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Summary  16 

 17 

Light is a vital resource for plants, which compete for its availability particularly in dense 18 

communities. Plants possess multiple photosensory receptors to detect the presence of 19 

competitors and thereby adjust their growth and developmental strategies accordingly. 20 

Broadly speaking plants fall into two categories depending on their response to foliar shade: 21 

shade tolerant or shade avoiding. In this review we will describe the photoperception 22 

mechanisms and the growth responses elicited by the neighboring vegetation in shade-23 

avoiding species. As these mechanisms are best understood in Arabidopsis thaliana, we will 24 

focus on this species. The type of responses depends on plant density ranging from neighbor 25 

detection modulating growth in anticipation of future shading to the response to canopy 26 

shade where light resources are limiting. These diverse environments are sensed by various 27 

photoreceptors and we will describe our current understanding of signal integration 28 

triggered by distinct light cues in diverse light conditions. 29 

 30 

  31 
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Introduction 32 

 33 

Plants perceive direct sunlight in open habitats or at the top of the canopy but have to face 34 

daily and seasonal fluctuations of light composition. While the spectral composition of solar 35 

radiation is rather constant during the day when the sun is high on the horizon, it is 36 

significantly enriched in blue and far-red (FR) wavelengths at twilight. Clouds further reduce 37 

the incoming light up to 90%, but without a major effect on the color spectrum [1]. Light 38 

composition also changes during the year, particularly at high latitudes when the sun 39 

remains low on the horizon, and it has been proposed that plants use this color information 40 

in addition to photoperiod to prepare for seasonal adaptations [2]. 41 

 42 

Once sunlight reaches plants, it is used as a source of energy for photosynthesis through 43 

absorption by chlorophyll and other pigments composing the photosynthetic apparatus. 44 

Photosynthetically active radiation (PAR) approximately corresponds to the spectrum visible 45 

to the human eye (λ=400-700 nm) but light absorption by photosynthetic pigments occurs 46 

especially in the blue (λ=400-500 nm) and red (λ=600-700 nm). In parallel a large part of FR 47 

light (λ=700-750 nm) is transmitted and/or reflected by plant tissues (Figure 1A). These 48 

spectral properties of aerial plant tissues have a great influence on light composition 49 

available to plants, particularly when considering their ecological context. 50 

  51 

Indeed even in open habitats, plants are rarely isolated and are mostly found within 52 

communities, where competition for light between plants of equivalent height is high. This is 53 

the case in both natural situations, like meadows or clearings, and agricultural fields. In such 54 

environments plants detect the presence of neighboring competitors through an increased 55 

perception of reflected FR light leading to a low R/FR ratio, without any major drop in the 56 

global amount of light [3] (Figure 1B). In shade-avoiding plants this so-called neighbor 57 

detection triggers a suite of morphological adaptations which are thought to help outgrow 58 

competitors: elongation of stem-like structures, elevation of leaves, as well as reduced 59 

branching and acceleration of flowering. Such morphological and developmental changes 60 

are associated with an increased fitness in competitive environments but occur at the 61 

expense of biomass production [4-6]. An additional apparent cost of the shade avoidance 62 



4 
 

strategy is the reduced ability of such plants to defend themselves against a variety of 63 

pathogens [7] and to develop symbiotic interactions with micro-organisms [8]. 64 

 65 

A drop in the R/FR ratio serves as an early signal of a forming canopy indicating that plants 66 

will soon face unfavorable conditions [9]. With the closure of the canopy, light quantity 67 

decreases progressively as the leaf area index increases [10, 11]. Most of the blue, red and 68 

UV-B wavelengths are absorbed by leaf covering and the resulting filtered light is relatively 69 

enriched in green and FR (Figure 1A). These conditions are thus characterized by both a low 70 

PAR and a low R/FR ratio. In such conditions, shade-avoiding species like most crops 71 

(tomato, cereals, legumes, etc.) display elongation phenotypes, a quantitative response 72 

increasing according to plant density [12]. However, many herbaceous species living under 73 

closed canopies like forest understory cannot outcompete tall trees and have developed 74 

strategies of shade-tolerance helping to cope with dim light and to optimize light capture 75 

[13]. For example, a Begonia species living under a tropical canopy has specialized epidermal 76 

chloroplasts or iridoplasts whose physical properties enhance light harvesting and 77 

photosynthetic yield under low light conditions, especially in the green range of the 78 

spectrum [14]. Moreover, recent comparison of two closely related Geranium species 79 

highlight the contrasted growth and gene expression patterns as well as the opposite 80 

regulation of defense genes between shade tolerant versus avoiding species [15].  81 

