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Résumé 
De la détection régionale de glissements de terrain au suivi et à la modélisation de déformations à 

l’échelle du versant à l’aide de la télédétection active 
 

Les glissements de terrain peuvent avoir des conséquences directes et indirectes sur les activités 

humaines et sur les individus. Afin d’améliorer la gestion des risques naturels, cette thèse de 

doctorat étudie les aptitudes des capteurs LiDAR (lasers optiques) et RaDAR (émetteurs micro-ondes) 

à la détection, la caractérisation et la quantification du risque de glissements à échelles régionales, 

ainsi que le suivi et la modélisation d’instabilités de pentes à l’échelle du versant. 

A l’échelle régionale, nous démontrons tout d’abord la capacité des récents systèmes de LiDAR 

embarqués sur bateau à modéliser la topographie de falaises côtières en Normandie. Nous avons 

validé cette approche qui peut ainsi être généralisée pour cartographier et quantifier les chutes de 

blocs et glissements de terrain affectant un littoral. Ensuite, nous avons testé la méthode 

d’interférométrie RaDAR satellitaire pour recenser les glissements de terrain profonds dans les Andes 

argentines. Nous démontrons ici que la détection, la caractérisation et le suivi de glissements très 

lents, ainsi que la mesure de variation du niveau d’eau du lac de barrage voisin, sont possibles en 

utilisant les mesures de phases et d’amplitudes des images RaDAR satellitaires. Enfin, une étude sur 

l’estimation spatiale du risque de chutes de blocs le long de routes de montagnes est conduite dans 

le Val de Bagnes. Nous avons pour cela amélioré la méthode de la distribution de pentes et le logiciel 

de propagation FlowR. Ainsi, la susceptibilité de rupture de blocs détachés d’une paroi rocheuse et 

les fréquences relatives de leur propagation ont été estimées, permettant de quantifier et 

cartographier relativement simplement les dangers et risques associés à l’échelle de la vallée. 

A l’échelle du versant, nous démontrons l’intérêt original de la fusion des données RaDAR et LiDAR 

terrestres pour pouvoir suivre et modéliser le glissement rocheux alpin de la Perraire ; nous avons pu 

cartographier ses limites d’extension et ses volumes, ainsi que mettre en évidence des déplacements 

translationnels non-homogènes se propageant le long d’une surface de rupture dièdre. Enfin, nous 

avons évalué les exigences spécifiques et les problèmes classiques des systèmes d’alertes de certains 

des glissements les plus étudiés dans le monde. Nous avons ainsi pu déterminer une liste de 

recommandations concrètes pour la conception de nouveaux systèmes fiables, ainsi que répertorier 

les limites conceptuelles actuelles qu’il faudrait améliorer. 

En conclusion, la diversité des sites et contextes d’études forgea une expérience solide exposant les 

avantages et inconvénients des méthodes LiDAR et RaDAR, et souligna la nécessité grandissante de 

leurs utilisations de manières complémentaires et intégrées. 
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Summary 
From Regional Landslide Detection to Site-Specific Slope Deformation Monitoring and Modelling 

Based on Active Remote Sensors 
 

Landslide processes can have direct and indirect consequences affecting human lives and activities. 

In order to improve landslide risk management procedures, this PhD thesis aims to investigate 

capabilities of active LiDAR and RaDAR sensors for landslides detection and characterization at 

regional scales, spatial risk assessment over large areas and slope instabilities monitoring and 

modelling at site-specific scales. 

At regional scales, we first demonstrated recent boat-based mobile LiDAR capabilities to model 

topography of the Normand coastal cliffs. By comparing annual acquisitions, we validated as well our 

approach to detect surface changes and thus map rock collapses, landslides and toe erosions 

affecting the shoreline at a county scale. Then, we applied a spaceborne InSAR approach to detect 

large slope instabilities in Argentina. Based on both phase and amplitude RaDAR signals, we 

extracted decisive information to detect, characterize and monitor two unknown extremely slow 

landslides, and to quantify water level variations of an involved close dam reservoir. Finally, 

advanced investigations on fragmental rockfall risk assessment were conducted along roads of the 

Val de Bagnes, by improving approaches of the Slope Angle Distribution and the FlowR software. 

Therefore, both rock-mass-failure susceptibilities and relative frequencies of block propagations 

were assessed and rockfall hazard and risk maps could be established at the valley scale. 

At slope-specific scales, in the Swiss Alps, we first integrated ground-based InSAR and terrestrial 

LiDAR acquisitions to map, monitor and model the Perraire rock slope deformation. By interpreting 

both methods individually and originally integrated as well, we therefore delimited the rockslide 

borders, computed volumes and highlighted non-uniform translational displacements along a wedge 

failure surface. Finally, we studied specific requirements and practical issues experimented on early 

warning systems of some of the most studied landslides worldwide. As a result, we highlighted 

valuable key recommendations to design new reliable systems; in addition, we also underlined 

conceptual issues that must be solved to improve current procedures. 

To sum up, the diversity of experimented situations brought an extensive experience that revealed 

the potential and limitations of both methods and highlighted as well the necessity of their 

complementary and integrated uses. 
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Preamble 

From May 2009 to 2012, the first three years of this PhD thesis were achieved within the framework 

of the European project “SafeLand: Living with landslide risk in Europe: Assessment, effects of global 

change, and risk management strategies”. This project, involving 27 European institutions dealing 

with natural hazards, aimed to review current landslide risk assessments and associated 

management tools at different scales and to develop new common procedures supporting these 

existing strategies. With Prof Jaboyedoff, Dr Derron and Abellán, we mainly worked for the SafeLand 

area 4, focused on sensors capabilities and issues for landslide detection, monitoring and early 

warning. We indeed acted as Editors and main contributors of the SafeLand deliverable 4.1 widely 

summarizing scientific and technical aspects of landslide-related sensors (Michoud et al. 2012b). 

Moreover, we were also actively involved in deliverables about sensor selection guidelines 

(deliverable 4.4, Stumpf et al. 2011), research trends (deliverable 4.5, Tofani et al. 2012), early 

warning system settings (deliverable 4.8, Bazin et al. 2012) and remediation works (deliverable 5.1, 

Vaciago et al. 2011). In addition, we also investigated specific landslide failure mechanism types, 

working on the influences of anthropogenic activities on slope stabilities (deliverable 1.6, Nadim et 

al. 2010; in Annex B5, after Michoud et al. 2011). 

To complete these theoretical studies, a practical experience of wide types of monitoring sensors has 

been acquired on different slope instabilities in the Swiss Alps. First, during my Master thesis, I learnt 

and applied spaceborne InSAR algorithms to monitor the La Frasse landslide. Later, on the Pont 

Bourquin earthflow (Jaboyedoff 2006; Jaboyedoff et al. 2009b) in Les Diablerets, I was in charge to 

plan, acquire and interpret data on surface displacements, sub-surface water level and 

meteorological conditions, based on rope extensometers, terrestrial LiDAR, electronic distance 

meters, global navigation satellite systems, inclinometers, piezometers and rain gauges (Michoud et 

al. 2012c). In collaboration with the University of Grenoble and the EPF Lausanne, the kinematic 

model established on our monitoring investigations even supported a pioneering research on 

earthflow failure forecasting from seismic noise monitoring (Mainsant et al 2012a, in annex A1). 

Later on, a second study conducted on the Barmasse rockslide in the Val de Bagnes focused on the 

practice of LiDAR and global navigation satellite systems. Here the integration of both techniques 

was required to emphasise non-homogeneous displacements, accumulating stresses in the scree 

deposits, which could thus fail (Michoud et al. 2013b). 

Therefore this experience acquired via SafeLand and the first three landslides monitoring projects 

supported research developed hereafter in this thesis, being aware of current advantages and limits 

of active remote sensors. 
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Note 

All chapters of this manuscript were written by the PhD candidate. Extracted from submitted and published scientific 

papers, chapter 2.1 and sections 3 to 7 were in addition refined with corrections and suggestions of the candidate’s co-

authors and reviewers. Only chapters 4.2 (on the natural context of the Potrerillos area), 5.2.1.a (on the original slope angle 

distribution method) and 5.2.2 (on the FlowR routine theory) were first written by the associated co-authors under the 

guidance of the PhD candidate. 
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1 Thesis context 

1.1 Landslide processes 

 Slope movement description 1.1.1

Landslides are often defined as the downhill displacement of a mass of debris, earth or rock by 

Cruden and Varnes (1996). But this common description does not highlight the wide variety of 

landslide types. For decades, scientists have attempted to disseminate and update landslide 

classifications to objectively describe all types of gravitational process with common concepts. 

Therefore, according to the leading successive classifications of Terzaghi (1950), Varnes (1978), 

Cruden and Varnes (1996) and Hungr et al. (2014), slope instabilities can be characterized by the 

following points:  
 

1. Processes and materials 

Slopes can evolve according to different types of landslide processes and motions. Indeed, instable 

masses can fall, topple, slide, spread and flows (Figure 1.1, Varnes 1978). Recently, Hungr et al. 

(2014) added the specific type of slope deformation, labelling extremely slow very large deep-seated 

landslides (Figure 1.2), also called sackung or sagging (Zischinsky 1969; Hutchinson 1988; Agliardi et 

al. 2001). Moreover, some landslide processes may have complex behaviours, combining several 

types of processes. 

 
Figure 1.1: Scheme of the five singular types of landslide processes. Note that instability extents may considerably vary and 

no scale is assigned on these plots (modified after Varnes 1978). 

Furthermore, it is also important to describe slope material-forming instabilities, usually based on 

the geotechnical-oriented classes of rock, clay, mud, silt-sand-gravel-boulders, debris, peat and ice.  
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Figure 1.2: Examples of cross-section of Carpathian mountain slope deformations (Nemčok 1982, in Hungr et al. 2014). 

These terms refer to specific geotechnical settings, such as mass strength, plasticity or grain size 

distribution, which strongly influence landslide behaviours and failure conditions (e.g Antoine et al. 

1988; Sassa 1988). The Table 1.1 summarize the most recent updated landslide classification (Hungr 

et al., 2014) according to movement types and geotechnical slope-forming materials. 

Table 1.1: Summary of the Hungr et al.’s landslide nomenclature (2014). Words in italic font are placeholders. 

Type of movement Rock Soil 

Fall Rock/ice fall Boulder/debris/silt fall 

Topple Rock block topple Gravel/sand/silt topple 

 Rock flexural topple  

Slide Rock rotational slide Clay/silt rotational slide 

 Rock planar slide Clay/silt planar slide 

 Rock wedge slide Gravel/sand/debris slide 

 Rock compound slide Clay/silt compound slide 

 Rock irregular slide  

Spread Rock slope spread Sand/silt liquefaction spread 

  Sensitive clay spread 

Flow Rock/ice avalanche Sand/silt/debris dry flow 

  Sand/silt/debris  flowslide 

  Sensitive clay flowslide 

  Debris flow 

  Mud flow 

  Debris avalanches 

  Earthflow 

  Peat flow 

Slope deformation Montain slope deformation Soil slope deformation 

 Rock slope deformation Soil creep 

  Solifluction 

 

Other geological terms such as granitic, volcanic or sediments, may complete the slope-forming 

material description, but never should replace the geotechnical characterization (Hungr et al. 2014). 
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Indeed, some geological terms are not enough consistent and precise to point out landslide 

behaviours, as for example alluvial deposits that can refer to both different clay and gravel materials. 
 

2. Extents and volumes 

Slope instabilities can affect a wide range of slope thickness and surface (Figure 1.3). As an example, 

mountain slope deformations may affect hundreds of meter deep materials over entire slope scales 

larger than 1 km2. On the contrary, earthflows can be confined to very superficial soil layers (typically 

less than 5 m) over small surfaces.  

 
Figure 1.3: (Left) Large deep-seated landslide burying an entire Taiwan highway section (source: Metronews journal). 

(Right) Shallow planar slide affecting the first 30 cm thick layer of the morainic soil, in the Upper Bagnes valley. 

Adjectives describing and quantifying involved extents and volumes can therefore be added to the 

classification system in order to complete the landslide description. Nevertheless, extents and 

volumes can already be implicit with the landslide nomenclature: for example, the difference 

between mountain- and rock- slope deformations is scale, the former being larger and deeper than 

the latter. 
 

3. Activity and velocity 

As described by Cruden and Varnes (1996), the activity of slope instabilities is not consistent over 

time and may have different states according to displacement rates and post-failure elapsed time. 

Therefore, landslide activity can be defined as active, reactivated, suspended, dormant, and stabilized 

states (Figure 1.4).  

On the other hand, the successive slope movement stages can as well be classified as pre-failure, 

onset of failure, post-failure and reactivation states (Vaunat et al. 1994; Leroueil et al. 1996). In this 

case, the introduced concept of mass failure is defined as the most significant movement episode of 

in the landslide history, mainly involving the formation of a fully developed discrete or diffuse 

rupture surface (Leroueil et al. 1996; Hungr et al. 2014). 
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Figure 1.4: (Left) Landslide activity states according to Cruden and Varnes (1996). (Right) Slope movement stages according 

to Leroueil et al. (1996). 

Moreover, typical landslide velocities can extremely vary for most cases. However, slope 

displacement rates can be implicit for some landslide types, such as rock/ice falls that are extremely 

rapid or solifluxions extremely slow (Hungr et al. 2014). Nevertheless, they can be defined according 

to the following velocity classes (Cruden and Varnes 1996): extremely slow, very slow, slow, 

moderate, rapid, very rapid and extremely rapid (Table 1.2). 

Table 1.2: Landslide velocitiy classes according to Cruden and Varnes (1996). 

 Extremely 
slow Very slow Slow Moderate Rapid Very 

rapid 
Extremely 

rapid 

Velocity 
thresholds 
(mm/s) 

 5.10-7 5.10-5 5.10-3 5.10-1 5.101 5.103  

Typical 
velocities 

1 mm/yr 16 mm/yr 1.6 m/yr 13 m/month 1.8 m/hour 3 m/min 5 m/sec 

Human 
responses Nil Maintenance Maintenance Evacuation Evacuation Nil Nil 

 

 Destabilization and triggering processes 1.1.2

Slope stability conditions are function of a sum of inherent predisposing factors, or internal 

parameters, as well as external aggravating and triggering factors (Terzaghi 1950; Varnes 1978; Selbi 

1982; Záruba and Mencl 1982; Vaunat et al. 1994; Jaboyedoff and Derron 2005a; Corominas et al. 

2014). All these factors have influences on at least one these four instability-leading physical 

processes identified by Terzaghi (1950): weight of slope-forming material, the transported material, 

water conditions and high frequency vibration occurrences. 
 

1. Predisposing internal parameters 

As an example, rock-mass stability conditions are controlled by the following inter-dependant 

internal parameters (Figure 1.5):  
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o Topography: slope height, angle, aspect, etc. 

o Geology: lithology, grain-size distribution, strength, cohesion, plasticity, weathering, etc. 

o Rock-mass fracturing: joint orientations, persistence, spacing, roughness, schistosity, etc.  

o Hydrogeology: water table levels, material permeability, joints conductivity, etc. 

According to landslide types, other internal parameters may affect slope stabilities as well, such as 

soil thickness for shallow planar soil slides (Nicolet et al. 2013) or minimum contributing area for 

debris flows (Rickenmann and Zimmermann 1993; Heinimann 1998; Horton et al. 2013). 
 

 
Figure 1.5: Illustration of rock-mass fracturing influences on rock-mass stability. Westside slopes: potential translational 

planar slides along light green joints. Eastside slopes: potential rock topple developed on light yellow joints and 

translational planar slides along yellow bedding planes (modified after Eisbacher and Clague 1984). 

2. External destabilizing and triggering factors 

In addition, the following external factors can also aggravate stability condition and trigger rock-mass 

failure, such as: 

o Gravity 

o Meteorological conditions: rainfall rates and soil saturation, freeze-thaw cycles, etc. 

o Seismicity and active tectonics: close active faults, earthquakes, etc. 

o Anthropogenic activities (as developed later in Section 1). 
 

3. Destabilization vs triggering 

Finally, the temporal limit between destabilization and triggering can sometime be hazy. 

Nevertheless, a distinction can be done to discriminate both processes (Michoud et al. 2011a). On 

the one hand, slope destabilization processes act on a relatively long period of time with a 

progressive decrease of the safety factors and during which local confined movements are possible. 

On the other hand, slope triggering occurs in a very short period of time during which the whole 

instable area fails. 



Part A: Introduction 

 
30 

1.2 Landslide risk management 

Landslides, involving a wide range of processes, extents and velocities worldwide (Korup 2012), 

directly and indirectly affect human lives and activities (Schuster 1996; Kjekstad and Highland 2009; 

Geertseman et al. 2009). As an example, about 3.5 million people in Europe are nowadays 

threatened by slope instabilities (Jaedicke et al. 2010). Moreover, anthropogenic activities can 

degrade slope stability conditions (cf. Section 1), increasing by definition risks where infrastructures 

and people are present (Figure 1.6). 

 
Figure 1.6: In Namsos, May 2009, a huge soft soil slide occurred just after blasting operations for road. Ten houses were 

destroyed but fortunately without making any fatality (pictures: courtesy of NGU and NGI). 

Therefore, authorities in charge of landslide management have to handle procedures for quantitative 

risk assessments (Einstein 1988; Wu et al. 1996; Corominas et al. 2005a and 2014; Fell et al. 2005; 

Bründl et al. 2009; Clague and Roberts 2012; Jakob and Holm 2012). But all these procedures usually 

require as complete information as possible about spatial coverage, activity stages and velocities of 

considered instability processes. 

 Susceptibility mapping  1.2.1

From country to county scales, landslide inventory mapping aims to detect existing active and 

dormant instabilities. Inventories are classically based on visual recognition of mean landslide 
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morpho-structural features on aerial photos and topographic maps (Rib and Liang 1978; Záruba and 

Mencl 1982; Varnes 1984; Hutchinson 1995), such as non-vegetated scree deposits for active rockfall 

areas or clear fracture patterns in rotational slide crones (Figure 1.7). 

 
Figure 1.7: rotational slide morpho-structural features: a- lunar cracks, b- head scarp, c- transverse cracks, d- radial cracks, 

e- lateral ridges (in Záruba and Mencl 1982, modified after Varnes 1978).  

Inventories can also be completed by landslides susceptibility mapping, as developed in Section 5. It 

indeed aims to detect the areas potentially or really exposed to natural hazards, without quantifying 

their intensities and frequencies (Lateltin et al. 1997; Guzzetti et al. 2012; Jaboyedoff et al. 2012b). 

 
Figure 1.8: (A) Multi-criteria intersection approach, illustrated for debris flow source areas (after Horton et al. 2013). (B) 

Reach angle approach, illustrated for rockfalls with and without protective forests. 

First, potential landslide source areas can be identified by spatial intersections of multi failure 

criteria. As examples, structural settings, slope angles, lithologies or range to faults criteria can be 

considered for rock fall susceptibilities (e.g. Hoek and Bray, 1981; Keefer 1984; Pierson et al. 1990; 

Jaboyedoff et al. 1999; Baillifard et al. 2003), while debris-flows would mainly investigate lands-uses, 

watershed extents or slope curvatures and angles (Figure 1.8A, after Takahashi 1981; Rickenmann 

and Zimmermann 1993; Delmaco et al. 2003; Horton et al. 2013). Then, potential maximal runout 

areas can be assessed thanks to pure mechanical process-based models (Dorren 2003a; Rickenmann 

2005; Mangeney et al. 2007; Hungr and McDougall 2009). But such models require numerous input 

parameters describing natural settings (e.g. Crosta et al. 2004; Iovine et al. 2005) that should be 
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mapped; they would thus be difficult and time consuming to apply at regional scales. On the 

contrary, other empiric relations, such as the reach angle (Heim 1932), are optimized for wide 

assessments with few calibrations; they are frequently applied to rockfalls (Figure 1.8C after Heim 

1932; Scheidegger 1973; Evans and Hungr 1993; Corominas et al. 1996; Dorren et al. 2005), snow 

avalanches (Voellmy 1955; Perla et al. 1980; Bakkehøi et al. 1983) or debris flows (Iverson et al. 1998; 

Horton et al. 2013). 

 
Figure 1.9: Example of debris flow susceptibility maps in the Swiss Alps (Horton and Michoud, unpublished results).  

Both landslide susceptibility and inventory mapping are therefore an essential requirement for 

hazard and risk assessment at territory scales (Corominas et al. 2005a and 2014; Fell et al. 2008), in 

order to affordably prioritize areas on which detailed investigations will be the most necessary. 

 Hazard characterization 1.2.2

In some situations, landslides require detailed investigation to evaluate their hazard level; 

quantitative hazard assessments indeed aim to state on occurrence frequencies of slope failures and 

phenomena intensities of both existing and potential landslides (Varnes 1984; Wu et al. 1996; Wyllie 

and Mah 2004; Cornforth 2005; Fell et al. 2008; Corominas et al. 2011 and 2014). At slope-specific 

scales, specific analyses are thus focused on retrieving information on types of failure mechanisms, 

involved volumes and areas potentially affected by the landslide path (Crosta et al. 2006). 

On the one hand, landslide intensities, such as slope deformations, can be estimated based on 

involved movement types, extents and volumes assessments (Figure 1.10), as detailed in Hutchinson 

(1995); it usually requires detailed field mapping of morpho-structural landslide features (Varnes 
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1984; Hutchinson 1995), and reliable geometrical or physical models that estimate depth and 

mecanisms of the main failure surfaces (Jaboyedoff and Derron 2015). 

 
Figure 1.10: Example of detailed field mapping and resulting conceptual model of the Ruinon rock slope deformation 

(modified after Agliardi et al. 2001). 

 
Figure 1.11: List of parameters that have to be estimated on outcropping rocks for rock fall hazard characterization 

(modified after Wyllie and Mah 2004). At outcrops: rock lithology, strength, weathering, etc. At joints: origin (bedding, 

schistosity, fold fracturing, etc.), dip, dip direction, spacing, persistence, filling material, water seepage, etc. 
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On the other hand, landslide occurrence frequency assessments require a consistent geotechnical 

understanding of involved slope destabilization and triggering factors (Figure 1.11), as well as slope 

movement rates of active instabilities (Baroň et al. 2012; Eberhardt 2012). In addition, these 

investigations can be completed by empirical statistic models linking landslide intensities and failure 

frequencies (Figure 1.12), based on extensive historical records (Hungr et al. 1999; Dussauge et al. 

2002, 2003; Guzzetti et al. 2002; Guthries and Evans 2004; Brunetti et al. 2009; Matasci et al. 2015). 

 
Figure 1.12: Magniture–frequency and related power law curves for 136 debris flows and slides recorded in a Canadian 

county (Guthries and Evans 2004). Rollover causes (i.e. small events censoring or physical explanations) are still discussed 

(Hungr et al. 1999; Hovius et al. 2000; Guzzetti et al. 2002). 

 Failure forecasting 1.2.3

In order to manage risk imposed by identified slope instabilities, landslide hazards and exposures can 

be reduced or eliminated by structural countermeasures, as embankments, protective nets, anchors, 

superficial drainages or even check dams (Piteau and Peckover 1978; Holtz and Schuster 1996; Wyllie 

and Mah 2004; Cornforth 2005; Vaciago et al. 2011; Volkwein et al. 2011; Lambert and Bourrier 

2013). Hovewer, these structural remediation works are usually not adapted to landslides involving 

large volumes and/or complex movement types (Crosta and Agliardi 2003b; Blikra 2012), even if they 

can seriously threaten people and infrastructures. 

As a consequence, non-structural countermeasures have to be planned in order to reduce 

expositions, especially in term of human lives. It can be achieved thanks to consistent early warning 

systems in order to alert and evacuate endangered populations in case of imminent active large and 

complex instability failures (Angeli et al. 2000; Lacasse and Nadim 2009; Baum and Godt 2010; Froese 

and Moreno 2011; Blikra 2012; Jakob et al. 2012; Michoud et al. 2013; Cloutier et al. 2015). 
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Therefore, site-specific landslide early warning systems (developed in Section 7) require pertinent 

models to forecast imminent mass failures and flow initiations. They are based on extensive 

characterization works related to understanding of involved instability mechanisms: it is indeed 

necessary to setup pertinent systems that monitor the most significant failure initiation indicators at 

the most relevant locations (Eberhardt 2012; Michoud et al. 2013; Cloutier et al. 2015). As detailed in 

Baroň et al. (2012), these indicators are mainly related to mass movements, hydrogeological settings, 

geophysical properties or external triggers, such as tides or neo-tectonic activities. 

Especially adapted to active rock and soil slides, short term forecasting methods of time to slope 

failure are nowadays mainly based on surface displacement monitoring data (Michoud et al. 2013) 

and the inverse velocity method (Saito 1969; Voight 1989; Fukuzono 1990; Crosta and Agliardi 2003b; 

Petley et al. 2005a and b; Rose and Hungr 2007; Federico 2012; Meyer et al. 2012). This empirical 

method states that time to slope failures is inversely proportional to current strain or displacement 

rate (Figure 1.13A). Most particularly, it provides steadily realistic predictions during last acceleration 

phases preceding mass failures (Figure 1.13B, Petley et al. 2005b; Rose and Hungr 2007). 

 
Figure 1.13: (A) Graphical reconstruction of the inverse velocity approach (in Rouyet 2013, modified after Fukuzono 1990). 

(B) Velocity and inverse velocity plots for five prisms and one wireline extensometer (black line) of a deep-seated toppling 

deformation monitored in an open mine (Rose and Hungr 2007). 

1.3 Remote sensors and related stakes 

Facing to the wide variety of studied gravitational processes and related destabilization factors, 

landslide hazard investigations are supported by an extensive set of remote-sensing and geotechnical 

methods, as synthetized in Figure 1.14 and illustrated in Figure 1.15. 
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Figure 1.14: Synthesis of currently used landslide characterisation and monitoring sensors. During this PhD thesis and as 

assistant, all underlined techniques have been deployed and/or interpreted on earthflows and rockslides. (Modified after 

Michoud et al. 2012a and Rouyet et al. 2013) 

 
Figure 1.15: (Left) Monitoring station equipped by GNSS antenna, digital camera and weather gauges, implemented at the 

Mont de la Saxe rockslide. (Right) Monitoring network setup for a dam reservoir-affecting rock slope deformation, based on 

multiple complementary techniques (Barla et al. 2010). 

As a complement to widespread aerial photos covering European countries for decades (Rib and 

Liang 1978; Záruba and Mencl 1982; Delacourt et al. 2007) and conventional geotechnical monitoring 

systems (Wilson and Mikkelsen 1978; Dunnicliff 1988; Kovári 1988), advanced remote sensors and 

performant processing algorithms are indeed under fast development and democratization for the 

last twenty years (Mantovani et al. 1996; Delacourt et al. 2007; Andrew et al. 2012; Michoud et al. 

2012a; Tofani et al. 2013). Therefore, our capabilities to detect, survey and interpret active slope 
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deformations are particularly improved (cf. Section 2). Furthermore, these remote surveying sensors 

are nowadays usually integrated in early warning systems as reliable complementary techniques in 

addition to robust geotechnical instruments (Baroň and Supper 2013; Michoud et al. 2013a; Cloutier 

et al. 2015). 

All sensors have singular capabilities according to different spatio-temporal resolutions, precisions, 

accuracies, field deployments and costs (Stumpf et al. 2011). Clear purposes must then initially be 

fixed, in term of landslide types and velocities, extents, stakes and budgets, in order to select the 

most appropriate and complementary methods according to their specific capabilities (Figure 1.16). 
 

 
Figure 1.16: Suitability of remote sensing techniques for the monitoring of different landslide mechanisms and velocities at 

different scales (modified after Stumpf et al. submitted). 
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Within this context, the thesis aims to investigate current capabilities of active optical and microwave 

sensors in order to support: 

o landslide detection and characterization at regional scales; 

o spatial landslide risk assessment over large areas; 

o slope instabilities monitoring and modelling at site-specific scales. 

1.4 Outline 

 Governing principles 1.4.1

The first section introduces landslide processes and risk management tools to expose motivations 

and stakes of this PhD thesis to active remote sensing. The chapter 2 completes the scientific context 

setting of this research, with the literature review of the major development steps of LiDAR and SAR 

devices and their related applications in Earth Sciences. 

Then Sections 3 to 7 compose the core of the manuscript. This research therefore wants to 

experiment current active remote sensors capabilities and limitations in various situations and 

contexts. Indeed, it aims to assess how recent LiDAR and InSAR developments and products can 

support many successive steps of reliable landslide risk management strategies, as described in 

Section 1.2: 

o First of all, Chapters 3 to 5 are dedicated to landslide managements at regional scales, using 

mobile LIDAR and spaceborne InSAR acquisitions to first detect and characterize slope 

instabilities, and then to map rockfall hazard and risk mapping.  

Therefore, these three sections aim to identify landslide hotspots over a large territory in order to 

prioritize sectors on which detailed investigation and mitigation measures will be the most efficient.  

o Consequently, Chapters 6 to 7 are dedicated to slope-specific investigations, first illustrating 

into details an example of rockslide hazard characterization and modelling, and then finally 

assessing current practices to set pertinent early warning systems when required.   

Finally, the last chapters expose the conclusions that sum up the original researches achieved in the 

thesis and that suggest perspectives for related future studies. 

 Research sections into details 1.4.2

Section 3 (Landslides detection and monitoring capability of boat-based Mobile Laser Scanning along 

Dieppe coastal cliffs, Normandy) aims to test boat-based mobile LiDAR capabilities in the Channel Sea 

for landslide detection and monitoring along Dieppe’s unstable coastal cliffs, in High Normandy. 
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Ongoing developments were regularly shared by oral presentations at the 2011 Optech’s Innovative 

LiDAR Solutions Conference in Toronto, at the 2013 EGU General Assembly in Vienna and the 2014 

Vertical Geology Conference in Lausanne. Final results were afterwards published in the peer-

reviewed journal Landslides as a technical note. 

Section 4 (Large slope deformations detection and monitoring along shores of the Potrerillos dam 

reservoir, Argentina, based on a Small-Baseline InSAR approach) describes the detection and 

monitoring from spaceborne Radar interferometry of two deep-seated slope deformations along the 

Argentina Potrerillos dam reservoir. Outcomes were shared by oral presentation at the 2014 IAEG 

Congress in Torino and were published in the peer-reviewed journal Landslides as a research paper. 

Section 5 (Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss 

Alps) addresses to rock-mass-failure and runout susceptibilities assessments at regional scale 

adapting the Slope Angle Distribution and the empirical Fahrböschung in order to quantify rockfall 

risk along roads. This study was presented at the 2011 EGU General Assembly in Vienna and was 

published in the peer-reviewed journal Natural Hazards and Earth System Sciences as a research 

paper. 

Section 6 (La Perraire rock slope deformation monitoring and modelling by Ground-based InSAR and 

terrestrial LiDAR integration) illustrates the necessity to integrate both terrestrial LiDAR and InSAR 

techniques to map limits, model geometry and kinematic and monitor displacements and strain rates 

of the 8 to 10 million m3 La Perraire rockslide. Intermediary results were shared by an oral 

presentation at the 2014 EGU General Assembly in Vienna. 

Section 7 (Experiences from site-specific landslide Early Warning Systems) aims to share practices of 

existing early warning systems setup for some of the most studied landslides worldwide, in order to 

gather their valuable experiences and extract recommendations for future systems. Results were 

shown in the 2012 EGU General Assembly in Vienna and were published in the SafeLand deliverable 

4.8, as well as in the peer-reviewed journal Natural Hazards and Earth System Sciences as a research 

paper. 
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2 Active remote sensors  

As exposed in Section 1, this PhD thesis is focused on acquisitions, processing and interpretation of 

active optical and microwave sensors data at regional and local scales. 

Optical devices are designed to record electromagnetic radiations with wavelengths ranging from 

near ultraviolet (from 102 nm) to near infrared (to 104 nm) while microwave devices are designed to 

record radiations of the microwave spectrum (wavelengths from about 5 mm to 30 cm). Contrary to 

passive sensors that record electromagnetic signals naturally reflected or emitted by the observed 

scene (as for standard photos or thermic infra-red imageries), active sensors record electromagnetic 

waves emitted by them. Therefore, the initial state of the emitted signals in term of amplitude, phase 

and wavelength is known and can therefore be compared to back scattered recorded wave state. 

More specifically, researches developed hereafter are related to acquisitions and applications of 

LiDAR and InSAR data (cf. annexes B1 and B2). Derron et al. (2011) reviewed the capabilities of such 

techniques to detect different types of instabilities, to characterize their geometry and structures, to 

detect and monitor involved yearly extremely slow to slow movements (Figure 1.16), and to 

contribute to real-time warning systems (Tables 2.1 and 2.2). 

Table 2.1: Indicative LiDAR and InSAR sensor specifications (modified after Derron et al. 2011). 

 Aerial  
LIDAR 

Terrestrial 
LiDAR 

Spaceborne 
InSAR 

Ground-based 
InSAR 

Spatial data type XYZ point cloud XYZ point cloud 
Uneven, 

discontinuous point 
distribution 

Continuous raster 

Range Tens of m to km 3 km max on rock Up to 800 km 4 km max on rock 

Accuracy 
Tens of cm in XYZ 
(30 cm at 1 km 

range) 

cm in XYZ ( 1 cm at 
100 m) 

1 mm (line of sight 
displacement) 

1 mm (line of sight 
displacement) 

Spatial resolution or 
point density 

1 – 100 pt / m2 10 – 10’000 pt / m2 Pixel size of 1-30 m Pixel size of dm - m 

Time resolution Days – years Hours – years Weeks - months Minutes – years 

 
 

In addition, as developed in Sections 6 and 7, these methods can be complementary (Derron et al. 

2011; Michoud et al. 2012). Indeed, in one hand, LiDAR sensors are particularly adapted to model 

infrastructures and topographies with very high point density, even in steep and inaccessible areas, 

and then to extract to sub-centimetric 3D displacements and volume changes of rock slope 

deformations over small and large blocks by comparing sequential acquisitions. On the other hand, 
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InSAR sensors are especially developed to detect and monitor, even continuously for ground-based 

devices, millimetric ground displacements over entire slopes or very large blocks. 

Table 2.2: Indicative LiDAR and InSAR sensor capabilities for landslide investigations (modified after Derron et al. 2011 and 

Michoud et al. 2012). 

 Aerial  
LIDAR 

Terrestrial 
LiDAR 

Spaceborne 
InSAR 

Ground-based 
InSAR 

Main advantage 

Topography 
modelling at large 

scale with dm 
resolution in gentle 

surfaces 

Topography 
modelling with cm 
resolution in steep 

slopes 

Detection of very 
large slope 

instabilities in dry 
conditions 

Continuous 
monitoring over large 
blocs at mm precision 

Main 
limitation 

Very low point 
density in forest and 

steep slopes 

Fastidious manual 
post-processing 

Quick loss of 
coherence and then 

sparse data  

Atmospheric effects 
along weeks 

Instability Detection 
Excellent for 

geomorphologic 
analysis 

-- 
Good on urban 

areas; moderate on 
natural surfaces 

-- 

Geometry and 
Structure 
characterization 

Good for contouring 
and structural 

analysis 

Excellent for 
structural analysis 

Contouring of large 
active instabilities 

only 

Poor because of too 
low spatial resolution 

Movement 
detection and 
characterization 

Only when archives 
are available 

Very good for some 
specific conditions 

Very good in space 
and time when data 

available 

High resolution 
imaging of 

displacement along 
LOS (line of sight) 

Movement 
Monitoring -- 

Limited to highly 
risky and accessible 

location such as 
mines, quarries and 
specific instabilities 

A posteriori only Very good when 
logistically feasible 

Real-time warning -- 

Under developments, 
nowadays limited to 

specific locations 
such as mines and 

quarries 

-- Good when 
logistically feasible 

 

2.1 History of LiDAR developments 

LiDAR, an accronym of LIght Detection And Ranging, is an active optical sensor which allows 

providing xyz points clouds of the topography with a centimetric to decimetric resolution. The history 

of LiDAR technologies is linked by definition to LASER developments. Since the mid Fifties, the 

physicists Charles Townes and Arthur Shawlow were investigating the feasibility and the 

development of optical MASER (Microwave Amplification by Stimulated Emission of Radiation). Its 

usual acronym LASER (for Light Amplification by Stimulated Emission of Radiation) was introduced in 

1959 (Brooker 2009). Then, Theodore Maiman designed the first instrument which successfully 

produced in May 1960 a series of pulsed LASER (Hecht 1994). In less than one year, the first LiDAR 

was created, mainly for military purposes (Brooker 2009). However, those devices were built with 

semi-conductors that required an environment cooled to 77°K with liquid Nitrogen to operate. After 
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1970 and Hayashi’s, Panish’s and Alferov’s researches, LASER can be operated at ambient 

temperatures (Brooker 2009). 

Then in the Seventies, LASER technologies became democratized to civilian applications using LASER-

based electronic distance-meters (Dallaire 1974), widely used for surveying application in cities, 

quarries and even tunnels environments (Petrie 1990; Petrie and Toth 2009). At the same time, first 

aerial LiDAR systems were able to measure the range between the plane and the target (i.e. the 

Earth surface) calculating the time of flight of the emitted pulse with a precision of 1 m (Miller 1965; 

Krabill et al. 1984), for altimetry (Sheperd 1965) and bathymetry purposes (Hoge et al. 1980). Indeed, 

for acquisition ranges longer than 100 m, all LiDAR devices (mobile or terrestrial) are basically based 

on the time of flight principle (Figure 2.1). 

 
Figure 2.1: Scheme of Time-of-Flight principle applied to a terrestrial LiDAR device (modified after Abellán et al. 2014 and 

Jaboyedoff et al. accepted). 

The sensor emits near-infrared laser pulses (wavelengths of 1’000 - 1’500 nm) on a line of sight 

perfectly known; this signal is then reflected by the terrain surface, biosphere, infrastructures or air 

dust. The device records times-of-flight that pulses take to go forth and back are recorded, being 

transformed into range, according to: 

𝑟𝑟 =
1
2
∙ 𝑐𝑐 ∙ ∆𝑡𝑡 + 𝜀𝜀 

where r is the range from the sensor to the target in [m], c is the light velocity in air in [m/s], Δt is the 

ToF in [s] and ε is the sum of environmental and instrumental noises in [m].  

By scanning a region of interest with the emission of millions of laser pulses is different directions, a 

3D image of the topography can thus be created from the recorded LOS and TOF with decimetric 

resolutions for aerial devices down to centimetric ones for terrestrial models. But aerial technologies 

were limited by the poor accuracy of inertial navigation systems (INS) which measure position of 

planes and direction of the LASER beam. Afterwards, following the general trend in all micro-
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electronic domains, LASER devices became eye-safe, lighter, better and cheaper. In addition, in the 

early Nineties, the deployments of the navigation satellites constellations GPS-NAVSTAR (USA) and 

GLONASS (URSS) allowed to overcome the limits of former INS. These developments contributed 

then in late Nineties to considerably improve accuracy and accessibility of ALS data to universities 

(Wehr and Lohr 1999; Baltsavias 1999a). 

By comparing topographies of sequential acquisitions, surface changes can be computed and 3D 

displacements extracted with a good precision, nowadays down to a sub-centimetric level for 

meticulous acquisitions. Indeed, first published applications of ALS showed the possibility to map 

topographical changes of the Greenland ice sheet (Krabill et al. 1995 and 1999), to produce DEM 

(Digital Elevation Model) (Baltsavias 1999b; Carter et al. 2001) or to create a 3D model of an urban 

environment (Haala and Brenner 1999). Then mapping and modelling landslide susceptibilities from 

HRDEM at regional scales became more frequent during the last decade (Chigira et al. 2004; Mc Kean 

and Roering 2004; Schulz 2004 and 2007; Ardizzone et al. 2007; Van den Eeckhaut et al. 2007; 

Haneberg et al. 2009; Jaboyedoff et al. 2012b; Michoud et al. 2012b). 

 
Figure 2.2: Example of Aerial LiDAR –based high resolution digital elevation model hillshading of les Pics instability in the 

Swiss Alps (in Jaboyedoff et al. 2012b; © DEM swisstopo). 

During the last decades, spaceborne applications were deployed as well. As an example, the 

spaceborne MOLA (Mars Orbiter Laser Altimeter) sensor stayed on the Mars orbit from 1999 to 2001 

in order to survey its topography (cf. Figure 2.3) and atmosphere (Smith et al. 2001; Neumann et al. 

2003). Thus MOLA modelled the Mars surface with a square kilometre resolution and a vertical 

accuracy of 1 m (Smith et al. 2001). Regarding the Earth, the GLAS (Geoscience Laser Altimeter 

System) sensor setup on ICESat satellite was a LASER combination especially designed to monitor 

different environmental variables, such as polar ice sheet mass balances, vegetation canopy and land 

elevation with a vertical accuracy of 3 cm (Zwally et al. 2002; Abshire et al. 2005; Schutz et al. 2005). 
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One of the most relevant topographic products derived from the ICESat mission was the 500 m pixel 

resolution DEM of Antarctica (DiMarzio 2007). The acquisition of Earth surface topography by a new 

generation of satellite-based LiDAR, such as ICESat-2, is even planned for 2017 (Moussavi et al. 2014). 

 
Figure 2.3: Mars topography extracted from the MOLA mission, ranging from -8’000 m to +8’000 m. Pixel size is about 

1x2 km2 at the equator and 1° on Mars is about 59 km. (Modified after Smith et al. 2001) 

In the meantime, first terrestrial LiDAR were designed and used for archaeological purposes (Beraldin 

2000) and forensic applications (Selander 1998). Then, Gordon, Lichti and Stewart succeeded in 

surveying and modelling urban structures and even in monitoring their deformations using a 

terrestrial LiDAR (Gordon et al. 2001; Lichti et al. 2002). Since 2002, geological applications of TLS 

data are under fast developments, with e.g. (a) the extraction of rock face discontinuity orientation 

and roughness (Slob et al. 2002; Fardin et al. 2004; Feng and Röschoff 2004, Jaboyedoff et al. 2007; 

Sturzenegger et al. 2007; Lato et al. 2009; Gigli and Casagli 2011; Figure 2.5), (b) the monitoring of 

volcanic activities (Hunter et al. 2003), (c) the litho-stratigraphic modelling (Bellian et al. 2005; 

Buckley et al. 2008; Kurz et al. 2008), (d) the rockfall detection (Rosser et al. 2005 and 2007; Abellán 

et al. 2006 and 2010; Figure 2.4), (e) or the landslide monitoring (Teza et al. 2007; Oppikofer et al. 

2008). 

Nowadays, according to general trends in micro-electronic domains, better lenses and image capture 

chipsets, lighter electronic components and efficient stabilization processes are continuously 

released, still improving LiDAR capabilities in terms of maximal acquisition ranges, point density and 

accuracy (Jaboyedoff et al. 2009a). In addition, algorithms and processing methods are always under 
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developments. As an example, recent researches aim to semi-automatically classify and map 

geological units from back-scattered signal amplitudes or hyperspectral image integration (Kurtz et 

al. 2011; Buckley et al. 2013; Matasci et al. 2014; Figure 2.5), and aim as well to sequentially 

characterize in space and time of surface changes, displacements and strain rates within complex 

landslide masses (Aryal et al. 2012 and 2015; Carrea et al. 2012; Nissen et al. 2012 and 2014; 

Travelletti et al. 2014; Royán et al. 2015). 

To go into details, a description of LiDAR principles written for the Encyclopedia Natural Hazards 

(Taylor & Francis editions) is available in annex B2. In addition, Jaboyedoff et al. (2012a) and Abellán 

et al. (2014) provide a complete review of LiDAR applications in Earth sciences and natural hazards. 
 

 
Figure 2.4: Rockfall detection by sequential dataset comparison, highlighting a collapse of a single basaltic column; pre- and 

post-failure point clouds are visible on the left (modified after Abellán et al. 2011). 
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Figure 2.5: Remote structural analysis identifying on terrestrial LiDAR points cloud the orientations of outcropping planar 

discontinuities (after Michoud et al. 2011b). 

 

 
Figure 2.6: (A) El Capitan south-eastern face, 900 m high, Yosemite National Park. (B) Related terrestrial LiDAR point cloud 

with return signal intensity strength. (C) Vertical geological mapping based on high resolution photo (A) draped on TLS 

points cloud (B). (Modified after Matasci et al. 2014). 
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2.2 History of InSAR developments 

InSAR is the acronym of Interferometric Synthetic Aperture RaDAR, RaDAR stating for Radio 

Detection And Ranging. Investigated since the beginning of the 20th century, active microwave 

(RaDAR) sensors have been developed during the 1940’s and the World War II to remotely detect 

moving military targets. As explained in details in Woodhouse (2006), the main principle settles on 

the fact that a transmitting antenna emits an electromagnetic wave with fixed millimetric to 

decimetric wavelength, amplitude and phase. Then, the receiving antenna records the two-way 

travel time, the amplitude and the phase of the backscattered pulsed wave. Because the Radio wave 

has interacted with its environment and with the surface that reflected it, the recorded data can be 

processed to extract physical properties of the target (moisture, roughness, lithology, etc.) and to 

estimate its range. Compared to other optical or near infrared sensors, Radar sensors can be used 

night or day and are much less influenced by atmospheric conditions than optical sensors (Preissner 

1978; Woodhouse 2006). 

The development of Synthetic Aperture Radar (SAR) techniques (Wiley 1954) allowed to simulate 

large antennas, drastically increasing image resolutions. As an example, spaceborne SAR sensors 

nowadays acquire Earth images with a ground resolution of 30 m (e.g. Envisat platform) down to 1 m 

for the last generation of devices (e.g. TerraSAR-X platform). But the first civilian Radar imaging 

project at large scale was setup in 1967 to map from airplane a 20’000 km2 Panama’s province that 

has never been photographed before due to a perpetual and dense fog (Lillesand et al. 2008). 

Afterward, Shapiro published in 1972 the first application of the interferometric SAR (InSAR) 

techniques, mapping the Moon’s topography using Radar sensors setup on the Earth’s surface. 

Indeed, the topography of the region can be extracted by comparing the phase decay of back-

scattered signals of two SAR images of a same area acquired from two different points of view 

and/or at a different time.  

Later, Massonnet published in 1985 a technical note on the possibility to map temporal changes of 

the Earth’s surface, “removing the signal of the topography” inside interferometric scenes. He 

established the concept of Differential InSAR (DInSAR) to detect and quantify millimetric ground 

displacements on decametric pixels at regional scales, since mathematically: 

∆𝑑𝑑𝑝𝑝 =
𝜆𝜆

4𝜋𝜋
× �𝜑𝜑𝑡𝑡 − 𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜑𝜑𝜀𝜀� 

where Δdp is the projection on the sensor line of sight of the ground surface displacements between 

two sequential acquisitions (cf. Figure 2.7), λ the sensor wavelength, ϕt the total interferometry 

between these acquisitions (back-scattered wave phase shift Φ2 recorded at times t2 minus t1’s one 

Φ1), ϕttopo the theoretical interferometric response imputed to the topography at time t1 according to 

sensors configuration and ϕε the other environmental and instrumental contributions that are 
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filtered (such as atmospheric layers, Earth flattening, etc.). In addition, small baselines and short time 

interval between SAR acquisitions enhance DInSAR movement detection capabilities. 

 
Figure 2.7: Unscaled scheme of differential SAR interferometry geometry applied to spaceborne acquisitions. Signals are 

recorded in a complex number where A is the back scattered amplitude and Φ the phase shift. In the lower right corner is 

illustrated how records of real displacements are actually projected on the LOS. 

DInSAR has first been used in California to monitor swelling clays subsidence (Gabriel et al. 1989) and 

to get co- and post-seismic field displacements induced by the 1992 Lander’s earthquake (Massonnet 

et al. 1993 and 1996; Zebker et al. 1994). Other natural applications of ground surface monitoring 

were then developed in parallel, such as in glaciology to survey ice sheet motion in Antarctica 

(Goldstein et al. 1993) and in volcanology to monitor deflations and inflations corresponding to the 

magma chamber’s changes (Massonnet et al. 1995; Sigmundsson et al. 1997; Lanari et al. 1998; Lu et 

al. 1998; Francis and Rothery 2000). 

Regarding specifically natural hazards and gravitational deformations, two studies surveying 

temporal displacements of the La Clapière landslide were published in 1996 (Fruneau and Apache 

1996; Carnec et al. 1996), soon followed by other worldwide studies (e.g. Kimura and Yamagushi 

2000). Afterwards, Squarzoni et al. (2003) were able to monitor the movements of the La Valette 

mudslide during nine years and Singhroy and Molch (2004) used DInSAR techniques to survey 

potential precursory deformations prior to a major rock slope collapse. 

Since the beginning of the 2000’s, new post-processing methods have been developed to overcome 

DInSAR limitations and noises (Zebker et al. 1997; Massonnet and Feigl 1998; Hanssen 2001) induced 

by comparing only two Radar images. In fact, the multi-temporal repeat-pass Radar interferometry 

(Advanced DInSAR) techniques, such as the Permanent Scatterers™ (Ferretti et al. 2000 and 2001), 

the Small Baseline Algorithm Subset (Berardino et al. 2002) or the SqueeSAR™ (Ferretti et al. 2011), 

use now a large multi-stack of SAR images in order to increase the signal-to-noise ratio, providing 
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much more accurate and reliable results to map (Figure 2.8) and monitor natural hazards (Berardino 

et al. 2003; Colesanti and Wasowski 2006; Herrera et al. 2010 and 2011; Lauknes et al. 2011). 

