an overnight

rest, 56106 splenocytes (depleted of red blood cells) were

stimulated during 6 h in complete RPMI 1640 media containing

1 ml/ml Golgiplug (BD Biosciences) and 5 mg/ml of different HIV-

1 peptide pools that have being previously described [15]. At the

end of the stimulation period, cells were washed, stained for the

surface markers, permeabilized (Cytofix/Cytoperm kit; BD

Biosciences) and stained intracellularly using the appropriate

fluorochromes. For functional analyses the following fluoro-

chromes-conjugated antibodies were used: CD3-FITC, CD4-

Alexa 700, CD8-PerCP or 2V500, IL-2-PE or -APC, IFN-c-APC

or -PECy7 and TNF-a-PECy7 or 2PE. In addition, for

phenotypic analyses the following antibodies were used: CD62L-

FITC and CD44-SPRD. Dead cells were excluded using the violet

LIVE/DEAD stain kit (Invitrogen). All antibodies were from BD

Biosciences. Cells were acquired using an LSRII flow cytometer

(BD Immunocytometry Systems). Analyses of the data were

performed using the FlowJo software version 8.5.3 (Tree Star,

Ashland, OR). The number of lymphocyte-gated events ranged

between 16105 and 16106. After gating, Boolean combinations of

single functional gates were then created using FlowJo software to

determine the frequency of each response based on all possible

combinations of cytokine expression or all possible combinations

of differentiation marker expression. Background responses

detected in negative control samples were subtracted from those

detected in stimulated samples for every specific functional

combination.

Antibody measurements by ELISA
Binding antibodies to Env protein in serum were assessed by

ELISA as previously described [15]. Serum from naı̈ve and

immunized mice were serially two-fold diluted in duplicate and

reacted against 2 mg/ml of the recombinant 97CN54 gp140

purified protein (clade C) (kindly provided by Simon A. Jeffs,

Imperial College London, UK). The antibody titer of Env-specific

IgG was defined as the last dilution of serum that gives 3 times the

mean OD450 value of the naı̈ve control. For analysis of IgG

subtypes, serum from naı̈ve and immunized mice were reacted at

Figure 8. Long-lived memory immune response to HIV antigens elicited by MVA-C. A) Magnitude of vaccine-specific CD4+ and CD8+ T
cells. The HIV-1-specific CD4 and CD8 T cells were measured 53 days after the last immunization by ICS assay following stimulation with the different
HIV-1 peptide pools. The values represent the sum of the percentages of T cells secreting IFN-c and/or TNF-a and/or IL-2 against Env+Gag+GPN
peptide pools. All data are background subtracted. B) Functional profile of memory HIV-1-specific CD4 and CD8 T cell responses. All the possible
combinations of the responses are shown on the x axis, whereas the percentage of the functionally distinct cell populations within the total CD4 or
CD8 T cell populations are shown on the y axis. Responses are grouped and colour-coded on the basis of the number of functions. The non-specific
responses obtained in the control group DNA-W/MVA-WT were subtracted in all populations. C) Phenotypic profile of memory HIV-1-specific CD4 or
CD8 T cells. Representative FACS plots showing the percentage of Env-specific CD4 or CD8 T cells with central memory (TCM, CD44highCD62L+) or
effector memory (TEM, CD44highCD62L2) phenotype. * p,0.05; ** p,0.005. p-values indicate significantly higher responses compared to DNA-W/
MVA-WT immunization group.
doi:10.1371/journal.pone.0035485.g008

Figure 9. Humoral immune responses elicited by MVA-C
against HIV-1 gp140 protein. Levels of Env-specific IgG binding
antibodies (A) or IgG subtypes (B) were measured in serum from naı̈ve
and immunized mice at 53 days after the boost. The values represent
the mean antibodies titer for each group. ** p,0.005.
doi:10.1371/journal.pone.0035485.g009
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1:100 dilution in triplicate against 2 mg/ml of the recombinant

97CN54 gp140.

Statistical analyses
For antigen presentation and ex-vivo proliferation assays the p-

values were calculated using Mann-Whitney U test using SPSS

16.0 (SPSS Inc). For RNA levels and cytokine production the

comparisons among treatment groups were performed by two-

tailed paired Student’s t-test. Previously, a normality test was used

to verify that samples assumed normal distribution. p-values less

than 0.05 were considered to indicate statistical significance.

For the statistical analysis of ICS data we used a novel approach

that corrects measurements for the medium response (RPMI) and

at the same time allows the calculation of confidence intervals and

p-values of hypothesis tests [39,40]. The background for the

different cytokines in the unstimulated controls never exceeded

0.05%. The data analysis program, Simplified Presentation of

Incredibly Complex Evaluations (SPICE, version 4.1.5, Mario

Roederer, Vaccine Research Center, NIAID, NIH), was used to

analyze and generate graphical representations of T cell responses

detected by polychromatic flow cytometry. All values used for

analyzing proportionate representation of responses are back-

ground-subtracted.

Supporting Information

Figure S1 Multidimensional scaling plot illustrating
distinct gene expression profile of the mDCs and pDCs
infected with MVA-C (MDC_MVC and PDC_MVC) and
mock-infected groups (MDC_Mock and PDC_Mock).
8552 probes that pass the filtering step were used for this plot.

(TIF)

Table S1 List of differentially expressed (up- or down-regulated)

genes between myeloid DCs infected with MVA-C (MDC_MVC)

and mock-infected (MDC_Mock) groups. The threshold of

differential expression is set at FDR 5%, with FC.1.3.

(XLS)

Table S2 List of differentially expressed (up- or down-regulated)

genes between plasmacytoid DCs infected with MVA-C

(PDC_MVC) and mock-infected (PDC_Mock) groups. The

threshold of differential expression is set at FDR 5%, with

FC.1.3.

(XLS)
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