 82 

Natural canopies are however not homogeneous environments. Foliar cover is often uneven 83 

providing some plants with transient access to unfiltered sunlight depending on the position 84 

of the sun or the time of day. These sunflecks inhibit the shade avoidance response (e.g. 85 

stem growth), especially when occurring in the afternoon [16]. Gaps in canopies also provide 86 

potential access to unfiltered sunlight and represent a good opportunity for plants to get 87 

higher amounts of light for photosynthesis. In such conditions, plants tend to reorientate 88 

their growth towards the more favorable light environment [17]. This is particularly visible at 89 

the edge of a canopy where plants are submitted to a stable lateral light gradient (Figure 1B-90 

C), triggering directional growth or phototropism, with bending of stem-like structures 91 

favoring the repositioning of photosynthetic organs for optimized light absorption [17-19].  92 

 93 
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In this review, we aim at describing how light perception modulates the extent and direction 94 

of plant growth leading to enhanced light harvesting for photosynthesis. In particular, we 95 

will describe the current understanding of the shade avoidance and phototropism 96 

responses, with an emphasis on the integration of information coming from various 97 

photoreceptors. We will primarily focus on Arabidopsis thaliana, a shade-avoiding plant, 98 

because most of the molecular mechanisms underlying these responses have been identified 99 

in this species.  100 

 101 

Photoreceptors regulating the extent and direction of growth depending on plant density. 102 

 103 

Plants use light parameters such as spectral composition, light intensity, direction and 104 

duration as a source of information from the environment to modulate growth and control 105 

developmental transitions. Different classes of photoreceptors perceive specific ranges of 106 

the light spectrum: cryptochromes, phototropins and Zeitlupes absorb blue/UV-A, 107 

phytochromes maximally absorb red and FR but also absorb blue light, and UVR8 absorbs 108 

UV-B (λ=280-315 nm) [20]. With the notable exception of UVR8, photoreceptors are 109 

chromoproteins composed of an apoprotein associated with a light-absorbing chromophore. 110 

UVR8 uses a triad of photosensitive tryptophane residues to absorb light [21]. Three classes 111 

of photoreceptors primarily control elongation-growth responses depending on the 112 

prevalent light environment: phytochromes, cryptochromes and UVR8 [22]. Phototropism is 113 

primarily induced by directional UV-A/blue light perceived by the phototropin family, but 114 

plants can also bend towards UV-B [23]. The crosstalk between these different photosensory 115 

systems will be described below. In contrast, we will not discuss members of the Zeitlupe 116 

family, which are primarily involved in the control of floral transition and entrainment of the 117 

circadian clock, (for more information about Zeitlupes, see [20, 24]). 118 

 119 

Although phototropism is not typically regarded as a component of plant responses to a 120 

crowded environment, directional growth contributes to phenotypic plasticity in such 121 

environments [19, 25, 26]. We will thus start by a brief description of signaling events 122 

associated with phototropism. Angiosperms possess two phototropin photoreceptors, phot1 123 

and phot2, with partially overlapping roles in several physiological responses to blue light 124 

like phototropism, stomatal opening or leaf flattening finally leading to optimized 125 
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photosynthetic activity. Phot1 functions over a broad range of intensities whereas phot2 is 126 

only active at high blue light intensities [27]. 127 

 128 

Phototropins belong to the AGC kinase family and are located at the plasma membrane. 129 

They are composed of two blue light-sensing LOV (Light Oxygen Voltage) domains and a C-130 

terminal serine/threonine kinase domain. Upon blue light perception, a conformational 131 

change releases the kinase activity repressed by LOV2, leading to the subsequent 132 

autophosphorylation of phototropins [24, 28]. This is followed by a cascade of signaling 133 

events finally resulting in the establishment of an auxin gradient driving directional growth 134 

towards the light (See box 1). Early signaling components have been identified but the link 135 

between activation of phototropins and the auxin gradient is still not entirely elucidated 136 

(Figure 2A). For example, NPH3 and RPT2, two proteins from the same family, are essential 137 

for a proper phototropism response [29]. They are both located at the plasma membrane 138 

and interact with phot1 [24, 28]. NPH3 is rapidly dephosphorylated in blue light in a phot1-139 

dependent manner [24, 28], a phenomenon which is modulated by RPT2 [30]. NPH3 140 

associates with Cullin3 in a CUL3-based E3 ligase complex, which regulates phot1 141 

ubiquitination [31]. However, the functional consequences of this post-translational 142 

modification of phot1 remain poorly understood. The PKS family of proteins are also 143 

considered as early signal transducers required for phototropism, among which PKS4 is a 144 

direct target of phot1 phosphorylation [32]. PKS proteins were proposed to act upstream of 145 

auxin gradient formation but their biochemical mode of action remains unknown [33]. For 146 

further details on phototropin signaling we recommend the following publications [24, 28, 147 