 
Figure 2.8: Regional detection of rock slope displacements over the last ten years in the Troms county, Northern Norway, 

based on the advanced Radar interferometry algorithm SBAS (in Henderson et al. 2011). 

 
Figure 2.9: Amplitude images of the aerial F-SAR sensor, with a spatial resolution of 0.4 m (modified after Horn et al. 2011). 

During the last decade, some marginal researches are achieved in order to design SAR sensors for 

airplanes platforms (Horn et al. 2009; Pfitzner et al. 2011), normally limited by too instable 



Section2: Active remote sensors 

 
51 

trajectories to ensure reliable acquisitions. Since repeat-pass acquisitions with small baselines at low 

altitudes will drastically improve pixel resolutions (Figure 2.9) and decrease temporal and 

geometrical decorrelations (Bamler and Harlt 1998), perspectives are thus promising for high 

resolution topography modelling and active landslide inventory regional mapping. 

Finally, new ground-based portable sensors (GB-InSAR) have been also developed to monitor 

millimetric ground displacements directly from the Earth’s surface, with a very high temporal and 

spatial resolution (Figure 2.10). Thus, Tarchi et al. (1997, 2003a and 2003b) and then Antonello et al. 

(2004) demonstrated that the GB-InSAR is well optimized for the continuous monitoring of single 

suspected mass movements. This technique is currently becoming popular to measure very small 

displacements on volcanoes (Casagli et al. 2003 and 2008) and landslides (Herrera et al. 2009; Barla 

et al. 2010; Luzi 2010). 

To go further, a valuable description of InSAR principles written for the SafeLand European project 

(FP7 2009-2012) is available in annex B1, as well as review papers from Massonnet and Feigl (1998), 

Woodhouse (2006), Ferretti et al. (2007), Caduff et al. (2014) or Monserrat et al. (2014).  
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Figure 2.10: GB-InSAR setup and cumulated displacement monitoring at La Barmasse rockslide, measuring movements in 

the upper scarp up to 7.7 mm in 12 h recorded the 16 September 2011 (modified after Michoud et al. 2013b).  
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3 Landslides detection and monitoring capability of boat-based 
Mobile Laser Scanning along Dieppe coastal cliffs, Normandy 

After Michoud C, Carrea D, Costa S, Derron MH, Jaboyedoff M, Delacourt C, Maquaire O, Letortu P and Davidson R: 

Landslide detection and monitoring capability of boat-based mobile laser scanning along Dieppe coastal cliffs, Normandy. 

Landslides, 12, 403–418, 2015. 

Abstract 

Integrated in a wide research assessing destabilizing and triggering factors to model cliff dynamic 

along the Dieppe’s shoreline in High Normandy, this study aims at testing boat-based mobile LiDAR 

capabilities by scanning 3D point clouds of the unstable coastal cliffs. Two acquisition campaigns 

were performed in September 2012 and 2013, scanning (1) 30 km long shoreline and (2) the same 

test cliffs in different environmental conditions and device settings. The potentials of collected data 

for 3D modelling, change detection and landslide monitoring were afterward assessed. By scanning 

during favourable meteorological and marine conditions and close to the coast, mobile LiDAR devices 

are able to quickly scan long shoreline with median point spacing up to 10 cm. The acquired data are 

then sufficiently detailed to map geomorphological features smaller than 0.5 m2. Furthermore, our 

capability to detect rockfalls and erosion deposits (> m3) is confirmed, since using the classical 

approach of computing differences between sequential acquisitions reveals many cliff collapses 

between Pourville and Quiberville and only sparse changes between Dieppe and Belleville-sur-Mer. 

These different change rates result from different rockfall susceptibilities. Finally, we also confirmed 

the capability of the boat-based mobile LiDAR technique to monitor single large changes, 

characterising the Dieppe landslide geometry with 2 main active scarps, retrogression up to 40 m and 

about 100’000 m3 of eroded materials. 

Keywords: Mobile Laser Scanning, Coastline change detection, Rockfall, Landslide monitoring, High 

Normandy coastal cliffs. 

3.1 Introduction 

Laser Scanning and 3D point clouds have changed our perception and interpretation of slope 

deformations for the last 15 years and are nowadays widely used for landslide monitoring and 

warning systems (as reviewed by Jaboyedoff et al. 2012a; Baroň and Supper 2013; Michoud et al. 

2013a; Stumpf et al. submitted). Terrestrial LiDAR (TLS) allows indeed measuring topography with 
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very high point density, including inaccessible steep slopes. Three dimensional displacements of rock 

masses can also be extracted by detecting topographic changes on sequential TLS acquisitions, as 

reviewed by Abellán et al. (2014); TLS-based rockfall detections were also carried out for detailed 

investigations on confined coastal cliffs (e.g. in Lim et al. 2005; Rosser et al. 2005 and 2007; Collins 

and Sitar 2008; Young et al. 2013; Letortu et al. 2014). However, this technique turned out not to be 

optimized for stability assessments over km long shoreline: accurate (and therefore time consuming) 

acquisitions along large areas are indeed not likely during short low tide periods and require in 

addition tedious post-processing to align the numerous scans. Despite being able to scan very large 

areas in short time, Aerial Laser Scanning devices (ALS) are also not indicated to detect rockfalls on 

the front of vertical coastal cliffs (Young et al. 2013), since they would not record dense and accurate 

back-scattered pulses on cliffs due to the high incidence angle between the latter and the laser beam 

(Baltsavias 1999a; Lichti et al. 2005). Alternatively, Mobile Laser Scanning (MLS) devices (Jaakkola et 

al. 2008; Kukko et al. 2012; Glennie et al. 2013) can be mounted on boats, setting up the scanner 

horizontally with a frontal view on shores (Figure 3.1); they have indeed recently demonstrated their 

capability to map topographic changes along fluvial banks (Alho et al. 2009; Vaaja et al. 2011 and 

2013). 

 
Figure 3.1: MLS setup on the boat L’Aillot. The system is tied up on the lighting truss at the same elevation than the cabin, 

in order to ensure a good GNSS horizon for the antennas and to avoid splash on the MLS. 

A wide research plan intends to assess landslide destabilizing and triggering factors and to model cliff 

dynamic of the French High-Normandy coasts (Letortu 2013; Letortu et al. 2014). Total length of the 

High-Normandy cliffs is around 110 km with an average height of 60 m. Within this framework, this 

detailed study aims at testing MLS capabilities in tossing water of the Channel Sea. The Dieppe cliffs 
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are mainly formed by sub-horizontal deposits of soft Cretaceous chalk interlayered by thin bands of 

biogenic flint (Figure 3.2) corresponding to the Western termination of the Paris Basin. Due to their 

particularly low mechanical strength and being directly hit by oceanic storms (Costa et al. 2004 and 

2014; Letortu et al. 2012 and 2014a), the high cliffs are thus destabilized by an intense weathering 

and sea erosion. Processes involved in rock falls and collapses are therefore regularly observed (e.g. 

in Costa 1997 and 2014; Duperret et al. 2002; Dewez et al. 2013) and contribute to quick 

retrogressive cliff processes of about 20 cm/year on average (Costa et al. 2004). 

 
Figure 3.2: Location and illustration of classic morphology of vertical coastal cliffs close to Dieppe, French Normandy. 

By acquiring dense 3D point clouds along vertical coastal cliffs and intertidal areas in September 

2012, we want indeed to assess (a) the median point spacing for different acquisition conditions and 

(b) the repeatability of point clouds of the same area acquired several times. In addition, after a 

second acquisition campaign held in September 2013, we also aim at estimating the MLS capability 

to assess retreat rates over km long coastal cliffs, based on rockfall events and cliff foot erosion 

detection and quantification using classic shortest distance comparison approaches. All acronyms 

used in this note are summarized in Table 1. 

3.2 Mobile Laser Scanning principles 

A Terrestrial Laser Scanning (TLS) is an active optical sensor which allows providing xyz points clouds 

of the topography with a high resolution (Beraldin et al. 2000; Gordon et al. 2001). All long range TLS 

devices use laser pulses and are based on the Time of Flight principle (Vosselman and Maas 2010). 
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Table 3.1: Table of main acronyms used in chapter 3. 

Acronym Definition 

α β γ Yaw, pitch and roll of the Cardan angles 

ALS Aerial Laser Scanning 

Bft Beaufort scale, describing marine conditions (wind, swell height, etc.) 

GAMS GPS Azimuth Measurement Subsystem™ 

GIS Geographic Information System 

GNSS Global Navigation Satellite System 

ICP Iterative Closest Point 

IGN Institut national de l’information géographique et forestière 

IMU Inertial Measurement Unit 

INS Inertial Navigation System 

Jn Point clouds acquired the 20 September 2012 

Jn’ Point clouds acquired the 26 September 2013 

LiDAR Light Detection And Ranging 

LOS Line Of Sight 

MLS Mobile Laser Scanning 

Mn’ Point clouds acquired the 25 September 2013 

SBET Smoothed Best Estimate of Trajectory 

TLS Terrestrial Laser Scanning 

TOF Time Of Flight 

UTM Universal Transverse Mercator 

WGS World Geodetic System 

xyzi file ASCII text file structured in 4 columns: x, y, z coordinates and signal intensity 

xyzid file ASCII text file structured in 5 columns: as xyzi, plus point to surface difference 

 

 

The sensor indeed emits a laser pulses on a Line Of Sight (LOS) perfectly known relatively to the 

device; the direction of the laser is controlled by one or two internal mirrors reflecting the signal 

and/or motors orienting the device itself. Emitted pulses are back-scattered by the terrain, 

vegetation, particles as sea spray and air dust, etc.  

The Time Of Flight (TOF) that the pulses takes to go forth and back is recorded and is then converted 

into the range, knowing the light velocity (Eq. 3.1): 

𝑟𝑟 = 1
2
∙ 𝑐𝑐 ∙ ∆𝑡𝑡         Eq. 3.1 

where r is the range from the sensor to the target in [m], c is the light velocity in air in [m/s], and Δt is 

the ToF in [s]. 
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A 3D image of the topography can thus be created from the recorded LOS and TOF. Now when 

performing scans from moving platforms such as boats, the directions of emitted pulses is only 

known relatively to the device, but the position and orientation of the device are changing during the 

acquisitions, which prevent from having all the points in the same local reference system. 

However, by adding to the LiDAR an Inertial Navigation System (INS), composed of 2 Global 

Navigation Satellite System (GNSS) antennas and an Inertial Measurement Unit (IMU), it is then 

possible to achieve surveys from a vessel. The IMU indeed records the attitude of the platform on 

the boat by continuously measuring the Cardan angles (Figure 3.3), i.e. (α) yaw (or heading, azimuth 

of direction of motion), (β) pitch (back and forth shake) and (γ) roll (left to right shake). The GNSS 

antennas furthermore localize the instrument and enhance the yaw measurement.  

In order to reconstruct the 3D topography, the entire point cloud is then post-processed performing 

for each single point a rigid body transformation; we can indeed apply to each point a roto-

translation matrix to transform coordinates from its LiDAR internal system to a georeferenced system 

(Tupling and Pierrynowski 1987; Lichti et al. 2002; Oppikofer et al. 2009), according to Eq. 3.2: 

 

�
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−𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽) 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾) 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) 𝑡𝑡𝑧𝑧
0 0 0 1

�   
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where: 

o R is the total rotation matrix; Rx, Ry and Rz are the fundamental rotation matrix about resp. 

axes x, y and z; 

o T is the translation matrix; 

o α, β and γ are resp. the yaw, pitch and roll of the Cardan angles in [°], measured by the IMU; 

o (px py pz) the point coordinates in [m] georeferenced in the UTM system; 

o (tx ty tz) the LiDAR location coordinates in [m] in the UTM system, measured by the GNSS; 

o (lx ly lz) the point coordinates in [m] in the LiDAR internal system, measured by the laser 

sensor. 

 
Figure 3.3: Illustration of the Cardan angles, i.e. yaw, pitch and roll. 

MLS and ALS techniques are based on the same principles (Vosselman and Mass 2010). Nevertheless, 

MLS devices are smaller, lighter and cheaper than ALS ones; they are furthermore able to scan the 

coastline from a direct and horizontal point of view, ensuring a high point cloud density even on sub-

vertical cliffs (cf. Section 3.3.3). 

Exhaustive reviews of Mobile and Terrestrial LiDAR principles and applications are available in 

Vosselman and Mass (2010), Jaboyedoff et al. (2012a and in press), Kukko et al. (2012), Williams et 

al. (2013) and Abellán et al. (2014). 
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3.3 Point cloud processing 

 Devices technical specifications 3.3.1

The INS used for this study is an Applanix™ POS-MV 320-V4, having the following features according 

to its manufacturer: 

o Acquisition frequency: 1 Hz 

o Angular accuracy: 0.020°, up to 0.010° with a GNSS base station 

o Positioning accuracy: up to 0.02 m, corrected with a GNSS base station 

In addition to the INS, we used a Laser Scanner Optech™ Ilris Long Range, having the following 

features according to its manufacturer: 

o Laser wavelength: 1’064 nm 

o Pulse rate: 10 kHz 

o Maximum range: about 2’000 m at 20% reflectivity 

o Mean precision of range estimation: 4 mm at 100 m 

o Angular accuracy: 8 mm at 100 m 

o Beam diameter: 125 mm at 500 m (according to Baltsavias (1999), beam diameter is approx. 

equal to beam divergence, here 250 μrad, times range) 

For this study, an internal mirror of the LiDAR device is set up to move the laser beam only along 

vertical predefined LOS; the vessel attitude, and especially its velocity, is therefore mainly controlling 

the distance between successive scanned lines. The influence of the LiDAR device setup and the boat 

attitude is hereafter considered in Section 3.4. 

 Acquisitions on the vessel 3.3.2

a. Set up and calibration on the vessel 

As illustrated in Figure 3.1, the IMU and the TLS of the mobile system are first screwed on an 

aluminium plate and the GNSS antennas are fixed on 2 arms of about 2 m long at each side of the 

plate. The xyz vector components from the IMU to the master GNSS antennas and to the laser 

scanner are then measured with a subcentimetric precision, according to target located on the top of 

the IMU box (Table 3.2 and Figures 3.4 and 3.5). These measures are valid as long as we set up the 

MLS system on the same plate.  
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Table 3.2: Parameters defined for the aluminium plate designed for the Ilris Long Range Scanner used for both campaigns. 

 x (mm) y (mm) z (mm) L (mm) 

From IMU to Master GNSS antenna +235 +810 +61 - 

From IMU to the scanner 0 -270 +168 - 

GAMS of the 20.09.2012 -5 -1'994 -3 1'994 

GAMS of the 25.09.2013 5 -1'997 9 1'997 

GAMS of the 26.09.2013 4 -1'995 -4 1'995 

 
Figure 3.4: Measures of xyz vector components from the IMU to the master GNSS antenna and to the LiDAR base. 

 
Figure 3.5: Setup of the Optech IlrisER TLS (yellow box with control screen) close to the Applanix IMU (orange box) and of 

the 2 GNSS antennas fixed at each side of the central plate on rigid arms.  

For both campaigns, the MLS plate is then firmly tied up on lighting truss on the back deck of the 

fishing boat L’Aillot. The system is setup as high as possible to avoid splash on the LiDAR device, since 

it is not waterproof, and to ensure a consistent GNSS horizon for the antenna close to the cabin 

(usually signals from 7 and 9 GNSS satellites are caught, cf. Tables 3.3 and 3.4). 

The GPS Azimuth Measurement Subsystem™ (GAMS) has afterward to be calibrated in order to 

enhance yaw and location measurements. By doing loops or 8-shaped trajectories during about 10 
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minutes, the INS is able to fix the phase ambiguity of GNSS signals recorded by the 2 antennas, and 

to calculate with a millimetric precision the vector between the 2 GNSS antennas (Applanix 

Corporation 2011). This calibration is performed every day. 
 

b. Description of acquisitions 

Table 3.3: Conditions and LiDAR acquisition parameters of the 4 scans realized on 20 September 2012. 

 J1 J2 J3 J4 

Sector Ailly Ailly > Dieppe Ailly Puys 

Scan beginning time 11h28 12h28 15h21 16h16 

Scan end time 11h48 13h13 15h36 16h55 

Acquisition length 2'500 m 5'700 m 1'000 m 3'400 m 

Range to cliffs ~650 m ~350-500 m ~200 m ~300 m 

Tide Low Low High High 

Boat velocity ~4 kn ~4 kn ~2,2 kn ~3,3 kn 

Sea conditions (Beaufort) 2 Bft 2 Bft 2 Bft 2 Bft 

Sun From the side From the side In front From the side 

LiDAR vertical aperture 14° 14° 23° 18° 

Angular resolution index 40 40 50 55 

GNSS satellites caught 6-8 6-8 6-9 8-11 

 

Table 3.4: Conditions and LiDAR parameters of acquisitions of the 5 scans realized on 25-26 September 2013. 

 M1’ M2’ J1’ J2’ J3’ 

Sector St-Aubin > 
Dieppe 

St-Aubin > 
Dieppe 

Dieppe > 
Penly 

Penly > Criel Dieppe 
landslide 

Scan beginning time 9h18 13h55 10h00 12h07 14h35 

Scan end time 12h10 16h17 11h30 13h25 14h45 

Acquisition length 15'700 m 16’900 m 9’200 m 9’450 m 600 m 

Range to cliffs 600-800 m ~300 m ~600-800 m ~600-800 m ~300 m 

Tide Low High Low Low High 

Boat velocity ~3.5-4.5 kn ~4 kn ~3.4 kn ~3,6 kn ~3.7 kn 

Sea conditions (Beaufort) 1 Bft 1 Bft 2 Bft 3 Bft 2.5 Bft 

Sun From the side Cloudy From the side Cloudy Cloudy 

LiDAR vertical aperture 20° 36° 22° 22° 36° 

Angular resolution index1 45 55 45 45 55 

GNSS satellites caught 6-8 9-12 6 8-10 9 

 

The angular resolution index is a spacing between laser shots on an artificial numeric scale designed 

by Optech™: the lower the value is, the higher the point cloud resolution will be. 

 

After several tests realized the days before, 4 operational acquisitions, named Jn, have been 

performed on 20 September 2012 on the Ailly and Puys sites, during a sunny day with a calm sea (2 
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Bft). Puys cliffs have been scanned once, whereas the Cap d’Ailly shoreline has been acquired three 

times with large overlaps, to test point spacing and repeatability under different conditions, mainly 

changing the boat speed, range to the cliffs and LiDAR angular apertures and resolutions. 

Encouraged by the 2012 experience, 4 acquisitions of about 10 km each, named Mn’ and Jn’, have 

been achieved on 25 and 26 September 2013 in similar conditions from Saint-Aubin-sur-Mer to Criel-

Plage. A smaller point cloud focused on the active retrogressive Dieppe landslide (cf. Section 3.4.2) 

has also been performed. Trajectories and conditions of acquisitions are illustrated in Figure 3.6 and 

summarized in Tables 3.3 and 3.4. 
 

 

Figure 3.6: Boat trajectories during (up) acquisitions of the 20 September 2012 of Cap d’Ailly and Puys cliffs and (down) of 

the 25-26 September 2013 between Saint-Aubin-sur-Mer and Criel-Plage. 
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 Post-processing 3.3.3

a. Inertial Navigation System data 

INS-recorded data are first filtered by computing the smoothed best estimated trajectories using the 

raw inertial and GNSS measurements. This correction, realized within the software Applanix 

POSPac™ MMS 5.3, indeed deletes outliers and artefacts from atmospheric perturbations and 

potential micro-losses of the GNSS signal. 

Similarly to classic static GNSS studies (Gili et al. 2000), we then used close permanent GNSS 

antennas of the French Geographic Institute (IGN) as base stations to post-process and correct our 

GNSS signal. For the 2012 campaign, confined close to Dieppe, data from the Ambrumesnil 

permanent antenna has been used as base station. Regarding the 2013 campaign, for which 

acquisitions are covering 38 km of coast, GNSS data from several permanent antennas distributed 

along the coast were necessary for the post-processing: Ambrumesnil, Fécamp, Le Touquet, Cap 

Seine, Morgny, Houville-en-Vexin, Foucarmont and Herstmonceux permanent antennas. The final 

accuracy of post-processed positioning (trajectory and LiDAR LOS) is of about 3 cm. 

The INS navigation data are then projected in the UTM 31°N WGS 84 coordinate system and 

exported in the SBET and polyline shapefile formats, in order to be coupled with LiDAR data or 

imported within GIS software. 

b. Mobile Laser Scanning data 

In order to get the final geometry of the LiDAR data, they have been processed according to the 

following procedure: 

1. Raw LiDAR data, which are related to the LiDAR referential system, are coupled with 

positioning and orientation information of SBET files, synchronized together with GNSS 

time logs recorded on both files (the Raw and SBET ones). 

2. Roto-translation matrix are then automatically computed and applied to each point using 

the software Optech™ Parser 5.0.3.1 in order to georeference the acquisition (in UTM 

31°N WGS 84). Point clouds are exported in ASCII text files structured in 4 columns: 

coordinates x, y, z and intensity of the back-scattered signal (named hereafter xyzi). 

3. Point clouds are then manually and iteratively cleaned, as for common post-processing 

of TLS data (Jaboyedoff et al. in press): non ground points, i.e. outliers from reflected 

pulses on sea spray and air dust, as well as direct sunshine misinterpreted as LiDAR 

signal, are manually selected based on a visual interpretation and are then deleted, 

within the software Polyworks™ PIFEdit 10.1. 
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4. After having carried out empirical and statistical analysis on signal intensities on 

representative  populations of points reflected by sea spray, cliffs or sunshine, all points 

with signal intensity lower than 12 (on a scale [0;255]) have been considered as sea spray 

and foam and therefore deleted, within the software Polyworks™ ImInspect 10.1. 

5. All cleaned point clouds are then re-exported in xyzi files. 

6. Subset areas containing only cliffs areas and no vegetation or constructions are selected 

within 2012 and 2013 point clouds and are also exported in xyzi files. 

The repeatability of MLS data is then assessed with only the 2012 acquisitions at the Cap d’Ailly (i.e. 

J1, J2 and J3, all acquired in an interval of 4 hours): 

1. The J1 and J3 point clouds are aligned on the J2 one, used as reference, by progressively 

minimizing the distances between points to the J2 meshed reference surface with an 

Iterative Closest Point -based (ICP, in Besl and McKey 1992) algorithm implemented in 

Polyworks™ ImInspect 10.1. 

2. The realigned point clouds are exported in xyzi files. 

In order to assess the MLS capability to detect and monitor topographic changes due to rockfall 

events, erosions of former deposits and retrogressive landslides on the 2012 and 2013 sequential 

acquisitions: 

3. The 2013 M2’ and J1’ point clouds are aligned on respectively the 2012 J2 and J4 ones, 

used as references, following the process described in step 6. 

4. The realigned point clouds are exported in xyzi files. 

As explained in Section 3.4.2, these alignments, which might seem useless since the point clouds are 

already georeferenced, actually enhance the comparison of sequential acquisitions by reducing 

errors from the navigation inaccuracies. 

 Terrestrial Laser Scanning point clouds 3.3.4

As a part of the wide researches conducted on the Dieppe coastline stability (Letortu 2013; Letortu et 

al. 2014), a long-term TLS monitoring is carried out on cliffs in Ailly and Puys. On 18-19 September 

2012, TLS-based point clouds of both sites have been acquired with a Riegl LMS Z390i; the dataset, 

georeferenced in the UTM 31°N coordinate system using 16 ground control points (GCP), has a 

median point spacing of about 1 cm (cf. section 3.4.2). In order to compare scans from both 

techniques, the following procedure has thus been applied: 

1. As a decametric vertical translation has been observed between TLS and MLS 

acquisitions, which may stems from different geoids used between French and Swiss  
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Figure 3.7: (Up) Final J3 point cloud of the Ailly site, manually and automatically cleaned, ready for the xyzi exportation; the 

cleaned scan has 3'118'836 points, instead of 3'234'761 initially (only 3.6% of the points were deleted). (Down) Zoom in the 

cliff sector that is long-term monitored with TLS acquisitions. Spacing between vertical lines is mainly varying with boat 

velocities when it is tossed by wave or it is surfing on them (cf. Figure 3.9). 

 

 
Figure 3.8: Illustration of point density difference between (up) the ALS point cloud (in red), and (down) the MLS point 

cloud (in grey) close to Puys (ALS data: © IGN). 
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partners, the Ailly and Puys TLS point cloud are aligned on resp. the J2 and J4 ones, used 

as references following the method described in step 6; 

2. The TLS point cloud is exported in a xyzi file. 

3.4 MLS point clouds capability assessment 

 Methodology 3.4.1

a. Median point spacing 

The assessment of the resolution of each point cloud according to navigation conditions and device 

setup is described in this section. First, Euclidean distances of each point to its nearest neighbour 

have to be extracted. Then, statistics are achieved to describe the Euclidean distances distribution of 

each scan. For this purpose, the distribution median is first calculated; then the 68% and 95% 

quantiles of the difference to this median are computed to characterize the dispersion of the 

population. The median is preferred to the mean in order to minimize influences of outliers (Höhle 

and Höhle 2009). The process, implemented within a Matlab™ routine, follows these steps: 

1. The cleaned xyzi point cloud is imported; 

2. The knnsearch function (Friedman et al. 1977) is computed to search the nearest 

neighbour of each point and to then to extract the Euclidean distance 𝑥𝑥 between them; 

3. The median 𝑥̅𝑥 of all distances 𝑥𝑥 is calculated; 

4. For each point, the difference in absolute value |𝑥𝑥 − 𝑥̅𝑥| between the distance to its 

nearest neighbour and the median value is calculated; 

5. The 68% and 95% quantiles of the differences to the median are calculated. 

In addition, we aim at discriminating the influences on the cliff’s point spacing of (a) the LiDAR device 

setup (especially its vertical aperture and angular resolution), which should have a strong vertical 

component since its internal mirror is set up in order to move the beam vertically only, and (b) to the 

vessel attitude and its velocity, which should influence mostly the horizontal spacing (Figure 3.9). For 

this purpose, we apply to the J1, J3 and M1’ subset point clouds additional steps to sort nearest 

neighbours in 2 classes, the nearest vertical and nearest horizontal ones: 

1. Now, the 25 nearest neighbours to each point are identified, again based on the 

knnsearch function (Friedman et al. 1977); 

2. The angles between a vertical vector and the point to neighbour vector are extracted 

from the dot products for each point to their 25 nearest neighbours: 

a. If the angles with the vertical are included within [0° ; 30°[ (threshold arbitrary 

set to deal with small ledges and tilted LOS, cf. Figure 3.9), neighbours are 



Section 3: Landslide detection and monitoring capabilities of boat-based mobile LiDAR  

 
69 

considered belonging to the same LiDAR LOS and are therefore sorted with the 

nearest vertical neighbours class; 

b. If the angles with the vertical are included within [30° ; 90°], neighbours are 

considered as not vertical and are therefore sorted with the nearest horizontal 

neighbours class (i.e. distances between LiDAR vertical LOS); 

3. Again, statistics are achieved for the 2 classes, following the same procedure than 

before. 

 
Figure 3.9: Illustration of the influence of LiDAR setup and vessel attitude on the vertical and horizontal spacing. The 

horizontal spacing between L1 and L2 is lower than between L2 and L3, since the boat accelerated when it surfed on a 

wave. 

b. Acquisitions repeatability 

According to technical specifications of devices (cf. section 3.3.1), the vessel attitude and trajectories 

are acquired with precisions up to 0.01° and 2 cm respectively. In addition, the LiDAR device records 

range measurements with a mean accuracy of 4 mm at 100 m. But in order to assess in real 

conditions the MLS repeatability capability, the J1, J2 and J3 point clouds are compared. As the Ailly 

cliffs are acquired the same day in 4 hours, we assume that the scanned topography is the same for 

the 3 point clouds; differences between them stem hence from devices measurement errors. The 

repeatability can then be quantified assessing the point clouds differences. J2 is thus used as a 

reference surface, having the best overlapping ratio between scans, and its comparison to J1 and J3 

subsets is then assessed with the following procedure: 

1. The xyzi J2 and J4 point clouds are imported in Polyworks™ ImInspect 10.1 and the 

reference surfaces are built according to a triangular mesh with an horizontal viewing 

vector (i.e. corresponding to a mean offshore position of the boat); 

2. The aligned and not-aligned xyzi J1 and J3 subset point clouds (cf. section 3.3.3) are 

imported, as well as the realigned Ailly and Puys TLS point clouds (cf. section 3.3.4); 

3. Based on the nearest-neighbour algorithm, the Euclidean shortest distances 𝑑𝑑 from J1 

and J3 points to the meshed reference surface J2 are computed; in the same way, the 
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Euclidean shortest distances 𝑑𝑑 from the TLS points of Ailly and respectively Puys to their 

meshed reference surfaces, J2 and J4 resp., are computed; 

4. These distances 𝑑𝑑 are aslo computed from J2 and J4 points to their own meshed surface, 

as tests to identify errors coming exclusively from the surface meshing step and not from 

instrumental ones; 

5. All comparisons are exported in xyzi and 𝑑𝑑 files. 

Statistics on computed differences d are then carried out according to the same method than for 

point spacing characterisation, i.e. following a routine implemented in Matlab™: 

6. The xyzid comparison files are imported; 

7. The median 𝑑̅𝑑 of all distances 𝑑𝑑 is calculated; 

8. The median |𝑑𝑑| of all absolute distances |𝑑𝑑| is calculated; 

9. For each point, the difference in absolute value �𝑑𝑑 − 𝑑̅𝑑� between the distance to its 

nearest neighbour is calculated; 

10. The 68% and 95% quantiles of the differences to the median 𝑑̅𝑑 are calculated. 

c. Change detection and monitoring 

In order to detect topographic changes between the 2012 to 2013 acquisition campaigns due to rock 

slope failures, erosion of former deposits or retrogressive landslides, ICP-based distance comparisons 

between sequential dataset can be assessed in Polyworks™ ImInspect 10.1. Indeed, after having 

refined the alignment of new point clouds on old ones: 

o rockfall events are usually identified by computing shortest distances between the 2 

topographies (Abellán et al 2014);  

o retrogressive processes can easily be quantified by computing the horizontal distances 

parallel to the sliding direction (Jaboyedoff et al. 2009a).  

In addition, volumes of detected rockfall events can be estimated using an alpha-shape concave hull 

method (Edelsbrunner and Mücke 1994), following a semi-automatic routine shown in Carrea et al. 

(2014): 

1. Each rockfall or erosion deposit identified with the shortest distance comparison has first 

to be delimited on both old and new surfaces; 

2. Point clouds of rockfalls or deposits shapes are meshed with tetrahedrons in Matlab™ 

and: 

a. each tetrahedron basis contains no other point that the 3 ones of its edges; 

b. tetrahedron heights have to be big enough to allow the filling of the form, but in 

the meantime, small enough to avoid the filling of the block surface concavities; 
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3. For each identified block, the volume of the mesh is computed by summing the volume 

of all the tetrahedrons. 

 Results 3.4.2

a. Decimetric median point spacing 

As summarized in Tables 3.5 and 3.6, median point spacing of scans ranges from 20 cm for far scans 

to about 8 cm for the closest ones. Acquired in low tide conditions from 500-600 m range and with a 

4 kn stream (7.4 km/h), J1 and J2 have median point spacing of about 22 and 12 cm with 68% 

quantiles of 16 and 9 cm. Acquired from 200 m and with a 2.2 kn stream (4.1 km/h), J3 has a median 

point spacing of 8 cm with a 68% quantile of 5 cm (Figure 3.10). In addition, statistics on point 

spacing on subset clouds, focused on cliffs (our areas of interest), are almost equal to those of the 

complete scans, because the majority of the points are located on these cliffs. As a comparison, the 

Ailly and Puys TLS-based point clouds have median point spacing of about 1 cm (Table 3.7). 

 
Figure 3.10: Angles distribution between the vertical and point to nearest neighbour vectors for the J3 subset point cloud: 

24.5% of the nearest neighbours are located on a vertical more or less 30° direction from points. Medians (m), 68% (q68) 

and 95% (q95) quantiles are in cm. 

Regarding the vertical and horizontal component of the J3 subset point spacing illustrated in Figures 

3.7 and 3.8, 24.5% of points have their nearest neighbour close to the vertical, while 75.5% of the 

points have it uniformly distributed on their side. In addition, when we compare distances to nearest 

vertical and horizontal neighbours, we notice that horizontal point spacing is usually lower than the 

vertical one (Figure 3.11). It means that the vessel attitude, largely influenced by the boat velocity 

and marine conditions, is hence mainly controlling the general point spacing. Indeed, by navigating 

during a calm sea, the median horizontal point spacing is about 9 cm, while the median vertical one is 

about 16 cm (Figure 3.11, frame A). On the contrary, when the boat is tossed and surfs on swells, the 

median horizontal and vertical point spacing can reach up to 58 cm and 24 cm (resp.) (Figure 3.11, 

frame B). 

Finally, point cloud resolutions can be also improved independently of the navigation conditions, 

adapting Optech™ device setup; for example, by setting in 2013 the LiDAR vertical aperture at 20° 
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and the angular resolution index at 45 (cf. Tables 3.3 and 3.4), instead of 14° and 40, the M1’ median 

vertical and horizontal point spacing (20 and 12 cm) are indeed much lower than the J1 ones (46 and 

23 cm), although both were acquired in the same conditions (2 Bft), i.e. from 600-700 m with a 4 kn 

stream. 

 
Figure 3.11: Euclidean point spacing of the J3 subset point cloud considering (up) all nearest neighbours, (middle) nearest 

vertical neighbours and (down) nearest horizontal neighbours. Frames A and B match with examples developed in the text. 

Numbers in parenthesis correspond to median and 68% quantiles of point spacing distributions. 

a. Decimetric repeatability after point cloud realignment 

Now, regarding the MLS repeatability capability, comparisons results between J1, J2 and J3 point 

clouds acquired in an interval of 4 hours are summarized in Table 3.8. First, median absolute 

distances between points of the reference point clouds (J2) and its own triangulated mesh are lower 

than 1 cm, as expected, but with 68% and 95% quantiles of about 3 and 9 cm; errors introduced 

during the surface meshing step, especially in vegetated areas, are likely to explain the observed 

differences of similar magnitude in the test.  

Then, median of absolute distances between J1 and J3 points and the J2 reference surface are about 

11 and 17 cm with 68% quantiles of 25 and 38 cm. Nevertheless, once J1 and J3 are realigned on J2 

(cf. section 3.3.3), both point clouds have smaller differences with the reference surface, median of 

absolute distances decreasing to about 9 and 7 cm with 68% quantiles of 17 and 12 cm. As a 

comparison, TLS acquisitions of Ailly and Puys sites are also realigned on J2 and J4 point clouds resp. 

and compared with them (Table 3.9): median of absolute distances are close to 4 cm, with 68% of 9 

and 7 cm (resp.). 



Section 3: Landslide detection and monitoring capabilities of boat-based mobile LiDAR  

 
73 

Differences between points clouds can therefore be drastically reduced by simply refining the 

alignment of all point clouds (Figures 3.12 and 3.13), reinforcing the repeatability capability of the 

boat-based mobile scanning technique. 
 

 
Figure 3.12: J3 points to J2 meshed surface Euclidean distances, before and after alignment (Positive values: points in front 

of the reference surface; Negative values: points behind the reference surface; scale in meters). 

 

 
Figure 3.13: Shortest distances distributions from J3 points to J2 meshed reference surface, before (up) and after (down) J3 

alignment on J2 (dark lines: median; dot lines: 68% and 95% quantiles).  
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Table 3.5: Median and dispersion values of point spacing for each 2012 MLS acquisitions. 

A
ll 

po
in

ts
 Number of points 2’173’560 8’500’660 3’118’836 7’700’024 

Median spacing 22.7 cm 12.2 cm 8.0 cm 8.4 cm 

Quantile 68 15.5 cm 8.8 cm 4.9 cm 5.2 cm 

Quantile 95 42.9 cm 30.8 cm 16.6 cm 17.5 cm 

     

C
lif

f 
su

bs
et

s Number of points 1’427’830 6’062’001 2’539’891 6’816’492 

Median spacing 20.5 cm 10.7 cm 7.6 cm 8.1 cm 

Quantile 68 13.8 cm 7.5 cm 4.5 cm 4.9 cm 

Quantile 95 33.7 cm 24.8 cm 15.1 cm 16.5 cm 

 

Table 3.6: Median and dispersion values of point spacing for each 2013 MLS acquisitions. 

 M1’ M2’ J1’ J2’ J3’ 

Mean range and 
velocity 700 m / 4 kn 300 m / 4 kn 700 m / 3.4 kn 700 m / 3.6 kn 300 m / 3.7 kn 

Aperture and 
resolution index 

20°/45 36°/55 22°/45 22°/45 36°/55 

Number of points 10’910’356 11’824’517 12’253’010 11’553’180 1’257’959 

Median spacing 15.6 cm 14.0 cm 12.2 cm 14.2 cm 15.6 cm 

Quantile 68 11.4 cm 10.5 cm 7.8 cm 8.0 cm 9.8 cm 

Quantile 95 45.5 cm 36.2 cm 33.4 cm 33.0 cm 28.9 cm 

 

Table 3.7: Median and dispersion values of point spacing for the two 2012 TLS acquisitions. 

 TLS Ailly TLS Puys 

Number of points 4'678’910 8'332’012 

Median spacing 1.1 cm 0.6 cm 

Quantile 68 4.6 cm 0.6 cm 

Quantile 95 11.3 cm 10.8 cm 

 

 J1 J2 J3 J4 

Mean range and velocity 650 m / 4 kn 450 m / 4 kn 200 m / 2.2 kn 300 m / 3.3 kn 

Aperture and resolution index 14°/40 14°/40 23°/50 18°/55 
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Table 3.8: Median and dispersion values of shortest distances from J1 and J3 points to J2 meshed surface. 

 
J2 (test) 

Subset J1 Subset J3 

 Not aligned Aligned Not aligned Aligned 

Median spacing [cm] 12.2 20.5 8.1 

Median distance [cm] 0.0 0.0 0.0 -3.1 0.0 

Median absolute distance [cm] 0.6 11.4 9.0 17.0 7.0 

Quantile 68 [cm] 3.1 25.0 17.2 37.9 12.5 

Quantile 95  [cm] 8.9 95.6 75.2 148.1 40.3 

 

 

Table 3.9: Median and dispersion values of shortest distances from TLS points to J2 and J4 meshed surfaces. 

 Test J2  Test J4 TLS Ailly TLS Puys 

Aligned on J2 (itself) J4 (itself) J2 J4 

MLS median spacing [cm] 12.2 8.4 12.2 8.4 

TLS median spacing [cm] - - 1.1 0.6 

Median distance [cm] 0.0 0.0 0.0 0.0 

Median absolute distance [cm] 0.6 1.1 4.7 4.2 

Quantile 68 [cm] 3.1 0.1 7.8 7.1 

Quantile 95  [cm] 8.9 6.3 27.7 31.9 
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b. Rockfall detection and rock spread monitoring 

Regarding the change detection capability, it is nowadays possible to quickly assess retreat rates over 

km long coastal cliffs. Our capability to detect, map and quantify in details rockfall events and cliff 

foot erosion between Septembers 2012 and 2013, is indeed confirmed with classic nearest 

neighbours comparison approaches, as illustrated in Figures 3.14 to 3.16.  

 
Figure 3.14: Shortest J2’ points to J4 surface distances comparison between 2012 and 2013 point clouds wrapped on the 

intensities of the 2nd scan. Only few collapses and deposit erosions are detected along the Puys shoreline, and are detailed 

in the next caption. (Negative values: eroded material; Positives values: accumulated material) 

 
Figure 3.15: Point cloud comparisons of the collapse and the foot cliff erosion highlighted in the previous figure. 
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We can furthermore notice a greater number of collapses along the Cap d’Ailly shoreline than the 

Puys one, as confirmed by geological and hydrogeological settings very prone to failure in complex 

cliffs of Ailly (Costa 2014). 

 
Figure 3.16: Shortest M2’ points to J2 surface distances comparison between 2012 and 2013 point clouds wrapped on the 

intensities of the 2nd scan. Multiple rockfall events can be easily identified and quantified close to the Cap d’Ailly. (Negative 

values: eroded material; Positives values: accumulated material). 

We afterward estimated cliff retreat of the “Dieppe landslide”: this large active sandy-clay earth and 

soft rock spread was activated the 17-18 December 2012 by the heavy autumnal and wintry rainfalls 

and destroyed several constructions (Figure 3.17). By extracting horizontal differences approximately 

parallel to the sliding azimuth between the 2012 J2 and the 2013 J4’ point clouds, we measure a cliff 

retreat up to 40 m along 2 active scarps over 70 m wide (Figures 3.18 and 3.19). Then using the 

alpha-shape concave hull method (Edelsbrunner and Mücke 1994; Carrea et al. 2014), loss material 

volumes are estimated close to 100’000 m3, although the scree deposit volume is close to 35’000 m3, 

its major part being already eroded by the Channel waves and tidal currents. 

 
Figure 3.17: Picture of the Dieppe landslide in September 2013; the mass movement destroyed several constructions close 

to the shoreline after its activation in December 2012. 
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Figure 3.18: Fine horizontal distances comparison parallel to the sliding direction between 2012 J22 and 2013 J4’ point 

clouds wrapped on the intensities of the 2nd scan, on the Dieppe landslide (Negative values: eroded material; Positives 

values: accumulated material). 

 
Figure 3.19: Topography prior and after the “Dieppe” landslide, extracted from the Septembers 2012 and 2013 MLS 

acquisition coupled with the ALS data at the flat top. 

3.5 Discussion and conclusions 

ALS devices have been widely used for coastal topography and shallow bathymetry modelling, 

especially with the SHOALS and derived systems (e.g. in Irish and Lillycrop 1999; Adams and Chandler 

2002; Brock and Purkis 2009; Young et al. 2013; Earlie et al. 2014). But the incidence angle is a key 

factor for point cloud density and accuracy (Baltsavias 1999a; Lichti et al. 2005). For coastal shore 

topography such as cliffs, ALS data have then high inaccuracy and lack of information on vertical 

areas due to unfavourable high incident angles (Adams and Chandler 2002; Young et al. 2013; Earlie 

et al. 2014). 

Meanwhile, boat-based MLS is a recent laser sensor development of that is able to scan km long sub-

vertical coastline from a direct and horizontal point of view, improving point cloud densities and 

accuracies, and acquiring even overhangs. We here demonstrated along Dieppe coastal cliffs, High 

Normandy, France, that our MLS system (an Applanix POS-MV INS coupled with an Optech Ilirs LR 
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LiDAR), is indeed a promising technique supporting rockfall assessments and large landslide 

monitoring along vertical sea shores. 

The navigation conditions, i.e. boat velocity and range to the cliffs largely controlling by Channel 

stream and tide, are mainly influencing the general point spacing; nevertheless, it can also be 

optimized with appropriate LiDAR device setup, in order to keep as coherent as possible vertical and 

horizontal spacing. First, by scanning during favourable meteorological and marine conditions (i.e. 

2 Bft, very small swell and almost no stream, and no rain) and close to the coast (~200 m during high 

tide period), MLS devices are indeed able to quickly scan long shoreline with a median point spacing 

up to 10 cm. For example, it took 1.5 hours to scan 9 km of coastal cliffs at ~3.5 kn (6.5 km/h). 

Moreover, other tests performed during harsher conditions, with 1.5 m high swell and strong stream 

(4.5 Bft), also allowed us to extract 3D data with point spacing of about 30 cm. Nevertheless, 

scanning during quiet days is a better guarantee for a dense and uniform cover of areas of interest, 

since the LiDAR LOS is more easily controlled when the boat is not continuously tossed by waves.  

Then, by increasing the laser pulse repetition frequency of newer LiDAR devices, point cloud 

resolution can also be enhanced. Indeed, previous acquisitions performed in Norwegian fjords and 

carried out with equivalent navigation conditions, but with an Ilris TLS of older generation with a 

pulse rate 4 times lower of 2.5 kH, produced point clouds with median spacing of about 50 cm 

(Michoud et al. 2010b).  

In addition, the monitoring with MLS of the constant erosion with mm and cm rates seems up to now 

not realistic, with measured repeatability close to 10 cm. Nevertheless, more accurate LiDAR, based 

on phase-shift between emitted and received signal instead of ToF principles (Vosselman and Maas 

2010), can have repeatability of about 1 cm (e.g. in Vaaja et al. 2013). However these devices cannot 

perform scan from ranges longer than 150 m, strongly limiting their capabilities in areas with long 

intertidal zones, where boats don’t navigate, such as in Dieppe. Nevertheless, precisions of our data 

are sufficient to map geomorphological features smaller than 0.5 m2 along coastal cliffs. 

At the same time, our capability to detect rockfalls and erosion deposits (> m3) is confirmed with 

classic approaches computing shortest distances between sequential acquisitions. Sectors with 

different rockfall susceptibilities have indeed been underlined, clearly detecting many cliff collapses 

between Pourville and Quiberville and only sparse changes between Dieppe and Belleville-sur-Mer. 

In addition, the Dieppe large landslide geometry has also been described, emphasizing 2 main active 

scarps with retrogression up to 40 m and about 100’000 m3 of eroded materials. In order to enhance 

detection mapping, we suggest dividing the point clouds in shoreline sections of constant aspect to 

refine alignments of piecewise data on the interpolated mesh of the reference point cloud; this 

alignment step actually minimize uncertainties from the INS measures. 
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Finally at larger scales, ALS and MLS might thus be used as complementary techniques along long 

coastlines with successions of gentler (optimized for ALS devices) and steeper (optimized for MLS 

devices) topographies. Additional acquisitions should be performed in the North of the study area 

along gentler slopes to experiment the potential inputs of using both techniques. Meanwhile, MLS 

capabilities for accurate change detection and mass balance monitoring along sub-vertical coastlines 

at low costs (compared to ALS devices and flights) could really support: 

o Cliff retreat rates assessments for different sectors, by automatically extracting surfaces 

affected by rockfalls, compared to the entire surface of km long scanned cliffs. The routine 

developed by Carrea et al. (2014), that computes volumes, is indeed already able to 

individualize each collapsed block and could hence be adapted to also assess their surfaces; 

o Landslide modelling and forecasting (Fukuzono 1990; Leroueil 2001; Rosser et al. 2007; 

Abellán et al. 2010; Royán et al. 2014) to manage risks dealing with affected infrastructures 

and inhabitants. 
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3.6 Supplementary material: Post processing captions 
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3.7 Updates from the 2014 acquisition campaign 

 

Conditions and LiDAR parameters of acquisitions of the 22 and 23 September 2014 

 L1 L2 Ma1 Ma2 

Sector Veules > 
Quiberville 

Quiberville > 
Dieppe 

Fécamp > StPierre StPierre > 
Veulettes 

Scan beginning time 15h07 16h29 11h09 12h33 

Scan end time 16h25 18h00 12h30 13h46 

Range to cliffs 600-800 m 600-800 m 600 m 600 m 

Tide Low Low > Up > Low 

Boat velocity ~4-4.5 kn ~4-4.5 kn 5 kn 5 kn 

Sea conditions 3 Bft 3 Bft 1 Bft 1 Bft 

Sun Cloudy sun From the side Sun Sun 

LiDAR vertical aperture 18° 18° 20° 20° 

Angular resolution index 47 47 40 40 

 

Conditions and LiDAR parameters of acquisitions of the 24 and 25 September 2014 

 Ma3 Ma4 Me1 Me2 J1 

Sector Veulettes > 
Veules 

Dieppe > 
Penly 

Penly > Criel Criel > Ault Dieppe 

Scan beginning time 13h50 16h41 9h08 10h29 Morning 

Scan end time 15h29 17h50 10h24 11h50  

Range to cliffs 600 m 600 m 600 m 600 m Close 

Tide > low > low    

Boat velocity 4.5 kn 4.8 kn ~4.5-5 kn 5 kn ~2-3 kn 

Sea conditions 1 Bft 1 Bft 3.5 Bft 4 Bft 1.5 Bft 

Sun   Cloudy Cloudy From the side 

LiDAR vertical aperture 20° 20° 20° 20° 20° 

Angular resolution index 40 40 40 40 30 
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Figure 3.20: Photo of the Dieppe Landslide the 22 September 2014 (cf. Section 3.4.2b and Figures 3.17). 

 

 
Figure 3.21: Fine horizontal comparison of the Dieppe landslide (cf. Section 3.4.2b and Figures 3.17 to 3.19) between 

Septembers 2014 and 2015. (Negative values: eroded material; Positives values: accumulated material) 
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4 Large slope deformations detection and monitoring along 
shores of the Potrerillos dam reservoir, Argentina, based on a 
Small-Baseline InSAR approach 

After Michoud C, Baumann V, Lauknes TR, Penna I, Derron MH and Jaboyedoff M: Large Slope Deformations Detection and 

Monitoring along Shores of the Potrerillos Dam Reservoir, Argentina, based on a Small-Baseline InSAR Approach. Landslides, 

24 p., published online 30 April 2015, in press. 

Abstract 

The Argentina National Road 7 that crosses the Andes Cordillera within the Mendoza province to 

connect Santiago de Chile and Buenos Aires is particularly affected by natural hazards requiring risk 

management. Integrated in a research plan that intends to produce landslide susceptibility maps, we 

aimed in this study to detect large slope movements by applying a satellite radar interferometric 

analysis using Envisat data, acquired between 2005 and 2010. We were finally able to identify two 

large slope deformations in sandstone and clay deposits along gentle shores of the Potrerillos dam 

reservoir, with cumulated displacements higher than 25 mm in 5 years and towards the reservoir. 

There is also a body of evidences that these large slope deformations are actually influenced by the 

seasonal reservoir level variations. This study shows that very detailed information, such as surface 

displacements and above all water level variation, can be extracted from spaceborne remote sensing 

techniques; nevertheless, the limitations of InSAR for the present dataset are discussed here. Such 

analysis can then lead to further field investigations to understand more precisely the destabilizing 

processes responsible for these slope deformations. 

Keywords: Slope deformations, Detection, Monitoring, InSAR, Small baseline, Dam reservoir, 

Argentina. 

4.1 Introduction 

Landslide susceptibility mapping at regional scale is the starting point to detect areas exposed or 

potentially exposed to natural hazards and it is an essential support for hazard and risk assessment. 

In particular, the detection of active and large instabilities is decisive since these deformations can 

turn into rapid movements such as spreads, rockfalls or even rock avalanches (Crosta et al. 2013) that 

may affect infrastructures and/or population. 
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Landslides inventories constitute thus key baseline information during hazard assessments (Fell et al. 

2008; Guzzetti et al. 2012). A classic approach to perform inventories is to use aerial photos, as these 

pictures provide an overall point of view of a large area (Rib and Liang 1978; Záruba and Mencl 

1982). Nowadays, Aerial Laser Scanning (ALS) is widely used to produce High Resolution Digital 

Elevation Models (HRDEM) at regional scales; HRDEM have then become an essential input data of 

regional landslides inventory maps (Chigira et al. 2004; McKean and Roering 2004; Ardizzone et al. 

2007; Jaboyedoff et al. 2012b; Pedrazzini et al. 2012). Their high level of detail allows indeed to 

identify main morpho-structural features developed as a result of slope deformations, such as 

crowns, counterscarps, double ridges or trenches being created by deep-seated slope deformations 

(DSGSD, e.g. Chigira 1992; Agliardi et al. 2001; Braathen et al. 2004; Crosta et al. 2013; Hungr et al. 

2014). 

In addition to aerial imaging and HRDEM, satellite Interferometric Synthetic Aperture Radar (InSAR) 

can also be used to update inventories and state of activities of slow slope deformations, as the 

method has proven suitable to detect and monitor extremely slow rotational slides, topples and 

spreads at regional scales (Massonnet and Feigl 1998; Lauknes et al. 2010; Henderson et al. 2011). 

The main principle of radar interferometry is based on studying the phase difference between two 

different synthetic aperture radar (SAR) images (Massonnet and Feigl 1998; Bamler and Hartl 1998). 

The main applications of InSAR are generation of topographic models (Shapiro et al. 1972) and 

studies of surface deformations (Massonnet et al. 1985; Gabriel et al. 1989), applied to crustal 

deformations (Massonnet et al. 1993; Massonnet et al. 1995; Sigmundsson et al. 1997) or even to 

landslides (Fruneau and Apache 1996; Carnerc et al. 1996; Kimura and Yamaguchl 2000; Squarzoni et 

al. 2003; Berardino et al. 2003; Saroli et al. 2005; Yin et al. 2010; García-Davalillo et al. 2014). 

However, single interferograms are often difficult to interpret due to phase propagation delays 

related to different atmospheric conditions (Tarayre and Massonnet 1996; Zebker et al. 1997; 

Hanssen 2001; Doin et al. 2009). The last decade, new algorithms have been developed, such as 

persistent scatterer interferometry (PSI) (Ferretti et al. 2001), small baselines (SBAS) (Berardino et al. 

2002) or SqueeSAR (Ferretti et al. 2011). They aim to improve the reliability of measures by 

separating movement signals from typical noise sources, and to provide temporal evolution of 

deformation behaviours. For example, the SBAS technique stacks and filters multi-temporal 

interferograms with small spatial baselines, increasing the signal to noise ratio (SNR) allowing 

tracking of temporally coherent distributed scattering. 

These advanced algorithms are then frequently used for accurate landslide mapping and monitoring 

(e.g. Colesanti and Wasowski 2006; Fornaro et al. 2009; Herrera et al. 2011 and 2013; Lauknes et al. 

2010; Bianchini et al. 2012; Cigna et al. 2013; Crosta et al. 2013; Bardi et al. 2014). Nevertheless, they 

are still often used as a complementary material to support pre-existing inventories updating state of 

activities of detected landslides (Guzzetti et al. 2012), since advanced InSAR techniques do not 
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usually detect more than 50% (e.g. in Bianchini et al. 2012; Herrera et al. 2013) of instabilities in 

rough relief terrains. It is mainly explained by (1) undetectable areas on westward and eastward 

slopes that are invisible by the SAR sensor stemming from geometric and radiometric distortions and 

(2) undetectable deformations on northward and southward slopes since they are easily 

perpendicular to the sensor line of sight (LOS) in both ascending and descending acquisition orbits 

(Hanssen 2001; Woodhouse 2006; Cascini et al. 2009). In addition, the ratio of detected landslides by 

such techniques can even be lower in densely vegetated areas, affected by strong decorrelations. 

Following these statements, we carried out large slope deformation detections along the Argentinian 

National Road 7 (N7) within the Mendoza province, Argentina. The N7 is indeed an essential corridor 

of Southern America, linking Buenos Aires to Santiago de Chile by crossing the Andes Cordillera at the 

Cristo Redenor international pass up to 3’200 m a.s.l. At least 2’200 cars and trucks use the road 

every day (Dirección Nacional de Vialidad 2013). At the same time, this road section along the 

Mendoza River is exposed to numerous natural hazards, such as snow avalanches and landslides, and 

remains therefore frequently closed (Baumann et al. 2005). It represents an hazard for road users 

that must be considered and it also implies regional economic losses in case of prolonged road 

closure. Furthermore, the N7 follows the south-western reservoir shores of the Potrerillos 

hydropower dam (fully operational since the mid-2000s), which is a main source of drinking water 

and energy for the Mendoza city, as well as a touristic site. As reservoir-landslides interactions were 

reported in many investigations worldwide (Terzaghi 1950; Müller 1964; Riemer 1995; Wang et al. 

2008; Schuster 2006; Bell 2007; Pinyol et al. 2012; Xia et al. 2013) slope deformation may also affect 

the N7 close to the reservoir. In addition, it has been regularly monitored with SAR techniques (Fu et 

al. 2010; Singleton et al. 2014; Tomás et al. 2014). 

In this context, a long-term project, initiated by the Argentinian Geological Survey and the University 

of Lausanne, plans to produce inventory and susceptibility maps for snow avalanches, debris flows, 

rockfalls and slides (Wick et al. 2010a and b; Baumann et al. 2011) along the N7, between Potrerillos 

and Las Cuevas near the Chilean border (Figure 4.1), by means of remote sensing and regional 

numerical modelling approaches coupled with classical field survey (Jaboyedoff et al. 2012b). Within 

this framework, this study aims at making an inventory of large slope deformations. But without 

available HRDEM and orthophoto, a small baseline (SBAS) approach (Berardino et al. 2002) has hence 

been selected to detect as much large mass movements as possible, since the main landscapes with 

low and sparse vegetation and many outcrops (Figure 4.1) constitute relevant distributed scatterers 

(Lauknes et al. 2010). 

In this paper, we therefore present results based on active mass movement detection by SBAS 

processing of ESA’s Envisat satellite SAR images between Potrerillos and Uspallata, with a specific 

focus along shores of the Potrerillos dam reservoir where large slope deformations are detected and 

monitored. 
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Figure 4.1: (Upper left) Location of the study area within the Mendoza Province. (Lower left) Illustration of the dominant 

landscape along the N7 corridor, where a rocky landscape with low and sparse vegetation is observed. (Right) Main 

morphotectonic units comprised in the study area. 

4.2 General setting 

 Morphotectonic context 4.2.1

The study area extends along two main morphotectonic units named from west to east: Cordillera 

Frontal and Precordillera; both are separated by an intermountain valley (Figure 4.1). Here the 

tectonic style of the eastern Andes is strongly influenced by morphological and tectonic features 

related to Triassic and Paleozoic structures, reactivated during the Cenozoic (Kozlowski et al. 1993). 

In this region, oblique thrust fault structures with NW and NNW directions are widespread. In the 

following paragraphs, we describe main characteristics of these units: 

o The Frontal Cordillera was uplifted during the Neogene by high-angle east-vergent reverse 

faults (Ramos 1997). Main outcrops correspond to the Permian-Triassic Choiyoi Group, 

composed of extrusive and intrusive igneous rocks. The relief of the Cordillera Frontal results 

from high rate uplift since the Neogene, and glacial and fluvial incision. Landscape was 

shaped by glaciers during Quaternary times, whereas current glaciers are constrained to a 

reduced area at high altitudes (3800 m a.s.l.; Trombotto and Borzotta 2009). Glacial retreat 

and seismic activity were proposed as conditioning factors of large slope collapses that have 

taken place in Holocene times (Hermanns et al. 2014). 

o The Precordillera corresponds to a fold and thrust belt structured by east and west-vergent 

basement faults deforming Proterozoic to Neogene metamorphic and sedimentary rocks 
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(Giambiagi and Martinez 2008). In the Potrerillos area, Triassic conglomerates, sandstones, 

mudstones and volcaniclastics rocks uncomfortably overlay the Permian-Triassic 

volcaniclastic rocks from Choiyoi Group (Stipanicic 1979). On South and East of Potrerillos 

lake, outcrops are Neogene sedimentary rocks (Folguera et al. 2003). Here it is observed a 

dense drainage networks composed of slightly permanent or ephemeral colluvial creeks and 

gullies that give place to a rough landscape. The slopes are characterized by low gradients, 

where an erosive surface developed on Triassic to Tertiary sedimentary rocks. The eastern 

foothills show wide alluvial deposits belonging to different aggrading levels (Polansky 1963). 

Between Uspallata and Potrerillos, the Mendoza River crosses the Frontal Cordillera and Precordillera 

with NW-SE direction. The Mendoza River here has an anastomotic pattern in addition to three main 

levels of terraces. At both sides of the valley, alluvial and colluvial fans are observed at the mouth of 

tributary rivers, as well as talus at the toe of rockslopes. Pediment surfaces with at least three 

different levels are well developed in the Potrerillos area (Figure 4.2). 

 Landscape and active surface processes 4.2.2

The landscape presents maximum elevations of 5400 m a.s.l. and lowest at around 1500 m a.s.l. 

Weather is characterized by arid and semi-arid conditions, with mean annual rainfall of 140-360 mm 

(Subsecretaría de Recursos Hídricos 2013). Most of the storms take place during October-March, and 

from June to August is the period of high snow fall. Mean temperature varies with altitude, between 

1200 m a.s.l. and 3800 m a.s.l., namely 20°C and 4°C in summer and 5°C and -7°C in winter 

respectively (Fernández García and Polimeni 2003). The vegetation is sparse and mainly composed of 

thorny thickets, grass family and cactuses. 

U shaped valleys are observed at high altitude, and in some places rock glaciers remain. At lower 

altitudes, landscape is dominated by fluvial action (Folguera et al. 2003). At Uspallata, the Mendoza 

River runs in a NE-SW direction, and then turns to the SE up to Potrerillos area, where a hydropower 

dam was built, creating a permanent water body extending around 9 km along the Mendoza valley 

(Figure 4.2). 

Due to its tectonic and geomorphic history, the area has been active in terms of hillslope processes. 

Several large magnitude slope collapses have taken place during Holocene times. Eight rock 

avalanches with volumes of several million m3 were indeed mapped near Uspallata. Their 

detachment was located along the Carrera fault system and involved Permo-Triassic volcanic rocks of 

the Choiyoi Group (Fauqué et al. 2000). In addition, a large landslide was also recognized near the 

northern shore of the Mendoza river, 22 km upstream the Potrerillos reservoir (Fauqué et al. 2005). 

While these mass movements are proposed to be conditioned by active tectonic conditions, those 

located to the west of Uspallata, near Punta de Vacas in the Frontal Cordillera, have been proposed 
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to be linked to debuttressing of valley flanks after the glacial retreat (Fauqué et al. 2000 and 2005; 

Cortés et al. 2006; Hermanns et al. 2014). 

Current active surface processes involve mainly snow avalanches, debris flows and rockfalls. Every 

year, the N7 is affected by several events from Potrerillos to Chile (Baumann et al. 2005 and 2011; 

Moreiras 2005 and 2006; Wick et al. 2010a and b). For example, in 2005, a 7x104 m3 debris flow 

covered the N7 at the Guido’s curve along 300 m, hitting a car and stopping 3’000 vehicles during 12 

hours (Wick et al. 2010b). Moreover, a large rock fall (< 100 m3) occurred in 2011 near the Guido’s 

curve from an anthropic road cut slope in volcanic rocks reached the way and caused one fatality. In 

addition, in the Potrerillos area, rockfalls are widesly recorded along cut overdip slopes on soft 

Triassic and Neogene sandstones and conglomerates. Morphology conditions, degree of rocks 

fracturing, amounts of sediments stored on watersheds and also unstabled cut-slope design are the 

main conditioning factors of these active processes. They are mostly triggered by rainfall and snow 

melting, but earthquake have also generated rock falls in the area (Wick et al. 2010a).  

 
Figure 4.2: Geomorphologic map of the Potrerillos area (ages of units taken from Giambiagi et al. 2011), and Panorama 

picture of the north-eastern margin of the lake showing main geomorphologic and geologic units. The mapped landslide 

refers to the one described in the supplementary material. 
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4.3 SAR data processing 

 Available SAR data 4.3.1

Our analysis is based on 47 SAR images acquired by the European Space Agency (ESA) Envisat ASAR 

instrument. The scenes cover the road section Mendoza-Uspallata during the 2005–2010 period from 

both ascending and descending orbits (Figure 4.3). 

 
Figure 4.3: Frames of the Envisat ASAR ascending and descending scenes of the study area, wrapped on the 90m SRTM DEM 

used for the SBAS processing. (Raw Envisat data: ©ESA 2010; raw DEM data: ©SRTM NASA). 

The 27 ascending scenes (track 447, frame 6525) were acquired from January 2005 to November 

2006 and June 2009 to February 2010, whereas the 20 descending scenes (track 425, frame 4278) are 

from September 2007 to January 2010 (Table 4.1). Finally, the 90 m DEM acquired by the SRTM 

mission in 2000 (Jarvis et al. 2008) will be used to filter unwanted topographic- and atmospheric-

related contributions. 
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Table 4.1: Envisat’s tracks/frames 447/4278 and 425/6525 of SAR scenes provided by the ESA for this study (ESA Category-1 

Project 7154). 

Dates for ascending scenes 
[yyyy.mm.dd] 

Dates for descending scenes 
[yyyy.mm.dd] 

2005.01.11 
2005.02.18 
2005.03.25 
2005.04.29 
2005.06.03 
2005.07.08 
2005.08.12 
2005.09.16 
2005.10.21 
2005.11.25 
2006.02.03 
2006.03.10 
2006.04.14 
2006.05.19 
2006.06.23 
2006.07.28 
2006.09.01 
2006.10.06 
2006.11.11 
2008.04.18 
2009.06.12 
2009.07.17 
2009.08.21 
2009.09.25 
2009.12.04 
2010.01.08 
2010.02.12 

2007.09.19 
2007.11.28 
2008.01.02 
2008.02.06 
2008.03.12 
2008.04.16 
2008.06.25 
2008.07.30 
2008.09.03 
2008.10.08 
2008.11.12 
2009.02.25 
2009.04.01 
2009.05.06 
2009.06.10 
2009.07.15 
2009.08.19 
2009.09.23 
2009.10.28 
2010.01.06 

 

 Landslides detection at regional scale 4.3.2

a. Regional SBAS processing 

The Norut GSAR software (Larsen et al. 2005; Lauknes et al. 2010) has been used for all InSAR 

processing, following the principal steps described hereafter. Main settings are summarized in Table 

4.2. For each dataset, raw SAR images are first focused to single-look-complex and then co-registered 

to ensure a perfect overlap between pixels from the different scenes in SAR geometry. 

Regarding the ascending scenes, 107 interferograms with temporal and normal baselines 

(respectively time and distance intervals) lower than 1200 days and 400 m are computed (Figure 

4.4A). In addition, 58 interferograms are calculated comparing the descending scenes having 

temporal and normal baselines lower than 400 days and 230 m (Figure 4.4B); smaller baselines were 

optimized for this second dataset since the descending acquisitions had shorter spatial and temporal 

baselines. For each interferogram, the topography-related phase was removed from the external 
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SRTM DEM using mathematical developments defining InSAR signal construction and simulating the 

DEM signal response (more details available in e.g. Massonnet and Feigl 1998; Hanssen 2001; 

Woodhouse 2006). 

However, phase propagation delays created by temporal changes in atmospheric conditions within 

the troposphere between SAR acquisitions and orbital correction errors can still introduce artefacts 

and hamper interpretation (Zebker et al. 1997; Hanssen 2001). Interferograms too much affected by 

these artefacts were removed from the study using manual inspection; all interferograms having 

large areas with incoherent noise and no well-defined fringe patterns were deleted. Finally, 57 

ascending and 36 descending interferograms were selected for processing. 

 
Figure 4.4: Normal baselines vs. temporal baselines plot (A) of the 107 interferometric ascending pairs using thresholds of 

1’200 days and 400 m, and (B) of the 58 interferometric descending pairs using thresholds of 400 days and 230 m. Every line 

corresponds to a computed interferogram between 2 acquisitions; black lines correspond to interferograms kept after 

selection, while the grey lines are the non-selected ones. 

The phase unwrapping step, which converts each ambiguous 2π cycle to absolute value of 

interferometric phase, is performed with the SNAPHU software (Chen and Zebker 2001). Prior to this 

step, noisy areas have been masked out in order to ensure a suitable continuity of values with a good 

enough coherence to be interpreted. Pixels with coherence lower than 0.35 on 50% of 

interferograms were thus masked out, which are about 66% of pixels of ascending interferograms 

and 50% of pixels of descending ones. 

InSAR-based results are relative displacements between scatterers that need to be calibrated to get 

absolute ground movements. To do that, a common reference area (for which we assume no 

movements) is used for both ascending and descending processing. Ideally, this pixel must be in a 
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stable place, close to the study area and inside a cluster of several very coherent pixels; the pixel 

should also be in an area that remain stable when fixing the reference in different places during prior 

test processing. For these reasons, we selected a coherent point within an assumed stable area in the 

northern-western part of the Potrerillos reservoir and close to the N7 (Figure 4.5 and Figure 4.6). 

Finally, the stacks of unwrapped interferograms were inverted to extract time-series displacements 

and mean velocity for each pixel by applying the SBAS method. 

Table 4.2: Main set parameters for SBAS processing with the GSAR software. 

 Ascending scenes Descending scenes 

 Regional Local Regional Local 

Size of scenes 47x140 km 10x8 km 46x92 km 37x32 km 

Number of scenes 27 20 

Look azimuth-angle 074°27° 286°30° 

Max. temporal baseline 1’200 d 400 d 

Max. normal baseline 400 m 230 m 

Number of total interferograms 107 58 

Number of selected 
interferograms 57 75 36 23 

Coherence thresholds 0.35 on 50% of interferograms 

Reference point (UTM19°S) 481’386 
6’353’063 

481’360 
6’353’051 

479’424  
6’356’660 

479’452 
6’356’672 

Number of reflectors 2’300’000 38’000 2’400’000 340’000 

 

b. Results of the regional approach 

Figure 4.5 displays the mean displacement velocities measured in the satellite line of sight direction 

(LOS), extracted from the ascending SBAS processing. We assume here that the largest part of the 

whole processed study area, mainly composed of Triassic to Neogene sedimentary rocks in the 

Foreland plains (Folguera et al. 2003), is not affected by large slope instabilities and that no regional 

tectonic deformations affect SBAS results (cf. Section 4.4.1); pixels from stable areas should thus 

constitute the highest majority of the coherent reflectors. Furthermore, we notice that both 

processed mean LOS velocities can be fitted by normal distributions; velocities of stable pixels, 

theoretically close 0 mm/yr, thus fix the mean of the normal distribution. As a result, by highlighting 

reflector clusters having velocities within high standard deviation ranges (>2σ), we detect either 

areas affected by strong artefacts or large slope displacements (Figure 4.5). 

We also note that ascending results are less noisy than the descending ones (Figure 4.6), since the 

mean LOS velocity of all scatterers has a median and standard deviations of -1.2 and 2 mm/yr for 

ascending scenes, instead of -7 and 11 mm/yr for descending ones. Then regarding the spatial 

distribution of the about 2.4 million coherent points of ascending and descending processing, we can 
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state that point density is relatively high on the eastward and northward plains. It corresponds to 

areas with good coherence. On the contrary, elevated and steeply sloping regions have only sparse 

reflectors; the majority of them were indeed masked out since there coherence was lower than 0.35. 

This is probably due to steepness of terrain introducing radar geometrical effects such as 

foreshortening and shadowing, and also due to low coherence because of snow cover. 

Regarding our region of interest, between Potrerillos and Uspallata, no cluster with significant 

velocity deviations imputed to slope instabilities can be thus detected, since pixels on steep slopes 

along the N7 corridor are indeed masked out (cf. Section 4.4.2). But, in the meantime, although no 

clear evidences of large landslides can be noticed on noisy descending results (Figure 4.6), we 

observe on ascending ones several distinct downward mass movements along gentle shores of the 

Potrerillos earth dam reservoir (Figure 4.5). Since these deformations may affect the N7, focused 

investigations are then achieved. 

 
Figure 4.5: (Left) mean intensity of the 27 ascending scenes, (middle) mean coherences and (right) mean LOS velocities 

extracted from the SBAS processing of the 57 selected interferograms, with a median movement (m) of -1.4 mm/yr and a 

standard deviation (σ) of 2 mm/yr. Several downward mass movements along shore of the Potrerillos dam reservoir are 

noticed. In addition, other ground deformations are detected south of Mendoza close to oil extraction facilities. (Positive 

values: downward displacements, away from the sensor. Negative values: upward displacements, toward the sensor. Raw 

Envisat data: ©ESA 2010). 
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Figure 4.6: (Left) mean intensity of the 20 descending scenes, (middle) mean coherences and (right) mean LOS velocities 

extracted from the SBAS processing of the 36 selected interferograms, with a median (m) of -7 mm/y and a standard 

deviation (σ) of 11 mm/y. (Positive values: downward displacements, away from the sensor. Negative values: upward 

displacements, toward the sensor. Raw Envisat data: ©ESA 2010). 

 Landslides monitoring along shores of the Potrerillos’ dam reservoir 4.3.3

a. Local SBAS processing 

A focused SBAS processing is now carried out on this Potrerillos reservoir area. Main settings 

described in section 0 and Table 4.2 (such as maximal temporal and spatial baselines and coherence 

thresholds) are again applied. Nevertheless, the selection of interferometric pairs showing coherent 

signal within this smaller region of interest was optimized for this local study in order to extract 

displacement time series as reliable as possible. We indeed select 75 ascending and 57 descending 

interferograms; in addition, the reference point of the ascending processing was set in the new 

Potrerillos village in a cluster of very coherent pixels where no significant displacement was identified 

on regional results. For the same reasons, the reference point of the descending processing was set 

2.5 km westwards from the Potrerillos village. 

b. Detection and monitoring results 

On the ascending results, two large mass movements with areas above the water level of about 2.5 

and 0.7 km2 are detected on the western and eastern shores of the lake. Both have cumulated 
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displacements higher than 30 mm in 5 years (Figure 4.7) and their velocity gradients suggest a 

general dip direction toward the reservoir. 

 
Figure 4.7: (Up) LOSascending cumulated displacements and location of the 3 major surface displacements detected along the 

Potrerillos reservoir shoreline. (Down) Displacement time-series from January 2005 to February 2010 (LOSascending 

projection) of several reflectors (coloured dots on map) within the western and eastern deformations and mean velocities. 

The dot lines underline potential fringe unwrapping ambiguity issues. The south-eastern landslide refers to the one 

described in the supplementary material. (Positive values: downward displacements, away from the sensor. Negative 

values: upward displacements, toward the sensor. Satellite image from ©GoogleEarth). 

Smaller and slower movements are also noticed on the north-eastern and southern shores. 

Displacement time series furthermore confirm reliable patterns with constant and progressive 

movements during periods 2005-2006 and 2009 (when we got one acquisition each month), with 

mean velocities of about 8 mm/yr and up to 20 mm/yr respectively (Figure 4.7). On the contrary, 
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almost no displacements are extracted in 2007-2008, since having only one acquisition in 2 years 

increases significantly the fringe ambiguity potential issues (Woodhouse 2006). The total cumulated 

displacement measured on the ascending data, up to 30 mm in both large mass movements, is thus 

probably underestimated. 

However, results from descending scenes (Figure 4.8) seem to be noisier with cumulated errors 

inside areas assumed as stable varying between about [-7;7] mm in 2.5 years, instead of [-5;5] mm in 

5 years for the ascending interferograms. Moreover, the eastern deformation mapped in Figure 4.7 is 

not detected on this processing, and the western one is only detected on its upper part within a 

larger and slower mass movement. 

 

Figure 4.8: LOSdescending cumulated displacements and location of the 3 major surface displacements detected along the 

Potrerillos reservoir shoreline. (Positive values: downward displacements, away from the sensor. Negative values: upward 

displacements, toward the sensor. Satellite image from ©GoogleEarth). 

Their mechanisms and geometries (identified as deep extremely slow soft rock rotational and also 

translational slides), are afterward discussed in the Section 4.4.3. 

 Water level fluctuations of the reservoir 4.3.4

In order to study potential reservoir-landslides interactions, as it has been reported in many 

investigations worldwide since Terzaghi in 1950, the water level variation along time of the 

Potrerillos reservoir has been surveyed and extracted from SAR return amplitude images (Figure 4.9). 



Section 4: Landslide detection and monitoring based on a Small-Baseline InSAR approach 

 
99 

These variations are first qualitatively assessed by comparing the reservoir surface changes along 

time. Indeed the larger the reservoir area is, the higher is the water level (López et al. 2011). 

Afterwards we select on each of the 47 amplitudes images 16 pixels well distributed along the 

reservoir shoreline and we estimate their elevation by overlapping these images on the SRTM DEM. 

We compute for all scenes the median (attenuating extreme value effects; Höhle and Höhle 2009) 

and the standard deviation of the 16 values; we then delete outliers and compute again filtered 

standard deviation, in order to decrease errors introduced by the SRTM model and sometimes 

unclear limits between water and land at a pixel scale. The water level variation of the reservoir 

along time is finally assessed by connecting all median elevations while first qualitative observations 

must be respected. 

As a result, we notice that the water level is varying along time between -25 m and +15 m around a 

mean level that makes a range of elevation of about 40 m, actually close to the 44 m (minimum and 

maximum levels are respectively at 1’342 and 1’386 m a.s.l.) stated in López et al. (2011). The 

reservoir level, artificially regulated, is usually high from February to August. It quickly draws down 

afterwards till December, and is then filled till the beginning of February, fed by usual high discharge 

peaks of the Río Mendoza in December and January due to the snow melting in the high river 

watershed (Subsecretaría de Recursos Hídricos 2013). 

4.4 Discussions 

 Influences of the Andean orogen 4.4.1

Mendoza regions is subjected to tectonic uplift resulting from the compressive strains formed 

because of the subduction of the Nazca plate beneath the Sudamerican plate, which forms the 

Andean Mountains. The southern section of the central Andes is hence affected by significant 

Eastward shortening rates caused by episodic release of transient elastic deformations during large 

earthquakes and by permanent displacements due to the Pampean flat-slab and the mountain uplift 

(Gansser 1973; Ramos 1999). GNSS measurements are showing north-eastward displacement rates 

between about 7.3 mm/yr at San Juan and 19.4 mm/yr at Santiago de Chile (Kendrick et al. 1999). 

These deformations are supposed to be uniform within our study area, since its extent is relatively 

small compared to the continental scale of the Andean orogen. This subduction component is 

therefore implicitly deleted at the beginning of the SBAS processing by focusing and co-registering 

the successive SAR scenes that might be translated by continuous mm displacements (cf. section 

4.3.2.a) and is de facto not considered. 
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Figure 4.9: (Up) Delimitations on SAR return amplitudes images of the Potrerillos reservoir shorelines during low and high 

water level periods (November 2005 and February 2006 respectively). (Down) Potrerillos reservoir level fluctuations 

extracted from SAR return amplitude images compared to Río Mendoza discharge. (Raw Envisat data: ©ESA 2010; Río 

Mendoza discharge data at the Guido station: ©Subsecretaría de Recursos Hídricos). 
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 Limitations to large landslides detection 4.4.2

Regional mean LOS velocities are correlated with the scatters’ azimuth (in SAR geometry) and 

elevation on both regional processing. As illustrated in Figure 4.10, quadratic polynomial trends can 

indeed be fitted. 

 
Figure 4.10: (A) Mean LOS velocities vs. azimuth plot, as well as (B) mean LOS velocities vs. elevation plot, and their 

quadratic trends. Data are extracted from the ascending SBAS processing, displaying 1/75 of points.  

As we assume no influence of the Andean tectonic (cf. section 4.4.1), these correlations result from 

two main uncertainty sources in the input data. Firstly, the correlation of mean LOS velocities and 

azimuthal pixel coordinates may be misinterpreted as a regional N-S displacement trend, but it 

should actually be attributed to orbital errors. Inaccurate Envisat trajectories estimations with errors 

higher than 3 meters are indeed a common source of residual fringes on interferograms (Hanssen 

2001) unrelated to any real ground movements. Secondly, the refractivity index of the atmosphere 

varies vertically, mainly because the successive horizontal layers of the stratified troposphere have 

specific water vapour pressures (Hanssen 2001). Differential vertical phase delays are thus recorded 

during SAR acquisition, according to the air column thickness (which is correlated with the 

topography) crossed by the radio wave. Hanssen (2001) even shows that the related interferometric 

phase errors can reach more than 35 mm for 2 points 2’500 m vertically apart.  

The general trend, related to the orbital errors and the tropospheric delay, is hence estimated by 

fitting a quadratic polynomial function on mean LOS velocities according to azimuths and elevations 

and is then removed (performed in a MATLAB™ environment). Nevertheless it did not improve our 

ability to detect large slope instabilities along the N7 corridor between Potrerillos and Uspallata, also 

as many points were masked out before this correction to unwrap the interferograms. More complex 

corrections included within the whole SBAS processing chain are indeed required and are under 

development (Lauknes 2011 and current research). 

Moreover, a higher resolution DEM (other than the 30 m ASTER one that has too much artefact on 

those elevated areas) and some ground control points with 3D displacement time series would have 
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been also necessary to better estimate these topography-related delays and to ensure reliable 

reference point locations. Completed with additional Envisat data, especially for 2007 and 2008, it 

would considerably improve the SBAS processing by reducing the temporal and normal baselines, as 

well as fringe unwrapping ambiguity issues. Unfortunately these data, as well as ERS and ALOS ones, 

are not available for the study area. 

 SBAS-derived geometry 4.4.3

According to the Cruden and Varnes classification of landslides types (Cruden and Varnes, 1996), 

both deformations can be identified as deep extremely slow soft rock slides. Both deformations 

indeed involve weak sandstones and plastic clays of hundreds of meters deep (Folguera et al. 2003); 

they are moreover both extended over large areas, which let us assume that the main sliding surface 

is deep seated (Carter and Bentley 1985; Jaboyedoff and Derron 2015). In addition, the geometry of 

the sliding surface can be derived from the SBAS results. Differences of displacement ranges of the 

eastern and western deformations observed on the ascending and descending processing can indeed 

be explained with simple geometrical considerations. A same true displacement vector indeed 

produces 2 distinct responses once projected on the 2 different ascending and descending LOS 

vectors that have look azimuth-angle of 074°27° and 286°30°, respectively, according to Envisat 

orbits. 

Regarding the western deformation, assuming a north-eastward movement (i.e. 025°, toward the 

reservoir) as suggested by its displacement gradient, a plunge of 34° is necessary on its upper part to 

reproduce the 2 measured the ascending and descending SBAS responses. Moreover, a plunge of 05° 

in its lower part of this instability would be orthogonal to the descending LOS, explaining why no 

displacements are here detected on descending interferograms. The variation of the azimuth-plunge 

from 025°34° in the upper part to 025°05° to its toe seems to indicate a general rotation of the mass 

movement. 

In the meantime, regarding the eastern deformation, a horizontal south-westwards displacement 

(i.e. 200°00°) would also be almost orthogonal to the descending LOS. The detection of this mass 

movement would here again be hampered in that geometry, explaining why the displacement is 

detected on the ascending results but not on the descending ones. A near horizontal translational 

displacement would in this case suggest a slope spread behaviour (Hungr et al. 2014), which might be 

controlled by plastic clay deposits noticed here (cf. section 4.4.4; Folguera et al. 2003). 

 Reservoir-slope deformation interactions 4.4.4

We now compare the Potrerillos water level variations with displacements patterns of both 

monitored mass movements (Figure 4.11). In 2007 and 2008, no correlations between displacement 
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rates and the reservoir level can be observed, due to severe fringe unwrapping ambiguity issues that 

misrepresent SBAS measurements. But, we can nevertheless notice two periods of high displacement 

rates from February 2005 to July 2006 and September 2009 to February 2010, which actually 

correspond to reservoir drawdown and filling periods. It therefore seems that deformation 

behaviours are actually modified in case of drawdown or filling. In comparison to the relatively stable 

periods from June to August 2009, velocities indeed increase up to about 0.8 mm/month during the 

reservoir drawdown from October to December; later, from end of August to beginning of October 

and from December to February 2010, during filling periods, velocities increase up to about 

2.7 mm/month. The same pattern can also be noticed between August 2005 and July 2006. 

Moreover, we observe that high displacement rates continue from mid-April to July 2006, i.e. during 

2.5 months after the stabilization of the water level to its highest level reached for the first time. In 

addition, all displacements are measured downwards and no up and down fluctuations due soil 

swelling and drying associated to cyclic water level variations are observed. 

According to the geological local map (Folguera et al. 2003), the western and eastern slope 

deformations are both developed on tertiary rocks, i.e. hundreds meters thick fine sandstones layers 

regularly interlayered with thin clay deposits and coarse conglomerates, and are locally covered by 

superficial Quaternary sedimentary breccia deposits. Destabilizing effects of reservoir drawdown 

have been reported in such lithologies, e.g. by Terzaghi (1950) or in Canelles (Pinyol et al. 2012) 

where the drawdown-induced landslide is mainly controlled by the low permeability and high 

plasticity of interlayered clay deposits. In addition, as reported in Riemer (1995) and Bell (2007) in 

such lithological contexts, sliding surfaces are frequently activated since water tables that 

significantly rise with reservoir filling may saturate bank materials, reducing the residual strength of 

shale surfaces and developing severe hydrostatic uplift pressure at the shale-sandstone contacts. 

Moreover some delay between filling and displacements might also be observed and explained by 

usual low permeability and high capillarity of the fine sandstones (Bell 2007) that slow down the 

water table rising in these unsaturated materials. 

In the meantime, the semi-arid conditions at Potrerillos are characterized by low annual cumulated 

rainfalls of about 200 mm/yr between 2004 and 2012 (Subsecretaría de Recursos Hídricos 2013). 

Summer periods, when most of the rain is recorded (Figure 4.11), correlate with reservoir filling 

periods due to the Río Mendoza high discharge from snow melting in the high river watershed (cf. 

Section 4.3.4); no conclusions on rainfall-landslide interactions can then be extracted from 

displacements time-series. Moreover, there is no pre-dam construction reliable SAR data (cf. Section 

4.4.2) to really investigate rainfall effects on both landslides excluding the reservoir fluctuation level 

one. It nevertheless seems that rainfalls are not noticeably destabilizing these soft rocks, since the 

semi-arid conditions couldn’t saturate deep and large landslide masses and above all since no other 

landslides are detected in the same geological formation outside the reservoir shores. 
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Figure 4.11: Potrerillos reservoir water level variations and monthly cumulated rainfalls compared to cumulated 

displacements of scatters from the western (WD) and eastern (ED) deformations as well as from a stable part close to the 

western landslide (WS). The dot lines underline potential fringe unwrapping ambiguity issues. The 2 grey columns are 

overlapped with displacement acceleration periods. (Potrerillos rainfall data: ©Subsecretaría de Recursos Hídricos). 

The stability of the tertiary deposits seems to be therefore very sensitive to significant reservoir level 

variations, and detailed geotechnical investigations on the field are at this point mandatory to 

validate this statement. 

4.5 Conclusions 

The present study aimed to detect large slope deformations using a small baseline InSAR approach 

(Berardino et al. 2002; Lauknes et al. 2010) along the N7 between Potrerillos and Uspallata since the 

road is exposed to many natural hazards (Baumann et al. 2005). The Norut GSAR software (Larsen et 

al. 2005) has been used to process the 27 ascending and the 20 descending SAR scenes acquired by 

the Envisat satellite (Figure 4.3). 

As a result, the regional landslide detection processing did not highlight any large instability along 

steep elevated slopes of the N7 corridor (Figure 4.5); this outcome does not mean that there is no 

landslide in this area, but if it does, they are not detected with our input dataset. The major part of 

pixels within the corridor were indeed (a) invisible from current LOS due to the steep geometry 

creating shadow radiometric distortion and (b) were also masked out because of very low 
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coherences created by strong tropospheric delays and long snow cover periods on elevated areas. 

Both additional 2007-2008 SAR data to reduce temporal baselines as well as unwrapping ambiguities 

and DEM with higher resolutions to enhance topography-related correction would thus be necessary 

to improve the landslide detection capability. 

Nevertheless, two unsuspected deep extremely slow soft rock slides were detected on gentle shores 

of the Potrerillos dam reservoir; both have main displacement directions toward the reservoir, with 

mean velocities up to 8 mm/yr during the 2005-2006 period and up to 20 mm/yr in 2009 (Figure 4.7). 

After having extracted real displacements vectors from ascending and descending LOS results, a 

translational sliding surface is assumed for the eastern deformation, while a rotational component is 

suspected for the western deformation. In addition, a third active landslide not detected by InSAR 

(but described in the supplementary material), was identified on successive satellite imaging 

available on Google™ Earth showing retrogression of backscarps up to 20 m in 10 years and a general 

flow of the lower land part of 13 m in 2 years toward the lake. 

In order to consider potential reservoir-landslide interactions, the water level variation of the 

Potrerillos dam reservoir was later assessed, after having extracted from the SRTM DEM the 

elevation of shoreline pixels isolated on the return amplitude signal of all SAR images (Figure 4.9). 

Although no formal statement can be obtained from this study, there is however a body of evidences 

that the three large slope deformations (mainly composed of sandstones and clays) are actually 

influenced by the Potrerillos reservoir level variations. 

To sum up, we show that very precise information on ground surface displacements above all 

coupled with an original reservoir water level variation survey can be extracted from spaceborne 

InSAR techniques (Figure 4.11). In addition, detailed geological and rheological investigations, with 

also displacement and water table monitoring, can thus be planned from this study to (a) investigate 

in detail landslide destabilizing factors and triggering mechanisms, and (b) forecast if necessary direct 

consequences of deformations and indirect ones of potential landslide impulse waves on 

infrastructures and populations. 

 

4.6 Supplementary material: South-eastern landslide 

In the south-eastern shore of the Potrerillos dams, successive satellite imaging available on Google™ 

Earth (acquired in 2002.05, 2006.01, 2010.04, 2012.03 and 2012.09) allowed us to characterize the 

dynamics of a rapid mass movement whose headscarp lies close to the shore of the reservoir (cf. 

Figures 4.2 and 4.7 of the paper), recently described too by Sales et al. (2014). With a land area of 
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0.1 km2, its extension is limited compared to the 2 other large landslides. But as shown in Figure 4.12, 

this instability seems particularly active. 
 

 
Figure 4.12: Successive satellite imaging and scheme of main geomorphological features of the south-eastern landslide. 

(Satellite images from ©GoogleEarth) 

While no vertical deformation evidences are detected on the SBAS results between 2002 and 2006, 

important geomorphological changes and large displacements occurred during the 2006-2012 

period; we can indeed observe and measure a retrogression along backscarps of the upper crests up 

to 20 m in 10 years, from 2002 to 2012, coupled with several block collapses, lateral spreading and a 

general flow of the slope towards the reservoir of 7 m in the upper part up to 13 m in the lower land 

part measured from 2010 to 2012.  
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As geometrical decorrelations get really important with the high amplitude of displacements 

observed in few years only, scatters has very low coherences and are then deleted within the moving 

area. To be correctly detected and quantified, instabilities must have indeed slow and continuous 

displacement rates (Massonnet and Feigl 1998; Woodhouse 2006) to avoid strong geometrical 

decorrelations and phase ambiguities. Because of that, this landslide has not been detected by InSAR 

processing and no displacement time series is available here. It remains therefore difficult to assess 

potential correlations between the landslide behaviour and reservoir water level variations; although 

first geomorphological changes are visible on Google™ Earth satellite imaging shortly after the 

reservoir filling has reached its highest level for the first time in February 2006.  

According to the geologic map from Folguera et al. (2003), this active landslide mainly involves 

sedimentary Triassic rocks (i.e. a succession of conglomerates interlayered with sandstones and clays 

deposits highly altered on its top). Rheological properties and the presence of these thin deposits 

could condition the slope instability during fill and drawdown of the dam (cf. Section 4.4.4 of the 

paper). But further investigations (from field work to numerical modelling) would be definitively 

required to confirm the landslide behaviour model. 
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5 Rockfall hazard and risk assessments along roads at a regional 
scale: example in Swiss Alps 

After Michoud C, Derron MH, Horton P, Jaboyedoff M, Baillifard FJ, Loye A, Nicolet P, Pedrazzini A and Queyrel A: Rockfall 

hazard and risk assessments along roads at a regional scale: example in Swiss Alps. Natural Hazards and Earth System 

Sciences, 12, 615-629, 2012. 

Abstract 

Unlike fragmental rockfall runout assessments, there are only few robust methods to quantify rock-

mass-failure susceptibilities at regional scale. A detailed slope angle analysis of recent Digital 

Elevation Models (DEM) can be used to detect potential rockfall source areas, thanks to the Slope 

Angle Distribution procedure. However, this method does not provide any information on block-

release frequencies inside identified areas. The present paper adds to the Slope Angle Distribution of 

cliffs unit its normalized cumulative distribution function. This improvement is assimilated to a 

quantitative weighting of slope angles, introducing rock-mass-failure susceptibilities inside rockfall 

source areas previously detected. Then rockfall runout assessment is performed using the GIS- and 

process-based software Flow-R, providing relative frequencies for runout. Thus, taking into 

consideration both susceptibility results, this approach can be used to establish, after calibration, 

hazard and risk maps at regional scale. As an example, a risk analysis of vehicles traffic exposed to 

rockfalls is performed along the main roads of the Swiss alpine valley of Bagnes. 

Keywords: Rockfall, Road, Risk, Regional assessment, Aerial LiDAR, Swiss Alps. 

5.1 Introduction 

Mountain roads are frequently exposed to rockfalls (Piteau and Peckover, 1978; Budetta, 2004), 

involving independent blocks from relatively small sizes characterized by high energy and mobility 

(Whalley, 1984; Willie and Mah, 2004). Recent advances of high resolution Digital Elevation Models 

(HRDEM, accronyms are listed in Table 5.1) combined with Geographical Information System (GIS) 

technologies have made rockfall susceptibility mapping possible (Willie and Mah, 2004; Derron et al. 

2005; Cascini 2008; Jaboyedoff et al. 2010). The field of propagation modelling is under fast 

development, aiming to compute runout probabilities with empirical, process-based and GIS-based 

models (Dorren, 2003a; Volkwein et al. 2011), such as CONEFALL (Jaboyedoff and Labiouse, 2011a), 

Rockyfor3D (Dorren, 2011), HY-STONE (Crosta et al. 2004) or ILWIS (van Dijke and van Westen, 1990). 
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However, there are not yet robust and objective methods to detect source areas at a regional scale 

and quantify rock-mass-failure mean susceptibilities. In the present work, the authors intend to 

provide information about susceptibility indicators on potential rockfall source areas. 

Rockfall are very likely to be found in steep slopes (Heim, 1932; Hoek and Bray, 1981; Crosta and 

Agliardi, 2003a; Dorren, 2003a). From a basic approach, unstable rock slopes can be delimited 

through the steepness of the topography. It can be done by fixing a simple slope angle threshold 

above which we assume that rockfall releases are possible: it can then be defined from distinctive 

evidence (i.e. cliffs lying above scree deposits, fieldworks or historical events) when it is not arbitrary 

defined (Toppe, 1987; Dorren and Seijmonsbergen, 2003b; Guzzetti et al. 2003; Jaboyedoff and 

Labiouse, 2003; Frattini et al. 2008).  

Furthermore, several authors showed supplementary conditions influencing rock slope stability 

(Terzaghi, 1950, 1962; Bieniawski, 1976; Selby, 1982; Willie and Mah, 2004, Jaboyedoff and Derron, 

2005a), classified in internal parameters (IP, i.e. lithological, geo-mechanical and structural settings) 

and external factors (EF, e.g. active tectonic, water infiltration, weathering, etc.). Therefore, more 

complex models have been developed integrating these conditions to enhance the source detection 

at regional scale. They introduced rating systems following empirical multi-criteria observations 

(Pierson et al. 1990; Bunce et al. 1997 Baillifard et al. 2003), structural settings and kinematics 

analysis (Wagner et al. 1988; Jaboyedoff et al. 1999; Gokceoglu et al. 2000; Günther, 2003), safety 

factors computations (Hoek and Bray, 1981), or joining IP and EF conditions (Günther et al. 2004; 

Oppikofer et al. 2007).  

But, all these methods depend obviously on the possibility to collect a lot of complex and reliable 

information on the area of interest. For example, the simplified Rockfall Hazard Rating System 

method (Pierson et al. 1990; Bunce et al. 1997; Budetta, 2004) requires eleven parameters per 

outcrop as an input to estimate a rockfall susceptibility index and is designed to be applied only along 

outcropping road cuts. Moreover, these methods usually use very high resolution datasets that are 

not often available at regional scale. For instance, Günther (2003) applied his model SLOPEMAP to 

extract structural features of the hard rock terrain using a 5 x 5 m DEM pixel size for a study area of 

2.5 km2, which is inappropriate when only 10 x 10 up to 30 x 30 m DEM pixel sizes are available at 

regional scale. These methods therefore require high resolution information and many parameters to 

be rationally planed on fairly large areas. 

However, strong correlations between topography and earth surface processes have been suggested 

for many years (Powel, 1876 and Gilbert, 1877, cited in Montgomery and Brandon, 2002; Strahler, 

1954). Therefore, the terrain morphology reflects the compounded influence of these internal 

settings (Locat et al. 2000). Hence, Rouiller et al. (1998) and then Loye et al. (2009) proposed the 

Slope Angle Distribution (SAD) procedure to use the topography as a proxy to detect potential source 
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locations. The next step is to assess the susceptibility level of rockfall release of the potential source 

locations previously detected. Therefore, this paper proposes to improve the SAD procedure by 

linking the cumulative distribution function of the slope angle to quantitative block release 

susceptibility. 

The Flow-R software (Horton et al. 2008; Blahut et al. 2010; Kappes et al. 2011) is used to compute 

rockfall runout areas. It assesses propagations thanks to an open choice of algorithms and 

parameters of probabilistic spreading and basic energy balance, such as a multiple flow direction 

model (Holmgren, 1994) coupled with an inertial factor (Gamma, 2000) and a maximum runout 

distance based on a Coulomb friction model. Moreover, since Horton et al. (2008), the model is 

nowtaking into account the susceptibilities of block releases in the resulting spreading. 

Finally, this improved methodology allows to draw rockfall susceptibility maps, detecting areas 

potentially or really exposed to natural hazards, without quantifying landslide intensities and 

frequencies (Jaboyedoff et al. 2012b). Then, after a calibration based on available rockfall 

inventories, hazard maps can be obtained, taking into consideration both relative frequencies of 

block release and propagation (Jaboyedoff et al. 2005b; Corominas and Moya, 2008). Indeed, the 

hazard is always a challenging parameter to estimate in a Quantitative Risk Assessment (QRA) 

(Corominas et al. 2005a). 

 
Figure 5.1: Photography of a rockfalls event in 2006 that reached twice the road section near Le Plamproz, in the Bagnes 

Valley. 

As an example of the applicability of this procedure, the risk of rockfalls to vehicles traffic along the 

main roads of the Swiss Alpine valley of Bagnes (Figure 5.1) is assessed, and expressed in terms of 

number of direct impacts per year of blocks on vehicles. 
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Table 5.1: Table of main acronyms used in chapter 5 to assess rockfall hazard and risks along roads. Bold font: input 

parameters needed to solve equations; normal font: intermediary or final results solved during the assessment; italic font: 

useless parameters because deleted during the equations simplifications. 