29, 34]. 148 

 149 

Photoreceptors and early signaling events regulating elongation 150 

 151 

In contrast to the phototropins, phytochromes, cryptochromes and UVR8 are not anchored 152 

to the plasma membrane but mainly function in the nucleus. Interestingly, despite having 153 

different action spectra, they show similar features in terms of signaling mechanisms which 154 

converge to the modulation of gene expression through regulation of transcription factors 155 

(Figure 2B). Herein, we provide a synthetic overview of early signaling events associated with 156 
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light regulation of elongation, more comprehensive reviews on the function and signaling 157 

mechanisms elicited by these photosensory receptors can be found here [21, 24, 35-37]. 158 

 159 

Plants possess several phytochrome photoreceptors with partially overlapping roles (5 in 160 

Arabidopsis thaliana, phyA-E) and functioning as homo- or heterodimers. Phytochromes 161 

exist in two forms: a FR-absorbing form (Pfr) and its more stable red-absorbing conformer 162 

(Pr). Upon perception of red light, the inactive Pr is converted into the active Pfr which 163 

translocates into the nucleus. Conversion from Pfr to Pr is facilitated by FR light perception, 164 

however this also occurs slowly in the dark. This so-called dark reversion is temperature-165 

dependent and participates in plant perception and response to temperature variations, 166 

suggesting that phytochromes also function as thermosensors [38-40]. Cryptochromes are 167 

related to the family of DNA repair-involved photolyases and are found in many eukaryotic 168 

clades, including fungi and metazoans, as well as in some bacterial species [41]. Two 169 

cryptochrome photoreceptors, cry1 and cry2, are present in Arabidopsis and are activated 170 

by blue light through conformational changes [36]. UVR8 is the most recently identified plant 171 

photoreceptor and is involved in physiological and developmental responses to UV-B [21, 172 

42]. UV-B perception allows the conversion of UVR8 homodimers to active monomers.  173 

 174 

In all cases, light activation of these photoreceptors enables controlled interactions with 175 

downstream signaling components, which finally leads to regulation of gene expression via 176 

two main mechanisms. Phytochromes and cryptochromes have a direct impact on 177 

transcription factors from the basic Helix-Loop-Helix (bHLH) family, especially on 178 

Phytochrome Interacting Factors (PIFs) (Figure 2B). PIFs are central integrators of internal 179 

and external cues regulating plant growth and development [43-45]. They are conserved in 180 

land plants, pointing to an early establishment of this signaling module during evolution [46, 181 

47]. Arabidopsis has eight PIF/PIF-like proteins which can interact with phyB but only play 182 

partially overlapping roles at different stages of development: PIF1, PIF3-8 and PIL1/PIF2 183 

[44]. It is noteworthy that while most PIFs have a growth-promoting function, PIF6 and 184 

PIL1/PIF2 tend to have opposite effects on growth [44]. PIFs regulate expression of target 185 

genes by binding preferentially in promoter regions enriched in G-box and PBE-box (PIF 186 

binding E-box) motifs [43]. Active phyB interacts with PIFs in the nucleus and inhibits their 187 

activity [43]. In many cases this interaction leads to phosphorylation and further 188 
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proteasome-dependent degradation of PIFs. Interestingly, PIF7 is not degraded upon 189 

interaction with phyB but accumulates in a phosphorylated form [48]. Additionally, 190 

phytochromes may have a direct action at the chromatin level on the promoters of PIF 191 

target genes. PhyB is detected on chromatin [39] and active phyB inhibits the binding of PIF1 192 

and PIF3 to the PIL1 promoter independently of the degradation processes [49]. Recently 193 

both crys have also been shown to physically interact with PIF4 and PIF5 in vitro and in vivo 194 

[50, 51]. However how these interactions affect PIF activity is still not fully understood. One 195 

possibility is that crys repress PIFs transcriptional activity by interacting directly with PIFs at 196 

their target genes loci [51]. Cry2 also interacts with CIB bHLH transcription factors, in a blue 197 

light-dependent manner, but this rather stimulates CIB-induced expression of target genes 198 

to initiate flowering [52]. Cryptochrome-dependent regulation of gene expression may thus 199 

vary depending on the type of bHLH factor involved [36].  200 

 201 

On the other hand, all three photoreceptors suppress the activity of the COP1/SPA ubiquitin 202 

E3 ligase through different mechanisms ultimately leading to the stabilization of 203 

transcription factors like HY5 (Figure 2B) [53]. HY5 regulates many target genes to promote 204 

photomorphogenesis and inhibit hypocotyl elongation [54]. In the dark, COP1 together with 205 