Acronym Definition 

α  Exponent in the Holmgren’s (1994) expression 

d Diameter of blocks considered 

l  Mean length of the car 

mc  Mean values of cliffs distributions 

mss  Mean values of steep slopes distributions 

µ  Friction angle of the runout energy calculation 

Nb Number of rockfall events inventoried along road section 

s and β  Slope angle values 

σ  Standard deviations of cliffs distributions 

T  Traffic per time period tc 

ti Time period of the inventory 

v  Mean velocity 

w Weighting factor of normal distribution function 

xrs  Road section’s cells locations 

f, f1, f2 and ft Normal distribution function 

F  Cumulative distribution function 

Fn  Normalized F: rock-mass-failure susceptibility 

H  Hazard 

k  Calibration factor of hazard 

R  Risk 

E  Magnitude of the rockfall event (function of d) 

Exp  Exposure 

g  Terrestrial acceleration 

i and j Flow directions in the Holmgren’s (1994) expression 

L 
Nc 

Mean length of the road within a pixel 
Total number of vehicles during tc 

Pcell  Probability of a car to be hit inside a pixel 

Pf 
tc 

Relative frequency of propagation (in the Flow-R’s results) 
Considered period of time in the Risk equation 

x  Punctual location 

xp  Pixel location 

Δx  Increment of horizontal displacements in the friction model 
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5.2 Methodology 

 Detection of sources areas 5.2.1

a. Slope Angle Distribution procedure 

The Strahler’s law of constancy of slopes (Strahler, 1950) tells that the morphology of a slope 

topography tends to group predominantly around several mean slope angle values that are normally 

distributed with low dispersion. These particular slope angles of convergence can be often related to 

the most frequently encountered four major morphological units (Oppikofer et al. 2007; Loye et al. 

2009): 

o Plains formed by fluvio-glacial deposit; these correspond to the set of low slope angles; 

o Bottom parts of the valley flanks comprising alluvial fans related to debris flow deposits and 

landslides mass. These correspond to the set of foot slopes angles; 

o Talus slopes and valley sides (flank) covered by till, screes and debris mantles as well as rocky 

outcrops lightly covered with soil. These correspond to the set of steep slopes angles; 

o Cliffs and rock faces corresponding to the very steep sets of slope angles. 

Hence, the morphology of a terrain displays characteristic slope angles that can be directly related to 

the geomorphic processes involved in slopes stability. Rockfall source areas are commonly found in 

the steepest morphological units. 

Based on these statements, Rouiller et al. (1998) and then Loye et al. (2009) have established a DEM-

based geomorphometric approach to detect these morphological units and therefore rockfall source 

areas, named the Slope Angle Distribution (SAD) procedure. The classification is done by computing 

the Slope Angle Frequency Distribution (SAFD) of the study area, the frequency being normalized 

considering their real surface of occurrence. The SAFD is then decomposed into several Normal 

distributions f: 
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     Eq. 5.1 

where f is the normal probability distribution function (PDF) of the slope angle value s included 

within the interval [0;90], σ its standard deviation, mc its mean value (Kreyzig, 2006) and w a 

weighting factor which is linked to the proportions between unit surfaces inside study areas. The sum 

of these theoretical normal curves has to rebuild the real SAFD (Figure 5.2A). 
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Figure 5.2: (A) Normal distributions of the slope angles of the granitoids HMA in the Bagnes Valley, extracted from a 10m-

DEM. Three parameters are used to detect potential rockfall source areas: mc which is the mean angle of the cliffs 

distribution and σ its standard deviation; mss which is the mean angle of the steep slopes distribution. In this case, cliffs 

units are decomposed in only one normal distribution. (B) Normalized cumulative distribution function (Fn) for the cliffs 

units, assimilated to a quantitative weighting of potential rockfall source areas, i.e. to a rock-mass-failure susceptibility. The 

mean angle of the steep slopes distribution mss is used as first threshold to exclude lower values as potential rockfall source 

areas. 

The above-mentioned sets of morphological units do not always exist in the study area; the number 

of normal curves is therefore given according to the number of morphological units present in the 

area of interest (as detailed in Loye et al. 2009). Moreover, in some cases (Figure 5.3A), the 

distribution of the slope angles of cliffs units has to be decomposed in two normal functions f1 and f2. 

This can be caused by the topography itself (potential high dispersion of this unit that possibly exists 

from 45° to 90°) or by extent of the support (limits of the study domain). In theory, it could be 

divided in more than two distributions; but based on previous experiences two distributions are 

sufficient (Oppikofer et al. 2007; Loye et al. 2009; Jaboyedoff et al. 2012b). Then, the total 

distribution ft of cliffs units is simply defined as the sum of f1 and f2: 

( ) ( ) ( )sfsfsf t 21 +=         Eq. 5.2 
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Figure 5.3: (A) Normal distributions of the slope angles of the marbles HMA in the Bagnes Valley. Here, cliffs are 

decomposed in two normal distributions. (B) The normalized cumulative distribution function (Fn) of the sum of the two 

cliffs distributions (ft) is shown by the red line. In comparison, the normalized cumulative distribution functions for the two 

cliffs distributions are shown in blue (f1) and cyan (f2). 

Technically, the input values for the initial normal distributions are defined according to the local 

maximum and minimum that can be visually identified along the SAFD. The fitting process is 

performed by minimizing the error between the most-likely sets of normal curves and the target 

function (namely the SAFD) using a simplex optimization solver. The morphological units are then 

delimited finally according to the sets of normal slope angle distribution, where a normal curve 

becomes dominant over the others. An example of classified slope steepness map in shown in Figure 

5.4. The cliffs morphological unit ft is then considered as the potential rockfall sources areas. 

Finally, considering that the local morphology of an Alpine valley is partly controlled by structural 

settings and rock-mass properties (Terzaghi, 1962; Selby, 1982; Willie and Mah, 2004), different 

lithological and tectonic units have to be considered in order to refine the morphological analysis. 

Therefore, the study area is classified in homogeneous morphotectonic areas (HMA), following 

similar lithological characteristic rock mass structure and geomorphic activity, and one SAD 

procedure has to be done for each HMA. 
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To sum up, the SAD is a systematic approach to extract for each HMA a slope angle lower threshold, 

corresponding to the limit between the steep slopes and cliffs normal distributions. This procedure 

leads to Booleans results (i.e. in/out cliffs units) and cells included inside these cliffs areas are 

considered as potential sources of fragmental rockfalls. 

 
Figure 5.4: Example of main morphological units in a region of the Bagnes valley according to slope angle thresholds got 

thanks to the SAD procedure. (Hillshade and 10 m isohypses: ©2008 swisstopo) 

b. Refinement of the Slope Angle Distribution 

As stated in the introduction, taking into account all internal parameters and external factors can 

require too high resolution dataset and too many parameters to be applied on fairly regional scale in 

order to precisely detect and rate potential rockfall source areas. But as topographies are strongly 

correlated with internal rock settings (Locat et al. 2000) and earth surface processes (Montgomery 

and Brandon, 2002), we do the assumption that for large areas, the block release susceptibility is 

function of slope angles. Thus, improving the SAD approach, this paper aims to link the cumulative 

distribution functions of slope angles of cliffs units to rock-mass-failure susceptibility inside rockfall 

source areas previously identified. 

The explanations below will illustrate only the situation where cliffs units are decomposed in two 

distributions (Eq. 5.2). When it is not the case, ft is equal to f1. The associated cumulative distribution 

function F of cliffs distribution is defined by: 

( ) ( ) dssfF t ⋅= ∫
β

β
0

        Eq. 5.3 

where s and β are two slope angle values included within the interval [0;90]. By definition, Eq. 5.3 

gives the probability that a slope angle s is lower than β (Kreyzig, 2006). 
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Therefore, it is by extension assimilated to a quantitative block release susceptibility. Moreover, the 

mean value of the steep slopes distribution mss, extracted from the SAD procedure (Figures 5.2A and 

5.3A), relates to an apparent equilibrium slope angle of scree deposits (usually around 35°, that 

mainly compose steep slopes units).  

Thus, for higher slope angle values than mss , blocks can be mobilized; on the contrary, for lower 

slope angle values, blocks are not considered. As a consequence, mss is used as a lower threshold to 

exclude areas not steep enough to be potential source of rockfalls. Thus, Eq. 5.3 has to be cutoff by 

mss and then normalized for slope angle values higher than mss; the final cumulative function Fn is 

shown in Figures 5.2B and 5.3B and defined by: 
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The normalized cumulative distribution function Fn can be assimilated to a quantitative weighting of 

potential rockfall source areas, i.e. a rock-mass-failure susceptibility indicator (Figure 5.8), identified 

according to the slope angles and the SAD procedures. 

 Runout assessment 5.2.2

Many tools were developed to calculate runout areas of rolling, bouncing or falling blocks (Ritchie, 

1963) and have been reviewed by Dorren (2003a). In this study, the runout simulation is computed 

by the Flow-R software (Horton et al. 2008). The propagation is assessed by means of a probabilistic 

spreading and a basic energy balance, controlling respectively the lateral extent and the runout 

distance, merging several models and approaches. Everything is processed at the cell level and 

iterated on the DEM grid according to the propagation direction. Thanks to the open choice of 

algorithms and parameters, it has been possible to parameterize the model according to our needs at 

regional scale. The model has also been modified to take into account the susceptibilities of the 

sources (calibrated on the base of Fn) in the resulting spreading, which is a step further in the 

frequency analysis. It allows us to approach the hazard frequency of a location more consistently 

than before by relating it to the source susceptibilities. 

a. Probabilistic spreading 

The probabilistic spreading is based on flow direction algorithms that process a probability for a cell 

to flow to its neighbors (Horton et al. 2008). The probability is integrated in a continuous way, 

meaning every neighboring cell having a non-null probability will be propagated further. Flow 

direction algorithms, that are the basis of the spreading, portion the probabilities according to the 

slope of the surrounding cells.  
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Fairfield and Leymarie (1991) have introduced the multiple flow direction algorithm as a stochastic 

method which gives a probability to every cell with a descending slope. Then Holmgren (1994) has 

suggested a variation of this method by introducing the exponent α on the slope gradient: 
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where i, j are the flow directions, Pf is the probability proportion in direction i, tan βi is the slope 

gradient between the central cell and cell in direction i, and α is the exponent to calibrate.  

The exponent α allows to better control the spreading extent from the multiple flow direction 

algorithm. When 1=α , Eq. 5.5 is equivalent to the multiple flow direction algorithm (Fairfield and 

Leymarie, 1991), and when ∞→α  to the D8 algorithm (propagation following only the steepest 

slope: O'Callaghan and Mark, 1984, Jensen and Domingue, 1988).  

In addition to the flow direction algorithm, a persistence factor was introduced as in Gamma (2000), 

which is a weighting of the probability according to a direction change. The chosen values are the 

same as Gamma (2000), i.e. 1 when there is no change in direction and 2/3 in any other case. The 

role of this persistence factor is to take in consideration the inertia according to the previous 

directions of the moving blocks which can therefore deviate from the steepest paths. 

b. Runout distance 

The runout distance is assessed thanks to a basic energy balance including the potential and kinetic 

energy components and an energy loss function. As the source mass is unknown, the energy balance 

is processed on a unit mass. For the energy loss function, a simple Coulomb friction model (with a 

single friction coefficient) was used: 

µ×∆×=∆ xgEloss         Eq. 5.6 

where Δx is the increment of horizontal displacement, g the gravity acceleration and μ is the tangent 

of the friction angle. To this algorithm, we can add an upper threshold to limit the velocity of blocks 

or an equivalent kinetic energy (Horton et al. 2008). Then, the maximum runout distance is reached 

when the energy becomes zero, i.e. when the initial potential energy has been completely lost by 

friction. 

c. Results in Flow-R 

Flow-R can be used now to draw maps of relative frequencies of rockfall using: (1) the spreading 

probability based on a multiple flow algorithm including an inertial factor, and (2) the maximum 
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runout distance based on a Coulomb friction model. Finally, Flow-R provides for each cell of the DEM 

the integration of relative frequencies, function of (1) the initial rock-mass-failure susceptibilities Fn 

of onset cells and (2) of all computed rockfall propagations Pf which can be superimposed (Figure 

5.5). 

 
Figure 5.5: Theoretical computation of rockfall runouts from two source areas on a DEM grid. These relative frequencies 

(numbers in the green and blue cells) of rockfall propagations take into account (1) the initial rock-mass-failure 

susceptibilities (numbers in the orange cells) and (2) the integration of all computed propagations with probabilistic 

spreading algorithms. The maximum runout distance is reached when the simple Coulomb friction model becomes zero.  

 Rockfall quantitative hazard mapping along roads 5.2.3

The hazard H is the probability of occurrence of a defined phenomenon of magnitude equal or 

greater than E at a punctual location x in a given period of time, as one year (Fell et al. 2005 and 

2008). It can be computed multiplying a rockfall failure mean frequency and a probability (Pf) of 

propagation (Leroi, 1996; Jaboyedoff et al. 2005c; Volkwein et al. 2011). 

However, the rock-mass-release susceptibilities Fn extracted from the improved SAD approach are 

relative to the slope angles and are not absolute numbers. Moreover, the frequencies of 

propagations Pf are assessed by Flow-R based on a unit mass and no different magnitudes of events 

(i.e. blocks volumes) can be considered. As a consequence, Flow-R results (namely Fn multiplied by Pf) 

have to be calibrated to adjust the hazard by a factor k which is a calibration term that links these 

results with observed events per year for a given magnitude: 

( ) ( )pfnp xPFEkxEH ××=),(       Eq. 5.7 
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In Eq. 5.7, the rockfall hazard H (number of event per year) for a magnitude E is defined for a period 

of reference ti at a cell xp and is equal to the product of rockfall failure susceptibilities Fn times 

frequencies of propagation Pf up to a cell xp and times a calibrating factor k, that depends on E.  

This coefficient k depends on a known number of rockfall events with a given magnitude E in a cell xp. 

However, in a context of rockfall studies along corridors, exact positions of impacts are unknown. For 

practical issues, inventories are frequently made along road sections. On a DEM, a road section is 

composed of a group of cells xrs. So the inventoried number of events Nb along the section is the sum 

of all the rockfalls that occurred within the cells of this section during the time period ti of the 

inventory. Thus, Nb has to be distributed in all the cells assessed following: 

( ) ( ) ( )[ ] irsf
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     Eq. 5.8 

where k is calibration factor with a frequency unit, function of a number of rockfall events Nb of 

magnitude E during a period of time ti inventoried along a road section of cell xrs divided by the sum 

of the Flow-R results within the whole road section. 

 Rockfall quantitative risk assessment along roads 5.2.4

Blocks frequently hit cars along Swiss mountain roads and occupants of vehicles are not necessarily 

killed or injured. Therefore, this paper is focused on the risk R of rockfalls to vehicles traffic; no 

considerations about vulnerabilities and elements at risk are provided, even if it would give 

proportional results. Adapting the risk equation of Fell et al. (2005) to this specific case, the annual 

risk can be defined by: 

( ) ( ) ( ) ( )pcppp xNxExpxEHxER ××= ,,      Eq. 5.9 

where R is the risk expressed in terms of number of direct impacts of blocks on cars per year, 

according to the hazard H and the exposure Exp, i.e. the probability that cars is hit in the hazardous 

area, and Nc the number of threatened vehicles. Modified after Fell et al. (2005), the  exposure is 

presented as: 

( ) ( ) ( )pcell
cp

p xP
txv

LxExp ××=
1

      Eq. 5.10 

Exp depending on the mean length of the road inside cells L and the mean velocity v for a considered 

time period tc (one year in this case) and the conditional probability Pcell: 

( )
L

ldxP pcell
+

=         Eq. 5.11 
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where Pcell is the probability that a car of length l is hit by a block of diameter d on average  inside a 

cell of length L, knowing that a block falls into a cell where a car is present. Indeed, in this study 

hazard and exposure are defined on a cell’s scale xp, not on a punctual location x. It is assumed that d 

is the minimum size block that will affect significantly the car and the magnitude E is proportional to 

the block size. The diameter of blocks d has to tally with the inventoried events Nb considered to 

calibrate the hazard in Eq. 5.8. Then, the total number of vehicles attended on a road section is equal 

to Eq. 5.12: 

cppc txTxN ×= )()(         Eq. 5.12 

where T correspond to the daily traffic. Finally, the annual risk induced by rockfalls to vehicles traffic 

for an event with defined magnitude at a pixel xp can be rewritten as follow: 

( ) ( ) ( ) ( )p
p

pp xT
xv

ldxEHxER ×
+

×= ,,       Eq. 5.13 

R being a number of direct impacts of blocks of diameter d on cars of length l per year for a defined 

magnitude E at a cell xp, function of the hazard H, the daily road traffic T, the mean velocity v, the 

mean car length l and the minimum block diameter d. Finally, the total risk along corridors is defined 

as the integration of all calculated R(E, xp) within the considered road sections. 

5.3 Case study: the Val de Bagnes 

 Settings 5.3.1

The Val de Bagnes is located in the Canton of Valais in Switzerland. With a surface area of 300 km2 

and an elevation ranging from 677 m to 4313 m a.s.l., this municipality is under rapid development, 

in particular because of the fast growing of the Verbier ski resort. Moreover, an important power 

dam is located in the upper part of the valley. It means that the daily traffic is rather heavy, up to 

5’800 cars and 32 bus per day according to open-access databases (SRCE, 2009; CarPostal, 2010). 

Rockfall susceptibility maps at 1:25’000 were already performed (Michoud et al. 2010a; Jaboyedoff 

et al. 2012b). In this paper, a QRA of rockfalls to vehicles traffic is performed along the main roads 

(40 km) of the valley. To achieve this goal, the authors used a 10 m cell size DEM derived from 

national maps at 1:25’000 (CN25, © swisstopo) to extract slope angles, the geological and tectonic 

vector atlas at 1:500’000 (© swisstopo) to classify the valley by HMA and the vectorized landscape 

model of Switzerland (Vector25, © swisstopo) to extract the location of the 40 km of roads. 
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 Rockfall hazard assessments 5.3.2

a. Detection of block release areas 

The rock type present is very large, from Cambrian polycyclic basements to Mesozoic and Cenozoic 

sedimentary covers (Sartori et al. 2006) of the Helvetic, Penninic and Austro-Alpine domains 

(Trümpy, 1980). Furthermore, large areas are covered by quaternary deposits that are fluvio-glacial 

deposits, colluvial fans or moraines. As the material diversity is wide, it justifies the importance of the 

HMA separation before further steps. Thus, each HMA was determined according to similar 

lithologies extracted from the 1:500’000 vectorised geological Atlas of Switzerland. Height classes 

were identified (Figure 5.6): basic rocks, conglomerates, flyschs, granitoids, limestones, moraines, 

marble plus breccias and schists. In addition, some areas, such as lakes or alluvial deposits, were 

directly mapped as areas without any rockfall sources, due to absence of relief and/or material. 

Then SAD analysis was performed from the 10 m DEM (©2008 swisstopo) and the useful slope angles 

(mss, mc and σ for each HMA) were extracted to identify and weight potential rockfall source areas 

within the height HMAs. Results are presented in Table 5.2. This procedure was done thanks to the 

freeware Histofit (Loye et al. 2009) which decomposes the SAFD extracted from the software ArcGIS 

of Esri© and fits it with a predefined number of normal distributions. 

With the normal curves defined in Histofit and a slope angles map of the region, a MATLAB® script 

allows to calculate directly rock-mass-failure susceptibilities Fn (Eq. 5.4) in each potential rockfall 

source cell of the map. Finally, the potential onset areas within each HMA were merged in one map 

(Figure 5.8) before computing one propagation assessment. 
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Figure 5.6: Studied road sections and homogenous morphometric areas of the Bagnes Valley, classified according to the 

national geological atlas and the Vector25 (©swisstopo). They were identified differentiating daily traffic and mean 

velocities along the roads. The road section used to calibrate the rockfall hazard assessment is located between the second 

gallery after Lourtier and Les Plamproz, where the rockfall activity is evident, as shown in Figure 5.1 (Hillshade and 10 m 

isohypses: ©2008 swisstopo) 

 

Table 5.2: Slope angles extracted from SAD analysis of each HMA. Mean values and standard deviations of cliffs 

distributions correspond respectively to letters mc and σ, and mean values of the steep slopes to letters mss. 

Homogenous 
Morphometrical Areas mss 

1st normal distribution 2d normal distribution 

mc σ mc σ 

Basic rocks 33° 53° 8.3° - - 

Conglomerates 31° 46° 8.7° - - 

Flyschs 35° 48° 7.5° 60° 7.7° 

Granitoids 34° 51° 7.7° - - 

Limestones 35° 45° 8° 60° 8.0° 

Marble and Breccias 33° 50° 6.4° 62° 7.4° 

Moraines 33° 44° 6.1° - - 

Schists 30° 47° 8.3° 61° 8.9° 
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b. Runout assessment 

Taking into account local observations (Jaboyedoff et al. 2012b) and detailed studies including 

computations of 2D and 3D rockfall modelling made for specific local cliffs into the valley, parameters 

of the runout assessment by Flow-R were calibrated as following: α = 1 (Eq. 5.5) and μ = tan 33° (Eq. 

5.6). Then, only one computation was done for the whole valley merging all the 10 m DEM (Figure 

5.9), in order to ensure continuous and homogenous results. Finally, these results were compared 

with a test simulation performed by the freeware CONEFALL (Jaboyedoff and Labiouse, 2011a) based 

on an energy line angle equal to tan 33° too. On the one hand, both lateral and longitudinal 

extensions of computed runout areas are quite similar along open slopes, which guarantee the 

coherence of the Flow-R runout assessment. On the other hand, in chenalized slopes, Flow-R 

algorithms better constrain lateral extensions of spreading areas. 

 
Figure 5.7: Rockfall runout assessment based on Flow-R and Conefall models. 

c. Rockfall hazard assessments 

In order to achieve the normalized quantitative hazard assessment along the road sections, it is 

necessary to calibrate the Flow-R results with the factor k (Eq. 5.8 in Section 5.2.3). The road section 

used to calibrate the model is located on the NW side of the Dranse river, between the second 

gallery after Lourtier and Le Plamproz (Figure 5.6), where the strong activity of cliffs is well known for 

many years (Figure 5.1). Along this section, covered by 237 cells with a sum of Flow-R results equal to 

9’453, it was assumed that 3 blocks with diameters d equal or greater than 25 cm reach the road 

every year (tr = 1) according to our knowledge of past events. Then according to Eq. 5.8: 

     Eq. 5.14 
( ) [ ]yeareventscmdk /

9453
1325 ×=≥
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An extract of the hazard map is presented in Figure 5.9 and Figure 5.10. 

 
Figure 5.8: Rockfall failure susceptibility in the Bagnes Valley, identified thanks to the improved Slope Angle Distribution 

approach. (Hillshade and 10 m isohypses: ©2008 swisstopo) 

 
Figure 5.9: Rockfalls relative hazard assessment in a part of the Bagnes Valley, performed by the software Flow-R. In the 

lower part of the valley (Sembrancher, Chable, Verbier), the daily traffic is rather heavy but the exposition is low. On the 
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contrary, in the upper part of the valley (Fionnay and Mauvoisin), the daily traffic is lower but the hazard is pretty much 

higher. (Hillshade and 10 m isohypses: ©2008 swisstopo) 

 
Figure 5.10: “Inverse” hazard once the calibration performed, focused along the road section of Fionnay. Gaps along the 

section correspond to tunnels. (Hillshade and 10 m isohypses: ©2008 swisstopo) 

 Rockfall risk assessment along the main roads of the valley 5.3.3

a. Inputs 

The main important roads of the Val de Bagnes were extracted from the Vector25 (© swisstopo). The 

daily traffics along roads of the valley considered T were obtained from open-access databases 

(SRCE, 2010 and CarPostal, 2010). Mean vehicles velocities v were estimated according to the local 

regulation and the state of the roads (roadwidth and ageing). Therefore, six distinct road sections 

were distinguished and presented in Figure 5.6 and Table 5.3, differentiating daily traffic and 

velocities along them. Moreover, the mean car length was set at 4 m, which corresponds to normal 

European compact cars length. All parameters used in Eq. 5.13 are summarized in Table 5.3. 

b. Results 

Finally, the annual risk induced by fragmental rockfalls greater or equal to a diameter of 25 cm to 

vehicles traffic was assessed along each road section of the Val de Bagnes. Results are summarized in 
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Table 5.4. Along these sections, they vary a lot. In the lower part of the valley (Sembrancher, Chable 

and Verbier sections), where the daily traffic is important, they are only few rockfalls propagations 

that reach the road. This is why the risk is evaluated at one hit car every two hundreds to six 

thousands years. On the opposite, in the upper part of the valley (Lourtier, Fionnay and Barrage 

sections), the daily traffic is lower but they are a lot of blocks that reach the road; the risk is 

significantly higher, namely to one hit car every sixty years (Table 5.4). The integrated risk along all 

the road sections of the Val de Bagnes is evaluated to 0.03414 hit cars per year, i.e. approximately 

one incident every thirty years. 

Table 5.3: Parameters for risk calculation along the different studied road sections (according to CarPostal, 2010, SRCE, 

2009 and local road regulations). These road sections are mapped in Figure 5.6. 

Road Sections T [daily traffic] v [km/h] d [m] l [m] 

Sembrancher 10’600 cars 80 0.25 4 

Chable 5’800 cars 80 0.25 4 

Verbier 5’000 cars - 32 bus 60 0.25 4 

Lourtier 2’200 cars - 22 bus 70 0.25 4 

Fionnay 800 cars - 8 bus 50 0.25 4 

Mauvoisin  600 cars - 6 bus 40 0.25 4 

Table 5.4: Results of the quantitative risk assessment induced by rockfalls (mean diameter: 25 cm) to vehicles traffic along 

road sections of the Val de Bagnes. Finally, the whole risk is defined as the sum of all calculated pixel. 

Road Sections Total number of 
cells 

Number of reached 
cells 

Risk 
[x cars / year] 

Inverse Risk 
[1 car / x years] 

Sembrancher 559 197 (35%) 2.955 . 10-3 ~ 340 

Chable 664 178 (27%) 4.626 . 10-3 ~ 220 

Verbier 1031 98 (10%) 1.668 . 10-4 ~ 6000 

Lourtier 851 63 (7%) 8.369 . 10-4 ~ 1200 

Fionnay 1288 976 (76%) 1.676 . 10-2 ~ 60 

Mauvoisin 742 591 (80%) 8.787 . 10-3 ~ 110 

All roads 5135 2103 (41%) 3.414 . 10-2 ~ 30 

5.4 Discussions 

 Results within the study area 5.4.1

According to the authors’ experience and testimonies from local security services and geologists, the 

results (i.e. the localization of potential rockfall onset areas, the runout computation and the risk 

assessment) are in agreement with their observations. Nevertheless, the hazard calibration (Eq. 5.14) 

could be significantly improved with more complete inventories along these roads (detailed 

discussion in Section 5.4.5). In addition, the calculated risk is approximated and simplified, because it 

does not take into account some factors. First, the time lapse for the driver to react and the braking 
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distance in front of blocks already on the road are ignored, considering that the velocity is low 

enough to avoid a collision along the most exposed sections. Moreover, all surveys and remediation 

measures already done (such as anchors, nets, removal of unstable blocks, monitoring systems, etc.) 

are ignored, except for tunnels and galleries which are mapped from orthophotos. Finally, the 

potential inhomogeneous repartitions of rockfall events and traffic during the day are ignored; for 

example, during winter periods, workers drive early in the morning and late in the afternoon, when 

cliffs are frozen. 

 Recent rockfall event 5.4.2

A recent rockfall occurred on 2 January 2012, during the review process of this paper. The deposit of 

approx. 1000 m3 cut a small road (Figure 5.11A) on mostly stopped on it. The source area was 

localized in a zone clearly defined as a potential rockfall source area with a high rockfall failure 

susceptibility of about 0.8 (scale: no susceptibility = 0 - highest susceptibility = 1; see Figure 5.11B). 

The trajectories of two blocks that reached a second road 80 m lower fit well with the predicted 

runout using Flow-R (Figure 5.11C). Thus, this event is in agreement with the improved SAD approach 

and the Flow-R results, showing its potential ability to predict hazard and risk zones. 

 Advantages and limitations of the presented approach 5.4.3

The combination of the improved SAD approach and the Flow-R software allows to establish rockfall 

susceptibility, and when inventories are available, to obtain scaled hazard to assess risk along roads. 

This methodology is optimized for studies at regional scale with only few available information. 

Indeed, this procedure requires at least topography DEM and, if possible, geological map in order to 

improve the rockfall failures susceptibilities and spreading probabilities. 

The refinement of the SAD approach is based on the assumption that the release susceptibility is 

related to the geomorphology, i.e. steepness of the topography, even if it is a simple rockfall activity 

factor. But, using geological information aims to indirectly take into account rock mass quality that 

influences the stability conditions too. Nevertheless, it is also true that other very important local 

factors (such as weathering and/or deburstressing) cannot be taken in consideration for large areas, 

using documents available at regional scale. Then, regarding propagations, Flow-R assesses runout 

areas using only a DEM, since the parameters of the Holmgren’s and the Coulomb’s expressions (Eq. 

5.5 and 5.6) can be based on literature and/or past event records. This software is particularly 

optimized for regional studies and computation times are still acceptable with a normal workstation 

(five days for the study in Bagnes). Moreover, the approach can be even better calibrated according 

to other potential documents available for the study area (such as landuse maps, aerial images or 

information about mechanical rock parameters) in order to improve detection and runout settings. 
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However, this procedure oversimplifies the laws governing rockfall failures and block propagations, 

which is suitable at regional scale but becomes hazy for small studies areas. Finally, this approach 

should be used as a preliminary quantitative assessment for large regions, highlighting hotspots 

requiring more detailed studies. 

 
Figure 5.11: (A) A recent rockfall event (2 January 2012) cut a mountain road with a deposit of approx. 1000 m3 and two 

single block releases. The height difference between the fresh scarp and the road is about 30 m. (B) The rockfall failure 

susceptibility map indicates that the onset is clearly defined as a potential rockfall source area with an high rockfall failure 

susceptibility of about 0.8. (C) The trajectory of two blocks that reached a second road 80 m lower fit well with the 

predicted runout and confirms Flow-R results. (Hillshade: ©2008 swisstopo) 

At local scales, robust empirical and physically-based methods have been developed for many years, 

allowing fine and realistic rockfall failure detections and block propagations. For instance, the RSS-

GIS method (Günther et al. 2004) allows to deal with internal parameters and external factors of 

rockfalls. But, it requires a lot of data on topography, structural geology, geotechnical settings and 

climatic conditions. The RHRS method (Pierson et al. 1990) is based on eleven parameters that have 

to be checked on the field and only on cliffs along roads. These two approaches are therefore 

indicated for studies at local scales to reliably and accurately detect and rate potential rockfall source 
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areas; however, they would require substantial efforts for regional works if prioritized locations have 

not been defined before in-situ investigations. Then, regarding rockfall propagations, software like 

HY-STONE (Crosta et al. 2004; Frattini et al. 2008; Agliardi et al. 2009) is able to deal with both local 

and regional scale; moreover, it assesses probabilistic runout areas based on physical processes and 

computations of trajectographies. Furthermore, such software is able to consider countermeasures; 

fences design and location efficiencies can be estimated before their setup (Agliardi et al. 2009) to 

optimize them. However, it requires many inputs (such as rolling frictional angles, normal and 

tangential restitution coefficients) that have to be estimated and spatially distributed for all surfaces 

type of the study area, depending on landuses as well as superficial and bedrock geologies. 

Therefore, it involves, for studies at regional scale, more efforts to acquire differentiated input 

parameters and compute runout than the Flow-R model. 

 Influences of the cell size DEM 5.4.4

The DEM resolution influences rockfall source detections: a coarse DEM tends to smooth high slope 

angle values.  

 
Figure 5.12: (A) Normal distributions of the slope angles of the limestones HMA in the Bagnes Valley extracted from a 25 m 

resolution DEM. (B) Normal distributions of the slope angles of the same limestones HMA in the Bagnes Valley extracted 

now from a 2 m resolution DEM. (C) Cumulative distribution functions are shown for the same limestone HMA, once with a 

25 m resolution DEM and once with a 2 m resolution. 
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As stated in Loye et al. (2009), it implies that the higher resolution the DEM is, the smaller the 

potential source areas detected are. Furthermore, the coarser the DEM is, the lower the apparent 

slope angle of a vertical cliff is. For example, a 10 m vertical cliff has an apparent slope angle of 83° 

on a 2 m DEM instead of 55° on a 10 m DEM (Loye et al. 2009). As threshold angles which are used to 

identify block release susceptibilities (namely mss, mc and σ) are extracted from slope maps, their 

values directly depend of the DEM cell size.  

Thus, for the same detected cliff, the coarser the DEM is, the lower these threshold angles of cliff 

detection are (Figures 5.11A and 5.11B). It means that the influence of the DEM cell size is implicitly 

taken into account by the real Slope Angle Frequency Distribution and no corrections have to be 

added. Figure 5.12C illustrates a limestone cliff with an apparent slope angle of 59° on a 25 m DEM 

and 73° on a 2 m DEM having the same susceptibility of 0.9, regardless of the DEM cell size used 

during the SAD approach. 

 Hazard calibration 5.4.5

When it comes to converting rockfall susceptibilities into hazard (i.e. number of blocks per year per 

cell), the location of the calibration section associated to an inventory has a strong influence. Ideally, 

the section should be located along a non-forested slope without remediation systems. Therefore, if 

the calibration section is located along forested slopes, the final hazard would be underestimated 

along non-forested adjacent slope, because of a biased number of events due to blocks deviated or 

stopped by trees or anthropogenic countermeasures. 

However, due to practical issues, the calibration step has to be achieved with inventories that are 

available (when they are), even if they are not always performed along optimum road sections. 

Nevertheless, a preliminary method to calibrate hazard is proposed and is still in progress; enhanced 

approaches will have to be developed in future works. Up to now, at least one section is needed to 

perform this calibration, but multiple road sections could also be used. Moreover, introducing during 

the calibration step (i.e. Eq. 5.8) two adjustment factors to take into account (1) classical censoring 

effects inside inventories (Hungr et al. 1999) and (2) rockfall-forest interactions along forested slopes 

based on statistical studies (Dorren et al. 2005) would be the first examples of future evolutions that 

could improve the reliability of the hazard calibration.  

5.5 Conclusions 

The improved approach of the Slope Angle Distribution and the Flow-R software were introduced and 

carried out along roads of the Val de Bagnes to assess the risk induced by fragmental rockfall to 

vehicles traffic. Linking the normal distributions of cliffs units with normalized cumulative functions, 
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rockfall onset areas can be identified with rock-mass-failure susceptibility. Indeed, these indexes can 

be achieved at regional scale according to slope angle values inside homogeneous morphometric 

areas thanks to the enhanced SAD procedure. Then Flow-R software provides the relative 

frequencies of block propagations, using several approaches and susceptibilities of source areas. The 

reach angle that controls the maximum runout extent should be calibrated with back analysis of past 

events on orthophoto or inventories; in case of limited input data, reach angles can still be extracted 

from extensive reviews (Toppe 1987; Evans et Hungr 1993; Dorren 2003a). Thanks to these results, 

i.e. rock-mass-failure susceptibilities and relative frequencies of propagations, hazard maps are 

achieved and calibrated with an inventoried number of events along a road section.  

Even if the obtained quantitative risk assessment is an approximation, this improved approach allows 

to deal at low cost with real hazard maps at a regional scale, requiring only few documents, namely a 

DEM and a geological map (if available). So this approach is indicated for regions which cannot afford 

systematic detailed assessments of the risk due to rockfalls; thus hotspots can be identified in order 

to prioritize sections on which detailed investigation and mitigation measures will be the most 

efficient. 
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6 La Perraire rock slope deformation monitoring and modelling by 
Ground-based InSAR and terrestrial LiDAR integration 

After Michoud C, Baillifard FJ, Derron MH, Jaboyedoff M: La Perraire rock slope deformation monitoring and modelling by 

Ground-based InSAR and terrestrial LiDAR integration. In prep for Engineering Geology 

Abstract 

La Perraire instability is an active deep seated rock slope deformation involving long-term 

movements and frequent rockfalls that threaten infrastructures and populations within the Val de 

Bagnes, in the Swiss Alps. Since 2006, the rockslide has been periodically monitored by ground-based 

radar interferometry and terrestrial laser scanning. The integrated use of both techniques was 

decisive to clarify the whole landslide extension as well as its short and long term kinematics. By 

performing an original wrapping of millimetric daily displacements recorded by GB-InSAR on dense 

3D TLS point clouds, we were able to map the rockslide borders and to highlight non-uniform 

translational displacements along a wedge failure surface. Moreover, based on sequential TLS 

comparisons, long term displacements and strain monitoring revealed an active extension of the 

upper part of about 0.085 %/yr; in addition, displacements rates up to 25 cm/yr and a progressive 

downward decrease movement are implying a compression of the rockslide toe up to -0.17 %/yr. The 

instability, with calculated volume between 8 and 10 million cubic meters, could evolve into a rock 

avalanche that could reach the Lourtier village. These investigations are therefore essential 

requirements to design an early warning system and to set pertinent alert thresholds. 

Keywords: Deep seated rock slope deformation, Mapping, Monitoring, GB-InSAR, Terrestrial LiDAR, 

Swiss Alps. 

6.1 Introduction 

For the last 15 years, active wave sensors, such as Laser Scanning (LiDAR) and Radar Interferometry 

(InSAR), have changed our perception and interpretation of slope activities (Jaboyedoff et al. 2012a; 

Michoud et al. 2012a; Abellán et al. 2014; Caduff et al. 2014; Monserrat et al. 2014); furthermore 

they are now routinely used for long-term deformation monitoring and can even be integrated in 

early warning systems (Baroň and Supper 2013; Michoud et al. 2013a; Tofani et al. 2013). 
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On one hand, long range terrestrial LiDAR (TLS) devices are based on records of time-of-flight (ToF) of 

laser pulses being back-scattered by natural targets along fixed line of sight (LOS), as detailed in 

Vosselman and Mass (2010) or Jaboyedoff et al. (2016). TLS have thus been designed to model 

infrastructures and topographies with very high point density even in steep and inaccessible areas 

(Beraldin et al. 2000; Gordon et al. 2001; Lichti et al. 2002). Afterward, TLS have been used to detect 

cm to m displacements and volume changes of rock slope deformations over small and large blocks 

by comparing sequential acquisitions (Hunter et al. 2003; Rosser et al. 2005 and 2007; Abellán et al. 

2006 and 2014; Teza et al. 2007; Oppikofer et al. 2008 and 2009; Rabatel et al. 2008; Young et al. 

2013; Royán et al. 2014; Michoud et al. 2015). In constrained cases, specific data filtering can even 

improve the movement detection threshold down to mm levels (Gordon ant Lichti 2007; Abellán et 

al. 2009; Kromer et al. 2015). 

On the other hand, InSAR technique is based on the measure of the phase decay between two 

successive radar images, as detailed in Massonnet and Feigl (1998), Woodhouse (2006), Caduff et al. 

(2014) or Monserrat et al. (2014). Ground-based portable sensors (GB-InSAR) have been also 

developed to detect and continuously monitor mm ground displacements on large blocks (Tarchi et 

al. 2003c; Casagli et al. 2003, 2008 and 2010; Antonello et al. 2004; Herrera et al., 2009 and 2011; 

Barla et al., 2010; Luzi, 2010; Del Ventisette et al. 2012; Schulz et al. 2012; Mazzanti et al. 2015).  

However both techniques have some limitations: terrestrial LiDAR is good for surface geometry 

modelling but its precision actually limits our ability to monitor very slow-moving rock deformations 

over wide areas; GB-InSAR is suitable for small changes imaging, but its metric resolution and 

particular geometry in azimuth/range may be sometime difficult to visually interpret (cf. Table 6.1). 

 

Table 6.1: Main advantages and limitations of TLS and GB-InSAR devices in Earth Sciences (after Michoud et al. 2012a). Bold 

font: advantages of both techniques that we aim to couple. Italic font: limitations of both techniques that we aim to avoid 

by coupling them. 

 Advantages Limitations 

Terrestrial 
LiDAR 

- cm resolution, even in steep slopes 
- Good precision for cm to m displacements 

- Possible mm precisions for constrained cases 
- 3D displacements 

- Easy visual interpretations 
- Light and friendly application in the field 

- Not adapted for mm displacements 
- Long post-processing 

- Vegetation removal very long 
- Do not yet usually fit with EWS 

   

GB-InSAR 

- Very good precision for mm to m (for 
constrained cases) displacements 

- Continuous monitoring 
- Long range (up to 4 km) 
- Suitable for large areas 

- m to dam resolution 
- Difficult visual interpretations 

- 1D displacements 
- Affected by atmospheric effects along weeks 

- Heavy application on the field 
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La Perraire landslide is an 8 to 10 million m3 active rock slope deformation at 2’200 m a.s.l. that is 

threatening the population and infrastructures of the Lourtier village 1’000 m downward, in the 

Western Swiss Alps (Figure 6.1 and Figure 6.2). The rockslide is developed within highly fractured 

quartzitic micaschists of the Mont Fort Nappe (greenschist facies) in the Middle Penninic unit (Steck 

et al. 2001). Cracks opening, block fracturing and sliding, tension trenches, ridges, rock falls and 

shallow landslides are indeed observed on this slope for more than a decade over a surface area of 

about 280’000 m2 (Figure 6.3). With the final aim of investigating potential failure scenarios from 

surface displacements (Saito 1969; Voight 1989; Fukuzono 1990; Crosta and Agliardi 2003b; Petley et 

al. 2005a, 2005b; Rose and Hungr 2007; Federico 2012), we set up 4 TLS acquisitions since 2006, as 

well as 2 GB-InSAR campaigns, in 2011 and 2012 (cf. Section 6.2).  
 

 
Figure 6.1: Location of La Perraire rockslide and Lourtier village (orthophoto and topography: © swisstopo). 

In this paper, we will present results based on these active wave sensors; both of them indeed 

confirmed decisive and singular capabilities to investigate the rockslide extension and understand its 

short and long term kinematics (cf. Section 6.3). In addition, to overcome difficulties of visual 

interpretation of GB-InSAR results due to their singular geometry and resolution, we also designed 

new tools into LiSAmobile (GB-InSAR device of Ellegi Ltd) and Coltop3D (software for geological 

interpretations from point cloud data, Terranum Ltd, Jaboyedoff et al. 2007) to combine advantages 

of both techniques, by wrapping high precision displacement time series from GB-InSAR on high 

resolution geometrical data from TLS. 
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Figure 6.2: Rockslide delimitation in yellow (cf. Section 6.3) and cross-sections locations in blue (cf. Section 6.4) wrapped on 

general and detailed topographic maps (background maps: © swisstopo).  
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Figure 6.3: (Up) Suspected limits of the La Perraire rockslide. In addition to many rockfalls, scree deposits and shallow 

landslides visible on the panorama, single and triple ridges systems are shown in (A) and (B), as well as an open trench in a 

lateral crest in (C), illustrating the extension stresses involved in the upper part of the slope. The downward threatened 

Lourtier village is displayed in (D). 
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6.2 Data acquisitions and processing methods 

 GB-InSAR monitoring campaigns 6.2.1

a. Acquisitions and displacement analysis 

Two GB-InSAR monitoring campaigns were carried out with a LiSAmobile™ device during 22 days and 

42 days respectively in autumns 2011 and 2012 from Les Tougnes hamlet, at 1’630 m a.s.l. and about 

3’500 m of range (Table 6.2). During these two campaigns, we continuously acquired every 10 

minutes a SAR image of about 10x1 m pixel size, recording amplitude and phase of the backscattered 

signals along a South-western LOS (Figure 6.4). To reduce atmospheric artefacts and noises, all SAR 

images of each day are stacked to increase the signal to noise ratio (SNR). Since displacements 

projected on the LOS are simply proportional to differences of 24 h stacked backscattered phases 

with high SNR, they are then retrieved from the standard ground-based interferometry equations 

(Massonnet and Feigl 1998; Monserrat et al. 2014): 

∆𝑙𝑙(𝑖𝑖,𝑗𝑗),𝑡𝑡 =
𝜆𝜆

4𝜋𝜋
× ∆𝜑𝜑𝑠𝑠(𝑖𝑖,𝑗𝑗),𝑡𝑡 + 𝑒𝑒 

where ∆li,j is the projection of the 3D displacements on the LOS of the pixel i,j in [mm] during the 

time interval t, λ the mean RaDAR wavelength in [mm], ∆φs(i,j),t the difference of the unwrapped 

24 h stacked phase shift of the pixel i,j, measured during the time interval t, and e is the incoherent 

noise contribution due to environmental and instrumental errors. 

Table 6.2: GB-InSAR acquisitions setup. 

 19.10.2011 > 10.11.2011 27.09.2012 > 08.11.2012 

GB-InSAR device LiSAmobile LiSAmobile 

Central frequency  Ku band: 17.2 GHz Ku band: 17.2 GHz 

Bandwidth 100 MHz 70 MHz 

Rail length 2.5 m 3 m 

Number of steps inside the 
synthetic aperture 

601 751 

Azimuth resolution at 3’500 m 13 m 10 m 

Range resolution at 3‘500 m 1.5 m 2 m 

Revisiting time 10 min 12 min 

 

b. GB-InSAR and terrestrial LiDAR integration 

Because the decametric resolution and the geometry of GB-InSAR acquisitions do not reflect clearly 

the topography, raw unwrapped interferometry results remain difficult to locate in space and 

interpret in details at La Perraire.  
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Figure 6.4: (A) GB-InSAR point of view at a mean range of 3’500 m from Les Tougnes hamlet, with the red dashed line 

underlining the rockslide backscarp. (B) LiSAmobile setup, under its tent. (C) Illustration of an LiSAmobile output data, with 

the mean amplitude of 24h stacked backscattered SAR signals. 
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Figure 6.5: (Up) Both upper and lower TLS points of view and TLS setup. (Down) Final point cloud of all cleaned and aligned 

08.10.2014 acquisitions, with more than 17 million of points for a mean spacing of about 8 cm. 
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In order to overcome these complications, additional tools were developed to wrap high precision 

displacement monitoring from GB-InSAR data on high resolution TLS point clouds clearly modelling 

topography. In collaboration with Ellegi Ltd and the Åknes/Tafjord Beredskap centre, we thus added 

a new exportation module into the processing chain of LiSAmobile devices in order to wrap radar 

results from their particular geometry on high resolution 3D point clouds with cm mean point 

spacing. Furthermore, we also added new importation and visualization functionalities into Coltop3D 

(software for geological interpretations of 3D point cloud) to display these results in 3D and even 

analysing displacement time series. 

 TLS monitoring campaign 6.2.2

a. Point clouds acquisitions and geocoding 

TLS acquisitions were performed in July 2006, 2011, 2012 and in October 2014, using Optech™ Ilris3D 

devices (Table 6.3). The 2006-2012 scans cover the upper half of the instability with 3 to 6 

acquisitions from a single point of view; the 2014 scans cover both upper and lower rockslide parts 

with 10 different acquisitions from 2 points of view (Figure 6.5).  

Table 6.3: TLS acquisitions setup. 

 19.07.2006 27.07.2011 18.07.2012 04.10.2014 

Terrestrial LiDAR device Optech Ilris36D Optech Ilris3D-ER Optech Ilris3D-LR Optech Ilris3D-LR 

Beam diameter at 500 m 
(according to Baltsavias 
1999) 

85 mm 85 mm 125 mm 125 mm 

Precision of xyz coordinates at 
100 m 

7-8 mm 7-8 mm 7-8 mm 7-8 mm 

Number of acquisition fences 
of the upper part 6 4 3 4 

Number of acquisition fences 
of the lower part 

- - - 6 

Weather conditions Sunny Wet and cloudy at 
the top Sunny Sunny 

 

Their mean point spacing was set up to about 8 cm, at distances from 500 to 900 m. We then 

achieved the following steps in order to get cleaned, coregistered and georeferenced point clouds: 

1. Each scan is first parsed using the software Optech™ Parser 5.0.3.1 in order to convert 

the point coordinates from a spherical system (the device recording each pulse ToF, as 

well as azimuthal and zenithal angles) to a Cartesian xyz system relative to the device 

setup.  

2. Each scan is then manually and iteratively cleaned from points visually interpreted as 

noise (as sun artefacts, birds, air dust, etc.) and non-ground points (mainly pine trees and 

berry shrubs) using the software Polyworks™ PIFEdit 10.1. 
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3. All scans (from the different windows) acquired the same day are then coregistered in 

one merged point cloud, first with a manual selection of common points within 

overlapping areas. The coregistration is then adjusted using an Iterative Closest Point –

based (ICP, Friedman et al. 1977; Besl and Mac Key 1992) algorithm implemented in the 

software Polyworks™ ImAlign 10.1, automatically minimizing distances between points 

from different scans in overlapping areas. 

4. The 2014 point cloud, used as reference since it has the greater extent, is then 

georeferenced by coregistering it on the SwissALTI3D Digital Elevation Model (2 m cell 

size aerial LiDAR-based high resolution DEM, ©swisstopo), following the same procedure 

as step 3.  

5. The 2006 to 2012 acquisitions are finally georeferenced by aligning them on the 2014 

point cloud, following the same procedure as step 3, yet ignoring the unstable part 

(mapped from GB-InSAR results) for this alignment. 

b. Surface change and roto-translation measures 

As detailed in the previous section, the 2006 to 2014 point clouds are cleaned, georeferenced and 

coregistered on the 2014 point cloud used as reference. Topography changes between 2006 and 

2012 are consequently obtained by computing the shortest distances from each 2006 point to the 

2012 meshed surface using the ICP-based algorithm. In addition, the 2012-2014 changes are 

computed following the same procedure. 
 

 
Figure 6.6: Singular rigid body movement types identifiable with roto-translation matrixes. 

Furthermore, since we aim to understand strain and stress fields within the instability, real 

displacements of selected compartments have to be assessed to model the rockslide kinematic. 

Indeed, movements of a delimited compartment, inside which we assume homogeneous behaviours, 

can be decomposed into rock-mass toppling and tilt, as well as translation of its centre point (Figure 
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6.6). Therefore, for each delimited moving compartments, the ICP-based alignment of the isolated 

point cloud on its initial reference surface can be expressed by a 4x4 matrix recording the roto-

translation behaviour of the rock mass between the two TLS acquisitions (Tupling and Pierrynowski 

1987; Lichti et al. 2002; Monserrat and Crosetto 2008; Oppikofer et al. 2009). 

c. Strain rate assessment 

Short term forecasting of time to slope failure is usually based on the acceleration of surface 

displacements and the inverse velocity method (Saito 1969; Voight 1989; Fukuzono 1990; all 

reviewed by Federico 2012), especially in brittle materials (Petley et al. 2005a). But this methodology 

can provide realistic forecasts only during the last acceleration phase prior to final collapse (Petley et 

al. 2005b; Rose and Hungr 2007). Then, long term predictions can be supported as well with 

deformation states and strain rates assessments (Jaboyedoff et al. 2012c). 

For the upper triangular part of La Perraire instability, where an important extension is being seen in 

cracks opening and ridge systems (cf. Figure 6.3), the deformation state is estimated on TLS –based 

longitudinal cross section (cf. Figure 6.7) according to: 

𝜀𝜀𝑡̅𝑡 =
∆𝑙𝑙𝑡𝑡
𝑙𝑙0

=  
∆𝑙𝑙𝑡𝑡

𝑙𝑙𝑡𝑡 − ∆𝑙𝑙𝑡𝑡
 

where 𝜀𝜀𝑡̅𝑡 is the deformation state of the upper triangular compartment C1 at time step t in [%], Δlt 
the length lt of this compartment at time step t minus its initial length l0 in [m]. As a result, positive 

outputs mean extension processes, while negative results indicate compression ones. 

 
Figure 6.7: Scheme of the deformation state of the upper compartment, based on the 2014 longitudinal cross section. All 

lengths were measured on the 04.10.2014 TLS points cloud. Δ1l and Δ2l refer respectively to Figures 6.3A and B. 

(Topography extracted from the 04.10.2014 TLS acquisitions.) 
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More precisely, strain rates can be computed for each sequential acquisition over the whole 

rockslide surface (Teza et al. 2008; Travelletti et al. 2014). Here strain rates are punctually but 

accurately computed at centre of each compartment over time on sequential TLS acquisitions 

according to (Jaboyedoff et al. 2012c): 

𝜀𝜀̅𝑛̇𝑛,𝑡𝑡 =
∆𝜀𝜀𝑛̅𝑛,𝑡𝑡

∆𝑡𝑡
=
∆𝑙𝑙𝑛𝑛,𝑡𝑡

𝑙𝑙𝑛𝑛,𝑡𝑡−1
×

1
∆𝑡𝑡

 

where 𝜀𝜀̅𝑛̇𝑛,𝑡𝑡 is the strain rate at the centre of the compartment n at time step t in [%/yr], Δln,t the 

length between the reference point located at the top (but outside) of the rockslide and the centre n 

at time step t minus the same length ln,t-1 at time step t-1 in [m] and Δt the time interval between 

time steps t-1 and t in [yr]. In the same way, internal strain rates of the lateral western crest can be 

assessed by fixing the reference point at the top of this crest, instead of the top of the whole 

instability (cf. Figure 6.13). This point located within the rockslide on a well identifiable block is also 

moving and its coordinates have to be picked at each acquisition. 

 TLS-based geometry modelling 6.2.3

a. Structural settings 

The orientation of the discontinuity planes can be extracted from georeferenced point clouds 

imported into Coltop3D™. The software indeed assigns to all points a colour code according to 

azimuth and orientation of their normal vector (Jaboyedoff et al. 2007). By manually picking 

hundreds of selected points displaying with the same colour, we then extract normal vector 

orientations belonging to the same discontinuity set. Mean orientations of all selected points are 

then extracted for each identified discontinuity sets, with a semi-automatic clustering assessment 

based on Fisher distributions using Dips™ software (Diederichs, 1990). All discontinuity orientations 

are defined according to the dip direction / dip angle convention. 

b. Volumes estimations 

Volumes are then estimated using the sloping local base level (SLBL: Jaboyedoff et al. 2004, 2009c 

and 2015), derived from isobases and base level surfaces defined in geomorphology (Golts and 

Rosenthal 1993; Mills 2003). The SLBL indeed computes volumes of delimited instable slope masses 

that are not buttressed at the toe and assumed as erodible, by computing a curved surface joining 

the top to the bottom of the spur which is considered as the most probable slip surface. This model is 

constrained by a former electrical-resistivity tomographies carried out in the upper triangular part in 

2006 (Borle et al. 2007), that first estimated a mean surface failure close to 50 m deep above frontal 

cliffs. 



Section 6: La Perraire monitoring and modelling by GB-InSAR and terrestrial LiDAR integration 

 
147 

6.3 Processing results 

 Short term continuous monitoring 6.3.1

After having excluded InSAR acquisitions affected by two much atmospheric decorrelations on the 

2011 GB-InSAR monitoring campaign, we quantified the Perraire slope displacements projected on 

the radar LOS from 28 October to 7 November 2011 (cf. Section 6.2.1a). Cumulated unwrapped 

displacements projected on the radar LOS measured are displayed in Figure 6.8.  

 
Figure 6.8: GB-InSAR unwrapped displacements projected on the radar LOS measured from 28 October to 7 November 2011 

(period of 10 days). We can first note that the backscarp is clearly delimitated by the wedge cliffs (negative displacement 

values indicate movements toward the device). 

During this period of 14 days, movements up to 10 mm have been recorded within the upper part of 

the rockslide, and displacements progressively decrease at the toe, imaged for the first time. We can 

notice as well a clear triangular upper delimitation of the instability, whereas the lower limit is more 



Part C: Site-specific landslide monitoring and modelling 

 
148 

diffuse. In addition, 2012 GB-InSAR results confirm displacement rates measured in 2011. Finally, no 

movement computations can be performed by comparing 2011 with 2012 SAR images, since 

geometric decorrelations, due to the important slope deformation, drastically decreased the signal 

coherence. 

Furthermore, these monitored high precision displacements are projected on the high resolution 

topography modelling (cf. Section 6.2.1b), as illustrated in Figures 6.9 and 6.10; the prior 

observations from raw output can then be refined. First, by checking displacement time series of 9 

stable scatterers (Figure 6.10), measurements errors of the 2011 GB-InSAR monitoring campaign are 

estimated at ± 1 mm, in agreement with LiSAmobile specifications (Ellegi Srl pers. comm.); in 

addition, time series of moving scatterers are consistent over days, with low noise level. Monitored 

displacements, based on 24 h stacked phase scenes (cf. Section 6.2.1a), seem then reliable. We then 

observe that the wedge created by the 2 cliff systems is a clear upper limit and acts thus as the 

Perraire backscarps. In the lower part of the slope, displacements are progressively decreasing down 

to 2 mm in 14 ; for the first time, the rockslide diffuse lower extension is thus monitored and mapped 

at an altitude of about 1’750 m.a.s.l. 

 
Figure 6.9: Autumn 2011 GB-InSAR unwrapped displacements displayed in Coltop3D on ALS and TLS point cloud. For the 

first time, were able to map the lower rockslide limits and measure a non-uniform translation along a crone-toe axe. In 

addition, the upper wedge composed by the 2 cliff system is confirmed as upper scarp of the instability. (ALS points: © 

swisstopo) 
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Figure 6.10: Autumn 2011 GB-InSAR displacement time series of 9 stable scatterers (selected in 3 locations) and 6 moving 

ones (selected in 2 locations). Uncertainties estimated with noise level of points located in stable areas are close to +- 1 

mm, corresponding to LiSAmobile specifications. Displacements of points located on frontal cliffs and lateral western crest 

are quite regular within this short period of 14 days, to reach respectively -6 and -10 mm. (ALS points: © swisstopo) 

In addition, short-term displacement field is not uniform within the whole instability: the largest 

movements are indeed measured on the lateral western crest, with displacements up to 12 mm 

southward, while movements of surrounding areas are closer to 6 to 8 mm southward. In addition, a 

clear progressive attenuation of displacements from the top to the toe of the lateral crest and the 

scree deposit area is visible. 
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 Long term sequential monitoring 6.3.2

a. Change detection 

By applying ICP algorithms on sequential point clouds (cf. Section 6.2.2a), we identify main surface 

changes that occurred during time interval between TLS acquisitions. 

 
Figure 6.11: TLS-based change detection, using ICP-based shortest distance comparison algorithm between (up) the 2006 

mesh and the 2012 points and (down) the 2012 mesh and the 2014 points. The letters refer to the description list of this 

section. (Positive values: displacements toward the slope or accumulated material. Negative values: subsidence or eroded 

material). 
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Letters on Figure 6.11 refer to all changes listed hereafter. 

Between Julys 2006 and 2012 (period of 7 years): 

a. Some sectors of the upper part have subsided of about 4 cm/yr (i.e. 30 cm), even up to 

14 cm/yr (i.e. 1 m) just upward the lateral crest ; 

b. The frontal cliffs are displaced of 14 to 22 cm/yr (i.e. 1 to 1.5 m), and several rockfalls are 

also detected; 

c. The outcrop in the middle of the lateral crest shows downward displacements up to 

18 cm/yr (i.e.  1.25 m), and the upward thalweg is being eroded; 

d. On the rockslide western side, a large rockfall is detected; 

e. Some blocks in the scree deposit areas, below the frontal cliffs, slid of about 14 cm/yr 

(i.e. 1 m), and even up to 29 cm/yr for some of them (i.e. 2 m). 

f. No other significant changes are detected with TLS data outside the rockslide limits 

mapped from the GB-InSAR short-term measures. 

Furthermore, between July 2012 and October 2014 (period of 2.25 years): 

a. Some sectors of the upper part have subsided up to 11 cm/yr (i.e. 25 cm); 

b. The frontal cliffs are displaced of about 33 cm/yr (i.e. 0.75 m), and 2 larges rockfalls are 

detected; 

c. The outcrop in the middle of the lateral crest shows downward displacements up to 

45 cm/yr (i.e. 1 m), and the upward thalweg is still being eroded; 

d. On the western rockslide sides, several small rockfalls have been detected; 

e. Some blocks in the scree deposit areas slid of about 11 and 22 cm/yr (i.e.0.25 and 0.5 m), 

and even up to 45 cm/yr (i.e. 1 m) downward, where a large rockfall is detected as well. 

b. Roto-translation of compartments 

Within the upper part of the rockslide, six different compartments were distinguished (Figure 6.12) 

over large areas in order to assume deep-seated failure surfaces of compartments (Carter and 

Bentley 1985; Jaboyedoff and Derron 2015): 

o Test compartment: upper part of the slope, supposed as stable in regards of short term 

displacements and long term changes detection. This compartment is used to estimate 

uncertainties, since measurement errors might be introduced during TLS acquisitions and 

point clouds coregistration and georeferencing steps ; 

o Compartment C1: triangular upper part, where the observation of recent crack opening, rock 

fracturing and ridges are evidences of active extension stresses; 

o Compartment C2: upper western section, where displacements can be observed on GB-InSAR 

data although evidences of movements are not clear in the field; 
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o Compartment C3: lateral western crest, where high displacements are detected by GB-InSAR, 

and large trenches and recent rockfalls were observed as well. Because we noticed on short-

term displacements a progressive attenuation of movements downwards, the compartment 

3 is subdivided in 2 areas, the upper 3.1 and the lower 3.2 ones, in order to quantify the long 

term deformation of the lateral crest; 

o Compartment C5: all the frontal cliffs, where rockfalls and metric displacements toward the 

slope are recorded; 

o Compartment C6: scree deposit areas, where the highest displacements were detected on 

previous point cloud comparisons. 

For all these compartments, roto-translation movement types (Figure 6.6) are extracted from TLS 

alignment matrixes (cf. Section 6.2.2b) and are summed up in Table 6.4 and Figure 6.13. We can first 

notice that uncertainties from measurement and ICP-based alignment errors of the stable 

compartment are estimated of about 4 cm for the translation values and close to 0.01° for rotation 

and tilt angle. Moreover, errors on absolute azimuths and dip cannot be assessed without other 

external monitoring method; directions might thus vary of few degrees, while it would not change 

the relative movement variation of compartments over time. 

Table 6.4: Translation (dip direction, dip and amplitude) - Rotation (direction -northward azimuth: sliding rotation; 

southward azimuths: toppling rotation- and amplitude) - Tilt angle, detected by roto-translation matrixes on all 

compartments. 

 19.07.2006 > 8.10.2014 27.07.2011 > 8.10.2014 18.07.2012 > 8.10.2014 

Stable compartment �058°40°
5 𝑐𝑐𝑐𝑐 � - �291°

0° � - 0° �070° − 16°
3 𝑐𝑐𝑐𝑐 � - �202°

0° � - 0° �035°03°
4 𝑐𝑐𝑐𝑐 � - �200°

0° � - 0° 

Compartment 1 �206°42°
172 𝑐𝑐𝑐𝑐 � - �335°

0.1° � - 0° �197°41°
70 𝑐𝑐𝑐𝑐 � - �340°

0° � - 0° �202°43°
54 𝑐𝑐𝑐𝑐 � - �308°

0° � - 0° 

Compartment 2 �198°31°
133 𝑐𝑐𝑐𝑐 � - �68°

0.2°� - 0° �206°33°
61 𝑐𝑐𝑐𝑐 � - �68°

0.1°� - 0° �213°26°
42 𝑐𝑐𝑐𝑐 � - �78°

0.1°� - 0° 

Compartment 31 �189°34°
259 𝑐𝑐𝑐𝑐 � - �268°

0.4° � - 0° �192°33°
119 𝑐𝑐𝑐𝑐 � - �264°

0.2° � - 0° �197°38°
89 𝑐𝑐𝑐𝑐 � - �245°

0.1° � - 0° 

Compartment 32 �200°33°
132 𝑐𝑐𝑐𝑐 � - �13°

0.1°� - 0° �213°25°
55 𝑐𝑐𝑐𝑐 � - �65°

0° � - 0° �219°41°
59 𝑐𝑐𝑐𝑐 � - �65°

0° � - 0° 

Compartment 5 �199°32°
203 𝑐𝑐𝑐𝑐 � - �333°

0.1° � - 0.1° �196°33°
87 𝑐𝑐𝑐𝑐 � - �323°

0° � - 0.1° �197°32°
62 𝑐𝑐𝑐𝑐 � - �301°

0° � - 0.1° 

Compartment 6 �198°26°
244 𝑐𝑐𝑐𝑐 � - �133°

0.2° � - 0° �199°27°
119 𝑐𝑐𝑐𝑐 � - �129°

0.1° � - 0° �203°34°
90 𝑐𝑐𝑐𝑐 � - �144°

0.1° � - 0° 

 

Regarding the rockslide kinematic, the main movement component of these last 8 years is a mean 

translation toward 200° / 35° to 40° (plunge direction and dip angle convention) with different 

amplitudes according to the instability sectors. Displacements from 1.3 to 1.7 m were extracted for 

the upper compartments 1 and 2, whereas we measure a translation of 2.0 m of the frontal cliffs. 

Furthermore, the upper part of the lateral crest was displaced of 2.6 m, which is almost two times 

higher than the 1.3 m measured for its lower part. In addition, the rockslide is also affected by a small 

sliding rotation of about 0.1°, noticed on compartments 1, 2 and 5. No significant tilt angles are 

measured. 
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Figure 6.12: Delimitation of all compartments, both on photo (up) and TLS point cloud (down). 
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Figure 6.13: XY directions of translation and rotation vectors affecting the 6 compartments delimited within the upper part 

of the rockslide. Sliding and toppling rotations are respectively highlighted by upward and downward vectors. SRP and IRP 

identify respectively (1) the stable reference point used to measure strain rates and (2) the internal reference point used to 

measure internal strain rates of the lateral western crest. (Orthophoto and shaded topography: © swisstopo)  
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Finally, a progressive increase of mean rockslide compartment velocities is noticed from 2006 to 

2014; as reported in Table 6.5 and Figure 6.14, they increase for the beginning of TLS –based 

measures from 20 to 24 cm/yr on the upper part, from 23 to 28 cm/yr on the frontal cliffs and even 

from 28 to 40 cm/yr for the top part of the lateral crest.  
 

 

Figure 6.14: Cumulated translation displacements of all compartments computed on TLS roto-translation matrixes. A small 

acceleration is thus measured between 2012 and 2014. 

Table 6.5: Mean compartment velocity (in cm/yr). In bold typo are velocities higher than 36.5 cm/yr, i.e. 1 mm/day. 

 19.07.2006 >  
27.07.2011 

27.07.2011 > 
 18.07.2012 

18.07.2012 > 
 8.10.2014 

Stable compartment 0.4 0.7 1.6 

Compartment 1 20.1 17.1 24.2 

Compartment 2 14.2 19.7 18.9 

Compartment 3.1 27.8 30.5 40.1 

Compartment 3.2 14.3 4.8 26.7 

Compartment 5 23.1 25.2 28.0 

Compartment 6 24.9 30.4 40.3 

 

c. Strain rates 

The deformation state of the upper compartment, in extension, is now assessed (cf. Section 6.2.2c). 

With TLS mean point spacing of about 8 cm and shadowing biases (Abellán et al. 2014), micro rock 

fracturing and fresh opened cracks are not modelled on cross-sections; the C1 compartment opening 

Δlt  is thus underestimated, but can still be approximated close to 40 m long by measuring extensions 

of the large single and triple ridge systems (cf. Figures 6.3 and 6.7). In addition, this compartment 

measures 425 m long (lt). Therefore, the deformation state of the upper compartment in extension is 

estimated at minimum 10 %. 
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In addition, accurate strain rates are monitored at compartment centres over time on sequential TLS 

acquisitions (cf. Section 6.2.2c). Computed results are then resumed in Table 6.6: delimited by the 

compartment 1, mean strain rates of the triangular upper part reaches 0.08 %/yr, while extensions of 

the frontal cliffs are of about 0.06 %/yr. Regarding internal deformations of the 1 million m3 lateral 

western crest, the upper compartment 3.1 is putting up with a mean extension of 0.04 %/yr whereas 

the lower compartment 3.2 is dealing with a mean compression of -0.01 %/yr; furthermore, a major 

compression period of this lateral crest was noticed between summers 2011 and 2012, with strain 

rates down to -0.12 %/yr on its top and -0.17 %/yr on its toe. 

Table 6.6: Strain rates of all compartments and internal strain rates of the lateral western crest. 

 19.07.2006 > 
27.07.2011 

27.07.2011 > 
18.07.2012 

18.07.2012 > 
 8.10.2014 

C1 0.0715 %/yr 0.0605 %/yr 0.0856 %/yr 

C2 0.0384 %/yr 0.0402 %/yr 0.0385 %/yr 

C3.1 0.0438 %/yr 0.0480 %/yr 0.0630 %/yr 

C3.2 0.0201 %/yr -0.0063 %/yr 0.0350 %/yr 

C5 0.0510 %/yr 0.0556%/yr 0.0617 %/yr 

C6 0.0390 %/yr 0.0476 %/yr 0.0630 %/yr 

Internal C3.1 0.0384 %/yr -0.1160 %/yr 0.0456 %/yr 

Internal C3.2 0.0092 %/yr -0.1755 %/yr -0.0108 %/yr 

 

 Geometry modelling 6.3.3

Structural settings of the upper wedge cliff system acting as the main backscarp are assessed on TLS 

point clouds (cf. Section 6.2.3a). As a result, the western cliffs of the wedge are mainly formed by 

joints J1 (167°/52°), while the eastern cliffs are mostly shaped by joints J2 (086°/53°) and J3 

(254°/74°); a last set, J4 (040°/79°), is cutting the entire wedge, although being not extensively 

expressed at the outcropping rock.  

With a mean topography of 211°/43° assessed close to the upper scarp, wedge and toppling 

kinematic tests are applied on these identified discontinuities (cf. Figure 6.15). First, azimuth 

directions of wedge failure criteria match to the measured general translation, i.e. about 200°. In 

addition, the wedge shaped by J1 and J3 intersections (mean orientation of 184°/51°) can verify this 

failure mechanism if it flattens in depth or if it is completed by a 3rd flat discontinuity set (undetected 

yet). Moreover, kinematic tests also confirm the possible toppling rotation on the J4 discontinuity. 

According to SLBL simulations (cf. Section 6.2.3b), all computed volumes range from 8 to 10 million 

cubic meters; in addition, the individual volume of the very active lateral western crest is estimated 

to about 1 million cubic meter. Nevertheless, these volumes should be confirmed and refined by new 

core logging or additional geophysical investigations to better constrain basal surface modelling, 

especially in the lower rockslide part. 
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Figure 6.15: Wedge (left) and toppling (right) kinematic tests on Schmidt lower hemisphere stereonets, according to the 

four major discontinuity sets detected on the upper wedge cliff system and the mean orientation of the topography close to 

the upper scarp (211°43°). Circles around mean poles represent the 1σ and 2 σ variability cones, contour plots highlight 

Fisher distributions of wedge intersections (left) and discontinuity poles (right), the 𝑇𝑇�⃗  cone (200°42°±16°) displays the mean 

orientation of the rockslide translation and WE and TE identify respectively wedge and toppling failure criteria envelopes. 

6.4 Synthesis and discussion 

The original integration of GB-InSAR data on high resolution TLS and ALS point clouds in Coltop3D 

software has been mandatory to allow a reliable visual interpretation of mm surface displacements 

over the whole La Perraire slope surface. Therefore, the rockslide extension has been precisely 

mapped for the first time. The coupled RaDAR and LiDAR data indeed confirm that (a) the upper cliff 

wedge system is acting as the major backscarp at 2’400 m.a.s.l and (b) the rockslide is affecting the 

slope at least down to an elevation of 1’750 m.a.s.l, close to the alpine Lourtier torrent shaped by the 

opposite northward slope flank. The rockslide reaches then a maximum length and width of 1’000 by 

500 m for a surface of about 280’000 m2. Based on SLBL computations, the total instability volume is 

estimated between 8 to 10 million m3 with a basal failure surface 50 m deep. 

During these last 8 years, La Perraire rockslide is mainly affected by a deep-seated translation with 

representative plunges of about 200°/42° and velocities of 20 to 28 cm/yr the upper western section 

and about 30 to 40 cm/yr in the upper part of the lateral western crest. The kinematic tests 

corroborate a wedge failure mechanism; the translation may indeed occur on a basal surface formed 

by the J1 and J3 wedge system that requires to be flattened in depth or to be completed by a third 

flat discontinuity set to match with both wedge failure criteria and the mean translation orientation 

(cf. Figure 6.15 left). Moreover, this wedge flattening could also explained the small sliding rotation 

of 0.1° downward affecting the whole instability as well. 
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In addition to these long term and deep seated movements, roto-translation matrix carried out on 

small superficial blocks are highlighting shallower displacements as well; shallow block toppling can 

indeed be observed and measured on TLS data in the upper part, as well as south-western 

displacements along upper west flanks (confirmed by the unique permanent GNSS antennas 

surveying the top of the rockslide) and south-eastern displacements along the upper east flanks.  

Moreover, both GB-InSAR and TLS monitoring campaigns emphasize non-uniform displacements 

involving different strain rates in the rockslide top and its toe (cf. Figures 6.10 and 6.13). In one hand, 

the survey measured a translation of 1.7 m of the upper triangular compartment, while surrounding 

compartments have lower displacements of 0.3 up to 0.9 m (cf. Tables 6.4 and 6.5). Because of the 

free space created by the greater translation of the frontal cliffs and the upper lateral crest, a 

significant extension close to 10 % and current strain rates to 0.085 %/yr are estimated on the upper 

rockslide part (cf. Figure 6.7 and Table 6.6), manifested in observed fresh cracks, trenches and 

multiple ridges systems in compartment 1 (cf. Figure 6.3). On the other hand, GB-InSAR results 

highlighted a downward attenuation of movements (cf. Figure 6.10), verified by TLS 3D 

displacements along the lateral crest as well. It is hence suggesting the possibility of a compression of 

the lower rock mass. 
 

 
Figure 6.16: Rockslide cross section synthetizing information retrieved on field observations, numerical modelling as well as 

GB-InSAR and TLS monitoring campaigns. (Topography extracted from the 04.10.2014 TLS acquisitions and cf. cross-section 

location on Figure 6.2.) 
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Furthermore, both biggest and smallest short and long term displacements are measured within the 

lateral western crest according to GB-InSAR and TLS data (cf. Figures 6.10 and 6.13). This 

compartment of 1 million m3 is then the most active area of the rockslide these last 8 years with 

velocities about 31 cm/yr, and a westward toppling rotation of 0.4° in its upper part. According to 

kinematic tests, the rock mass toppling can be developed on J4 discontinuities (cf. Figure 6.15 right). 

Moreover, this current and important activity is moreover confirmed by large trenches (cf. Figure 

6.3C), rockfalls and opening cracks and scarps upward observed by local mountain guides. On the 

other hand, only translational displacements of 16 cm/yr without relevant toppling rotation are 

measured in the lower part of the lateral crest.  

In the meantime, internal strain rates of this lateral crest indicate as well a current extension of 

0.045 %/yr of the upper compartment, while a major compression of -0.011 %/yr is measured on its 

lower one (cf. Table 6.6).The high compression strain of the lower part is also implying a high stress 

accumulation within the crest toe. Furthermore, even the upper part of the crest and de facto the 

entire lateral crest can be compressed by the upper triangular compartment, as during the year 

between summers 2011 and 2012 with strain rates assessed from -0.11 to -0.18 %/yr. This 

alternation of extension and compression of the upper lateral crest tends to increase the rock mass 

fatigue behaviour by enlarging opened micro-cracks (Costin and Holcomb 1981); it can thus 

significantly reduce the whole crest failure strength (Attewell and Farmer 1973; Scholz and Koczynski 

1979; Costin and Holcomb 1981).  
 

 
Figure 6.17: Lateral western crest cross section synthetizing information retrieved on field observations, numerical 

modelling, as well as GB-InSAR and TLS monitoring campaigns. (Topography extracted from the 04.10.2014 TLS acquisitions 

and cf. cross-section location on Figure 6.2.) 
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Nevertheless, those significant deformation rates (0.085 %/yr in its upper part, cf. Table 6.6) in rock 

slopes do no always imply general instability collapse. On the one hand, strain rates of the 

Kilchenstock rockslide (Heim 1932; Löw 1997) were actually estimated in 1932 of about 0.33 %/yr 

over 4 years and even up to 25 %/yr during 2.5 months; up to date, Kilchenstock’s slopes has still not 

collapsed. But on the other hand, several rockslides with rates close to La Perraire’s ones confirm the 

importance of long term strain-based collapse assessments. Pre-failure strain rates of the Randa 

rockslide were indeed measured between 0.1 and 1 %/yr during the 2 decades before its second 

collapse (Jaboyedoff et al. 2012c). In addition, strain rates of the very active Åknes rockslide (Blikra 

2008 and 2012) are currently reaching 0.015 %/yr in its upper part and decrease in the lower part as 

well. Nevertheless, stress accumulation on toes are commonly creating fold and bulge features 

(Jaboyedoff et al. 2013) that are not yet observed in the field because of harsh rockslide toe 

accesses.  

6.5 Conclusions 

The active la Perraire rockslide is monitored since 2006 with sequential GB-InSAR and TLS 

acquisitions (cf. Figure 6.3); both active wave sensors were necessary to understand the whole 

landslide kinematic. During autumnal GB-InSAR monitoring campaigns, we recorded millimetric daily 

displacements (cf. Figure 6.8). Then by wrapping precise monitored movements from GB-InSAR 

measures on dense 3D TLS point clouds, we were able to map the rockslide limits and to verify that 

the upper cliff wedge acts as the major backscarp (cf. Figure 6.9); structural analyses moreover 

suggest that the J1 and J3 discontinuities within this upper wedge may act as the basal rockslide 

surface if they are flattened in depth (cf. Figure 6.15). We also highlighted non-uniform 

displacements, with the greatest amplitudes noticed on the upper western part and a gradual 

downward decrease (cf. Figures 6.10 and 6.15). Long term observations based on the sequential TLS 

acquisitions afterwards confirms the movement amplitude recorded by GB-InSAR data, with mainly 

translational displacements in the upper part from 1.5 to 2.5 m in 8 years towards about 200°40° (cf. 

Figure 6.13); deformation states indicate hence a current extension of 0.085 %/yr of the triangular 

upper part. On the other hand, the smaller displacements measured in the lower rockslide part are 

producing a compression strain close to -0.011 %/yr at the crest toe (cf. Table 6.6). All these notes 

are summarized in the two rockslide cross-sections displayed in Figures 6.16 and 6.17. To sum up, in 

regards to high displacements that tend to accelerate, significant strain rates, and volumes of 8 to 10 

million cubic meters, the scenario of a rock slope failure behaving as a rock avalanche and reaching 

the Lourtier village has to be considered. 

Based on this study, new investigations are therefore necessary to design an early warning system 

for populations and infrastructures downward. First, the rockfall activity in frontal cliffs and western 
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lateral crest has to be surveyed, since an increasing of event might be precursor of slope collapses 

(Voight 1988; Suwa 1991; Azzoni et al. 1993; Rosser et al. 2007; Baroň et al. 2012; Jaboyedoff et al. 

2012c). In the meantime, new TLS acquisitions as well as high resolution panoramic photos covering 

both upper and lower rockslide parts will be mandatory to survey geological compression structures 

and measure strain rates within the rockslide toe and to regularly update the instability displacement 

and strain monitoring. Furthermore, it is also important to achieve new investigations on surface and 

sub-surface processes. Indeed, TLS-based structural settings must be completed with field mapping 

within the rockslide area and its entire surrending slope; in addition, the effects of underground 

water on La Perraire slope destabilizing processes are nowadays unknown. Core logging will also be 

required to monitor sub-surface parameters via inclinometers and piezometers. Finally, rock 

avalanche runout areas could first be assessed using an empirical approach, such as the 1973 

Scheidegger’s equation linking instability volumes and Fahrböschung angles that control the 

avalanche mobility (Heim 1932; Scheidegger 1973; Corominas 1996; Locat et al. 2006). These new 

investigations will therefore be fundamental to process reliable numerical modelling and to set a 

pertinent EWS with reliable warning criteria (Michoud et al. 2013a; Cloutier et al. 2015). 
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7 Experiences from site-specific landslide Early Warning Systems 

After Michoud C, Bazin S, Blikra LH, Derron MH and Jaboyedoff M: Experiences from Site-Specific Landslide Early Warning 

Systems. Natural Hazards and Earth System Sciences, 13, 2659–2673, 2013. 

Abstract 

Landslide early warning systems (EWSs) have to be implemented in areas with large risk for 

populations or infrastructures when classical structural remediation measures cannot be set up. This 

paper aims to gather experiences of existing landslide EWSs, with a special focus on practical 

requirements (e.g. alarm threshold values have to take into account smallest detectable signal levels 

of deployed sensors before being established) and specific issues dealing with system 

implementations. Within the framework of the SafeLand European project, a questionnaire was sent 

to about a hundred of institutions in charge of landslide managements. Finally, we interpreted 

answers from experts belonging to 14 operational units related to 23 monitored landslides. Although 

no standard requirements exist for designing and operating EWSs, this review highlights some key 

elements, such as the importance of pre-investigation work, the redundancy and robustness of 

monitoring systems, the establishment of different scenarios adapted to gradual increasing of alert 

levels, and the necessity of confidence and trust between local populations and scientists. Moreover, 

it also confirms the need to improve our capabilities on failure forecasting, monitoring techniques 

and integration of water processes in landslide conceptual models. 

Keywords: Early Warning System, Survey, Experience, Landslides. 

7.1 Introduction 

Landslides are frequent phenomena in many natural environments and remediation measures ought 

to be implemented in areas with high risk due to the presence of populations or infrastructures. 

Structural remediation measures have been extensively used for reducing and even eliminating the 

hazard (Piteau and Peckover, 1978; Holtz and Schuster, 1996; Wyllie and Mah, 2004; Cornforth, 

2005; Vaciago et al. 2011). However, classical countermeasures, such as modifications of mass 

distributions or water regimes, are often too expensive or difficult, if not impossible, when dealing 

with complex instabilities of large volumes (Crosta and Agliardi, 2003b; Blikra, 2012). 

In such situations, other types of mitigations have to be performed in order to decrease the risk, 

mainly imposed to human lives. A proper measure is to reduce the number of exposed people by 
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implementing reliable landslides early warning systems (EWSs) that are capable of alerting and 

evacuating populations based on the monitoring of stability conditions of the landslide (e.g. 

parameter values exceeding established thresholds). Indeed, EWSs are defined by the United Nations 

as “the set of capacities needed to generate and disseminate timely and meaningful warning 

information to enable individuals, communities and organizations threatened by a hazard to prepare 

and to act appropriately and in sufficient time to reduce the possibility of harm or loss” (UN-ISDR, 

2009). Efficient landslides EWSs require four major elements that have to be well integrated: (1) risk 

assessment, (2) phenomenon monitoring and forecasting, (3) warning communication and alert 

dissemination and (4) local response aptitudes (UN-ISDR, 2009). 

These elements have been described in detail in many papers and useful concepts and 

recommendations can be extracted, such as in (1) Turner and Schuster (1996) or Fell et al. (2005) for 

hazard and risk assessments, (2) Stumpf et al. (2011), Michoud et al. (2012a) or Tofani (2013) for 

monitoring techniques, (3) Saito (1969), Fukuzono (1990), Crosta and Agliardi (2003b) or Meyer et al. 

(2012) for slope failure and flow initiation forecasts and (4) Basher (2006) or Dash and Gladwin 

(2007) for alerts and associated social processes. Furthermore, some papers describe how to 

integrate all tasks together (Angeli et al. 2000; Lacasse and Nadim, 2009). For shallow landslides and 

debris flows, a huge effort has been performed in order to develop complete and efficient EWSs at 

regional scales; they are based on rainfall intensity forecasting, soil moisture content and/or 

antecedent water index, etc. (Keefer et al. 1987; Aleotti, 2004; Baum and Godt, 2010; Jakob et al. 

2012; Mercogliano et al. 2013). Nevertheless, it seems that there are only few reviews dealing with 

practical considerations and specific requirements in order to implement reliable single landslide 

EWSs that are site related. 

For this purpose, the SafeLand project (2009-2012), funded by the European Commission in the 7th 

Framework Programme (Grant Agreement No. 226479), intended to develop generic risk 

management tools and strategies for landslides. Thus, one of its main objectives has been to provide 

guidelines that would facilitate the establishment of new EWSs and increase the quality of existing 

systems (Bazin, 2012; Intrieri et al. 2013). Consequently, the first step of this study was to gather 

experiences from existing EWSs strategies and expert judgments. In this way, we prepared a four-

page questionnaire that has been filled by 15 institutions in charge of 24 landslide EWSs. Primary 

analyses have been first presented in Bazin (2012). This paper therefore aims to present the results 

of experiences of those European and North-American landslide EWSs, focused on implementation 

requirements and potential practical issues of importance for landslide specialists dealing with risk 

management. 
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7.2 Design of the questionnaire 

As a part of the SafeLand project, a screening study was intended to gather information about the 

state of the technologies and existing strategies for the establishment of landslide EWSs. A four-page 

questionnaire was compiled to illustrate the wide spectra of monitoring and integrated platforms 

and to merge actual knowledge and expert judgments from existing systems. It aimed to collect 

information about: 

o operational units in charge of the EWS; 

o monitored landslide settings and consequences of past events (if any); 

o pre-investigations used to design the EWSs; 

o monitoring parameters, thresholds and sensors; 

o warnings, communication and decision making process. 

Questions were focused on practical considerations and specific requirements, such as technical 

challenges to install and maintain the EWS. In addition, it was also oriented to understand 

advantages and disadvantages and reveal potential lack of existing techniques to propose directions 

that current researches should follow. 

In order to maximize the number of potential answers, the questionnaire has been designed to be as 

short, user-friendly and simple as possible (Lapointe et al. 2010). Indeed, it mainly contained a list of 

closed questions with pre-established answers clickable in checkboxes. Moreover, a few open 

questions were also kept in order to leave the compiler free to provide any further considerations 

and points of view especially about: 

o advantages, limitations and upcoming improvements of current monitoring systems; 

o how could actual EWSs be improved. 

In practice, units in charge of EWSs have often the responsibility for several landslides and the 

questionnaire was therefore designed to fit systems that monitor multiple sites as well as single 

landslides. The questionnaire was then compiled into a Portable Document Format (pdf) document, 

one of the most standard formats, in order to ensure that everyone could open and read it. Finally, 

each user had the possibility to include with his answer, some supplementary material such as extra 

text and maps. 

The questionnaire is available in the supplementary material. 

7.3 Results and interpretations 

The questionnaire was sent and spread in June 2011 to about a hundred of institutions in charge of 

landslide hazard and risk management. These Asian, European and North-American institutions were 



Part C: Site-specific landslide monitoring and modelling 

 
166 

identified within the professional network of SafeLand’s participants, national experts and colleagues 

in the landslide scientific community. The list was also completed by reviewing EWS publications, 

conferences on landslides and also by looking for internet websites. Finally, in autumn 2011, we 

received answers from experts belonging to 15 operational units from 9 different countries and 

related to 24 landslides, i.e. 23 site-specific landslides and 1 regional EWS. Among them, 21 systems 

are in operation, 1 is under construction and 2 are stopped. The Table 7.1 sums up the list of 

institutions (and investigated landslides) that answered to the questionnaire. Some slope 

movements are well-known within the landslide community, such as the landslides of Åknes in 

Norway (Blikra, 2008 and 2012; Oppikofer et al. 2009; Jaboyedoff et al. 2011b), Ancona (Cotecchia, 

2006; Cardellini, 2011) and Ruinon in Italy (Agliardi et al. 2001; Crosta and Agliardi, 2003b; Tarchi et 

al. 2003b), Turtle Mountain in Canada (Terzaghi, 1950; Cruden and Krahn, 1973; Benko and Stead, 

1998; Froese and Moreno, 2011) and Vallcebre in Spain (Gili et al. 2000; Corominas and Santacana, 

2003; Corominas et al. 2005b). On the other hand, the Hong Kong Engineering Office provided the 

only one response dealing with a regional EWS for shallow landslides (Hong Kong Slope Safety, 2012); 

this case is not included hereafter since many questions were not designed and thus not applicable 

for regional systems and also since this singular experience is too different from the other 14 

operational units and their 23 related site-specific case studies. 

Although 23 answers have not a high statistical significance, interesting practical trends can still be 

extracted from the dataset, especially since some of them are about the most studied landslides 

worldwide and valuable experiences have thus been accumulated for many years. 

 Units in charge of the EWSs 7.3.1

The first part of the questionnaire is related to the functioning of operational units. The 14 reported 

institutions, in charge of site-specific landslides monitoring and/or EWSs, operate mostly at national 

and regional levels; however, two third of them are also responsible for monitoring other natural 

processes, such as weather conditions, volcanoes and/or earthquakes. These units employ especially 

for their EWSs between 0 (monitoring carried out by universities) and 15 people (IPGP - Martinique).  

All these institutions are financed by public funds, except one which receives additional private 

resources. On average, they need to operate about 175’000 € per year, with a minimum of 60’000 € 

for a Czech office in charge of 10 landslides and a maximum of 500’000 € for the Centro di 

Monitoraggio Geologico of the ARPA Lombardia in charge of 24 single landslides. But annual 

operational costs are highly depending on the different living standards in each country and also on 

how the unit is organized; moreover, the funding for replacing and implementing new monitoring 

systems can highly change from year to year. This highly changing budget and resources from year to 

year can be a reason that only 7 institutions answered to this question. 
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Table 7.1: Exhaustive list of the monitored landslides and their related operational units that answered to the questionnaire 

during Summer 2011: a system in operation. b system under-construction. c stopped system. x results not included in this 

study. 

Country Operational Unit Monitored landslide 

Canada Alberta Geological Survey Turtle Mountain a 

 University Laval Gascon Rockslide b 

Czech Republic Geo-Tools unnamed a 

 National Park Bohemian Switzerland Hrensko a 

France Service de Restauration des Terrains en Montagne La Valette a 

 Institut de Physique du Globe de Paris à la Martinique Prêcheur River c 

China Geotechnical Engineering Office Entire Hong Kong province a x 

Italy Ancona Monitoring Center Ancona a 

 Centro di Monitoraggio Geologico – ARPA Lombardia Ruinon a 

 Servizio Geologico Aosta Becca di Nona a 

  Bosmatto a 

  Chervaz a 

  Citrin a 

  La Saxe a 

  Vollein a 

 Università degli Studi di Firenze Torgiovannetto c 

Norway Åknes/Tafjord Early warning Centre Åknes a 

  Hegguraksla a 

  Jettan a 

  Mannen a 

 Nebbet Monitoring Center Nebbet Mountain a 

Slovakia State Geological Institute of Diunyz Stur Okolicne a 

  Velka Causa a 

Spain Universitat Politècnica de Catalunya Vallcebre a 

 

 Landslides Settings 7.3.2

a. Hazard 

The second part of the questionnaire was related to the context of the 23 monitored instabilities, 

their previous displacement activities and their potential consequences. It includes a wide range of 

phenomena (Figure 7.1) mostly related to natural slopes, from small rock falls of less than 10 m3 to 

large rock slides of more than 50 million m3 or regional debris flows and earth slide. Moreover, 

landslide events already occurred for 20 of them. 

The studied instability crisis are mainly triggered by intensive rainfall (Figure 7.2). Snowmelt and 

permafrost, human activities, erosion processes, tectonic activities, or even their intrinsic dynamics 

are the other triggering mechanisms sometimes involved. Half of the events happened due to a 

combination of several factors. Furthermore, classifying triggering factors according to the four 
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physical agents responsible of slope destabilizations described by Terzaghi in 1950 (i.e. material 

transport, tectonic stresses, water and weight of slope-forming material), water is surely the most 

important agent, destabilizing more than 87 % of the slopes (Figure 7.2). 

 
Figure 7.1: Type of landslide materials and slopes involved in this study. The total number is over 23, due to multiple 

possible settings. 

 
Figure 7.2: Triggering mechanisms involved for the 23 reported instabilities and grouped according to Terzaghi (1950)’s 

agents. The total can be over than 23 (and 100 %) since the reported studies can be affected by more than one triggering 

mechanism. 

b. Risk 

As introduced before, remediation measures have to be considered when there is an unacceptable 

risk. Indeed, as shown in Figure 7.3, these 23 landslides are directly threatening infrastructures such 

as roads or railways (for 20 of them), buildings (for 14 of them) and human lives (for 12 of them). 

Moreover, 8 of them could even lead to significant indirect consequences, such as tsunami induced 

by rockslides (Blikra, 2008 and 2012; L’Heureux et al. 2011) or outbursts resulting from landslide dam 

failures (Costa and Schuster, 1988; Korup, 2002). 
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Figure 7.3: Number of landslides that are endangering buildings, transportation infrastructures, people and create indirect 

risks or even other issues. The total number is over 23, because consequences of a landslide can affect more than a single 

target. 

In the past, the 20 reported landslides that are now active or dormant (cf. the classification of Cruden 

and Varnes, 1996) produced considerable economic losses that are difficult to quantify (even if 

estimated at about 400 million € by their Operational Units). Furthermore, they had important social 

consequences, destroying roads and villages, isolating populations and even killing more than 110 

people. For example, the rock avalanche at Turtle Mountain in 1903 buried more than 70 citizens of 

the village of Frank during their sleep (McConnell and Brock, 1904). In 1934, the Hegguraksla 

rockslide indirectly killed 40 people due to the landslide-induced tsunami that destroyed several 

villages along the fjord with a wave reaching a maximum height of 62 m a.s.l. (Kaldhol and Kolderup, 

1936; Bugge, 1937). 

For 10 of the reported landslides, some physical mitigation works were performed to prevent new 

catastrophic events, such as retaining basins for debris flows or retaining walls for rock falls, when 

the context allowed it. Moreover, revision of the land-use plans has been implemented in the hazard 

zones for almost 75 % of the reported landslides, essentially updating land-use restrictions and 

construction norms for new inhabitants and infrastructures to reduce the number of elements at 

risk, their vulnerability and/or the population exposition. 

c. Pre-investigations for EWSs 

The third part of the questionnaire was related to investigations performed before the design of the 

monitoring systems. Several issues are usually investigated in order to get a sufficient understanding 

of the unstable systems, which is required for designing a proper and pertinent monitoring network 

(Figure 7.4).  

The most investigated criteria are obviously the landslide geology and the geomorphology (for 19 of 

them), completed by surface movement data (for 14 of them). Indeed, geological and 

geomorphological studies are crucial to understand unstable slope behavior and to provide relevant 
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conceptual models. This includes mapping of landslide features (e.g. main and minor scarps, open 

fractures, surfaces of rupture, compression zones) and evidences of recent activities. Furthermore, 

investigating surface and sub-surface displacements is often crucial for making reliable landslide 

conceptual models. The coupling of geological, geomorphological and displacement maps is an 

important fundament for designing monitoring networks and sensor locations. 

 
Figure 7.4: Inventory of investigations performed before designing the 23 reported EWSs performed and percentage of 

total number of criteria investigated per site. The total number of investigations is over 23, because 86 % of the landslides 

required more than one type of criterion. 

The monitoring network of the Norwegian rockslide in Mannen (Figure 7.5) illustrates how a 

monitoring network can be designed, with in-place instrumentations in the accessible upper areas, 

close to the open fractures, and with ground-based remote-sensing techniques to cope with less 

accessible lower parts. Moreover, sub-surface monitoring in deep boreholes is performed at two 

accessible localities in order to fulfill the Norwegian requirements for EWS. 

In addition, numerical models are computed for 14 instabilities in order to (1) determine stability 

factors and (2) map potential run-out areas of rock falls, rock avalanches, debris flows, as well as 

rockslide-induced tsunamis. Therefore, simulation models are essential to identify exposed 

populations and infrastructures. Geophysical measurements (mainly seismic refraction and electrical 

resistivity) and geotechnical in-situ tests (such as standard or cone penetration tests) are performed 

in approximately 50 % of the cases, providing useful complementary information on sub-surface 

conditions. Geotechnical in-lab tests are usually less employed than other criteria. 

Surprisingly, hydrogeological conditions are only investigated for half of the cases (mainly 

piezometers and/or rain gauges mostly). It contrasts with the fact that in the 2nd part of the 

questionnaire, water is considered as a physical destabilizing agent for 87 % of the reported 

instabilities (Figure 7.2) and ground-water conditions is also required for reliable landslide models. 

For example, Bonnard and Steiger (2012) advise a minimum of two years of water-table monitoring 

before designing any drainage systems. 
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Finally, it is also important to note the common use of a multi-criteria approach. Thus, as seen in 

Figure 7.4, operational units have designed their EWS on 4 types of criteria and even more in 69 % of 

the cases. The use of only one criterion is a method used for 14 % of the cases, and this is mostly 

implemented for cases where debris flows are triggered by heavy precipitations. 

 
Figure 7.5: Mannen rockslide monitoring network. Ground-based in-place instrumentation is concentrated close to the back 

scarp, while the GB InSAR system is placed in the valley below. Two deep boreholes are instrumented by 120 m long DMS 

columns. Open fractures and slide scars were identified and mapped during previous field investigations. Theoretical and 

technical details of those techniques are developed in Stumpf et al. (2011) and Michoud et al. (2012a). 

 

 Monitoring systems 7.3.3

a. Sensor network 

The fourth part of the questionnaire is related to instruments and sensors used to monitor the 

instabilities. Two of our partners, monitoring fragmental rockfall events, reported to us difficulties to 

fill this section table because of its pdf format; the following interpretations are thus based on the 21 
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other case studies. Figure 7.6 displays the different types of observed parameters and Figure 7.7 

sums up the different setup sensors. Detailed theoretical and technical aspects on all these landslide 

monitoring sensors are developed in Stumpf et al. (2011) and Michoud et al. (2012a). 
 

 
Figure 7.6: Inventory of monitored parameter types for the 21 reported monitoring networks. The total number is over 21, 

because more than one parameter is monitored for 15 of the landslides. 

 

 

Figure 7.7: Inventory of the different techniques used for the 21 reported monitoring networks in order to measure surface 

and sub-surface displacements (in orange), water and groundwater table levels (in dark blue), weather conditions (in light 

blue), geophysical properties (in red) and available sediment volumes (in light green). Theoretical and technical details of 

those techniques are developed in Stumpf et al. (2011) and Michoud et al. (2012a). 
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The large majority of the EWSs is based on the monitoring of surface and sub-surface displacements 

(for 18 of them), certainly because they show direct evidences of active deformations. In order to 

measure movements, half of the networks are based on extensometers and/or Global Navigation 

Satellite Systems (GNSS); crackmeters and inclinometers are also frequently used. These sensors 

deliver reliable data and they are robust and cheap (except for GNSS). Regarding GNSS, even if 

antennas and receivers are more expensive than other systems and the data processing more 

complicated, they have the major advantage that they provide 3D displacement information. Other 

techniques such as ground-based interferometric radar (GB-InSAR), total station, laser, or tiltmeters 

are less used. Up to now, they were considered to be expensive as well as to create some difficulties 

related to setup and data processing in comparison with other methods. Furthermore, some 

instruments as crackmeters or GB-InSAR may become fragile in harsh environments and good 

protections (against heavy rainfall, snow load or snow creep for example) have to be considered to 

protect them. Subsurface monitoring in boreholes is common on some of the largest and more 

complex landslides, and is used in 6 of the reported cases. Several of the landslides have now 

changed the instrumentation from traditional manual inclinometric probe measurements to 

automatic and long columns, such as the DMS system (Lovisolo et al. 2003), consisting of a large 

number of sensors managing to monitor continuous sequences. 