SPAs act as substrate receptor in a CUL4-DDB1 E3 ligase to recruit HY5 for poly-206 

ubiquitination and further degradation by the proteasome. Light-activated cryptochromes 207 

and phytochromes interact with SPA which disrupts or inactivates COP1/SPA complexes, 208 

thereby inhibiting their ubiquitin E3 ligase activity [55-58]. HY5 is also stabilized under UV-B, 209 

and initial models considered COP1 as a positive regulator of UV-B-dependent 210 

photomorphogenesis [21]. However monomeric light-activated UVR8 sequesters COP1, 211 

which limits COP1 association to the CUL4-DDB1 E3 ligase and thus promotes HY5 212 

stabilization [21, 42, 59], indicating that UVR8 has a negative effect on COP1 activity.  213 

Photoreceptor-mediated control of COP1/SPA activity also affects the abundance of other 214 

negative modulators of shade-regulated growth such as the bHLH proteins HFR1 and PAR1 215 

[53, 60-62] as well as some members of the BBX family of transcriptional regulators [63]. 216 

 217 

Collectively these mechanisms tend to activate transcription factors promoting elongation in 218 

shaded environments (e.g. PIFs) but also lead to the production of inhibitors of the process 219 
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(e.g. HY5, HFR1) which are implicated in negative feedback loops required for controlled 220 

growth regulation [3, 61, 62, 64, 65].  221 

  222 

Molecular mechanisms associated with neighbor detection and outgrowth 223 

 224 

Neighbor detection is probably the simplest situation of light quality regulating plant growth 225 

because perception of the characteristic low R/FR ratio is primarily controlled by one 226 

photoreceptor, phyB. Most of our current knowledge on related signaling mechanisms have 227 

been obtained on hypocotyl elongation in lab conditions, where the low R/FR ratio is easily 228 

mimicked by adding supplemental FR light to the control white light source. Under such 229 

conditions, conversion of phyB from the active FR-absorbing Pfr to its inactive red-absorbing 230 

Pr form leads to stabilization of PIFs which are responsible for the rapid reprogramming of 231 

gene expression upon shade perception [48, 66, 67]. Although PIF4, PIF5 and PIF7 have 232 

partially overlapping roles, PIF7 plays a predominant function in neighbor detection in 233 

seedlings [48, 68]. The same PIFs also control adult responses to low R/FR such as petiole 234 

elongation, however which PIF dominates those responses is less clear [69, 70]. PIFs regulate 235 

expression of numerous genes, including other transcription factors and negative regulators, 236 

resulting in a complex signaling network [3, 71].  237 

  238 

A major mechanism whereby PIFs modulate growth is by controlling auxin biosynthesis and 239 

signaling [66]. In seedlings a low R/FR ratio is primarily sensed in cotyledons where it leads to 240 

PIF-mediated auxin production followed by transport to the hypocotyl [72] (Figure 3A). 241 

Increased auxin synthesis requires enzymes of the TAA1-YUC pathway (see box 1) [73, 74]. 242 

Four of the eleven YUCs (YUC2, YUC5, YUC8 and YUC9) are induced upon low R/FR treatment 243 

in a PIF-dependent manner [48, 66, 67]. The importance of this regulatory step is highlighted 244 

by the absence of a low R/FR response in a yuc2yuc5yuc8yuc9 mutant [67, 75]. Comparable 245 

mechanisms are likely involved in adult plants, where both PIFs and auxin synthesis are 246 

required for neighbor proximity-induced petiole elongation [70, 76, 77]. Blocking auxin 247 

transport with chemical inhibitors also abolishes low R/FR-induced elongation, underlining 248 

the importance of a proper auxin distribution for this response [70, 73, 78, 79]. Auxin is 249 

directed to the hypocotyl through PIN-dependent polar auxin transport and distributed to 250 

the different cell layers [78] where it induces cell elongation. Three PIN-coding genes are 251 
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induced upon low R/FR treatment and the corresponding pin3pin4pin7 mutant does not 252 

elongate under shade-mimicking conditions [67, 78]. Regulation of apolar ABCB efflux 253 

carriers is also involved in auxin basipetal transport in the hypocotyl in shade, which may 254 

facilitate PIN function [80].  255 

  256 

However, cotyledon-produced auxin does not fully explain hypocotyl elongation in neighbor 257 

detection, and organ-specific analyses have been a key asset to understand the role of local 258 

responses [67, 72, 81, 82]. Shade-marker genes like PIL1, HFR1 or ATHB2 are still induced in 259 

the hypocotyl of decapitated Brassica rapa seedlings [72]. Because homologous genes in 260 