It is also interesting to note that the Turtle Mountain and Åknes instabilities are monitored using 

spaceborne radar interferometry (InSAR) techniques as well. Even if it does not provide real-time 

data and de facto cannot be used for operative early warnings, it is a useful approach to understand 

and update the landslide dynamics using images from space agencies’ archives. Moreover 

Spaceborne InSAR can be helpful during pre-investigation works and also provide complementary 

information to EWSs. Indeed, an overview of the regional stability in the neighborhood of the 

monitored slopes is important in many cases, since large landslides as sackungs are able to 

destabilize small monitored landslides inside the large deformed masses (Agliardi et al. 2001). 

In addition to displacement data, meteorological parameters are crucial to be monitored since 

rainfall, snowmelt and permafrost are considered as a triggering factor for 20 (87%) of the 

instabilities (Figure 7.2). Meteorological parameters are thus very frequently measured (in 14 EWSs) 

as well as water table levels and water discharge in streams (in 9 EWSs); indeed, rain gauges are 

included in half of the monitoring networks, and piezometers and temperature gauges for 7 of them. 

Near-surface geophysical methods have been considerably improved during the last two decades 

and their uses for landslide investigation purposes have been reviewed in Jongmans and Garambois 

(2007). Nevertheless, geophysical applications for operational EWSs are still under developments 

(Spillman et al. 2007; Roth, 2012; Mainsant et al. 2012a, Navratil et al. 2013), largely explaining why 

they are applied only for 5 of the 21 reported case studies.  
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An EWS implemented in debris and earthflow source areas is also monitoring the volume of available 

sediments that can be mobilized in case of heavy rainfall using gauges that measure the sediment 

heights, in order to be able to forecast potential event intensities. 
 

 
Figure 7.8: Minimum, mean and maximum instrument types used to monitor each parameter (when it is done) per 

landslide. 

 
Figure 7.9: Minimum, mean and maximum number of sensors of each type per landslide, when used, in order to monitor 

surface and sub-surface displacements (in orange), water and groundwater table levels (in dark blue), weather conditions 

(in light blue), geophysical properties (in red) and available sediment volumes (in light green). Theoretical and technical 

details of those techniques are developed in Stumpf et al. (2011) and Michoud et al. (2012a). 
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Redundancy is important in EWSs (Figures 7.8 and 7.9). This is particularly evident for robust 

monitoring networks that measure displacements and groundwater. For example, on the Åknes 

instability, displacements are monitored by 8 instrument types: 8 crackmeters, 8 GNSS antennas, 2 

laser devices, 1 ground-based radar, 3 extensometers, 1 total station coupled with 30 prisms, 2 

surface tiltmeters and 3 deep boreholes instrumented with inclinometers and water-pressure 

measurement cells (DMS columns). It allows to (1) monitor several sectors with different dynamics 

and displacement rates in surface and sub-surface, (2) discriminate unwanted false alarms coming 

from large noise or one defective sensor and (3) have instruments fed by several power supply and 

data communication lines. On the contrary, only one meteorological station (e.g. with rainfall, 

temperature, snow depth or humidity gauges) is usually installed to monitor weather conditions 

since landslides are usually confined in small areas with relative similar conditions. 

In conclusion, based on the experiences of the reported institutions in charge of landslides EWSs, a 

good monitoring network is characterized by: 

1. Simplicity; 

2. Robustness; 

3. Presence of multiple sensors; 

4. Power and communication lines back-ups (detailed in Section 7.3.3). 

The following characteristics are also important for the choice of an instrumentation: 

1. Implication for understanding the landslide evolution; 

2. Long-life expectancy; 

3. Robustness; 

4. Price; 

5. Level of real-time data; 

6. Noise level of the sensors. 

On the other hand, a system is limited if it is based only on surface displacements and if it can be 

damaged by weather conditions and/or landslide events themselves before sending data or alarms to 

the operational centre. Present monitoring networks can still be improved by a better integration 

and near real-time compilation of all monitoring data, for example by coupling displacements with 

weather conditions, groundwater and/or seismic activities. 

b. Power and data management networks 

The principle of redundancy is also important for power and data management networks, as shown 

in detail in Froese and Moreno (2011). Those networks supply monitoring sensors with electricity and 

allow manual remote data accesses for expert’s periodical checks and automatic data transmissions 
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to operational units based on Internet protocols. Regarding the 23 reported sites, two third of 

monitoring networks are equipped with power supplies, communication lines and systems back-ups 

for monitoring sensors and for operational centres, in order to ensure continuous data 

measurement, transmission and analyse. 

c. Alarms 

The fifth and last part of the questionnaire is focused on the way to use monitored data, establishing 

alarms and associated responses to protect endangered populations and infrastructures. 

Threshold values for alarm messages are normally based on the evaluation of different sensors and 

an expert interpretation of the stability conditions, mainly during the pre-investigation work (Blikra, 

2008; Froese and Moreno, 2011). Because they are direct evidences of activity, almost all threshold 

parameters are based on displacement data (for 13 of the 15 reported answers), sometime coupled 

with rainfall data (for 6 cases). More rarely, 2 earth slides in Slovakia use groundwater table level 

monitored by piezometers as threshold parameter. 

Figure 7.10 highlights essential characteristics for the establishment of alarm procedures. In order to 

limit false alarms, threshold values are based on multiple identical devices and/or several redundant 

types of sensor for 19 of the EWSs. But curiously, only 9 of the threshold values are taking into 

account technical sensor limitations, such as the smallest detectable signal and noise levels, before 

establishing them, even if it allows to increase the alarms reliability. Furthermore, several levels of 

alarms (such as Table 7.2) have been established for one third of the reported systems. 

 
Figure 7.10: Inventory of the essential characteristics of alarm procedures for the 23 reported monitoring networks. 
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Table 7.2: Example from the Emergency Preparedness Centre in Stranda (Norway) of gradual alert levels based on different 

threshold values and experts evaluations leading to planned responses (modified from Blikra et al. 2007). 

Velocities 
[mm/day]  

Alarm level 
Activities  
and alarms 

Response 

0.1 – 0.5 Level 1 - Green 
Normal Situation 

Minor seasonal variations 
No alarm 

Technical maintenance 
EPC staff  

0.5 – 2 Level 2 - Blue 
Awareness 

Important seasonal fluctuations for 
individual and multiple sensors 
Values < excess thresholds for Level 2 

Increase frequency of data review 
and comparison of different 
sensors 
EPC staff 

2 – 5 Level 3 - Yellow 
Increase awareness 

Increased displacement velocity, seen 
on several individual sensors 
Values < excess thresholds for Level 3 

Do continuous reviews and field 
survey 
Geo-expert team at EPC full time 
Inform police and emergency 
preparedness teams in 
municipalities 

5 – 10 Level 4 – Orange 
High hazard 

Acceleration in displacement velocity 
observed on multiple sensors 
Values < excess thresholds for Level 4 

Increase preparedness, continuous 
data analysis 
Alert municipalities to stand 
prepared for evacuation 

> 10 Level 5 – Red 
Critical situation 

Further acceleration 
Values > excess thresholds for Level 4 

Evacuation 

 

As soon as a threshold value is reached by a predefined number of sensors, 22 of the 23 monitoring 

networks automatically send an alarm message to an operator on call 24/7. The most used 

communication technique is largely an automatic SMS sent to operators cellular and is too rarely 

coupled with other redundant systems, such as emails or voice phone message (Figure 7.11).  

 
Figure 7.11: Inventory of automatic and manual techniques used to send alarms from the monitoring network to the 

operational unit and percentage of number of techniques used simultaneously for the 23 reported monitoring networks. 

The total number is above 23, since 39 % of the monitoring networks use more than one technique. 



Part C: Site-specific landslide monitoring and modelling 

 
178 

These alarms prompt the responsible person on duty to inspect the monitored data. Moreover, 

direct field observations are possible in many cases to get additional information about the stability 

conditions, especially during critical stages, by checking visible changes, such as local activities (e.g. 

sliding and/or fall) within the whole landslide area,  

Finally, according to expert judgment based on the monitored data and these field observations, 

procedures to manually cancel alarms have been established for two thirds of the reported case 

studies. 

 Dealing with populations 7.3.4

a. Decision making processes 

Tailored strategies have to be adopted depending on the landslide state of activity and two third of 

the reported EWSs have established different thresholds for different scenarios. For example, the 

Emergency Preparedness Centre in Stranda established gradual alert postures based on different 

threshold values and expert evaluations leading to appropriated responses, as the evacuation of 

endangered populations (Table 7.2). The execution of these strategies requires a close collaboration 

between the operational units and local and/or regional authorities. Rigorous protocols have to be 

established in order to clearly define roles and responsibilities of each institution according to the 

alert levels; a detailed example of the Turtle Mountain Monitoring Project protocols is illustrated in 

Moreno and Froese (2009). The flowchart is a common representation that gives an evident check 

list reviewing necessary procedures, as shown for instance in Figure 7.12. The design of decision 

making processes should take care of legislation and cultural issues, as well as of the prerogatives of 

the involved agencies. Three fourth of the reported strategies have been designed by the operational 

units, with the help for about one third of them from local authorities and/or regional and 

governmental institutions (Figure 7.13). Moreover, the procedures have almost all been reviewed by 

operational check lists (in 16 cases), completed in 8 cases by reviews from external groups. 
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Figure 7.12: Flowchart of the protocol that has to be followed in case of alarm in Ancona, Italy (modified after Cardellini, 

2011). 
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Figure 7.13: Inventory of institutions involved in the establishment of strategies in case of alerts and percentage of number 

of institutions involved together for the 23 reported EWSs. The total number is above 22, because 36 % of the strategies 

have been designed by more than one institute. 

 

b. Alert broadcasts 

When circumstances require the evacuation of local populations, the most used communication 

vectors to inform people are radio, siren and SMS, coupled sometime with phone and TV (Figure 

7.14); but also normal evacuation approaches by policemen walking door-to-door are important 

routines. Websites and e-mails are rarely used, since it is not sure that they manage to reach the 

population in time for an imminent danger. Regarding the closing of road sections, the most frequent 

system is simple traffic lights that can actually be completed by policemen. According to our ability to 

predict in advance the time to slope failure or to flow initiation (Fukuzono, 1990; Crosta and Agliardi, 

2003b; Baum and Godt, 2010; Federico et al. 2012; Meyer et al. 2012) and the stakes of each site, 

reaction times after warning are from 10 minutes to close roads, as in Torgiovanetto, to 72 hours to 

evacuate populations, as for Norwegian rockslides. 

 
Figure 7.14: Inventory of the different ways used to issue the alerts to local populations and percentage of number of 

communication devices coupled for the 13 reported answers got from questionnaires. The total number of communication 

vectors for alerts is over 13, because 38 % of the systems use more than one type of device. 
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Prior to real evacuations, operational units and local units have imperatively to ensure that public has 

been well informed about the adopted strategies, in order to guarantee that the plan comes 

together with proper cooperation and behavior of the local populations (as detailed in Section 7.3.4). 

In addition, evacuation exercises, which have been performed once or twice for 12 reported case 

studies, recently turn out to be necessary to test the efficiency of established plans and procedures 

(Moreno and Froese, 2009). 

c. Risk communications 

The trust of local populations in EWSs and a proper risk perception are fundamental for the success 

of an EWS (Dash and Gladwin, 2007) since cooperating and collective actions are required in case of 

alerts. Due to socio-cultural heritages, fair judgments need openness, involvement and good 

consultation processes. Ostrom (1998) further recommends the face-to-face communication. It 

provides the best positive effects on cooperative tasks, allowing, among other things, the exchange 

of mutual commitments and the assurance of proper expectations of population behaviors in case of 

evacuation for instance.  

For half of the reported cases, the information is given thanks to public meetings, reports, as well as 

websites (Figure 7.15). Other solutions, such as newspapers, are still anecdotic. No answers referred 

to any information provided by some TV-programs. A good risk communication also means that 

public meetings have to be organized to inform and consult local populations during and/or after 

every round of the decision making process. 

 
Figure 7.15: Inventory of communication vectors used to inform local populations for the 23 reported EWSs. The total 

number of vectors is over 23, because several institutions communicated by several ways. 

Finally, a last point is also clear: monitoring centers are in charge of sensitive and complex data. 

Indeed, even if they are all partially or totally financed by public funds, two third of the institutions 
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still do not open a free and easy access to data for anyone. It can be also a question about letting the 

public having access to raw data that can be difficult to interpret due to noise in the sensor 

measurements. Although not communicating the monitored data could make local people 

suspicious, incorrect readings could also certainly lead to major misunderstandings and unnecessary 

concerns (Mileti and Sorensen, 1990). Therefore, the right communication level is difficult to reach. 

 Practical challenges 7.3.5

The last part of the questionnaire is related to practical challenges encountered during the design, 

the construction and the maintenance of the EWSs (Figure 7.16). Most of them (20) related some 

problems during the installation and the maintenance of the sensors. Indeed, more than half of the 

instrumentation deals with harsh weather and site conditions, suffering from heavy rainfall, ice, thick 

snow cover, avalanches, wind, etc. On the other hand, funding and human resources are sources of 

problems for less than one third of the EWSs.  

 
Figure 7.16: Inventory of practical challenges met by the 23 reported EWSs. The total number of challenges is over 23, 

because EWSs usually encountered more than issue during its life cycle. 

From the 8 participating countries, only Norway legislated on EWS in order to define the roles of 

institutions in charge of landslide EWSs and to direct them (Technical requirements in the Norwegian 

building codes). In addition, Slovakia produced a guideline about general strategies to adopt and 

Canada is on the way (Couture et al. 2012).  

As a consequence, the operational units in charge of EWSs have to look for scientific and practical 

supports from other expert groups and/or international experience. 

7.4 Discussions and conclusions 

This paper aims to present some reflections for implementing site-specific landslide EWSs focused on 

specific requirements and practical issues based on current on-going experiences. A questionnaire on 
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these purposes was created and sent to about a hundred of institutions in charge of landslide 

managements. About one fourth of the requests received an answer. One reason could be the lack of 

availability from the persons in charge. Another reason could be the questionnaire format (a pdf file 

including questions and tables sent by emails), even if it seemed to be easy accessible for everybody. 

Several institutions reported to us indeed difficulties to fill some parts of the questionnaire and had 

to print it to write answers by hand. For future investigations, we would recommend the use of 

interactive web-based survey tools (e.g. as in Tofani et al. 2013); they are indeed more user-friendly 

to fill by respondents (maximizing the number of potential answers as shown in Lapointe et al. 2010) 

and also to analyze afterwards. Although the small number of answers has not a high statistical 

significance, several of the reported EWSs are among the most studied landslides in the Western 

countries. They have also accumulated high-quality knowledge after many constructive studies and 

experiments; valuable results and future recommendation can thus be extracted from these sites.  

There are no standard requirements for designing and operating EWSs. Actually, we cannot provide 

solutions to all questions since every situation is unique, depending on landslide hazard and risk 

settings, local legislations and available resources. Such guidelines are provided in a comprehensive 

report (Bazin, 2012). Nevertheless, this review based on current experiences highlights specific 

requirements and potential practical issues that operational units would have to take into 

consideration when designing their system: 

o It is crucial to acquire a proper understanding of instabilities through hazard and risk pre-

investigations, and to constantly update landslide conceptual models with the newer 

monitored data of EWSs; 

o Redundancy, simplicity, robustness, communication and power supply back-ups are 

necessary for a reliable monitoring system. This should support a near real-time 

interpretation of the stability conditions by experts; 

o The establishment of different scenarios adapted to gradual increasing of alert levels based 

on reliable landslide models is important. Procedures should clearly define the role and the 

responsibilities of all involved institutions. Alerts should be as quick and as direct as possible; 

o Public meetings for properly informing and consulting local population are important in order 

to ensure a trust atmosphere and an appropriate behavior of people in case of alert. 

Nevertheless, some EWS are limited by theoretical and practical issues that are currently 

investigated: 

o First, operational units also underline that most of the time, monitoring networks are located 

in harsh conditions and therefore that it is difficult to install and maintain sensors. This point 

emphasizes the importance for manufactures to improve long term sensor robustness and 

for operational units to ensure a proper maintenance budget. 
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o EWSs could be significantly improved by current research, focusing on a better near real time 

integration of monitoring data from different sensor types (Bichler et al. 2004; Travelletti et 

al. 2012; Michoud et al. 2013c). Sensors and their data processing are under fast 

developments (Tofani et al. 2011), getting to the continuous integration of GB-InSAR data 

(Casagli et al. 2010; Chantry et al. 2013; Montserrat et al. 2013), LiDAR data (Riegl, 2013) and 

geophysical measurements (Mainsant et al. 2012a; Navratil et al. 2013) to monitor 

landslides. Due to this fast evolution, monitoring systems have to be regularly updated, 

having once again an impact on EWS deployments and maintenance costs (Froese, 2013). 

o In addition to technical limitations, this survey highlights also some EWS conceptual issues. 

For instance, it seems there is lack of investigation about hydrological factors in landslide 

processes since water is involved in about 86 % of slope destabilizations and/or landslide 

triggering but is investigated with rain gauges or piezometers for only half of the cases. 

o Moreover, an important challenge is to improve the reliability and pertinence of automatic 

alarms in the future. Surprisingly about half of the reported systems did not take into 

considerations technical sensor limitations before establishing threshold values, even if it 

would surely decrease the frequency of false alarms. In addition, recent research are focused 

on failure forecasting and/or flows initiations by looking for mass movement indicators 

(Baroň et al. 2012), such as precursory displacements (Abellán et al. 2010; Federico et al. 

2012), changes in slope rheological settings (Mainsant et al. 2012b), strain rates (Jaboyedoff 

et al. 2012c), or hydrological conditions (Abellán et al. 2013; Mercogliano et al. 2013).  

We can also add that a recent workshop (“The 1st International Workshop on Warning Criteria for 

Actives Slides”), held in Courmayeur, Italy (Cloutier et al. 2015), during the review process of this 

paper (10-12 June 2013), showed one additional issue. After a decade of services, it indeed seems 

that some EWSs need to be redeployed because of low activity of the landslides and budget issues. 

This leads to learn how to go from expensive and complex EWS to simpler and cheaper monitoring 

systems (Troisi and Negro, 2013; Froese, 2013). 

Finally, the collected feedbacks and experiences, in addition to current researches, will therefore 

contribute to modify and improve existing and future EWS strategies. 

7.5 Supplementary material 

The following questionnaire has been sent in June 2011 to more than hundred institutions in charge 

of landslides monitoring and/or early warning centers in Asia, Europe and North-America. The results 

of the present paper are based on answers that we received till autumn 2011. 
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8 Synthesis 

8.1 Summary of specific conclusions 

As introduced in Section 1, this PhD thesis aimed to investigate capabilities of LiDAR and RaDAR 

techniques at multiple scales and for various landslide types to support landslide hazard assessments 

and management from regional scales to site-specific instabilities. 
 

1. Landslides detection and characterization at regional scales 

Regarding the regional landslide detection and characterization matter, we first validated the 

suitable capabilities of recent boat-based mobile LiDAR devices to properly model the topography 

with a decimetric resolution of km long Normand chalk coastal cliffs, from tossed water of the 

Channel Sea. Parameters controlling point cloud resolution and precision were also discussed and 

quantified. Then by comparing annual acquisitions, we validated as well our approach to detect 

surface changes and thus map rock collapses, landslides and toe erosions at a county scale. The 

spatial repartition of detected events is now supporting researches to improve our understanding of 

chalk coastal cliff destabilization processes. 

In the Argentine Andes, we applied a spaceborne small baseline InSAR approach to detect large slope 

instabilities along the national road 7. The low coherence of resulted processes limits the capability 

of advanced InSAR methods to survey surface changes in such steep reliefs and harsh environments. 

Nevertheless, we detected, characterized and monitored two unknown deep extremely slow soft 

rock slides along gentle shores of the Potrerillos dam reservoir. We then identified a body of 

evidences that those large slope instabilities mainly formed by sandstones and clays are influenced 

by the reservoir level variations. We therefore demonstrated that geometries and displacements of 

extremely slow landslides, as well as survey of the reservoir water level variations, can all be 

extracted from spaceborne advanced InSAR images using both phase and amplitude signals. 
 

2. Spatial risk assessment over large areas 

Advanced investigations on fragmental rockfall risk assessment for were conducted along roads of 

the whole Bagnes valley, based on HR-DEM and the Swiss geological atlas. By improving approaches 

of the Slope Angle Distribution and the FlowR software, both rock-mass-failure susceptibilities and 

relative frequencies of block propagations were evaluated at the valley scale and thus rockfall hazard 

maps could be established. Finally, based on the hazard mapping and additional information about 



Part D: Conclusions 

 
194 

traffic, we then were able to process rockfall risk assessments along all roads of the valley. As a 

result, even if the resulting risk is an approximation, this improved approach allowed (1) to deal at 

affordable cost with real hazard maps at regional scales and (2) to identify hotspots where expensive 

detailed investigations are necessary in priority. 
 

3. Slope instability monitoring and modelling at site-specific scales 

At slope-specific scales in the Swiss Alps, we integrated Ground-based InSAR and terrestrial LiDAR 

acquisitions to map, monitor and model the La Perraire rock slope deformation. By interpreting both 

methods individually and originally integrated as well, we therefore delimited the rockslide borders, 

computed volumes between 8 and 10 million cubic meters, and highlighted non-uniform 

translational displacements along a wedge failure surface. Computed strain rates stressed an active 

extension of the upper part of about 0.085 %/yr with displacements rates up to 25 cm/yr, and a 

progressive movement decrease downward that implies a worrying compression of the rockslide toe. 

The instability may behave as rock avalanche in case of sudden total failure; these investigations are 

therefore essential requirements to design an early warning system. 

Finally, we studied specific requirements and practical issues experienced on early warning systems 

set up for some of the most studied landslides worldwide that accumulated high-quality knowledge 

after many constructive studies and experiments. We then extracted valuable recommendations to 

set a reliable EWS, such as the importance of pre-implementation works or the establishment of 

different scenarios adapted to gradual increasing of alert levels. We also underlined some current 

conceptual issues that must be solved, especially regarding failure forecasting and integration of 

water processes in landslide conceptual models. For instance, water is indeed involved in about 86 % 

of slope destabilizations and/or landslide triggering but is investigated with rain gauges or 

piezometers for only half of the cases. To sum up, this review, in addition to current researches, will 

thus support the design and improvement of future systems. 

8.2 Current sensors capabilities 

Spaceborne DInSAR methods extract extremely slow surface displacements with sparse resolutions 

at regional scales (Massonnet 1985; Ferretti et al. 2001 and 2011; Berardino et al. 2002). Therefore, 

they are indicated to detect large and active slope instabilities with continuous displacements, such 

as mountain and rock slope deformations, rock and soil slides, or even earthflows (Berardino et al. 

2003; Herrera et al. 2010, 2013; Lauknes et al. 2010; Henderson et al. 2011; Schlögel et al. 2015; 

Section 4 of this manuscript). Thus, DInSAR methods are not sufficient to achieve complete active 

landslide inventories (Bianchini et al. 2012; Herrera et al. 2013) and cannot point out former and 

stabilized landslides; but it can still monitor a dormant delimited instability to survey its potential 
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reactivation (Herrera et al. 2011; Crosetto et al. 2013; Sigleton et al. 2014). Nevertheless, those 

limitations are nowadays being overcome: indeed, a new generation of spaceborne SAR sensors is 

currently under deployment within the European Space Agency Sentinel program (Malenovský et al. 

2012). The constellation of Sentinel 1A and 1B will allow a revisiting time of 12 days and even 6 days 

in tandem modes (Berger et al. 2012). These short temporal baselines will definitely refine coherence 

of A-DInSAR scenes reducing spatial decorrelation and increasing the SNR by stacking (cf. annex B1). 

Therefore, these new products will surely improve the landslide detection at regional scales, which 

are currently suffering of large masked areas with no data due to low coherence issues (cf. Section 

4.4.2). In addition, they will also enhance displacement monitoring of site-specific landslides, such as 

in Turtle Mountain or Åknes (cf. Section 7.3.3). Those measurements recorded on a weekly base will 

then support long term investigations at low cost, requiring only the setup of corner reflectors on 

studied slopes. Now, prior to any applications, it is important to take care of specific points in order 

to ensure the most consistent processing as possible (Massonnet and Feigl 1998; Hanssen 2001; 

Cascini et al. 2009). Indeed, the natural features of the region of interest, such as slope steepness 

and aspect, land-use, landslide type and velocities, will condition the choice of SAR sensors according 

to their resolution, orbits and wavelengths. Furthermore, the availability and costs of archived scenes 

are also decisive to confirm the choice of the sensor: without any archives, we would have to wait 

more than 15 snow-free SAR acquisitions (repeat intervals of respectively 35 and 11 days for Envisat 

and TerraSar-X) to get enough images to process reliable stacked interferograms. In addition, 

archived SAR images from mid- resolution ESA sensors (ERS, Envisat, etc.) can be relatively low cost 

or even free, allowing to get InSAR results at affordable costs when necessary. Moreover, even if 

DInSAR processing are time consuming and complex, they are nowadays semi-automatic and many 

tests can be performed to set the most relevant parameters as possible. 

Ground-based InSAR devices have been developed to continuously monitor delimited unstable 

compartments (Tarchi et al. 1997; Casagli et al. 2003; Herrera et al. 2009; Barla et al. 2010; Section 6 

of this manuscript). In order to ensure a consistent monitoring, extents, velocities and directions of 

mass movements must be estimated as best as possible. Indeed, it will condition GB-InSAR 

monitoring feasibilities and potential device locations. First, GB-InSAR devices usually have metric 

resolutions and are optimized to detect millimetric mass movements. Then regarding GB-InSAR 

locations, device LOS must be as parallel and less orthogonal as possible to the expected movement 

directions to maximize the possibility to monitor them, since recorded displacements are the 

projection of real ones on the LOS. In addition and only if several location can fit with the previous 

points, devices should be set up as close to the instability as possible to improve their resolution, and 

at same elevations as surveyed masses to avoid that potential atmospheric layering induces 

decorrelations (Hanssen et al. 2001; Lauknes et al. 2011). Once device location and parameters are 

optimized, data acquisitions and displacement processing can be automatically executed; therefore 

GB-InSAR methods are indicated for early warning systems of large unstable masses by monitoring 
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extremely to very slow precursory displacements (Luzi 2010; Caduff et al. 2014; Monserrat et al. 

2014; Section 7 of this manuscript). 
 

Aerial LiDAR sensors are mainly used to produce HR-DEM at regional scales (Baltsavias 1999b; Carter 

et al. 2001). On the one hand, semi-automatic procedures were developed to spatially assess 

landslide susceptibilities, mapping areas that can potentially be reached by natural processes with no 

indications on their current activity (Chigira et al. 2004; Jaboyedoff et al. 2012b; Section 5 of this 

manuscript). These approaches can be applied to rockfall, debris flows, shallow landslides, snow 

avalanches or even dynamic floods. On the other hand, active or dormant slope instabilities (slides 

and flows) can be manually mapped based on the visual interpretation of landslide geomorphological 

markers, such as crones, bulges, shallow flow, toe erosion or scree deposits (McKean and Roering 

2004; Ardizzone et al. 2007; Haneberg et al. 2009; Schulz 2007; Jaboyedoff et al. 2012b; Crosta et al. 

2013). This visual expertise is technically simple but very time-consuming and asks rigour to provide 

consistent and coherent results over large areas. Before any application, we must be aware that 

land-uses (especially dense forests), slope angles (in particular vertical cliffs) and elevations of 

studied areas will affect the quality of the ALS surface point clouds and limitate HR DEM-based 

geological mapping capabilities. In addition, costs of aerial LiDAR acquisitions were reletaviley high, 

limiting so far the use of sequential acquisitions for surface change detection and monitoring. 

Terrestrial LiDAR sensors provide 3D point clouds of the topography with very high resolution, 

especially on steep rock slopes at site-specific scales (Gordon et al. 2001; Lichti et al. 2002). First, in 

order to ensure reliable results, it is important to optimize TLS acquisitions according to slope 

geometry. Indeed, the number of different acquisitions covering the whole moving mass has to 

minimize shadow areas by usually increasing the number of point of views; on the contrary, they also 

have to be as low as possible to avoid scan alignment errors. Therefore, the optimization of number 

of windows should be seriously considered before any acquisition, since it will definitively influence 

result capabilities. Once clouds are processed, landslide geological and geomorphological features 

can be precisely mapped based on visual point interpretations (Jaboyedoff et al. 2007; Matasci et al. 

2014). In addition, semi-automatic approaches to assess structural settings and surface changes are 

under constant developments (Sturzenegger et al. 2007; Teza et al., 2007; Oppikofer et al. 2008; 

Abellán et al. 2010; Carrea et al. 2012). Indeed, TLS are widely used for accurate and complete 

sequential monitoring of surface changes and 3D displacements of various landslide types (Oppikofer 

et al. 2008; Travelletti et al. 2014; Section 6 of this manuscript). Nevertheless, some critical post-

processing steps remain manual, tedious and time consuming, such as vegetation removal, volume 

estimations or roto-translation matrixes extraction; thus, uses of TLS devices for continuous 

monitoring including early warning systems are nowadays limited to small slide monoriting in mines 
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(TLS manufacture communications), and automatic routines for more complex slope instabilities are 

under developments (Kromer et al. 2015). 

Mobile LiDAR sensors have been designed to fill gaps between aerial and terrestrial LiDAR sensors. 

Indeed, these sensors are able to acquire points on vertical cliffs (only sparsely covered by aerial 

sensors) confined along transportation corridors, such as cut slopes or coastal cliffs (Kukko et al. 

2012; Glennie et al. 2013). Therefore, in addition to common expertise based on visual 

interpretations of landslide geomorphological features, rock fall activity as well as surface changes 

and displacements can be assessed as for TLS approaches (Alho et al. 2009; Vaaja et al. 2011 and 

2013; Kukko et al. 2012; Glennie et al. 2013; Section 3 of this manuscript). Prior to any MLS study, 

specific conditions must be assessed to ensure possible acquisitions. First, the GNSS horizon must be 

clear enough and satellites must be consistently located, which can thus limit acquisitions on polar 

latitudes and along vegetated or incised corridors. Then ranges of acquisition have to fit with device 

specifications (from hundred to thousand meters). Finally, external factors, such as marine streams 

and waves on boats or traffic on cars, must be considered as well to ensure reliable acquisition 

conditions. 

8.3 Research perspectives 

As pointed out in previous sections of the manuscript, some achievements would require more tests 

and methodological issues have risen; then, further studies would be really stimulating to improve 

landslide-related sensor capabilities and should therefore be intended: 
 

1. Spaceborne InSAR capabilities for landslide detection at regional scales 

We stressed in Argentina issues to record pertinent and stable reflectors, since the signal is 

hampered by steep slope geometry and is interfered by strong tropospheric delays and long snow 

cover periods on elevated areas (cf. Section 4.4.2). The general trend introduced by the atmospheric 

artefacts has been removed by fitting a quadratic polynomial function on mean LOS velocities 

according to azimuths and elevations. Even if it improved final results, it could not retrieve all 

interfered reflectors that were masked out before the prior interferogram unwrapping step (cf. 

Section 4.3.2a). Then complex atmospheric corrections (Lauknes 2011) included within the whole 

SBAS processing chain and before the unwrapping step still need to be developed and improved. 

Furthermore, spaceborne InSAR method could be applied in the Val de Bagnes. Indeed, in addition to 

rockfall hazard maps (cf. Section 5), landslides affecting the whole valley were inventoried on the 

aerial LiDAR -based DEM (cf. annex B3; Michoud et al. 2010a; Jaboyedoff et al. 2012b). It then would 

be interesting to compare the InSAR detection capabilities for various land-uses, altitudes, slope 
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geometries, and for different landslides types and activities, according to the inventory map. It could 

also be integrated into initiated studies on the identification of distinct InSAR signal patterns 

according to landslide types (Derron et al. 2015; Schlögel et al. 2015). 
 

2. GB-InSAR capabilities for landslide monitoring 

As experimented at La Perraire (cf. Section 6), La Barmasse (Figure 2.10) and in Norway (Rouyet et al. 

submitted), algorithms to post-process GB-InSAR images are not as complete as the one for 

spaceborne interferometry. In the one hand, it is normal since spaceborne-related phase 

contibutions mainly due to orbital and topographic effects (Hanssen 2001) do not affect terrestrial 

SAR images. But on the other hand, there are only few tools to correct atmospheric noises; currently, 

this contribution is corrected by low coherence filtering, pixel focusing and mainly image stacking, in 

order to increase the signal to noise ratio. Nevertheless in some cases, the selection of stacking time-

interval can drastically influence the amplitude of monitored displacements. Tools to select the best 

compromise between the lowest stack influences and highest signal to noise ratio, and to filter GB-

InSAR images according to rain and humidity gauges, should then be studied to remove atmospheric 

phase contributions. 

In addition and to complete spaceborne InSAR perspectives, other investigations were began in 

parallel to improve our understanding of the back scattered signal according to landslide types; 

indeed, tests were started at the Roche quarry, acquiring GB-InSAR images while controlling 

displacement amplitudes and types of artificial rock blocks. Nevertheless, those tests and 

interpretations remained uncompleted and should therefore be finished and compare with the 

DInSAR simulator developed by Derron et al. (2015). 
 

3. Terrestrial LiDAR capabilities for landslide early warning 

A reflexion on the use of continuous terrestrial LiDAR to monitor mass balance in landslide warning 

systems has been initiated for the SafeLand project. This kind of system is indeed regularly used for 

snow avalanches (Rice et al. 2002; Sailer et al. 2008): first LiDAR devices record the thickness of snow 

mantle, particularly in locations where wind is expected to accumulate it. Once the volume reaches a 

predefined critical value, automatic warning procedures can be executed.  

But presently we are not aware of any actual application of it to landslides, even if it could 

theoretically be implemented. Indeed, the monitoring of the volume of potentially mobile material in 

key locations in watersheds could help to prevent large debris flows with long run out. In addition, 

the monitoring of foot slope volume changes, as for example erosion of quick clays toe (Jaboyedoff 

et al. 2009a) or bulging of earthflows (Mainsant et al. 2012a), could be a reliable indicator prior to 

failures. Nevertheless, two major issues can explain why the mass balances concepts are not used in 
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EWS as far as we know. First it requires the assessment of reliable volume threshold values complex 

models. Then there are only few published routines allowing a continuous monitoring with a TLS 

device (Kromer et al. 2015), since estimations of mass balances and surface displacements in 

complex situations from point clouds comparisons still require manual steps. These limitations 

should then be investigated, especially on development of automatized LiDAR routines. 
 

4. Multi-sensors integration tools 

Finally, landslide experts need tools to integrate in one model all acquisitions from different sensor 

types, in order to provide a consistent decision support (cf. Section 7.4). A first step toward this 

objective was achieved, with the implementation in Coltop3D of a module to fuse displacement data 

from GB-InSAR and 3D point clouds from LiDAR acquisitions (cf. Section 6.2.1). Nevertheless, it might 

be interesting to go further, developing tools to add other dataset, such as displacement vectors 

from punctual GNSS campaigns or sub-surface movements recorded on inclinometers. 
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9 Epilogue 

This thesis investigated LiDAR and DInSAR capabilities on various landslide types, at several scales 

and for different objectives. Therefore, the diversity of experimented situations brought an extensive 

experience that revealed the potential and limitations of both methods and highlighted as well the 

necessity of their complementary and integrated uses. Furthermore, during seven years of this PhD, 

we saw the technical improvement of devices continuously more portable, accurate and affordable; 

in addition, recent algorithms also tend to refine and automatize post-processing routines. Current 

developments of mobile LiDAR mounted on UAVs and photogrammetry based on Structure-for-

Motion—Multiview-Stereo algorithms illustrate this trend. Thereby, we can reasonably assume that 

slope instability surveying and monitoring will be steadily less technically challenging and then, 

efforts should be focused on stimulating questions, i.e. landslide mechanism understanding and time 

to failure forecasting. 
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[1] Given that clay-rich landslides may become mobilized, leading to rapid mass
movements (earthflows and debris flows), they pose critical problems in risk management
worldwide. The most widely proposed mechanism leading to such flow-like movements is
the increase in water pore pressure in the sliding mass, generating partial or complete
liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical
rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity
variations. With this purpose in mind, the ambient seismic noise correlation technique has
been applied to measure the variation in the seismic surface wave velocity in the Pont
Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was
equipped with continuously recording seismic sensors during spring and summer 2010. An
earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a
rainy period. This article shows that the seismic velocity of the sliding material,
measured from daily noise correlograms, decreased continuously and rapidly for several
days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was
possible to determine the location of the change at the base of the sliding layer. These
results demonstrate that ambient seismic noise can be used to detect rigidity variations
before failure and could potentially be used to predict landslides.

Citation: Mainsant, G., E. Larose, C. Brönnimann, D. Jongmans, C. Michoud, and M. Jaboyedoff (2012), Ambient seismic noise
monitoring of a clay landslide: Toward failure prediction, J. Geophys. Res., 117, F01030, doi:10.1029/2011JF002159.

1. Introduction

[2] All mountainous areas are affected by gravitational
mass movements of various types, sizes and velocities,
which could have a major impact on life and property.
Landslides in clay-rich formations, which are widespread
over the world, are characterized by unpredictable acceler-
ation and liquefaction phases [Iverson et al., 1997; Malet
et al., 2005]. Of particular concern for hazard assessment
is the triggering of earthflows and debris flows, the rheology
of which switches from solid to fluid. This phenomenon has
been widely reported in all types of recent clay deposits,
including Quaternary marine sensitive [Crawford, 1968;
Eilertsen et al., 2008] or nonsensitive clays [Picarelli et al.,
2005] and lacustrine clay deposits [Bièvre et al., 2011]. But
flow-like movements have also been frequently observed in
fractured and weathered clay-rich rocks, such as shales,
marls and flyschs [Angeli et al., 2000; Picarelli et al., 2005;
Malet et al., 2005], and in volcanic rocks in which primary
minerals were altered to clays [Coe et al., 2003].

[3] Predicting these sudden events, primarily controlled
by groundwater conditions, has been an active research topic
for the last two decades [Lee and Ho, 2009]. Empirical
prediction methods have been proposed, relying on two types
of measurements: (1) surface displacements, whose change
to rupture is usually interpreted using slope creep theories
[Petley et al., 2005], and (2) hydrological factors such as
precipitation, soil water content or pore pressure, used as
predictors with threshold values determined in an empirical
or statistical manner [Keefer et al., 1987]. Although these
empirical methods have been successfully applied in some
specific cases, they do not provide a real insight into the
mechanisms involved, and have proved to be very sensitive
to changes in landslide geometry and deformation. Recently,
theoretical models coupling a slope instability mechanism
and hydrological modeling have been developed for pre-
dicting landslide occurrence [Keefer et al., 1987; Crosta and
Frattini, 2008]. However, in 3D, such approaches require
considerable investigation and computational effort.
[4] For debris flows and earthflows occurring in fine-

grained soils during or after heavy and sustained rainfalls,
the triggering mechanism most often proposed is the partial
or total liquefaction of the mass, resulting from an increase
in pore water pressure [Picarelli et al., 2005; van Asch et al.,
2007]. As the shear wave velocity (Vs) in a fluid tends to
0 [Reynolds, 1997], the bulk shear wave velocity should
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dramatically decrease in the vicinity of liquefied zones.
Moreover, it has been recently shown that, in a clay-rich
landslide, Vs also significantly decreases with the extent of
damage in the material [Renalier et al., 2010]. This suggests

that continuous Vs measurement could be valuable for
monitoring clay slope degradation and would constitute an
alternative to the classical prediction methods. Vs is usually
obtained from active source-receiver experiments. However,
the reproducibility of seismic sources is very limited, and it
is difficult to ascertain whether seismic response changes
actually result from a change in the mechanical properties of
the medium or from the source. The ambient noise correla-
tion technique developed over the last 10 years [Weaver and
Lobkis, 2001; Shapiro and Campillo, 2004] offers a realistic
alternative to using controlled sources. The local Green’s
function (or impulse response) can in fact be determined
from the cross correlation of ambient noise continuously
acquired by two passive sensors as if one of them was a
source. This method has found considerable applications in
seismic imaging at different scales [Shapiro et al., 2005;
Larose et al., 2006]. More recently, it was demonstrated that
the tail portion of the correlograms, the so-called coda part
formed by scattered waves, is extremely sensitive to small
changes in the medium [Sens-Schönfelder and Wegler,
2006; Brenguier et al., 2008a, 2008b]. By comparing the
phases of the waves in the coda, apparent relative velocity
changes of the material can be measured with a precision
better than 0.1%. This can be performed even if the corre-
lograms do not give the exact Green’s function between the
sensors. Correlograms are however required to be stable in
time, implying a relatively constant background noise over
the period of interest [Hadziioannou et al., 2009]. In the
present manuscript we will apply the noise correlation
technique on a landslide where the noise is in part due to
traffic on the road, which constitutes a spatially stable
background noise. The purpose of the paper is to detect
mechanical changes in an active clay landslide where failure
is expected.

2. The Pont Bourquin Landslide History and
Geology

2.1. Historical Context

[5] The Pont Bourquin landslide is located in the Swiss
Prealps, 40 km to the east of the town of Lausanne
(Figure 1). Although the whole area has been affected by
landslide phenomena since the last glacial retreat (more than
10,000 years ago), aerial photos show that gravitational
deformation appeared in the mid 90s in the upper part of the
hillside and that the slope instability gradually developed
over a period of about 10 years [Jaboyedoff et al., 2009]. In
2006, displacements of up to 80 cm created the head scarp of
a 240 m long translational landslide affecting an area of
about 8,000 m2, with a width varying from 15 m to 60 m
(Figure 1). On 5 July 2007, a 3 day period of heavy rainfall
(cumulative depth of 95 mm) triggered an earthflow, which
started from the main secondary scarp (SS in Figures 1 and
2) and cut the frequently used Pillon Pass road located at the
toe of the Pont Bourquin landslide. This earthflow, with an
estimated volume of 3,000 to 6,000 m3, affected a layer a
few meters thick in the transportation area (TA) of the Pont
Bourquin landslide [Jaboyedoff et al., 2009]. During the
following 3 years, the entire landslide has exhibited a gen-
eral translational motion associated with high internal
deformation and numerous small superficial translational
or rotational landslides, earthflows and debris flows. These

Figure 1. Aerial photo of the Pont Bourquin landslide in
June 2009, with the location of the two electrical profiles
E1 and E2, the two seismometers S1 and S2 installed on sta-
ble ground, and the inclinometer I1. The headscarp (HS),
main secondary scarp (SS), transportation area (TA), and
accumulation zone (AZ) are also indicated. The Pont Bour-
quin landslide (red cross) is located on the topographic inset
map of Switzerland (L, Lausanne; Z, Zurich). The gravita-
tional instability threatens the road carrying heavy traffic
over the Pillon pass (bottom of the photo).
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multiple erosive processes gradually created a bulge of
highly deformed material (accumulation zone labeled AZ in
Figures 1 and 2) that progressively loaded the lower part of
slope (see also Text S1 in the auxiliary material).1 This
material accumulation led to the toe failure between 18 and
20 August 2010, following significant cumulative rainfall in
July.

2.2. Geological Context

[6] According to the geological map [Badoux et al., 1990]
the Pont Bourquin landslide is located in a tectonically very
complex zone. Three thrust faults dipping approximately 35�
toward the North cross the landslide and separate distinctive
geological formations (Figure 2a). In the upper and lower
parts of the slope, the bedrock is composed of Triassic
cargneule (cellular dolomite) associated with gypsum. These
highly soluble and deformable rocks could have promoted
slope destabilization at the landslide toe. Below the carg-
neule layer, the upper part of the slope is made of Aalenian
black shale, the weathering of which is the main source of
the sliding clay material. In the middle part of the slope, the
landslide overlies flysch consisting of thin-bedded turbidites
including siltstone and conglomerate. The top of the hill is
covered by several meters of moraine deposits. The rocks
have been heavily fractured by the Alpine orogeny and

subsequently affected by toppling, chemical weathering and
freeze and thaw cycles, which contributed to a high degree
of fragmentation of the outcropping rocks. These alterations
have resulted in muddy material that can give rise to
numerous small earthflows and debris flows along the slope.
Deposits resulting from ancient mass movements locally
cover the lower part of the slope. The present day landslide
mass is mainly composed of a mixture of moraine material,
mainly visible in the upper part, and weathered debris from
the Aalenian black shale, flysch sandstone and marl alter-
nations, making the sliding material predominantly clayey.
According to the classification proposed by Cruden and
Varnes [1996], this landslide can be termed an active com-
posite earthslide-earthflow.

2.3. Geophysical Investigation

[7] In order to clarify the landslide geometry and the
geological structure underneath, two electrical resistivity
tomography (ERT) profiles E1 and E2 were collected (see
location in Figure 1), along and perpendicular to the slope,
respectively. Data were acquired using the Wenner-
Schlumberger configuration [Dahlin and Zhou, 2004] with
64 electrodes and an electrode spacing of 5 m and 1.5 m for
E1 and E2, respectively. Data were inverted through a least
squares inversion (L2-norm) using the RES2DINV software
[Loke, 1998]. ERT images have been obtained for a RMS
value lower than 5%. Electrical images are shown in
Figure 2b. The superficial clay-rich sliding layer is clearly

Figure 2. (a) North-south geological cross section along the Pont Bourquin landslide, constructed from
the local geological atlas [Badoux et al., 1990] and the electrical images shown in Figure 2b. (b) North-
south and east-west oriented electrical resistivity tomography profiles (see location in Figure 1). The head-
scarp (HS), main secondary scarp (SS), transportation area (TA), and accumulation zone (AZ) are also
indicated.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JF002159.
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evidenced by a resistivity lower than 100 ohm m, with a
thickness varying from a few meters to locally more than
10 m along the profile. This low resistivity results from the
high percentage of saturated clay in the sliding mass and
from the high salinity of the water (total salinity greater than
1500 mg/l in superficial water between S1 and S2, Figure 1).
The potentially mobilized volume of the whole landslide is
estimated to be 30,000 to 40,000 m3. Below the sliding
material, the cargneule and gypsum formations at the top
and bottom of the slope can be distinguished by their higher
resistivity (from 200 to 500 ohm m in the cargneule and up
to 2000 ohm m in gypsum). Conversely, the black shales are
characterized by low resistivity values ranging from 100 to
200 ohm m. Finally, the flysch formation has a resistivity
between 200 and 500 ohm m, a range similar to that mea-
sured for the cargneule. The combination of the two elec-
trical images and geological observations has yielded the
interpretative cross section of Figure 2a.

[8] Two active seismic profiles were performed along and
across the landside (same location as the electrical profiles
E1 and E2). The surface wave inversion technique was
applied to 8 signals recorded in the accumulation zone of the
landslide to infer the shear wave velocity profile in this area.
For the longitudinal profile, signals were generated with
explosive shots and recorded by 8 geophones 5 m apart
(channels 21 to 28, Figure 3a). For the second transverse
profile (between S1 and S2), the source was a hammer
striking a plate, and the records from 8 geophones located
within the landslide (4 m intertrace distance) were pro-
cessed. The Rayleigh wave phase velocity dispersion curves
were computed along the two perpendicular travel paths
(Figure 3b), using the frequency-wave number technique
[Lacoss et al., 1969]. The two dispersion curves cover the
10–30 Hz frequency range, according to the frequency of the
sources (explosive and hammer), and partly overlap around
15 Hz. The 10% difference in phase velocity around 15 Hz

Figure 3. Shear wave velocity determination from the Rayleigh waves measured along two perpendicu-
lar profiles (same location as E1 and E2, Figure 1). (a) Normalized raw signals along profile 1. The spac-
ing between geophones is 5 m. (b) Phase velocity dispersion curves computed from profiles 1 (triangles)
and 2 (circles). (c) Vs profiles resulting from the inversion of dispersion curves with a three-layer model.
(d) Dispersion curves corresponding to the models shown in Figure 3c.
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(500 to 550 m/s) probably results from different spatial
variations along the two profiles. Dispersion curves were
inverted using the enhanced neighborhood algorithm
[Wathelet, 2008], assuming a 1D structure along the two
directions below the accumulation zone. The misfit function
is defined by the following equation:

misf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
cdi � ccið Þ2

cdi2

s
; ð1Þ

where cdi is the phase velocity of the data curve at frequency
fi, cci is the velocity of the calculated curve at frequency f,
and n is the number of frequency samples. The inversion
was constrained by imposing a thickness higher than 10 m
for the clay-rich sliding layer, in agreement with the elec-
trical data.
[9] Figure 3c shows the computed S wave velocity pro-

files with the misfit values for a three-layer model. The shear
wave velocity in the superficial layer of a few meters thick is
poorly constrained, owing to the lack of information at high
frequency. Below, the best fitting models (misfit lower than
5%) show that the seismic velocity in the landslide is
between 360 and 420 m/s. The bottom of this layer is found
at a depth of about 11 m. Below this depth, the velocity
increased to about 640 m/s in the undisturbed layers.
Figure 3d displays all dispersion curves corresponding to the
models obtained, with good agreement being shown
between models and observations.

2.4. Groundwater Level Monitoring

[10] The level of the water table was measured in one 5 m
deep borehole located in the accumulation zone (see Figure 4
for location). The system consists of a piezometer sensor
connected to a data logger operated continuously, and a
barometer to correct the water table height from the atmo-
spheric pressure fluctuations. During the experiment time
(April to August 2010), the measured water table fluctuated
from 3.7 m depth to less than 1 m (see section 4.1).

3. Displacement Monitoring

3.1. Surface Displacement From GNSS and Electronic
Distance Meter

[11] In order to evaluate the activity of the Pont Bourquin
landslide, the displacement of twelve targets placed on the
surface was recorded. Three targets (I1, T10 and T11, see
location in Figures 1 and 4), were monitored from summer
2009 until August 2010 using a Differential Global Navi-
gation Satellite System (D-GNSS) [U.S. Army Corps of
Engineers, 2003]. The data were acquired by two Topcon
HiPer® Pro antennas tracking their position from the Rus-
sian and American geodesic satellite constellations. The
field procedure followed the Real Time Kinematic (RTK)
method. A base station antenna was set up on a unique ref-
erence point location close to the landslide (about 650 m
away). Targets on the landslide were 3D located with the
second GNSS antenna (rover station), using the correction
information communicated by the base station. Instrumental
accuracy is �12 mm [Gili et al., 2000], which is considered
negligible with regards to the observed meter-scale dis-
placements. Nine additional targets (T1–T9) were installed

Figure 4. Mean velocity (meters per month) of 12 targets
(T1–T11 and I1), monitored since July 2009 by Differential
Global Navigation Satellite System (D-GNSS) and May
2010 by Electronic Distance Meter (EDM). In the top part
of the landslide, displacements did not exceed 1 m between
20 May 2010 and 23 August 2010, while they exceeded
20 m in the middle of the transportation area during these
3 months, which considerably loaded the accumulation zone
(AZ). (Topography outside the landslide: high-resolution
Digital Elevation Model data from Swisstopo; topography
inside the landslide: terrestrial laser scanning (TLS) data
from UNIL.)

MAINSANT ET AL.: SEISMIC NOISE MONITORING OF A LANDSLIDE F01030F01030

5 of 12



in spring 2010 and have been periodically monitored with a
Topcon GPT-9003M reflector total station [U.S. Army Corps
of Engineers, 2007]. For each measurement campaign, the
device was first installed at a reference point (the same as the
GNSS base station) having a direct line of sight to the
landslide and orientated by shooting at a reference prism
located in a stable area close to the landslide, the coordinates
of which were measured by D-GNSS.
[12] The surface displacements presented in Figure 4

exhibit an acceleration during summer 2010, before the
slope failure. Active creeping in and above the accumulation

zone was evidenced by D-GNSS and EDM data (arrows in
Figure 4). From July 2009 to May 2010 (green arrows),
displacement rate values were lower than 1 m/month. From
21 May to 21 July 2010 (orange arrows), a mean displace-
ment rate of 6 m/month was measured by four targets in the
transportation zone. The motion in this zone accelerated
from 21 July to 23 August 2010 (purple arrows), when dis-
placements ranging from 17 m up to 21 m were recorded in
one month on the same targets. In the meantime, sliding
velocities at the head and the secondary scarps were lower
than 0.5 m/month.

3.2. Terrestrial Laser Scanning

[13] Terrestrial laser scanning (TLS) was regularly per-
formed from April to September 2010 in order to monitor
ground motions over the whole slope. TLS is a remote
sensing technique capable of obtaining local images of the
earth’s 3D topography by acquiring point clouds of the
ground position [Baltsavias, 1999; Lichti et al., 2002]. TLS
involves sending a laser pulse in a known direction and the
distance is evaluated by measuring the return time of the
pulse reflected by the ground surface. Scanning on a regular
grid provides images of several million points. The TLS
device was an Optech ILRIS-3D-ER using a laser with a
1500 nm wavelength and with maximum acquisition dis-
tance ranging from 800 to 1200 m.
[14] The TLS data acquisition and processing followed

these main stages: (1) the point clouds of the upper part of
the Pont Bourquin landslide were acquired from the same
scanning point of view at different epochs with a mean res-
olution of 30 mm (average distance between points); (2) two
TLS points clouds, from May and July 2010, were selected
in order to extract the two months displacements prior to the
August event; (3) each points cloud was cleaned, deleting
outliers and vegetation masking the ground, using the Pifedit
software (InnovMETRIC); (4) the reference point cloud
(May 2010) was georeferenced using PolyWorks® v10,
ImAlign module, wrapping it on the regional 1 m DEM
using the iterative closest point algorithm [Besl and McKay,
1992] implemented in PolyWorks®; (5) the second point
cloud (July 2010) was aligned and wrapped on the reference
cloud with the iterative closest point algorithm, ignoring the
unstable area; and (6) the displacements were measured
using PolyWorks® v10, ImInspect module. The method
computed the horizontal difference between the two surfaces
along a north-south axis (i.e., the y axis, parallel to the
landslide main displacement direction). The error was
assumed to be smaller than the alignment error (standard
deviation of 35 mm) using the iterative closest point algo-
rithm between the two scans, which was considered small
compared to the total displacement.
[15] As shown in Figure 5, TLS surface displacement data,

acquired between May and July 2010, can be separated into
several distinct areas. On the head scarp, erosion has been
recorded, highlighting the occurrence of small earthflow
events with a topographic change of less than 0.7 m. In
contrast, the middle section of the Pont Bourquin landslide,
below the secondary scarp, has been very active and affected
by several small translational sliding events shown by pos-
itive and negative displacements greater than 1 m in two

Figure 5. Differences (in m, southward, i.e., along the
y axis) between two point clouds acquired by TLS on
19 May 2010 and on 20 July 2010. Positive (accumulated
material) and negative (eroded material) movements are
shown in red and blue, respectively. Black indicates no data,
and gray indicates unreliable data. Red dashed lines isolate
particular areas of the landslide. Small erosion of the head
scarp (HS) by flowing processes. Retrogression of the most
active secondary scarp (SS) through small and discontinuous
translational landslides. Very active creeping inside the
transportation area (TA). The locations of the inclinometer
(I1) and the seismometers (S1 and S2) are indicated. The
accumulation zone located between S1 and S2 could not
be monitored by TLS because of forest cover.
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months. Large positive motions exceeding 1 m were recor-
ded in the transportation zone (see also Text S1).

4. Ambient Noise Monitoring

4.1. Experimental Procedure and Relative Velocity
Change

[16] In order to monitor the change in seismic properties of
the material constituting the bulk of the landslide, two seis-
mic sensors S1 and S2 (2 Hz three-component velocimeters)
were placed 35 m apart in stable ground on both sides of the
landslide (Figures 1, 4, and 5), outside of the active land-
slide. Moreover, no evidence of recent ground deformations
was observed at the two seismometer locations. They were
buried at a depth of about 40 cm, to avoid atmospheric
thermal effects. They were both connected to the same 24 bit
Kephren acquisition station for digitization (at 250 Hz) and
data storage. Vertical vibrations were continuously recorded
from 1 April to 24 August 2010 and stored in 1 hour long
records named s1(day,i,t) and s2(day,i,t), respectively, where
the subscripts stand for the sensor number, day for the date
and i for the hour.
[17] The records were studied in the 4–25 Hz frequency

range, which corresponds to Rayleigh wave penetration
depths ranging from a few meters to a few tens of meters,
thus sampling the landslide properly. From direct observa-
tions during the field experiments, two main sources of
ambient noise were identified in this frequency band: the
wind in the trees and the traffic along the road at the foot of
the landslide. While the noise from both sources may be
variable in time, the important feature for monitoring is that
their locations are stable [Hadziioannou et al., 2009].
Moreover, although the traffic is not stable in the short term,
it statistically stabilizes when averaging over a day, as will
be shown below. Although these two sources dominate the
seismic noise records, it cannot be excluded that additional
distant sources might play a role here, but this issue cannot
be studied using a two-sensor experimental setup.

[18] As a first processing step, records were whitened in
the 4–25 Hz frequency band. This procedure renormalizes
the Fourier transform of si at each frequency by its absolute
value to ensure that all frequencies in the bandwidth of
interest have a similar statistical contribution:

s̃i day; i; tð Þ ¼ IFFT
FFT si day; i; tð Þð Þ
FFT si day; i; tð Þð Þj jA wð Þ

� �
; ð2Þ

where A(w) is an apodization window in the frequency
domain, which shows a smooth transition from 0 (out of the
4–25 Hz range) to 1 (within the 4–25 Hz range).
[19] Then, 24 h cross correlations were calculated and

averaged each day, yielding 146 daily correlograms hday for
the period of interest:

hday tð Þ ¼
Z

s̃1 day; i; tð Þs̃2 day; i; t þ tð Þdt
� �

i¼0::23
: ð3Þ

Figure 6 shows the daily cross correlations obtained from
Julian day 91 to Julian day 236, along with the reference
waveform href obtained by averaging all the correlograms.
Daily correlations were then filtered at successive center
frequencies fc from 5 Hz to 23 Hz with a 2 Hz bandwidth. For
each frequency fc, correlations are compared to the reference.
In the case of a homogeneous velocity change dV, all the
waveforms constituting the correlograms are shifted in time
by a factor dV/V. To measure this relative velocity change,
the stretching technique [Sens-Schönfelder and Wegler, 2006;
Hadziioannou et al., 2009] was applied, which consists in
testing several possible velocity changes dV/V by resampling
the correlograms in time hday

fc (t) → hday
fc (t(1 + dv/v)). The

actual relative velocity change dV/V at a given date day
maximizes the correlation coefficient:

CC
dV

V

� �
¼

R
hday t 1þ dV=Vð Þð Þhref tð ÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

hday t 1þ dV=Vð Þð Þ2dt R href tð Þ2dt
q : ð4Þ

The asymmetry of the correlograms in the central part
[�0.2 s–0.2 s] (Figure 6) is due to the imperfect spatial dis-
tribution of noise sources. Signals observed around t = 0
correspond to waves traveling from the (unknown) sources to
the receivers. As these early direct waves (P, S and Rayleigh)
are very sensitive to changes in the noise source position, they
were removed by considering the portion of the correlograms
in the range ([�0.2 s–2 s] and [0.2 s 2 s], delimited by vertical
broken lines in Figure 6). This time range begins after the
slowest Rayleigh wave between the two sensors and ends
when the amplitude of the correlations is low and the wave-
forms fluctuate too much from one day to another. Conse-
quently, these time windows correspond to coda waves which
have sampled the region around and between the seismic
sensors [Pacheco and Snieder, 2005; Rossetto et al., 2011].
The coda is essentially made up of surface waves [Larose
et al., 2006; Sens-Schönfelder and Wegler, 2006; Brenguier
et al., 2008a, 2008b], i.e., Rayleigh waves for the vertical
components used here. The relative phase velocity changes
were analyzed for 2 Hz wide frequency bands between 4
and 25 Hz. A significant variation versus time was found
in the 10–12 Hz range (Figure 7a). Figure 7a also shows
the water table level. Figure 7b displays the plot of the cor-
relation coefficient CC between the reference and the current

Figure 6. Daily cross correlations of ambient seismic noise
recorded by S1 and S2 from day 91 to day 236, in the 4–
25 Hz frequency range. Amplitude is normalized each day.
The reference trace, averaged over all the correlograms, is
displayed by the continuous thick line. Vertical dotted lines
mark the time window of the coda used to estimate the rela-
tive velocity change dV/V. Early arrivals (between �0.2 s
and +0.2 s) are not taken into account in this study. Horizon-
tal lines 1 and 2 mark the days for which a velocity drop is
observed (see Figure 7).
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correlation (see equation (4)). From this coherence, the
absolute error of dV/V can be estimated following Weaver
et al. [2011]. This error is 1% for all the data except during
the last 10 days when it increases to 2%. Figure 7b also gives
the average monthly displacement of the landslide computed
from the four D-GNSS campaigns. These data show an
acceleration of the landslide during summer 2010, but with a
limited temporal resolution inherent to this observational
technique. Finally, the daily precipitation and the cumulative
rainfall are displayed in Figure 7c.
[20] From the beginning of April to the middle of July

2010, the apparent Rayleigh wave velocity was relatively
stable: observed velocity fluctuations are smaller than 1%.
From mid-May to mid-July, the cumulative rainfall, along
with the groundwater level in the piezometer borehole
(Figures 7a and 7c), rose linearly with time. Groundwater
reacted with a delay of about 20 h to rainfall inputs, sug-
gesting that water infiltration was controlled by soil perme-
ability. On July 24, after a short rainfall event and the
corresponding delayed groundwater elevation, the apparent
Rayleigh wave velocity (Figure 7a) underwent a gradual
decrease of 2% over 20 days. On 15 August, after a series of
intense precipitation events and related increases in the water

table, the apparent velocity dropped by 7% in only 4 days.
While losing its rigidity, the creeping material reached
its stability limit and the slope failed, with a composite
earthslide-earthflow event. This catastrophic event occurred
between 18 and 20 August. As the mud accumulation at the
slope toe directly threatened the road, slope reprofiling and
drainage works were initiated on 21 August, which led to
the seismic devices being dismantled.

4.2. Spectral Analysis of the Relative Velocity Change

[21] Figure 8 displays the Rayleigh wave phase velocity
variation evaluated for each frequency band during the

Figure 7. (a) Green represents the water table, and blue
represents the relative Rayleigh wave seismic velocity
change of the material obtained by comparing daily seismic
noise correlograms in the 10–12 Hz frequency range. Verti-
cal line 1: the first velocity reduction starts after rainfall
on 23 July and represents a drop of 2% developing over
20 days. Vertical line 2: the major drop starts after rainfall
on 14 August, with a total decrease of 7% over the 4 days
preceding a major failure of the landslide. The vertical shaded
area marks the days of the failure (around 19 August). The
correlation coefficient CC, from which the absolute error in
estimating dV/V can be derived. This absolute error is 1%
for all the data except the last 10 days, where it increases to
2%. (c) Daily (blue) and cumulative (green) precipitation,
which cannot alone be used to predict the failure.

Figure 8. (a) Relative velocity variation dV/V (%)
observed in the coda of the correlations for the 5 days pre-
ceding the slope failure, for various frequencies (+/�1 Hz
around central frequency). The velocity drop is observed
mainly in the 10–14 Hz frequency range, corresponding to
the lower layer of the sliding material (depth from about 9
to 11 m). Models with different thickness layer (continuous
and dotted lines) were tested, and a good fit was obtained
with H = 2 m and Vs = 200 m/s in the layer (Figure 8b).
(b) Vs model obtained from geophysical prospecting and
by fitting the characteristics of the low-velocity layer above
bedrock (see section 4.2 for details). (c) Rayleigh wave
depth sensitivity kernel computed at the frequencies 8 Hz,
11 Hz, and 14 Hz for the model in Figure 8b.
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5 days before slope failure. It shows that the seismic veloc-
ities for frequencies below 10 Hz and above 14 Hz remained
unaffected during the course of the experiment and that the
velocity drop occurred at a depth related to the sensitivity of
Rayleigh waves in the range 10–14 Hz.
[22] In order to define the depth of the change in the

sliding material, an analysis of the depth sensitivity of the
Rayleigh wave versus frequency is performed similarly to
Rivet et al. [2011]. An initial numerical model was created
from geophysical a priori information and field observations
(Figures 2 and 3). From the active seismic profiles, the
bedrock depth was fixed at 11 m with VsB = 640 m/s. This
bedrock is overlain with a softer layer with a velocity
Vs3 = 360 m/s. Several tests quickly showed that the change
at 14 Hz observed in Figure 8a can only be obtained when
introducing superficial low Vs layers (Vs1 = 80 m/s;
Vs2 = 100 m/s) with a total thickness of 2 m. From this model
(Figure 8b) the initial dispersion curve of Rayleigh waves
(similar to observations before the slope failure) was then
computed, using the method proposed by Dunkin [1965] and
implemented in the geopsy software (http://www.geopsy.
org). A series of models with a soft layer (thickness H and
Vs4) added at the bedrock top was then tested. Figure 8a
shows the relative phase velocity differences between the
initial and perturbed models, computed for three different
thickness values (H = 1, 2 and 3 m) and for a shear wave
velocity of Vs4 = 200 m/s. The best correlation with experi-
mental data was obtained for a thickness H = 2 m (red line).
A multitude of realistic models (changing H and Vs4) were
created to test the uniqueness of this solution and no other
simulated model was found consistent with observations.
Finally, we computed the Rayleigh wave sensitivity kernels
dV/dVs as a function of depth for the fundamental mode in
order to assess how well the depth localization of the low-

velocity layer is constrained. Computations were made for
the proposed velocity model at the three frequencies 8 Hz,
11 Hz and 14 Hz (Figure 8c), using the software developed
by Herrmann (http://www.eas.slu.edu/People/RBHerrmann),
and the sensitivity curves are displayed in Figure 8c. At 8 Hz
and 14 Hz, phase velocities are only sensitive to Vs varia-
tions in the bedrock and in the shallow layers, respectively.
In contrast, the phase velocity at 11 Hz is sensitive to Vs

changes both in the shallow layers and, to a less extent, in the
two meters above the bedrock interface. However, as no
variation was observed on the dV/V curve for 14 Hz
(Figure 8a), the drop at 11 Hz results from a variation in Vs

above the bedrock, corroborating our analysis. The fre-
quency range for which a velocity reduction is observed then
corresponds to a Vs4 decrease from 360 m/s to 200 m/s in a
2 m thick zone located in the lower part of the sliding layer
(from 11 to 9 m depth). These results have proved to be
robust when varying the characteristics of the soft superfi-
cial layers.

4.3. Rheological Analysis of the Inclinometer Data

[23] The depth and intensity of the relative velocity
change has been compared with inclinometric data collected
in 2009, and with the subsequent rheological considerations
derived from them. The 17–21 m surface displacements
measured from 21 July to 23 August 2010 can be explained
by (1) basal sliding, (2) deformation over a given thickness
resulting from a change in rheological properties or (3) both
the above factors. Simulating the propagation of the 2007
mudflow using the BING software [Imran et al., 2001]
demonstrated that the first hypothesis was not valid
[Jaboyedoff et al., 2009]. The only way to explain surface
displacements was to introduce a viscoplastic law, like the
Herschel-Bulkley model (HBM) [Coussot, 1997; Huang and
García, 1998]. A change in the rheological properties over a
certain thickness is also strongly supported by the seismic
velocity changes observed in the bulk of the lower part of the
sliding material. Here we investigate the most probable
rheological model, analyzing the inclinometer data.
[24] In June 2009, about 1 year before the seismic noise

experiment, a borehole (I1; 5.5 m deep) was drilled at the
top of the Pont Bourquin landslide (see location in Figures 1
and 4). It was equipped with an inclinometer casing. Incli-
nometer measurements were taken over a short period of
time (a few days) after which the high deformation rates
destroyed the casing. Since the landslide did not evolve too
much from June 2009 to June 2010, the vertical distribution
of the deformations in 2010 must be similar to the one
obtained in 2009. The velocities were calculated from the
inclinometric data. Measurements were projected along the
vertical direction assuming an average slope of b = 25�.
These data indicate a maximum southward surface dis-
placement of 15.5 cm in 8 days, from 24 June 2009 to 1
July 2009. This motion corresponds to a surface velocity of
1.93 cm/d over a thickness of 5.5 m (Figure 9), with a thin
layer in rigid motion overlying a thick layer affected by
continuous shearing. The strain rate was found to be neg-
ligible at the surface of the profile and accelerates below a
depth hc. This suggests a viscoplastic behavior of the sliding
material. Rheological studies of mud have shown that it can
be modeled as a non-Newtonian fluid exhibiting a yield

Figure 9. Red dots are observed displacement rates versus
depth. Blue line represents velocity profile (corrected for the
slope) computed from the Herschel-Bulkley model (HBM)
with the fit parameters n = 0.66, hC = 0.17 m (tC = 1.4
kPa), and mn = 1.7 � 109N m�2 sn. The shaded area shows
all the HBMs fitting well the data (the coefficient of determi-
nation of the fitted law is r2 = 0.98). The model giving the
greatest velocity at the surface was chosen because it is
closer to the observed surface velocities.
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stress and the HBM was found to be appropriate in fitting
the rheological data [Coussot, 1997]. In the HBM, the
velocity profile u(z-hc) at a depth z ≥ hc follows the equation

u zð Þ ¼ uS � n

nþ 1

rg z� hcð Þnþ1 sin bð Þ
mn

 !1=n

; ð5Þ

where uS is the velocity at the surface, n is the exponent of
the HBM, hc is the plug layer (unsheared) thickness, r the
material density, g the gravity, b the slope angle, mn the
dynamic viscosity [N m�2 sn], and z is the axis perpendic-
ular to the slope.
[25] The yield stress tC is related to hC by

tC ¼ rghC sin bð Þ: ð6Þ

The HBM was fitted by minimizing the absolute difference
between theoretical values and raw data. The best fitting
curve (Figure 9) was obtained for the following parameters:
mn = 1.7 � 109 N m�2 sn, n = 0.66, hc = 0.17 m and
tC = 1.4 kPa. The HBM was then used to extrapolate the
surface displacement velocity to the base of the sliding
material at a depth of 11 m. This depth was deduced from the
electrical tomography and the Vs profile. The surface veloc-
ity obtained from the HBM is equal to 11.5 cm/d (Figure 9).
This surface displacement rate is of the order of magnitude of
the observed surface velocity at the center of the landslide
(18.2 cm/d) during the period from 20 May to 21 July 2010.
The discrepancy between observed and calculated data is
interpreted as a slip along a basal surface of the slide. These
results indicate that 70% of the displacement rate occurred
between 7 m and 11 m depth, and highlight the deformation
at the base of the sliding layer, already shown by the relative
velocity changes derived from surface waves. The 2010
landslide interpretation is that the gravitational stress locally
increased in the accumulation zone and exceeded the yield
stress, generating a decrease in the material rigidity, as
observed by the ambient noise measurements.

5. Discussion and Conclusions

[26] The Pont Bourquin landslide is a composite active
wet earthslide-earthflow composed of clayey material with
rock debris, continuously affected by numerous internal and
superficial mass movements, as illustrated by the 2007 and
2010 events. From geophysical surveys, the depth of the
main slip surface spatially ranges from a few m to about
11 m. Surface displacement monitoring has shown that
the mass slides at mean velocities of about one to a few
m/month and that a significant velocity increase in and above
the accumulation zone was observed in July and August
2010, before slope failure. Due to continuous landslide
activity, a bulge of remolded material (observed by Terres-
trial Laser Scanning and Electronic Distance Meter) accu-
mulated in the zone where the 2010 failure occurred. From
ambient noise measurements and processing, a significant
drop (7%) in Rayleigh wave velocity was observed a few
days before the event, after an initial gentler decrease (2%).
The frequency range (10–14 Hz) for which this drop
occurred corresponds to a decrease in shear wave velocity in
a 2 m thick layer located between 9 m and 11 m. This sig-
nificant velocity decrease is interpreted as resulting from the

decay in clay mechanical property (rigidity) in the lower part
of the layer in motion, precluding the rupture. This is in
agreement with a yield stress viscoplastic behavior, for
which the material flows once a critical yield stress has been
exceeded. For the 2010 event, the gravitational stress was
locally increased by the long-term accumulation of the dis-
placed material.
[27] This study has shown that it is possible to detect

mechanical behavior changes in the sliding material by
monitoring ambient seismic noise, which offers new insights
into the rheology of landslides. The observed significant
drop in seismic velocity prior to slope failure suggests that
time-dependent variation in this parameter could be a valu-
able precursor. This method could be applied to all clay-rich
earthslides, particularly those regularly affected by earth-
flows and debris flows occurring in the same areas, i.e., at
the boundary between the accumulation zone and a lower
well-defined narrow track area [Malet et al., 2005; Picarelli
et al., 2005]. For large earthslides, small-scale earthflows
can be independently triggered all along the different scarps,
and a more complex array of receivers would then be
required. From a methodological point of view, the present
method could be applied where the background seismic
noise is excited at frequencies that are relevant to monitor
the structure: from the order of 1 Hz for deep and thick
edifices (100 m or more) to a few tens of Hz for shallower
ones (a few meters depth). Three conditions are requested to
apply the method: (1) at least some sources of ambient noise
have to remain stable in position during the observation time
(river, road, factories, wind or oceanic activity), (2) the
subsurface in the area is not affected by other external
changes than the landslide itself (large excavation works,
mining), and (3) the receivers have a fixed and stable posi-
tion and orientation.
[28] The method, which has proved to be efficient in a

clay-rich landslide, could also be successfully applied in
coarser material, including loose sandy soils, provided that a
precursor rigidity change can be observed. In large-scale
landslide experiments on loose sandy soils, rapid move-
ments were triggered by rising pore water pressure [Iverson
et al., 2000]. During the precursory period, the wetting
caused soil compaction and a decrease in porosity from 0.52
to 0.49 (6% variation). No Vs measurement was made dur-
ing this experiment, but we can try to estimate the Vs change
resulting from this porosity decrease. Fawad et al. [2011]
performed Vs measurements during the compaction of sand
samples and calibrated an effective law to relate Vs and the
porosity for different stresses. Using this law, the porosity
decay measured by Iverson et al. [2000] is expected to
provoke a Vs increase of more than 10%, a value far over the
2% velocity change detected in the Pont Bourquin landslide.
These results give hope that the application of ambient
seismic noise monitoring could be extended to rapid mass
movements in coarse soil. In rocks, ambient noise mea-
surements were recently applied to study the evolution of the
natural frequencies of a rock column until its fall [Lévy et al.,
2010]. The cross-correlation technique used in the present
study could constitute an alternative to the resonance fre-
quency determination for detecting and monitoring medium
changes like fracturing in rock slopes. This issue has to be
investigated in the future.
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The First International Workshop on Warning Criteria
for Active Slides: technical issues, problems
and solutions for managing early warning systems

Abstract Early warning systems (EWSs) rely on the capacity to
forecast a dangerous event with a certain amount of advance by
defining warning criteria on which the safety of the population will
depend. Monitoring of landslides is facilitated by new technolo-
gies, decreasing prices and easier data processing. At the same
time, predicting the onset of a rapid failure or the sudden transi-
tion from slow to rapid failure and subsequent collapse, and its
consequences is challenging for scientists that must deal with
uncertainties and have limited tools to do so. Furthermore, EWS
and warning criteria are becoming more and more a subject of
concern between technical experts, researchers, stakeholders and
decision makers responsible for the activation, enforcement and
approval of civil protection actions. EWSs imply also a sharing of
responsibilities which is often averted by technical staff, managers
of technical offices and governing institutions. We organized the
First International Workshop on Warning Criteria for Active Slides
(IWWCAS) to promote sharing and networking among members
from specialized institutions and relevant experts of EWS. In this
paper, we summarize the event to stimulate discussion and col-
laboration between organizations dealing with the complex task of
managing hazard and risk related to active slides.

Keywords Warning criteria . Active landslide

Introduction

Background
Early warning is defined as “the set of capacities needed to gener-
ate and disseminate timely and meaningful warning information
to enable individuals, communities and organizations threatened
by a hazard to prepare and to act appropriately and in sufficient
time to reduce the possibility of harm or loss” (UNISDR 2009).
Effective early warning systems (EWSs) should encompass four
main aspects: risk knowledge, monitoring and warning service,
dissemination and communication and response capability
(UNISDR 2009). A weakness or failure in any one aspect could
result in failure of the whole system (UNISDR 2009). The first
aspect regards the knowledge of the physical mechanisms that
cause the hazard, and of the exposed elements at risk, with their
level of vulnerability. The second aspect includes the technical
capacity to continuously monitor the hazards and to develop
evolutionary scenarios and to issue warnings. The third aspect
regards the communication of these warnings. Finally, the last
aspect includes the capacity to timely translate the predictions
into a warning and action plan.

EWSs for landslides have been deployed since the 1970s in
Hong Kong (Chan et al. 2003) and USA (Keefer et al. 1987), and
more recently in other countries. However, these systems were
mainly developed for the early warning of shallow landslides and

debris flows at regional scale, based on rainfall thresholds and
meteorological monitoring systems (Aleotti 2004; Baum and Godt
2010; Jakob et al. 2012).

For large slides that are known to be active (herein called
“active slides”), a local EWS needs to be deployed, based on a
detailed knowledge of the landslide and on monitoring different
parameters that can act as precursors, such as superficial and/or
deep displacement rate, groundwater pressures and seismic noise
(Angeli et al. 2000; Zan et al. 2002; Froese et al. 2006; Froese and
Moreno 2014; Blikra 2008, 2012; Casagli et al. 2010; Yin et al. 2010;
Intrieri et al. 2012; Michoud et al. 2013).

In this paper, we present the findings and recommendations of
the First International Workshop on Warning Criteria for Active
Slides (IWWCAS) that took place in Courmayeur, Italy, from June
10 to 12, 2013. The main idea of this paper, as well as the one of the
workshop, is to stimulate discussion and collaboration between
organizations dealing with the complex task of managing hazard
and risk related to active slides. This report contributes to the
activities supported by the International Consortium on
Landslides (ICL).

Objective of the IWWCAS
The aim of this workshop was to provide a unique opportunity to
share experiences about the challenges, problems and available
tools to determine warning criteria. In particular, the main issues
addressed by the workshop were on how to use available data, at
different sites and stages of the studied problem, to choose indi-
cators, to define threshold values and to update them with the
evolution of the phenomenon in order to set up a reliable and
shared EWS. Technological solutions were then considered as
tools but not as a substantial aspect to the problem. The event
schedule is presented in Table 1, including the titles and authors of
the 22 talks that were given, and the participants are identified in
Fig. 1. In addition, further details on the workshop organization
are provided in Appendix.

Another objective was to find a venue that would provide an
opportunity to visit at least one site where an active landslide is
being investigated and ideally where an EWS is operating.
Courmayeur was very suited for this purpose. The participants
visited the Mont de La Saxe rockslide (Fig. 2), an active land-
slide under continuous monitoring since 2009 (Fig. 3) (Crosta
et al. 2013). The rockslide monitoring data were used to run an
exercise with involvement of all the contributors. The objective
of this exercise was to walk as an expert group through all the
steps leading from the planning to the design and management
of a warning system, through the definition of shared scenarios.
This exercise was tentatively steered on the basis of the infor-
mation available at different stages since the beginning of the
investigations and monitoring.
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Table 1 Talks given at the First International Workshop on Warning Criteria for Active Slides

Topic 1: Getting acquainted with our surroundings: introduction to slope hazard in Valle d’Aosta

Davide Bertolo Early warning and monitoring of large and evolutionary landslides in a densely
populated alpine region. The Aosta Valley experience (Italian Western Alps)

Marco Vagliasindia, Michèle Curtaz and Davide Bertolo Glaciers-related risks: can warning criteria be applied?

Paola Dellavedovaa and V. Segor Local management of avalanche hazard on the Aosta Valley’s roads

Luca Dei Casa, Francesco Ferrarini and Francesco Giudes The geological monitoring center of ARPA (Lombardy, Italy)

Topic 2: An overview of a variety of techniques for monitoring slides : the decision-making toolbox that can be used to provide the warning

Clément Michouda, Sara Bazin and Lars Harald Blikra On the importance of landslide conceptual models by integrating and coupling
different sources of data to set pertinent thresholds and proper EWS

Denis Jongmansa, Laurent Baillet, Eric Larose, Pierre Bottelin
and Guénolé Mainsant

Use of seismic noise techniques for monitoring rapid landslides

Jean-Philippe Maleta, Julien Travelletti, Alexandre Mathieu
and Patrice Ulrich

Rapid mudflows released from large landslides: early-warning criteria designed
from geophysical monitoring, slope stability and runout modelling

Christian Zangerla Deep-seated slowly moving rock slides: the challenge of making reliable slope
deformation and stability forecasts

André Stumpfa, Jean-Philippe Malet, Julien Travelletti
and Julien Gance

On the possible integration of optical remote sensing in landslide early warning
systems: status, limitations, and perspectives

Daniele Giordana, Andrea Manconi, Paolo Allasia, Marco
Baldo and Giorgio Lollino

RTS monitoring strategies on active slides: the influence of the elements at risk

Mario Lovisoloa, Mauro Battaglio and Thierry Rosset A landslide geotechnical monitoring project for EW: the Acqui Terme example

Giovanni B. Crostaa, R. Castellanza, Paolo Frattini, Federico
Agliardi, P. Cancelli and A. Tamburini

Investigation and monitoring of the Mt. de la Saxe landslide

Discussion leaded by Giovanni Crosta

Topic 3: Theory applied. Overview of different forecasting models and application to case histories. Conceptual use of thresholds for warning.

Pascal Hortona, Michel Jaboyedoffa, Antonio Abellan,
Charles Obled and Clément Michoud

Using precipitation data and models for forecasting :
Part 1: Nowcasting landslide displacements using precipitation data
Part 2: Real-time statistical precipitation forecasting by means of the Analogue Method
Part 3: Looking at thresholds for failure, conceptual models and tools for warnings

Hideaki Maruia, Chunxiang Wang, Hiroyuki Yoshimatsu
and Eisaku Hamasaki

Warning criteria on the basis of creep theory and its practical application

Mauro Rossia, Alessandro Cesare Mondini, Silvia Luciani,
Dalia Kirschbaum, Daniela Valigi and Fausto Guzzetti

A new probabilistic clustering approach for predicting rainfall induced landslides

Discussion leaded by Michel Jaboyedoff

Topic 4: Operational EWS: presentations from public organizations that manage operational EWS and the range of issues that are addressed.

Jacques Locata and Catherine Cloutier The Gascons rockslide early warning system: preliminary considerations

Lars H. Blikra Concepts and warning criteria for monitoring of large rockslides in Norway

Oldrich Hungr (in replacement of a no show)

Carlo Troisia and Nicoletta Negro Managing of EW systems by public agencies: related problems

Discussion leaded by Lars H. Blikra

Topic 5: Learnings from long term EWS, successes and failures

Giovanni B. Crostaa, Federico Agliardi, Paolo Frattini,
Carlo Rivolta and Luca Dei Cas

Long term real-time monitoring and early warning system for a large alpine rock slide

Corey Froesea Turtle mountain: lessons learned from 10 years of operation of an early warning system

Carlo Rivoltaa and Davide Leva Some critical issues in monitoring natural hazards, selection of a modeling tool and
defining warning criteria using data acquired by ground based synthetic aperture
radars

Discussion leaded by Corey Froese

Topic 6: Warning exercise

Topic 7: Wrap-up discussion

Day 3: Field trip at Monte de La Saxe
a The authors gave the talk
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Findings and recommendations
The following presents various comments, conclusions and rec-
ommendations obtained from talks, discussions and from the
exercise on the Mont de La Saxe rockslide. Most of the comments
are presented as bullet points. It can be noticed that many ques-
tions are still open.

What are the concerns of scientists managing EWS?
& General concerns were evoked about the civil responsibility of

the scientist/consultant designing EWSs, providing the

scenarios and defining the alert thresholds (Malone 2008;
Jordan 2013; Alexander 2014). For example, the definition of
warning criteria helps to reduce the responsibility of the per-
son taking the decision of evacuation, because the decision is
based on a pre-defined criterion. However, in cases of false
alarm or if a slide happens without an alarm, what is the
responsibility of the scientist/consultant who defined the
threshold value? So, is it possible to define shared indicators
and threshold values to share also the responsibilities? How
uncertainty can be considered in the management of an EWS?
Is it possible and advisable to communicate this uncertainty to

Fig. 1 Group picture. Seating down (left to right): Hideaki Marui, Marco Vagliasindi, Jacques Locat, Giovanni Crosta and Oldrich Hungr. First row standing up: Mario Lovisolo,
Corey Froese, Nicoletta Negro, Denis Jongmans, Igor Bravo, Christian Zangerl, Paolo Fratinni, Carlo Troisi and Daniele Giordan. Second row standing up: Marc-Henri Derron, Jean-
Philippe Mallet, Federico Agliardi, Michel Jaboyedoff, Lars Blikra. Last row: Clément Michoud, Carlo Rivolta, Catherine Cloutier, Mauro Rossi and André Stumpf

Fig. 2 View of the Mont de la Saxe and its rockslide. The village of Entrèves, where the participants were staying, is in the valley
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the public? What are the differences involved in managing an
EWS for landslides in natural or artificial environments?

& When studying an active landslide with potentially catastroph-
ic consequences, the scientist/consultant might be working
under psychological or political pressure. This kind of situa-
tion that threatens human life requires to quickly provide
recommendations regarding safety measures once the land-
slide is recognized. The importance is to avoid an emotional
decision that could be taken by the scientist/consultant or by
the technical staff and to communicate properly the decision to
the population, so to make it acceptable as much as possible.

& Uncertainty involves the limited knowledge relative to the
immediate or future evolution of a landslide, or the change
in its properties and consequently in the sensitivity to external
perturbations of different sequence and intensity. How should
we communicate the state of an active landslide and the related
uncertainties to the authorities that do not have a robust
understanding or scientific background? How can we convey
the uncertainty to the public and to the managers or decision
makers and stakeholders maintaining their confidence in the
system and in the group of experts?

& Uncertainties are greater at the beginning of an investigation
and should decrease with time and a better understanding. So,
at the beginning of an investigation, should the scientist pres-
ent all the scenarios to the authorities including the very
pessimistic ones?

& Communication of threshold values and their successive read-
justment can be of help or convey a feeling of inadequate
knowledge and understanding. Is it reasonable to have multi-
ple groups working independently at the same site and pre-
senting different models explaining the landslide behaviour or
diverse EWS solutions? At least for these last questions, we
agree that a common understanding and set of threshold
values and mitigation solutions should be reached and pre-
sented. In fact, any deficiency in sharing data and model

results or scenarios should be considered as the worst manag-
ing procedure when a collective understanding is required.

Are EWS suited for long term operation?
& EWS maintenance is expensive and requires time and effort

to keep the system updated and a 100 % functional (e.g.
Wilson 2004). The maintenance is complicated by quickly
evolving technologies leading to incompatibility between
older and newer systems. Keeping an EWS operational also
implies conducting simulation exercises to train staff and
update evacuation plans. Finally, a certain rotation within
the personnel is recommended to avoid that know-how and
system knowledge get lost when a key person is missing or
more simply retire.

& The dilemma of calling or not an evacuation might come back
year after year. This can be the consequence of different con-
strains which should be evaluated, and it is also related to the
need for updating the threshold values adopted for alert and
alarm phases. In fact, system managers often forget to consider
a landslide as an evolving process, which change in properties
and sensitivity and as such can present different response in
time. For the same reason, it is important to make aware the
stakeholders, population and administrators that a minimum
monitoring time is requested for the experts to reach a con-
sensus about the type of behaviour, expected evolution, possi-
ble scenarios as well as to reformulate them after each major
reactivation.

& When a warning system has been in place for some time, and
no acceleration periods were measured and an important
maintenance is needed, should new money keep being
invested or should a program of seasonal survey techniques
be put in place instead? What criteria should come into play in
the decision? Which kind of study or analysis should be com-
pleted? How this decision should be presented to the popula-
tion and administrators? How can we communicate to

Fig. 3 A visit of the Mont de la Saxe rockslide took place on the last day of the workshop. The village of Entrèves and the entrance to the Mont Blanc tunnel can be seen
in the valley
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politicians and stakeholders that some EWS at specific study
sites should be maintained active just to help improve our
understanding and foresight in landslide behaviour?

& New technologies can be of help when the last series of ques-
tions arise. In fact, it is sometime possible to choose a moni-
toring system with lower or higher acquisition frequency that
will save money and make sufficiently accurate monitoring to
initiate pre-warning.

What should we think about when designing a warning system?
& A conceptual revisable model of the instability should be created

before designing the EWS, as such a model is mandatory to
choose the location of devices. At the same time, an EWS can
grow by progressively implementing a monitoring network ini-
tially installed for the completion of a revisable conceptualmodel.
In this way, the monitoring network and EWS can be improved in
successive steps when understanding is also enhanced The qual-
ity of the monitoring data depends on the knowledge of the
instability geometry, failure mechanism and possible evolution
in time and space, and as such will improve with time.

& From experience, the use of multiple redundant monitoring
techniques is advantageous for landslide characterization. For
example, it is helpful to ensure the relevance of displacement
measurements used to interpret the kinematic behaviour and
to remain operational also under critical weather conditions or
very complex phases of evolution of the landslide.

& Active landslides with large cumulative displacements are ex-
treme environments to be studied because the type of evolu-
tion causes short operational life for most of the monitoring
equipment and especially for deep monitoring instrumenta-
tion. This is a major problem when aimed at the understanding
of the role of some controlling factors such as groundwater
recharge and pore pressure distribution, or displacements at
depth. This is for example the case of the La Saxe rockslide
(Crosta et al. 2013).

& Instruments, proper to conduct surveillance, should be
installed from the beginning of the investigation, because
they will be useful (1) to follow the slide more or less
continuously in case the interpreted hazard level is
preoccupying, (2) to improve the general safety (workers
on site and other people at risk), as the evolution of the
slide can be followed and (3) to evaluate the efficiency of
countermeasures that could be installed following the anal-
ysis. This also requires the capability to interact with the
system during the various phases of evolution so to adapt
frequency of measurements, derived variables and type of
indicators and threshold values.

& The remote location of some EWS limits their reliability as it
hinders troubleshooting. For example, some agencies are now
trying to rely less on private carrier (e.g. cellular network) and
more on radio, because they can better control this type of
communication channel maintaining operative also under crit-
ical conditions.

& Data processing was improved and simplified by research and
application of monitoring techniques at an increasing number
of sites. There is still room for improvement, for example to
develop cheaper monitoring systems, or to optimize commu-
nication systems, data file size and transmission protocols.

& The analysis of monitored seismic noise showed that at some
experimental site and in lab experiments the signal changes
prior to an acceleration, so even before a minor displacement
is captured by the monitoring system. Thus, seismic noise
could be used to define threshold values for certain kinds of
landslide (Mainsant et al. 2012). No operational warning sys-
tem relies on this technique, yet but it could be a promising
tool to experiment at sites involving different types of move-
ment and affected materials.

How to determine warning criteria?
Discussion during the workshop emphasized the lack of tools to
define warning criteria for active slides which could be established
ahead of the collapse time and do not require continuous updating
simultaneously to the event evolution. Here are some of the points
that were raised by the participants:

& Most of the time, the threshold values are defined empirically,
sometimes based only on literature values and at the very early
stages of the investigations and monitoring. Nevertheless, it
has been shown that the range of displacement rate typical of
the pre-collapse phase can be quite broad.

& To define quantitative-physically based thresholds, we need a
data set spanning over a long period of time and for which
some of the most relevant variables are made available or
collected. For systems close to collapse minimal changes in
one of the controlling factors could bring to failure or cata-
strophic collapse, but following different evolutionary paths.

& The difficulties related to criteria definition are, in good part,
due to our misunderstanding of mechanisms controlling
rockslides.

& In the workshop talks, the factors accounted for warning criteria
definition were (1) the landslide characteristics and dynamics
(e.g. type of involved material), (2) the position of the element
at risk in relation to the slide (on or below), (3) the previously
monitored activity of the landslide and (4) the history of the
slope (e.g. recently excavated or natural long term evolution).
The definition of warning criteria is based on scenarios of failure
and run out models. The participants insisted on the importance
of creating rapidly a first geomechanic and kinematic model of
the slide to confront our understanding to incoming data and
subsequently improve the model.

& The participants discussed about the inverse velocity method
as a prediction tool (Saito 1969; Fukuzono 1985, 1990; Crosta
and Agliardi 2003; Rose and Hungr 2007; Federico et al. 2012)
and successful applications of the technique were presented
mainly for mine slopes. However, this technique is not totally
safe from false alarm, as for a landslide undergoing seasonal
variations, and its use is sometimes hampered by the availabil-
ity only of superficial displacement data.

& Operational thresholds presented through the talks were, for
the majority, velocity thresholds, sometime applied in con-
junction with the inverse velocity method. Thus, most
criteria for active slides are based on displacements data
even though the triggering agent is recognized to be ground-
water recharge (Michoud et al. 2013) associated to snow
melting or intense rainfall. The role of water can be incor-
porated by studying slide sensitivity to groundwater
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recharge and by the use of precipitation thresholds. This
approach is widely used for regional-scale EWS for shallow
landslides and debris flows (Baum and Godt 2010). Crosta
et al. (2013) discuss the evolution of the La Saxe slide sensi-
tivity to groundwater recharge during the evolution of the
slide itself, with the progressive change in hydraulic and
mechanical properties accompanying the accumulation of
large displacements, the opening of fractures and the local-
ization of shear at depth.

& In the study cases presented at the workshop, the cumulative
displacement was not a parameter directly used to define
warning criteria. However, cumulative displacement has the
advantage to be more stable than velocity, at least in most of
the phases not immediately preceding the final collapse. The
cumulative displacement has been sometime used to define
warning criterion, for example, by fitting a curve to the evolu-
tion of displacements with time (Crosta and Agliardi 2002). It
has been used also in the case of toppling failures (Zvelebil and
Moser 2001).

& It seems inadequate to fix warning levels based on a single
criterion when coping with complex landslides especially in
natural environments. The establishment of warning levels
should take into account all parts of a system, such as dis-
placement data, weather, season, consequences, groundwater
recharge and other types of data. Data interpretation by an
expert is often required prior to the initiation of emergency
procedure and even more at the closure of the emergency
phase.

& During the exercise, the participants to the workshop did not
reach a complete agreement on the type of thresholds to apply,
neither on the values, nor the techniques on which to rely. This
lack of general agreement points out to the need for EWS
design guidelines and to the need of a longer and more in-
formed discussion before the achievement of a consensus even
within a community with a specific expertise on the subject.
This can be surprising especially when considering that most
of the participants recognized the level of knowledge and the
relative abundance of monitoring data available for the La Saxe
case study. Furthermore, this discussion emphasized the major
difference between managing an EWS for natural slopes in
highly populated areas and managing an EWS for slopes under
artificial conditions and very specific type of occupancy, like
mine slopes.

On what should focus future research?
& When possible, we should opt for monitoring techniques en-

abling characterization and monitoring at the same time, en-
suring robustness and continuity in data acquisition

& There is a need for guidelines and for a tool box to help the
scientists quickly provide answers to end-users (managers)
(Intrieri et al. 2013).

& Guidelines for stakeholders, EWS managers, professionals,
technical staff and scientists should be prepared to help
steering the main steps of an EWS development and especially
to steer the group towards a shared set of procedures, indica-
tors and threshold values. This type of guidance should help in
developing a participative system to support decisions and to
share the responsibilities.

& As groundwater pressures and precipitations appear to be
driving factors for many active slides, there should be more
work about the hydrogeology of active slides, considering also
their progressive evolution from initial failure to collapse
through a series of successive evolutionary steps.

& Is the shear zone behaviour a key features for rapid failure?
This has been suggested by many authors in the literature
(Fukuoka et al. 2007; Pinyol and Alonso 2010; Kalenchuk
et al. 2012), but its description and definition in many cases
remains a difficult task which can require careful investiga-
tions and monitoring both in time and space.

& Some new technologies must be more widely tested, such as
seismic noise, in order to transfer these technologies from
research to practice. More attention should be placed on data
interpretation with respect to the simple acquisition by new
technologies.

& EWS should be limited to specific cases where countermea-
sures are not suitable.

A second workshop?
The main objective of the workshop was to focus on warning
criteria definition, adoption and management. The workshop
turned out to point out more to the problems related to their
definition than to tools and solutions.

For a future second workshop, it is suggested to form small
working groups prior to the event to gather suggestions and to
make sure that the focus is on solutions. A few suggestions for
working groups are proposed hereunder:

& A grouping of similar case studies to create some sort of classi-
fication chart, including types of scenario or run out, in order to
have examples on which to rely for new designs of EWS.

& Guidelines for the application of different approaches such as the
dated inverse velocity method on different types of landslide,
including procedures, mathematical tools, precisions, types of
landslide suited for the method, frequency of updating, etc.

& A review on the responsibilities, legally talking, of designers of
a warning system in the case of false alarm or in the case of
failure to predict an event causing consequences. For example,
recently in Italy, scientists have been sued for false alarm
because they are considered responsible for the economical
losses resulting from a misplaced evacuation or for an under-
estimation of the level of risk. This is an important point,
because in case of an EWS, it hampers its efficiency. This
problem can be overpassed only by an informed and shared
decisional process, where the final decision is the result of a
common path done by all the stakeholders, experts and repre-
sentative of the population.

& Define the requirements of land managers, in order to design
warning systems that respond correctly to their needs and to
those of the affected population and activities.

& To avoid the confusion between scenarios and thresholds.
Scenarios refer for example to the expected volume and runout
behaviour, whereas thresholds are values for specific indicators
representative of an expected change in behaviour and which
can be associated to a scenario. The same scenario can develop
in a very short time or in a much longer one, according to
some local or environmental constraints (e.g. rainfall,
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snowmelt). Emergency or civil protection plans should consid-
er this difference and evaluate the requirements for evacuation
or activation of other emergency actions.

& Apart from displacement, velocity, acceleration, precipitation and
groundwater recharge criteria, what are the other possibilities?

& When to choose EWS instead of active or other passive miti-
gation measures? Or when to combine them? By associating
different probabilities of occurrence to the different scenarios?

Concluding remarks
The contained size of the First International Workshop on Warning
Criteria for Active Slides (28 participants) enabled an open-
minded discussion. This type of structure should be maintained.
The venue, next to the active La Saxe rockslide, definitely im-
mersed the participants into active landslides management and
showed concretely the implications of EWS in terms of evacuation
and repercussions on the population, as well as on the technical
staff and the involved experts.