Arabidopsis are direct PIF targets [62, 66], this observation suggests that PIFs play specific 261 

roles in the hypocotyl. Accordingly, comparison of transcriptomics analysis of cotyledons 262 

versus hypocotyl in low R/FR with ChIP-seq data reveals that many early low R/FR-induced 263 

genes in both organs are indeed direct PIF targets [67]. A large proportion of auxin-regulated 264 

genes are induced simultaneously in cotyledons and hypocotyl, and some are even 265 

expressed first in the hypocotyl. Furthermore, some auxin-responsive genes like SAUR22 are 266 

still induced in the hypocotyl of mutants deficient in auxin biosynthesis or transport [67]. 267 

Finally, local auxin inactivation in the hypocotyl also participates in the regulation of 268 

elongation, independently of cotyledon-derived auxin [83]. Altogether, these observations 269 

illustrate that the neighbor detection response also depends on local hypocotyl signals 270 

(Figure 3A). 271 

 272 

Once in the hypocotyl, lateral distribution of auxin to the different cell layers is mediated at 273 

least by PIN3 [78]. However how each hypocotyl tissue responds to auxin is poorly 274 

understood. Interestingly, blocking auxin signaling by expressing a dominant negative form 275 

of the transcriptional repressor IAA17/AXR3 (see box 1) in a tissue-specific manner leads to 276 

defects in hypocotyl elongation in all tested lines with particularly strong effects upon 277 

epidermal expression [84]. Auxin signaling is thus needed in all hypocotyl cell layers, and the 278 

prominent role of the epidermis favors the idea that external cell layers drive stem 279 

elongation [85].  280 

 281 

Among other growth-related hormones, brassinosteroids (BR) are required for hypocotyl 282 

and petiole elongation in low R/FR and other shade-mimicking conditions [76, 84, 86] and 283 
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BR-related GO terms are significantly detected among shade up-regulated genes [65, 67, 76, 284 

77, 81]. Nevertheless, no significant increase in BR levels is observed in seedlings upon low 285 

R/FR treatment [87]. Interestingly BZR1, the main transcription factor regulating gene 286 

expression downstream of BR perception, interacts with PIF4 and the auxin-responsive ARF6 287 

to regulate common target genes [88]. A high proportion of low R/FR-induced genes 288 

identified as PIF4 or PIF5 targets are also bound by ARF6 and BZR1, which suggest that 289 

transcription factors of different hormonal pathways work together in the control of gene 290 

expression in neighbor proximity-mimicking conditions [67]. Accordingly auxin-mediated 291 

hypocotyl growth in neighbor detection occurs partially through the control of the BR 292 

pathway [84] (Figure 3A). Gibberellic acid (GA) is also required for low R/FR-induced 293 

elongation, but contrary to BR, slightly higher GA levels have been measured at late time-294 

points in response to plant proximity [87]. DELLA transcriptional repressors are degraded in a 295 

GA-dependent manner under low R/FR [89], which releases PIFs from DELLA inhibition [90, 296 

91]. An additional level of regulation involves BBX24, a positive regulator of shade 297 

responses, whose interaction with DELLAs favors PIF4 activity [92]. Finally recent analysis of 298 

an ethylene-insensitive mutant suggests that this hormone is not essential for shade-induced 299 

hypocotyl elongation [81], and may be important specifically for petiole elongation where 300 

increased ethylene levels were measured upon low R/FR treatment [79].  301 

 302 

Integrating complex light information to modulate growth  303 

 304 

In natural environments, light signals are complex and activate several photoperception 305 

pathways at the same time. More and more studies focus on these photosensory crosstalks 306 

to understand how plants integrate multifaceted information from their environment and 307 

what the final growth output is.  308 

 309 

Shade avoidance responses are modulated by PIF-dependent negative feedback loops but 310 

also by other photosensory mechanisms. When not yet filtered by a canopy, strong UV-B 311 

signals inhibit neighbor proximity-induced hypocotyl and petiole elongation but also leaf 312 

hyponasty through UVR8 activity [93, 94]. As other UVR8-dependent mechanisms, this 313 

repression relies partially on HY5-driven gene induction through inhibition of COP1 activity 314 

[21, 93]. The COP1/SPA complex is indeed required for shade avoidance responses, as shown 315 
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by the weak low R/FR-induced elongation phenotypes of cop1 and spa mutants [95, 96]. 316 

Besides combined low R/FR + UV-B treatment triggers the degradation of PIF4 and PIF5 317 

proteins but how UVR8 controls PIFs stability remains unknown [93]. Phytochrome A also 318 

negatively controls hypocotyl elongation under prolonged low R/FR conditions through late-319 

induced expression of HY5 [65]. The impact of phyA is particularly strong when the low R/FR 320 

ratio is perceived early in development, right after germination [97, 98]. In such a case, 321 

shade avoidance occurs at the same time as de-etiolation, a developmental process enabling 322 

plants to become photoautotrophic. De-etiolation comprises inhibition of hypocotyl 323 

elongation and promotion of cotyledon expansion, processes which are reversed to some 324 

extent during shade avoidance [99]. PhyA is the sole photoreceptor triggering de-etiolation 325 

under FR light and is thus essential for seedling establishment and survival in deep canopy 326 

shade, on the other hand it antagonizes phyB-controlled shade avoidance. 327 

 328 

Under dense vegetation, depletion of blue and red wavelengths is added to increased FR 329 

transmission, which affects both photosynthetic activity and light signaling. Although there is 330 

no evidence for a natural situation in which only blue light would be reduced, studies using 331 

blue-depleted light have allowed disentangling the confounding effects of low blue and low 332 

R/FR in true shade conditions. A drastic reduction in blue light intensity as experienced by 333 

plants under a canopy induces typical shade avoidance phenotypes in both seedlings [50, 79, 334 

86] and adult plants [69, 79, 100]. Although low blue and low R/FR show distinct 335 

transcriptional patterns and induce different hypocotyl growth kinetics the long-term 336 

phenotypic responses are quite comparable [50, 69]. Phenotypic analyses of cryptochrome-337 

deficient mutants indicate that these photoreceptors function as negative regulators of low 338 

blue-dependent shade responses and prevent excessive elongation [69, 79, 100]. Genetic 339 

and biochemical evidence suggest that cry1 and cry2 act at least partially upstream of PIF 340 

transcription factors in the regulation of low blue-induced hypocotyl elongation [50]. 341 

However, how the interaction between crys and PIFs is differentially regulated under low 342 

blue and in canopy shade conditions and how this affects PIF activity remains poorly 343 

understood. Interestingly, low blue enhances the effect of low R/FR, leading to growth and 344 

transcriptional responses that are very similar to plants grown under true canopy shade [69]. 345 

One mechanism underlying this combined photoreceptor action is the reduction of low 346 

R/FR-induced negative feedback loops by low blue [69]. This represents a good example of 347 
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how complex natural light environments can be simulated in laboratory conditions and how 348 

this leads to mechanistic insights into photoreceptor crosstalk.  349 

 350 

A similar approach comparing natural and artificial light combinations was recently used to 351 

study the crosstalk between phytochromes and phototropins during the control of 352 

phototropism in green seedlings [19]. In neighbor detection conditions, phototropic bending 353 

is enhanced gradually with the decrease of the R/FR ratio. The response is negatively 354 

regulated by phyB and the cryptochromes while the PIF-YUC regulon is also required for this 355 

asymmetric growth response [19]. Importantly, increase in hypocotyl curvature under low 356 

R/FR does not simply correlate with the growth potential. This suggests that plants in a 357 

shaded environment can reorient their growth more efficiently towards a more favorable 358 

light and that co-action between phytochrome inhibition and phototropin signaling helps 359 

plants to optimize light capture (Figure 3B). Cryptochromes also participate in the 360 

modulation of phototropism by shade and might be especially important under canopy 361 

shade where blue light is greatly reduced [19]. Phytochrome-phototropin cooperation is also 362 

essential in cryptogams like mosses and ferns to regulate bending towards unidirectional red 363 

light. This phenomenon depends on direct interaction of phytochromes and phototropins at 364 

the plasma membrane in Physcomitrella patens [101] or on a phytochrome-phototropin 365 

chimeric photoreceptor, or neochrome, in some polypodiaceous fern species [102-104]. 366 

Neochromes may favor sensitivity for light perception, a crucial asset for plants, growing in 367 

dim light environments. 368 

 369 

Blue light-dependent phototropism has been mostly studied in seedlings seeing light for the 370 

first time. Interestingly as observed in green seedlings, phototropism in de-etiolating 371 

seedlings is also controlled by a phytochrome-phototropin coaction. Nevertheless the 372 

mechanisms are distinct as in de-etiolating seedlings phyA promotes phototropism while as 373 

described before phyB inhibits the process in green seedlings [29]. However, as outlined 374 

below in both cases phytochromes regulate the process by controlling the expression of 375 

distinct elements in phototropin signaling. Constitutive expression of a nuclear phyA leads to 376 

a faster phototropic response, suggesting that nuclear localization of phyA is required for its 377 

action on phototropism [105]. Light-induced translocation of phyA into the nucleus (by red 378 

light) prior to directional blue light illumination likely favors phyA-dependent induction of 379 
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phototropism signaling components like PKS1 and RPT2 [29, 105]. The other phytochromes 380 

do not seem to be much involved in the regulation of phototropism in de-etiolating 381 

seedlings, as shown by the normal blue light-induced bending of Arabidopsis mutant 382 

seedlings lacking phyB-phyE [106]. Cryptochromes are also important for a proper 383 

phototropic bending response in etiolated seedlings and might act together with both 384 

phototropins and phytochromes [19, 29, 107-109]. Cry1 and cry2 redundantly enhance 385 

phototropism at low fluence, perhaps by modulating blue light-regulated growth [107, 108]. 386 

As for phyA-mediated phototropic enhancement this has been linked to the control of RPT2 387 

expression [109]. Finally, etiolated hypocotyls also bend towards UV-B light, a response 388 

which depends on both phototropins and UVR8 [23]. Indeed a phot1phot2 double mutant is 389 

able to bend towards monochromatic UV-B, yet at a slower rate than wild type seedlings, 390 

suggesting that phot1 and phot2 are important for the early phase of directional growth 391 

towards UV-B [23, 110]. Interestingly, UVR8-dependent bending requires HY5, which 392 

accumulates at the lit side of the hypocotyl upon directional UV-B perception [111]. The 393 

underlying mechanism may involve a gradient of HY5 activity negatively regulating cell 394 

elongation from the illuminated to the shaded side of the organ. How UV-B modulates 395 

phototropism in green seedlings and how this pertains to growth modulation in a complex 396 

canopy remains an interesting question for the future. 397 

 398 

Conclusions/outlook 399 

 400 

Over the past decades much has been learned about individual signaling pathways by using 401 

simplified light environments that are primarily sensed by a single photoreceptor (e.g. the 402 

control of neighbor perception by phyB). Much remains to be understood about shade 403 

responses at the tissue and cellular levels. However, the current information now enables 404 

the community to study more realistic light conditions to investigate the mechanisms 405 

underlying the integration of signals emanating from several light sensors [19, 69, 93]. The 406 

next challenge will be to test hypotheses generated in controlled environments in much 407 

more variable natural conditions. Interestingly, outdoors experiments aimed at determining 408 

the influence of various pathways controlling the timing of reproduction in Arabidopsis 409 

yielded quite some surprises [112]. It is likely that novel discoveries will also result from 410 

using such approaches to study shade avoidance and phototropism. For example soil 411 
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resources and pathogen load both have an influence on plant competition and canopy 412 

formation and hence it will be interesting to study the integration of light cues with other 413 

important variables [113, 114]. Such studies will likely provide mechanistic insight into 414 

complex signaling integration that is of interest to understand plant growth at the individual 415 

level but also how these factors influence community composition [113-115]. In order to 416 

reach this level of understanding it will be important to compare and contrast ecotypes and 417 

species with different responses to shade cues.  418 
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Text Boxes  419 

 420 

Box 1: Auxin, the growth hormone.  421 

 422 

Auxin is the main hormonal regulator of cell elongation in shade avoidance and 423 

phototropism responses. In young seedlings, it is mostly produced in the cotyledons and 424 

channeled down to the hypocotyl and root [73]. Indole-3-acetic acid (IAA), the main auxin 425 

form, is primarily synthetized from tryptophan through the TAA1-YUC pathway. TAA1 426 

converts tryptophan into indole-3-pyruvate (IPA) and enzymes of the YUCCA (YUC) family are 427 

responsible for converting IPA into free IAA in a rate-limiting step [74]. Auxin is then 428 

transported from cell to cell in a directional manner through controlled transport routes. The 429 

fast and long-range basipetal stream of auxin corresponds to the polar auxin transport (PAT) 430 

whereas a slower local distribution of auxin to the different tissues has recently been 431 

identified as the connective auxin transport (CAT) [116]. Auxin freely enters the cell in its 432 

protonated form, the most abundant one at the acidic pH of the apoplast. Once in the 433 

cytoplasm, auxin is deprotonated and is thus “trapped” inside the cell. Its transport is also 434 

regulated by three families of transporters: AUX1/LAX auxin influx carriers enable auxin to 435 

enter into the cell whereas auxin efflux is mediated by both the apolar ABCBs and the polar 436 

PIN transporters [117]. ABCB and PIN activities are regulated by phosphorylation by AGC VIII 437 

kinases [118]. Auxin is perceived in the cytoplasm by specific receptors from the TIR/AFB 438 

family and favors the interaction of SCFTIR/AFB E3 ligase complexes with Aux/IAA proteins, 439 

which are targeted to the proteasome. Degradation of Aux/IAA transcriptional repressors 440 

releases the activity of ARF transcription factors which then drive expression of specific 441 

auxin-responsive genes, among which cell wall remodeling factors involved in cell elongation 442 

[119].  443 

  444 
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Figure legends 452 

 453 

Figure 1. Features of the light environment and consequences on plant growth.  454 

A. Leaf spectral properties as the main determinant for light composition in plant 455 

communities. Upon absorption of sunlight (top spectrum) by photosynthetic pigments, a leaf 456 

filters most of the blue and red wavelengths and the resulting transmitted light is relatively 457 

enriched in green and FR (bottom spectrum). Besides, green tissues also reflects FR, which 458 

lowers the R/FR ratio perceived by neighboring plants. Spectra were adapted from [120]. 459 

B. Plant growth responses in different light environments. (1) Full sunlight. An isolated plant 460 

under full sunlight receives high amounts of UV-B, blue and red light and relatively low 461 

amount of FR (top spectrum figure 1A). (2) Neighbor detection. In crowded environments, 462 

high reflection of FR light from neighboring plants is a signal for strong competition and 463 

indicates a forming canopy. The decrease in R/FR ratio perceived by plant photoreceptors 464 

induces a suite of morphological changes helping to overtop encroaching neighbors and get 465 

a better access to sunlight: elongation of stem, internodes and petioles; leaf elevation 466 

(hyponasty); reduced branching; acceleration of flowering. (3) True shade. Under a canopy, 467 

light is strongly filtered by high tree leaves and the understory receives a much lower light 468 

intensity, characterized by low UV-B, low PAR and low R/FR (bottom spectrum figure 1A). 469 

This leads to a similar but more pronounced phenotypic response than described in (2) in 470 

shade-avoiding species. Conversely shade-tolerant plants display various adaptations to life 471 

under dim light conditions (not represented here). Finally plants located at the edge of a 472 

canopy gap face a horizontal light gradient, which induces a reorientation of growth towards 473 

the more favorable environment or phototropism.  474 

C. Example of ivy plants (Hedera helix) in the shade of higher trees showing phototropism 475 

towards a canopy gap (Lausanne, University campus, fall 2016).  476 

 477 

Figure 2. Overview of signaling mechanisms controlling the direction and extent of plant 478 

growth. 479 

A. Simplified view of early signaling events involved in blue light-induced phototropism. 480 

Activation of membrane-localized phototropins by a directional light signal induces a suite of 481 

phosphorylation/dephosphorylation events which are essential for the establishment of an 482 

auxin gradient across the hypocotyl. Auxin accumulates in cells located on the shaded side, 483 



19 
 

which elongate more than the one on the lit side, leading to hypocotyl bending. More details 484 

in the text. Phot: phototropins.  485 

 486 

B. Simplified view of photosensory mechanisms involved in light regulation of growth. Light-487 

activated photoreceptors (phytochromes, cryptochromes and UVR8) negatively regulate 488 

seedling elongation by acting in the nucleus via two main mechanisms: inactivation of PIFs 489 

and activation of HY5 through inhibition of COP1/SPA activity. More details in the text. Phy: 490 

phytochromes; Cry: cryptochromes.  491 

 492 

Figure 3. Current models of neighbor proximity-induced hypocotyl elongation and 493 

promotion of phototropism dependent on the PIF-auxin regulon. 494 

A. Neighbor proximity-induced hypocotyl elongation results from a combination of signaling 495 

mechanisms in both cotyledons and hypocotyl. In the cotyledons, stabilization of PIFs in low 496 

R/FR leads to specific responses, which include the induction of auxin biosynthetic genes 497 

from the YUCCA family. Auxin is transported to the hypocotyl via polar auxin transport and 498 

distributed laterally to the different cell layers, where it has specific functions. Cotyledon-499 

derived auxin drives cell elongation in the hypocotyl, partly through activation of the 500 

brassinosteroid pathway. In parallel, PIFs activate local responses in the hypocotyl which are 501 

necessary for low R/FR-induced elongation. Local metabolism also regulate auxin availability 502 

to prevent excessive growth.  503 

B. Low R/FR conditions enhance phototropic bending towards directional blue light.  504 

Activation of phototropins by a directional blue light induces an auxin gradient in the 505 

hypocotyl which leads to hypocotyl bending. Parallel inactivation of phytochromes (phyB) 506 

and subsequent activation of PIFs triggers a boost of auxin which further promotes the 507 

phototropic response. 508 

More details in the text. Trp: tryptophan; IPA: indole-3-pyruvate; IAA: indole-3-acetic acid; 509 

PAT: polar auxin transport; BR: brassinosteroids. 510 

  511 
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