The participants shared their experience and issues related to the
definition of warning criteria and to management of EWS. We
realized that different organizations had common problems, espe-
cially in EWSmanagement and maintenance. This observation leads
to one of the conclusions of this workshop: EWSs are relatively new
in natural hazard protection, and we are still learning how to make it
right and the tools for warning criteria definition are limited. There
are many benefits of landslide monitoring and surveillance; for
example, it increases our understanding of the phenomenon and
its possible changes and it shows the limited validity of some sce-
narios or the need for multiple scenarios both to decide about
mitigations and to prepare suitable and alternative emergency plans.

Difficulties in forecasting the behaviour of a landslide are partly
related to misunderstanding of complex active landslides physics. In
fact, the group was constantly diverging towards a discussion about
failure mechanism when trying to determine warning criteria.

The study cases presented at the workshop showed that, most of
the time, characterization and surveillance of landslides are done
synchronously and that for most of the cases, excepted for mining,
the monitoring starts well after the beginning of the instability. It also
showed that EWS requires regular analyses by an expert, or better an
expert panel, to interpret the landslide behaviour, to detect any kind
of evolution and to update the models.
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Appendix

Organization of the workshop
The convenors of the workshop were Giovanni Crosta (University
of Milano-Bicocca, Italy), Corey Froese (Alberta Geological Survey,
Canada), Michel Jaboyedoff (University of Lausanne, Switzerland)

and Jacques Locat (Université Laval, Canada). The convenors were
helped by Federico Agliardi, Catherine Cloutier, Paolo Frattini and
Clément Michoud for the organization of the event. The commit-
tee obtained support from La Montagna Sicura’s staff (Regione Val
d’Aosta): Michèle Curtaz and Marco Vagliasindi.

The workshop venue and schedule
The workshop took place from June 10 to 12, 2013, in Courmayeur
(Western Italian Alps). The participants were staying in Entrèves,
with a view on the Mont De La Saxe rockslide (Crosta et al. 2013) an
active landslide under continuousmonitoring since 2009. At the time
of the workshop, the village of Entreves-La Palud was under a partial
evacuation order fromMay 19 to June 24, 2013, due to the acceleration
beyond the threshold values of the Mont de la Saxe rockslide dis-
placement rates. Till the last minute, the workshop venue was uncer-
tain due to this evacuation order, but it was also a great motivation to
organize the event. In fact the presence of the workshop participants
at the site during this stage was considered also an important com-
municative action with respect to the population and the personnel
involved in the management of the civil protection plan.

To make sure that participants would contribute actively to the
workshop, the organizing committee was seeking for experts that
are, or were, in charge of EWS setting up or managing. An effort
was made to gather experts from different parts of the world, still
having in mind to limit the number of participants to create an
open-discussion environment.

Twenty-eight participants attended the workshop: 15 from re-
search institutions, six from regional offices and monitoring cen-
tres, five from private companies and three from the regional
geological survey of Valle d’Aosta and the Montagna Sicura
Foundation. The participants were asked to write an extended
prior to the workshop and to give a 15-min talk.
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ABSTRACT 13 

Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 14 

2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess 15 

displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system 16 

continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a 17 

wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of 18 

rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward 19 

displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large 20 

dataset from the continuous station, shows that the pattern is not homogenous in time and that inversions of 21 

movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations 22 

and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in 23 

situ measurements and satellite InSAR analyses contribute to a better overview of movement distribution 24 

over the whole area. 25 

KEYWORDS: Rock slope, Stability, Rockslide, Ground-Based InSAR, SAR interferometry, Groundwater 26 

Effect. 27 

1 INTRODUCTION 28 

The detection, characterization and assessment of unstable slopes require a multidisciplinary approach, 29 

including mapping, field and laboratory measurements, modelling, etc. (i.a. Turner & McKuffey, 1996; 30 

Solheim, et al., 2005; Jaboyedoff, et al., 2005). The characterization of movement rate, distribution and 31 

evolution is a fundamental part in order to understand the behaviour of unstable slopes and forecast potential 32 
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collapse events (i.a. Angeli, et al., 2000; Crosta & Agliardi, 2003; Petley, et al., 2005; Blikra, 2008; Federico, 33 

et al., 2012; Blikra & Kristensen, 2013; Froese & Moreno, 2014). Various tools and instrumentation are used 34 

for this purpose. For the last decades, the development of remote sensing has had a major impact in this field 35 

(i.a. Mantovani, et al., 1996; Metternicht, et al., 2005; Lillesand, et al., 2008; Michoud, et al., 2010; Stumpf, 36 

et al., 2011; Derron, et al., 2011). It has proved being particularly valuable for operational reasons, due to its 37 

large coverage capability, high resolution and accuracy, and the possibility to examine areas difficult to 38 

access. 39 

The contribution of active microwave remote sensing for detection, mapping and monitoring of ground 40 

displacements using Synthetic Aperture Radar Interferometry (InSAR) has got an international scientific 41 

recognition at the beginning of the nineties (Gabriel, at al., 1989; Massonnet, et al., 1993; Zebker, et al., 42 

1994). Firstly developed for spaceborne platforms, InSAR devices were then developed for ground-based 43 

acquisitions (GB-InSAR) in the last decades. At the end of the nineties, a prototype of outdoor portable SAR 44 

system LISA (LInear Synthetic Aperture radar) was available (Tarchi, et al., 1999; Luzi, 2010). Since then, 45 

the use for mapping and monitoring of slope instabilities has quickly increased and numerous case studies 46 

have been reported (i.a. Tarchi, et al., 2003; Noferini, et al., 2007; Herrera, et al., 2009; Gischig, et al., 2009; 47 

Barla, et al., 2010; Casagli, et al., 2010; Del Ventisette, et al., 2011; Bozzano, et al., 2011; Herrera, et al., 48 

2011; Intrieri, et al., 2012; Monserrat, 2012; Schulz, et al., 2012; Agliardi, et al., 2013; Mazzanti, et al. 2015). 49 

This paper provides an analysis of GB-InSAR measurements on Mannen/Børa rock slope, in western 50 

Norway, where a large rockslide is continuously monitored using a wide multi-device network (Kristensen & 51 

Blikra, 2013). Among these devices, two GB-InSAR systems are operating, one permanently and one during 52 

intermittent campaigns. The presence of these two sensors makes possible a large coverage in unmonitored 53 

and hard-to-access areas. Moreover, the areas imaged by the GB-InSAR systems are partially overlapping, 54 

which allows the consistency of the measured displacements to be checked. In addition, GB-InSAR results 55 

are complimented by in situ measurements and analysis of satellite InSAR. The results contribute to a better 56 

overview of the movement distribution over the whole area. It especially highlights a peculiar seasonal 57 

inversion of movement, hereby called rock slope breathing. This phenomenon is discussed thereafter in terms 58 

of variations of groundwater pressure. 59 
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2 MANNEN/BØRA ROCK SLOPE 60 

2.1 CONTEXT 61 

The Mannen/Børa rock slope is located on the southwestern side of Romsdalen in Rauma Municipality in 62 

Møre & Romsdal county (western Norway) (Fig. 1, A–B). The glacially-shaped valley (Fig. 1, C) is 63 

characterized by extremely steep slopes and includes the highest vertical cliff in Europe (Trollveggen) with a 64 

drop of 1,700 m from the top to the bottom of the valley. Mannen is an active rockslide (Fig. 1, B red point; 65 

Fig. 2, top) and Børa is a large plateau located directly on the southeastern side of Mannen and showing 66 

extensive signs of instability (Fig. 2, bottom). The rock slope is north-east facing and has a mean slope of 40–67 

50° in its upper part. 68 

Geologically the area is included in the Western Gneiss Region, a large basement window of Precambrian 69 

crystalline rocks reworked during the Caledonian orogeny (Mosar, 2000; Smelror, et al., 2007). Mannen/Børa 70 

area is composed by metamorphic units, including dioritic-granitic gneiss, amphibolites and pegmatites 71 

(Saintot, et al., 2011a & 2012). The Romsdalen valley has been affected by various events of collapse and 72 

several other unstable areas were detected. This is due to a geological and geomorphological context 73 

unfavourable to slope stability, due to the role of the inherited structures of the ductile and brittle tectonic 74 

history, the steepness of the slopes along the U-shaped valley, as well as the post-glacial debuttressing of the 75 

valley flanks (Saintot, et al., 2011b). 76 

 77 

Fig. 1 (2-column fitting, color version required): A) Location of Mannen/Børa site in western Norway (map google - Landsat 2015). 78 
B) Location of Mannen/Børa in Romsdalen valley (map google - Landsat 2015). The red rectangle corresponds to the extent of Fig. 3. C) 79 

Picture from the top of Mannen rockslide (red point in B), toward the North, giving an overview of the U-shaped valley (Rouyet, 80 
11.08.2011). 81 
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2.2 MANNEN ROCKSLIDE 82 

The main unstable area of Mannen rockslide is about 500 m wide and 600 m long. It is located between 1,290 83 

and 600 m.a.s.l.; between 1,230 and 540 m above the valley bottom. It is delimited at the top by a steep 84 

backscarp of about 25 m (Fig. 2). 85 

The instability is known from the end of the nineties. Since this time, various studies have been carried out in 86 

order to know its geometry and its activity. These include structural analyses (Henderson & Saintot, 2007; 87 

Dahle, et al., 2008; Dahle, et al., 2010; Saintot, et al., 2011a, Saintot, et al., 2012), Terrestrial Laser Scanning 88 

(TLS) (NGU, 2008 & 2010), boreholes (Saintot, et al., 2011a; Elvebakk, 2012), 2D resistivity survey 89 

(Dalsegg & Rønning, 2012) and risk assessment (FylkesROS-fjellskred, 2011). 90 

 From field campaigns, it appears that the foliation has an average dip direction to S-SE and a penetrative 91 

steep dip angle. However the area is located in a high-grade metamorphic unit intensively folded and is thus 92 

affected by significant variations of the foliation (Saintot, et al., 2011a, Saintot, et al., 2012). The area is 93 

highly fractured and includes several subvertical sets, as well as penetrative discontinuities that wedge-shape 94 

the upper part of the instability (Henderson & Saintot, 2007; Dahle, et al., 2010; Saintot, et al., 2011a, Saintot, 95 

et al., 2012). In addition to field measurements, structural analysis based on Terrestrial Laser Scanning (TLS, 96 

point spacing: ≤ 7cm) and Aerial Laser Scanning (ALS, DEM resolution: 1m) datasets has been performed 97 

using the Coltop3D software (Terranum Ltd) designed to identify sets of discontinuities from point clouds 98 

(Jaydoyedoff, et al., 2007). The results are shown as stereonets in Fig. 4. Comparing them to the field data, J3 99 

can be identified as the foliation plane, J1/J1’-2’ as main sets involved in the wedging and sliding processes 100 

and J5/J6 as two major subvertical sets back-shaping the instability (Rouyet, 2013). 101 

Based on these investigations, several possibly unstable volumes and corresponding collapse scenarios were 102 

outlined (Dahle, et al., 2010). The instability A has a failure surface estimated at 40–80 m deep and a volume 103 

of 2–4 Mm3, while the second instability (B) has an estimated 70–110 m deep failure surface and a volume of 104 

15–25 Mm3. A third instability (C) includes a larger volume further southeast, estimated to 80–100 Mm3 105 

(Saintot, et al., 2011a) (Fig.3). 106 

Mannen is considered as a high risk rockslide (Blikra, et al., 2010), combining high probability of occurrence 107 

and high potential casualties and damages (FylkesROS-fjellskred, 2011). It threatens houses, roads and a 108 

railway track, either directly in the potential runout zone, or indirectly, in case of river damming and outburst. 109 
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Thus, since 2009, a continuous real-time monitoring network including differential GPS (DGPS), laser-110 

reflectors, extensometers, tiltmeters, a meteorological station and a GB-InSAR system (locations in Fig. 5) 111 

has progressively been implemented (Blikra, et al., 2010; Kristensen & Blikra, 2013). The Norwegian Water 112 

Resources and Energy Directorate (NVE) is in charge of the monitoring. In autumn 2014 and 2014 significant 113 

acceleration in an area with a volume estimated to 120,000–180,000 m3 was recorded in the upper western 114 

part of instability B, called Veslemannen. Inhabitants were evacuated and a high alarm level was maintained 115 

several weeks before winter stabilization (Skrede, et al., 2015). 116 

2.3 BØRA PLATEAU 117 

Located at the southeastern edge of Mannen rockslide, Børa is an approximately 3 km long and 1 km wide 118 

plateau located at 950–1,050 m.a.s.l., 890–990 m above the valley bottom. The largest outlined instability 119 

corresponds to a volume estimated at 50–200 Mm3 (Braathen, et al., 2004), and even at 300 Mm3 120 

(FylkesROS-fjellskred, 2011). Three smaller unstable parts were also highlighted (FylkesROS-fjellskred, 121 

2011) (Fig. 2 and 3), but a revision and definitions of new scenarios are now in progress. 122 

Structural analyses (Braathen, et al., 2004; Saintot, et al., 2011a; Saintot, et al., 2012), TLS (NGU, 2008), risk 123 

assessment (FylkesROS-fjellskred, 2011), periodical DGPS measurements (Saintot, et al., 2012) and GB-124 

InSAR surveys were performed (locations in Fig. 5).  125 

From the field campaigns, it appears that the plateau is affected by large subvertical fractures with dip 126 

direction to N-NE/S-SW. A subvertical foliation with a dip direction to ENE/WSW highly contributes to 127 

shape the edge of the plateau. A flat-lying joint is also identified and explained the development of the 128 

instability by a sagging mechanism along flat-lying discontinuities and opening along the vertical sets 129 

(Braathen, et al., 2004; Saintot, et al., 2011a, Saintot, et al., 2012). The results from the Coltop3D analysis 130 

(Fig. 4, b) highlight overall the same elements, J6’ corresponding most likely to the foliation plane and J1 as 131 

flat-lying set. Results from 1m ALS DEM are also presented in Fig. 4 (c) and highlights overall the same sets 132 

of discontinuities (with some variations of the dip angles as a probable effect of the lower spatial resolution) 133 

(Rouyet, 2013). 134 

Due to fewer signs of activity and lower estimated probability of failure than for Mannen, fewer 135 

investigations were carried out on the plateau and no continuous monitoring is implemented. 136 



Geomorphology Submission – revised version Rouyet, et al. 2015

  

5 

 

 137 

Fig. 2 (2-column fitting, color version required): Top: Pictures of Mannen scarp corresponding to the upper edge of instability A 138 
(Rouyet, 11.08.2011). Bottom: Pictures of Børa plateau with edges of small (full lines) and large (dashed line) instabilities and networks 139 
of cracks (dotted lines) (Rouyet, 20.08.2012). Instabilities delineations according to Dahle, et al., 2010; Saintot, et al., 2011a; Braathen, 140 

et al., 2004; FylkesROS-fjellskred, 2011. 141 

 142 
Fig. 3 (2-column fitting, color version required): Edges of Mannen and Børa instabilities according to Dahle, et al., 2010; Saintot, et 143 

al., 2011a; Braathen, et al., 2004; FylkesROS-fjellskred, 2011. Location in Fig. 1. Background: hillshade from 1m DEM. 144 
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 145 
Fig. 4: Stereonets with the main discontinuity sets from Coltop3D analysis using TLS and ALS datasets (Rouyet, 2013) 146 

3 DATA & METHODS 147 

3.1 GB-INSAR  148 

The current versions of GB-InSAR systems use generally a C, X or Ku frequency band. The measuring head 149 

including transmitting and receiving antennas moves along a 2–3 m long rail in order to synthetize the SAR 150 

images (Antonello et al., 2004; Luzi, 2010; Tofani, et al., 2010; Stumpf, et al., 2011). Details about the 151 

available systems and their characteristics are available in recent reviews (Monserrat, et al., 2014; Caduff, et 152 

al., 2014). The present research analysed data acquired by LiSALab GB-InSAR systems (Ellegi Ltd). It uses a 153 

Ku frequency band (central frequency: 17.2 GHz; wavelength: 17.44 mm). The range resolution (depending 154 

on the bandwidth) is between 0.5 and 3 m and the azimuth resolution (depending on the rail size and the 155 

range) can reach 1.5 m at 500 m. This system allows displacement rates from mm/year to a few m/day to be 156 

measured in near-real time, and up to 4 km away from the sensor. It has to be noted that only 1D 157 

displacements along the line-of-sight (LOS) can be detected. This leads to potential underestimation of the 158 

displacement if the LOS is oblique in respect to the real displacement vector. 159 
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In early 2010, a permanent GB-InSAR system was installed in the valley to continuously monitor Mannen 160 

rockslide (location: Fig. 5, red star A). The distance to the backscarp is about 2,100 m along the LOS. The 161 

LOS has a SW orientation and a mean view angle (between the beam and horizontal) of 35°. 162 

In addition, a second station for intermittent GB-InSAR measurements of Børa area was built in summer 163 

2011 (location: Fig. 5, yellow star B). Two campaigns were carried out at the station B, during 15 days in 164 

August (10.08–24.08.2011) and 28 days in September–October (21.09–18.10.2011). In 2012, a new 165 

campaign was performed during 21 days (19.06–09.07.2012). The objective was to get information about 166 

displacements in Børa area and create a data overlap with the permanent GB-InSAR system in order to check 167 

the reliability of the results. The distance along the LOS to the top of the slope is about 2,000 m. The LOS has 168 

a SW orientation and a mean view angle of about 31°. 169 

The main measurement parameters of the two GB-InSAR systems can be found in the Tab. 1. Pictures of the 170 

two stations and their measuring views are presented in Fig. 6 and the main coherent areas for the two sensors 171 

are displayed in Fig. 5. For sake of simplification, the two stations will be thereafter named station A 172 

(permanent GB-InSAR) and station B (intermittent GB-InSAR measurements). In 2014, two new radar 173 

positions were built to carry out periodic measurements, but will be not included in this paper.   174 

Tab. 1 (1.5-column fitting): Summary of main GB-InSAR acquisitions parameters for the two available systems. 175 

GB-InSAR parameters Station A Station B 

Acquisition dates 02.2010–now 
(Continuous) 

10.08–24.08.2011 
21.09–18.10.2011* 
19.06–09.07.2012 

Maximum range 2,700 m 2,400 m 

Range resolution 1.9 m 

Azimuth resolution 7.8 m at max. range 
1.5 m at 500 m 

6.9 m at max. range 
1.5 m at 500 m 

Azimuth width 2,200 m 2,400 m 

Central frequency (wavelength) 17.2 GHz (17,44 mm) 

Bandwidth 80 MHz 

Number of freq. points 2001 

Synthetic aperture 
Number of steps inside the aperture 

3 m 
751 

Acquisition time 
Revisiting time 

8 min 
10 min 

* Campaign partly affected by snow. 176 
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Images acquired from station A were processed in order to get information about displacements over one year 177 

in 2011–2012 (cf. Section 4.1.1). Because of the coherence loss during the winter season due to snowfall, the 178 

reference periods were chosen in June. Datasets from the campaigns at the station B were also analysed. The 179 

results presented in Section 4.1.2 correspond to the first 2011 campaign and the 2012 campaign. The second 180 

2011 campaign did not highlight significant displacements and was partly affected by snowfall. Images 181 

acquired from the station A at the same periods were also analysed and the results compared with those of the 182 

station B. Using the large dataset acquired at the station A, time series at specific locations between February 183 

2010 and December 2012 were extracted and are analyzed in Section 4.1.3. 184 

The GB-InSAR data were processed using LiSALab software (Ellegi srl.). The results are 3x3 multilooked 185 

and analysed using a 0.7 coherence filter. A radar image is acquired every 10 minutes, but for comparisons 186 

24h-averaged images were used. This kind of data requires a procedure to remove the atmospheric 187 

component (i.a. Caduff, et al., 2014; Kristensen, et al., 2013). This has been performed by combining the 24h-188 

averaging and a supervised approach by manually selecting reference regions. The averaging contributes to 189 

reduce significantly the noise and phase component related to turbulent atmosphere. The supervised approach 190 

allows residual atmospheric disturbances to be corrected by selecting areas without any evidence of 191 

significant ground deformation. Different areas have been tested by different operators and do not show 192 

significant variations on the main areas of interest (< 1mm). In Mannen/Børa final results, the main moving 193 

areas show clear spatially and temporally progressive trends. In the overlapping area, they are detected by 194 

both GB-InSAR systems using two independent processing. 195 

In Fig. 7–11 (cf. Section 4.1), negative values correspond to movements toward the sensor (distance 196 

shortening along the LOS); positive values correspond to movements away from the sensor (distance 197 

increasing along the LOS). For sake of simplification and reader convenience, they are expressed thereafter as 198 

downward/upward displacements. 199 
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 200 
Fig. 5 (2-column fitting, color version required): Location of ground-based monitoring devices (in situ and GB-InSAR), coherent areas 201 

for GB-InSAR systems (here using 0.7 filter applied on 10-16.08.2011 interferogram). Background: 0.2m orthophoto 2006. 202 

 203 
Fig.6 (2-column fitting, color version required): Left: Pictures of the two GB-InSAR stations. A: permanent GB-InSAR station, B: 204 
station for intermittent GB-InSAR measurements Right: Respective views from the stations (Rouyet/Derron, 20.08.2012). Acquisition 205 

parameters in Tab.1 and locations in Fig. 5. 206 
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3.2 SATELLITE INSAR  207 

In addition to GB-InSAR data, satellite InSAR images acquired by TerraSAR-X/TanDEM-X (TSX/TDX) 208 

sensors (Airbus Defense & Space - Inforterra GmbH) were processed. The satellites use a X band (central 209 

frequency: 9.6 GHz; wavelength: 3.11 cm) and have a repeat-pass time interval of 11 days. The dataset was 210 

acquired with a StripMap mode and from an ascending orbit (LOS orientation: 75.2°N, incident angle: 21.4°) 211 

in order to get reduced geometrical distortions on east-facing slopes. The LOS and the land cover provide a 212 

good coverage of the plateau and the upper part of the slope. The bottom part of the slope is partly masked 213 

out due to vegetation inducing low coherence and layover effect from the other side of the valley (Fig. 7). 214 

Due to loss of coherence in case of snowfall, only 24 snow-free scenes between July 2010 and October 2013 215 

were used (Fig. 8). The satellite data characteristics are summarized in Tab. 2 (top).  216 

 217 
Fig. 7 (2-column fitting, color version required): Satellite InSAR mean coherence map from Multi-year Stacking method using 218 

TSX/TDX satellite InSAR data from ascending geometry (geocoding resolution: 10m x 10m). Areas in orange and red are respectively 219 
affected by layover and shadow effects. 220 
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 221 
Fig. 8 (1.5-column fitting, color version required): Baseline plot (spatial baseline vs. acquisition time) with the 24 selected TSX/TDX 222 
ascending scenes (high density in summer, gaps in winter). Scenes: black circles, generated interferograms: lines (black: selected, red: 223 

removed). 224 

The results presented thereafter as maps were obtained using a simple stacking of interferograms with small 225 

spatial (max. 600m) and temporal (max. 88d) baselines. This allows a large amount of interferograms from 226 

disconnected seasons to be processed together in order to reduce atmospheric effects and other noise sources 227 

(Zebker & Villasenor, 1992; Zebker, et al., 1997; Gabriel, et al., 1989). A second processing using only the 228 

interferograms from 2013 has been performed in order to get one connected set and be able to apply Small 229 

BAseline Subset (SBAS) method (Beraradino, et al., 2012; Lauknes & Larsen, 2011). This allows the time 230 

series presented in Section 4.2 to be retrieved. 231 

The processing was performed using the Norut developed GSAR software (Larsen et al., 2005), using the 232 

national 10m DEM (provided by Kartverket) to remove the topographic component. The InSAR processing 233 

parameters can be found in Tab. 2 (bottom). The numbers of generated interferograms depend on the chosen 234 

spatial/temporal baselines thresholds (column 4, InSAR processing parameters, Tab. 2) and a second manual 235 

selection is performed to remove interferograms affected by low coherence, significant atmospheric effects or 236 

obvious unwrapping errors (column 5, InSAR processing parameters, Tab. 2). 237 

In Section 4.2 (Fig. 14–15), in order to have a straight-forward comparison with GB-InSAR results, signs 238 

convention is inversed from the LOS-logic: negative values correspond to movements away from the satellite 239 

and positive values correspond to movements toward the satellite. 240 
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Tab. 2 (2-column fitting): Summary of characteristics of satellite data and processing parameters 241 

Satellite data characteristics 

Satellite Band Dataset Time period 
Repeat-

pass 
interval 

Number 
of 

images 

Track angle 
(LOS orient.) 

Incidence 
angle 

TSX/TDX X (λ: 3.11 cm) StripMap 
Ascending 

07.2010 – 
10.2013 11 days 24 -14.81° 

(75,2°N) 21.4° 

InSAR processing parameters 

Processing type 

Multilooking 
(range x 
azimuth 

resolution) 

Max. 
spatial & 
temporal 
baselines 

 
Generated 
interfer. 

 Selected 
interfer. 

SBAS 
spatial & 
temporal

filters 

Pixel selection 
(coh. & 

fraction of 
image thr.) 

Calibration 
point 

(UTM 32N) 

Multi-years 
Stacking Factors: 3 x 4 

(8.3 m x 8.3 
m) 

600 m / 
88 d 

69 49 - 0.4 & 0.6 6925508 
436468 

 
(GPS 1 
stable) 2013 SBAS 35 27 500 m / 

44 d 0.4 & 0.6 

4 RESULTS 242 

4.1 GB-INSAR RESULTS 243 

4.1.1 ONE YEAR DISPLACEMENTS ON MANNEN ROCKSLIDE 244 

The velocities recorded along the LOS between June 2011 and June 2012 reached 18 mm/year toward the 245 

GB-InSAR in the upper part of Mannen rockslide (Fig. 9). This is overall consistent with in situ data that 246 

show 23 mm/year with a main vertical component for DGPS3 and 18 mm/year for the laser-reflectors (Fig. 9, 247 

pink elements). A clear velocity contrast is noticeable between the upper southern part of the instability A and 248 

the rest of instabilities A and B. During this time interval, 7 mm toward the GB-InSAR is measured on the 249 

lower southeastern part. In the lower northern part, mainly horizontal displacements toward the north are 250 

recorded by DGPS. Due to an oblique LOS relatively to the displacement vectors, the GB-InSAR is not able 251 

to capture a significant part of the movement in this area. No information is available in the western part of 252 

instability B located in a shadow area. In order to overcome these problems, a new station for intermittent 253 

GB-InSAR campaigns was set up further northwest, and measurements started in September 2014 (Skrede, et 254 

al., 2015).  255 
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 256 
Fig. 9 (2-column fitting, color version required): 2011 monitoring data on Mannen rockslide: GB-InSAR displacements (station A) in 257 

mm between June 2011 and June 2012 (geocoding resolution: 3m x 3m) and in situ displacements in mm between January 2011 and 258 
December 2011 (in pink are displayed in situ results with most significant velocities). Location in Fig. 5. Background: hillshade from 1m 259 

DEM.  260 

4.1.2 INTERMITTENT BØRA CAMPAIGNS & CORRESPONDING MANNEN RESULTS 261 

During the first Børa campaign in August 2011, considering the interval 10.08–23.08.2011 (14 days), no 262 

significant movement was detected on Mannen rockslide using GB-InSAR (station A). This is overall 263 

consistent with the in situ data, which show that main periods of movements occurs during the thawing period 264 

earlier in the season. On Børa, the results of the station B highlight a slight downward trend in the 265 

northwestern upper part that can be ascribed to residual atmospheric effects, but several fast moving small 266 

sectors are detected in active rockfall areas in the southeastern part of the dataset (Fig. 10). Displacements are 267 

also detected in the lower part on debris cones affected by active torrential processes and significant 268 

erosion/deposition cycles. 269 

The main interesting element is located in the overlapping part of the two GB-InSAR datasets (cf. Fig. 5). 270 

During August campaign in 2011 an increase of sensor-to-target distance is detected, corresponding to 271 

upward displacements. The displacements exceed 8 mm in 13 days (Fig. 10). In July 2012, this moving part is 272 

again clearly distinguishable, but this time the movements are inversed (shortening of sensor-to-target 273 
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distance, i.e. downward displacements). The highest displacement rate is reached during 07.09–09.07.2012 274 

interval (up to 8 mm in 2 days) (Fig. 11). For both campaigns at the station B (August 2011 and June–July 275 

2012), GB-InSAR results are consistent with station A in the overlapping part, and the georeferenced results 276 

show a good spatial fit of the two datasets (Fig. 10 and Fig. 11). The moving part is well delineated and 277 

affected an area of approximately 1x0.5 km2. 278 

 279 
Fig. 10 (2-column fitting, color version required): Georeferenced and unwrapped GB-InSAR results (stations A and B) for the period 280 
10.08–23.08.2011. Geocoding resolution: 2m x 2m. The GB-InSAR results are expressed along the respective LOS of the two systems. 281 
In overlapping part, when data are available for both devices, results from the station A are displayed. Background: hillshade from 1m 282 

DEM. 283 
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 284 
Fig. 11 (2-column fitting, color version required): Georeferenced and unwrapped GB-InSAR results (stations A and B) for the period 285 
07.07–09.07.2012. Geocoding resolution: 2m x 2m. The GB-InSAR results are expressed along the respective LOS of the two systems. 286 

In overlapping part, when data are available for both devices, results from the station A are displayed. Background: hillshade from a 287 
DEM, resolution 1 m. 288 

Time series are generated at two locations (P1 and P2) where coherent information is available for both GB-289 

InSAR systems, in the overlapping part of the two datasets (Fig. 12, point locations in Fig. 10 and 11). The 290 

data are in the respective LOS for each GB-InSAR system. They confirm the upward trend in August 2011 291 

(Fig. 12, top). For both points, maximal displacements are reached after 9 days. The measurements show a 292 

relative stability the next 5 days. The two GB-InSAR systems provide measurements in good agreement 293 

(overall same rate of movement and variations). In June–July 2012, the time series confirm the movement 294 

inversion and the consistency of both datasets (Fig. 12, bottom). The time series show two main stages of 295 

acceleration during 21.06–26.06.2012 (7 mm in 5 days) and 06.07–09.07.2012 (7 mm in 3 days).  296 
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 297 
Fig. 12 (1.5-column fitting, color version required): Comparison of time series from GB-InSAR A & B at P1-P2 locations. Top: First 298 
campaign at the station B (10.08–23.08.2011). Bottom: 2012 campaign at the station B (19.06–9.07.2012) (points locations in Fig. 8–9)  299 

4.1.3 INTER-ANNUAL RESULTS  300 

Using the whole GB-InSAR dataset acquired at the station A since February 2010 to the end of 2012, 301 

significant variations are confirmed in the southeastern part (overlapping part with GB-InSAR B). Similar 302 

trends are visible in the northwestern part of the monitored area but with lower amplitude (P4–P5) (Fig. 13, 303 

point locations in Fig. 10–11). The movement cycles have a seasonal recurrence. In 2010, 2011 and 2012, 304 

movement inversions occur abruptly between June and July (from downward to upward displacements) and 305 

the fastest upward peaks occur afterwards every year between mid-June and August (dashed lines, Fig. 13). 306 

For P2, the upward displacement reaches 13 mm in 72 days in summer 2011. From the meteorological data 307 

(Fig. 13, graphs on the right. Station at the top of Mannen, cf. Fig. 5), it is possible to see that the downward 308 

trend is clearly related to the thawing period and its duration is affected by the abruptness of the transition 309 
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(short duration and sharp transition in 2011 vs longer duration and smoother transition in 2012). This 310 

inflation/deflation phenomenon, hereafter so called rock slope breathing, is discussed more into details in 311 

Section 5.2. 312 

 313 

Fig. 13 (1-column fitting, color version required): Time series from GB-InSAR A at P2–P5 locations between May and October 2010, 314 
2011 and 2012 (points locations in Fig. 10–11). Meteorological data from the top of Mannen (station location in Fig. 5) 315 
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4.2 SATELLITE INSAR RESULTS 316 

The TSX/TDX multi-years Stacking processing using maximal temporal baselines of 88 days (cf. Tab.2) 317 

shows rate of movement up to 40 mm/year and 58 mm/year downward (distance increasing along the LOS) 318 

recorded for some small sectors in the upper part of the instability A and B, while the main moving area has 319 

values between 15 and 25 mm/year (Fig. 14–15). It has to be noted that the results expressed in annual mean 320 

velocity correspond to an extrapolation of the snow-free seasons (no inter-annual interferogram). Large 321 

displacements during these periods can thus lead to an overestimation of the values. 322 

In the southwestern part of the instability B (Veslemannen), movements are detected. Previously this area was 323 

not documented by ground-based instruments, but after significant movements and acceleration were 324 

measured by GB-InSAR in September-October 2014, extensometers and geophones were installed at this 325 

location and an automatic LiDAR system was put in the valley. The Veslemannen site is now closely 326 

monitored (Skrede, et al., 2015). 327 

On Børa some displacements are also detected, especially in the lower part (debris cones affected by 328 

torrential processes and erosion/deposition cycles). 329 

The area subjected to rock slope breathing in the overlap of the GB-InSAR systems is not totally well 330 

documented by TSX/TDX satellites due to the lower coherence downslope. The LOS of the sensor can also 331 

lead to potential misestimating of displacements in the area due to oblique or even perpendicular view in 332 

respect to the real vectors. However, mean rates up to 28 mm/year downward are detected from the Multi-333 

year Stacking processing. Thanks to SBAS method using interferograms from 2013 it is also possible to 334 

retrieve time series between July and October 2013. Results at different locations on the area affected by rock 335 

slope breathing are presented in Fig.16 (top). For sake of comparison and reliability check, other time series 336 

from the plateau (supposed as stable) and on Mannen rockslide can be seen in Fig. 16 (bottom). The locations 337 

of the selected points are displayed on the map in Fig. 15. The results highlight three different clear trends: 1) 338 

round zero displacements on the plateau, 2) quite linear displacements on the rockslide to 18mm in 3 months, 339 

3) small displacements with inversions in August on the area affected by rock slope breathing, that confirm 340 

the GB-InSAR results. 341 
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 342 
Fig. 14 (2-column fitting, color version required): Multi-years Stacking results using 2010-2013 TSX/TDX satellite data from 343 

ascending geometry (geocoding resolution: 10m x 10m). Black arrow: LOS, black star: calibration point. Background: hillshade from 1m 344 
DEM. 345 

 346 
Fig. 15 (2-column fitting, color version required): Zoom on Mannen rockslide and area affected by rock slope breathing. Multi-years 347 
Stacking results using 2010-2013 TSX/TDX satellite data from ascending geometry (geocoding resolution: 10m x 10m). Black arrow: 348 
LOS, black star: calibration point, blue stars: location of SBAS time series. Location in Fig. 14. Background: hillshade from 1m DEM. 349 
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 350 

Fig. 16 (1.5-column fitting, color version required): SBAS time series in snow-free season 2013. Top: B1–4 on area affected by rock 351 
slope breathing. Bottom: Others examples of time series on the plateau and on Mannen rockslide. Note the difference of scale in y-axis. 352 

5 DISCUSSION 353 

This section is organized in two parts. In Section 5.1, the results from available measuring systems (GB-354 

InSAR, in situ and satellite InSAR) are summarized and main findings about the spatial distribution of 355 

movement rate are described. As main focus of the article, the rock slope breathing phenomenon and the 356 

current assumptions about the factors explaining this effect are discussed in Section 5.2. 357 

5.1 MANNEN ROCKSLIDE & BØRA PLATEAU 358 

The combined results of GB-InSAR, in situ and satellite InSAR contribute to have a good overview of the 359 

Mannen rockslide behaviour and affine the extents of the different instabilities especially in the inaccessible 360 

steep slopes. Overall the results are consistent and complementary. They allow the area to be divided in three 361 

parts: 362 

(1) A main active part in the upper southern part of the instabilities A. It is documented by DGPS 3 (23 363 
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mm/year in 2011), two lasers-reflectors (to 18 mm/year in 2011) and the extensometer 2 located in the 364 

backcrack (44 mm/year in 2011), GB-InSAR data (to 18 mm/year between June 2010-2011) (Fig. 9) and 365 

TSX/TDX satellite InSAR (to 40 mm/year) (Fig. 14-15). According to DGPS results, this moving area has a 366 

main vertical component and a northeast horizontal orientation. 367 

(2) A second active part in the upper western part of the instability B (Veslemannen), not documented by in 368 

situ data but highlighted by satellite data (to 58 mm/year) (Fig.13), and recently by the new 2014 GB-InSAR 369 

station (Skrede, et al., 2015). 370 

(3) A slower part including the other in situ devices. The DGPS highlighted rates of displacement between 7 371 

and 13 mm/year in 2011, the GB-InSAR data velocities to 6 mm/year (Fig. 9) and 10 mm/year for satellite 372 

InSAR (Fig. 14–15). The especially low values recorded by GB-InSAR can be explained by an oblique LOS 373 

orientation in respect to the movement orientation documented by the DGPS (main horizontal component 374 

with a north orientation). 375 

At Børa, GB-InSAR system did not highlight significant moving patterns during the intermittent campaigns, 376 

except in the area discussed in Section 5.2. However, it detected some small hot spots along the upper part of 377 

the slope and on debris cones downslope (Fig.10–12). This seems consistent with the satellite InSAR results 378 

which highlight also some localized moving areas (Fig. 14–15). 379 

5.2 ROCK SLOPE BREATHING 380 

The GB-InSAR campaigns at station B highlighted the presence of an area subjected to variations of 381 

movement in the overlapping part with the data from the continuous GB-InSAR system (station A). The 382 

combination of the GB-InSAR datasets from two stations showed that the movements fluctuate in time and 383 

has a seasonal recurrence (observed during three consecutive years of monitoring). SBAS time series from 384 

TSX/TDX satellite data confirm these variations. 385 

Looking at the location map (Fig. 17, top right), we can see that this part is located below the two 386 

Kråkenesvatna lakes. These lakes have no visible outlets, but at their northern edge, a siphon phenomenon 387 

can be observed during the summer (Fig. 17, D). This testifies a strong water infiltration in this area. Tracing 388 

tests from Kråkenesvatna lakes were performed in October 2007 and concluded to a complex drainage system 389 

involving multiple pathways of water in the rock mass. The measurements at 19 source locations in the valley 390 
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revealed indeed that the peaks of responses curves are multiple and vary between 3 and 10 days according to 391 

the location (Kvakland, 2009). Considering the time of transit through the rock mass the assumption of rock 392 

slope breathing caused by variations of groundwater charge is likely. The order of magnitude of 10 days fits 393 

well with the variations detected from GB-InSAR (Fig. 13). In Fig. 10–11, we can moreover see that the 394 

moving area is located just below and between the main delineated instabilities. It probably contributes to a 395 

convergence/concentration of groundwater from the large fractures at the basal and lateral edges of the 396 

unstable areas. Thus, the current assumption to explain the displacements measured by GB-InSAR is that the 397 

area is subjected to large variations in groundwater pressure. At the beginning of the thawing season, an 398 

increase of charge due to high water infiltration and possible presence of residual ice in fractures lead to 399 

millimetric inflation of the rock slope, and thus downward displacements. During the summer, the reduction 400 

of water inputs and complete melting of residual ice in fractures make possible a water evacuation and 401 

desaturation of the slope, which leads to a deflation, and thus upward displacements. The assumption is 402 

represented as simplified schemes in Fig. 18. The displayed structures are based on the approximate results of 403 

TLS/ALS analysis using Coltop3D software (Rouyet, 2013, cf. Fig. 4). 404 

 405 
Fig.17 (2-column fitting, color version required): Focus on the area subjected to rock slope breathing. A: GB-InSAR results (here 406 

wrapped) of August 2011 campaign at station B and the corresponding results of station A. B: Picture of the slope (Rouyet, 20.08.2012). 407 
C: Zoom on sector subjected to rock slope breathing (Rouyet, 20.08.2012). D: Siphon phenomenon in Kråkenesvatna lakes (NVE, 408 

09.09.2011).  409 
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 410 
Fig.18 (1.5-column fitting, color version required): Simplified 3D models of Mannen/Børa summarizing the geometries of the remote 411 

sensing systems, the main geological structures and discussing the rock slope breathing effect. Background: 0.2m orthophoto 2006. 412 
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To illustrate the impact of water variations, a calculation of elastic behaviour (Hooke’s law) can be performed 413 

considering a simplified theoretical case with isotropic and homogenous material, equal lateral stresses and 414 

no shear stresses (David & Selvadurai, 1996). By comparing the gravity stresses, considering dry and 415 

saturated cases, it is possible to calculate the differential vertical deformation due to water (see equations in 416 

Tab. 3).  417 

Tab. 3 (1.5-column fitting): Equations applied for calculation of gravity stresses, resulting strain and deformation with and without 418 
water (David & Selvadurai, 1996, derived from Hooke’s law) 419 

Case without water Case with water 

σ𝑧𝑧(𝑧)(𝑑𝑟𝑦) = ∫ 𝜌𝑟(𝑧)𝑔 𝑑𝑧
𝑧

0

 σ𝑧𝑧(𝑧)(𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑) = ∫ 𝜌𝑟(𝑧)𝑔 − 𝜌𝑤(𝑧)𝑔 𝑑𝑧
𝑧

0

 

σ𝑥𝑥 = σ𝑦𝑦 =  
𝜈

1 − 𝜈
σ𝑧𝑧 

𝜀𝑧𝑧 =  
1

𝐸
[σ𝑧𝑧 −  𝜈(σ𝑥𝑥 + σ𝑦𝑦)] =  

1

𝐸
[𝜎𝑧𝑧 − 2𝜈(𝜎𝑥𝑥)] =  

1

𝐸
[𝜎𝑧𝑧 −

2𝜈2

1 − 𝜈
𝜎𝑧𝑧] 

𝜀𝑧𝑧 =  
∆𝑧

𝑧
   →   ∆𝑧 = 𝜀𝑧𝑧 ∙ 𝑧  →    𝛿∆𝑧 = ∆𝑧(𝑑𝑟𝑦) − ∆𝑧(𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑)  

Where σzz is the vertical stress [N/m2], σxx/σyy are the lateral stresses [N/m2], z is the height of the rock 420 

column [m], ρr is rock mass density [kg/m3], ρw is the water density [kg/m3], g is the acceleration of 421 

gravity [m/s2], ν is the poisson’s ratio [-], εzz is the extensional strain [-], E is the young’s modulus [N/m2], 422 

Δz is the deformation [m], δΔz is the differential deformation [m]. 423 

In this way, applying accepted mean values for gneiss (0.25 for Poisson’s ratio, 50–70 GPa for Young 424 

modulus, Sivakugan, et al., 2013), a differential deformation between 10 and 15 mm in z component is found 425 

by using 300 m as height of rock column. In real cases the physics complexity is obviously much higher. 426 

However, this first estimation is relevant with the measured phenomenon at Mannen/Børa and highlights the 427 

need of further research in order to document and quantify this effect in different geological contexts.  428 

In slope stability, role of groundwater variations is well known but usually analyzed in term of effective stress 429 

variations (i.a. Collins & Znidarcic, 2004; Johansson, 2014). Effects of water table level fluctuations inducing 430 

subsidence and uplift of rock mass were however studied to explain deformation related to tunnelling and 431 

hydroelectric infrastructure (i.a. Schneider, 1982; Zangerl, et al., 2008; Strozzi, et al., 2011). Using satellite 432 

InSAR, water loading fluctuations inducing land subsidence and uplift rebound were detected, but they are 433 

mainly related to cases of excess pumping of groundwater (i.a. Amelung, et al., 1999; Schmidt & Bürgmann, 434 

2003; Chen, et al., 2007; Galloway & Burbey, 2011). In case of rock instabilities, seasonal effects related to 435 

temperature, precipitations, snow-melting or permafrost have also been measured using conventional or/and 436 
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remote-sensing methods (i.a. Coe, et al., 2003; Nordvik, et al., 2010; Blikra & Christiansen, 2014). These 437 

studies focus usually on the understanding of the triggers and controlling factors of the instabilities. The 438 

elastic or semi-elastic behaviours of the rock mass associated to water or temperature variations and potential 439 

fatigue mechanism related to cycles are still not well covered, although mentioned in several papers (i.a. 440 

Jaboyedoff, et al., 2009; Mazzanti & Brunetti, 2010; Salvini, et al., 2015). In the way, our research provides 441 

an interesting contribution to take into account small-scale movement fluctuations due to water pressure in 442 

natural slopes. The rock slope breathing can indeed have a long-term impact on the rock slope structure by 443 

progressive degradation and micro-fracturing due to differential deformation in the area affected by the 444 

phenomenon. 445 

6 CONCLUSION & PROSPECT 446 

The Mannen/Børa rock slope is an interesting case study due to the availability of two GB-InSAR systems 447 

imaging the same rock slope. They cover a large stretch of the slope and a slight data overlap allows the 448 

reliability of the results to be checked. They have the advantage to provide information on the unmonitored 449 

Børa plateau and in steep mid-slope where in situ devices are difficult to install. Thanks to GB-InSAR large 450 

coverage, high temporal frequency, high resolution and accuracy, an approximately 1x0.5 km2 sector 451 

subjected to millimetric variations and inversion of movement (inflation/deflation) has been highlighted. 452 

Satellite InSAR time series from TSX/TDX data confirm these variations. Analysing the large GB-InSAR 453 

dataset from the continuous station A, this rock slope breathing is proved to have a seasonal recurrence. The 454 

phenomenon is ascribed to hydrogeological variations. 455 

In addition and in order to overcome some limitations of GB-InSAR technique (1D measurements along the 456 

LOS, intermittent campaigns, atmospheric effects removing, coherence loss, etc.), analyses of in situ 457 

monitoring data and satellite InSAR were performed. The combination of in situ measurements, terrestrial 458 

and spaceborne remote sensing provides a large amount of complementary information. In this way, the edge 459 

and velocities of the main Mannen unstable areas can be better defined. 460 

These preliminary results highlight the need for further research in this site, which can be summarized in two 461 

parts. Firstly, further investigations are required to fully understand the hydrogeological processes and the 462 

subsurface structures of the rock slope, especially to understand the rock slope breathing phenomenon and 463 



Geomorphology Submission – revised version Rouyet, et al. 2015

  

26 

 

confirm the assumption of the water pressure influence. This includes further investigations combining 464 

surface and subground data to depict its complex geometry. In order to better understand and constrain the 465 

behaviour of the rock masses in the area stress-strain numerical analysis should be performed and included in 466 

further models. Secondly, a complete and systematic analysis of the large GB-InSAR dataset from station A, 467 

as well as a more complete integration with the other GB-InSAR (intermittent measurements from station B 468 

and new 2014 stations), in situ and satellite InSAR results would be valuable to provide information about 469 

movement directions and contribute to confirm the likelihood of mechanisms. This could overcome the 470 

intrinsic limitation of InSAR technique which provides only 1D deformation measurements along the LOS. 471 

In addition to the elements of prospect related to Mannen/Børa rock slope, this work underlines the need of 472 

research on the locations, amplitudes, causes and consequences of rock slope breathing in mountainous 473 

regions. These small variations often ignored or undervalued in the analysis and monitoring of large 474 

rockslides threatening population and infrastructure are indeed important to take into account for a complete 475 

understanding of rock slope behaviour. 476 

ACKNOWLEDGMENTS 477 

The research would not have been possible without the great job of the team working at the NVE monitoring 478 

center in Stranda. Thanks to the intensive work of each member of the crew, impressively huge and exciting 479 

datasets from the performant monitoring network of Mannen/Børa are available for research. Many thanks 480 

also to LiSALab team (Ellegi Ltd) and especially Carlo Rivolta for his support during GB-InSAR data 481 

processing. The TerraSAR-X data has been provided by the German Aerospace Center (DLR) under the 482 

TSX-AO project contract #GEO0764. We finally acknowledge the works of the landslide group of the 483 

Geological Survey of Norway (NGU) that contribute to better understand geometry and behaviour of rock 484 

instabilities in Romsdalen valley. 485 

REFERENCES 486 

Agliardi, F., Crosta, G., Sosio, R., Rivolta, C., & Mannucci, G. (2013). In situ and remote long term real-time monitoring of a large 487 
alpine rock slide. In: Margottini, C., Canuti, P. & Sassa, K. (Eds.), Landslide Science and Pratice (Vol.2, pp. 415–421). 488 
Springer Berlin Heidelberg. DOI:10.1007/978-3-642-31445-2_54. 489 

Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR 490 
reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6), pp. 483–486. 491 
DOI:10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2. 492 

Angeli, M.-G., Pasuto, A., & Silviano, S. (2000). A critical review of landslide monitoring experiences. Engineering Geology, 55(3), pp. 493 
133–147. DOI:10.1016/S0013-7952(99)00122-2. 494 



Geomorphology Submission – revised version Rouyet, et al. 2015

  

27 

 

Antonello, G., Casagli, N., Farina, P., Leva, D., Nico, G., Sieber, A., & Tarchi, D. (2004). Ground-based SAR interferometry for 495 
monitoring mass movements. Landslides, 1, pp. 21–28. DOI:10.1007/s10346-003-0009-6. 496 

Barla, G., Antolini, F., Barla, M., Mensi, E., & Piovano, G. (2010). Monitoring of the Beauregard landslide (Aosta Valley, Italy) using 497 
advanced and conventional techniques. Engineering Geology, 116(3–4), pp. 218-235. DOI:10.1016/j.enggeo.2010.09.004. 498 

Blikra, L. H. (2008). The Åknes rockslide; monitoring, threshold values and early warning. In: Proceedings, 10th International 499 
symposium on Landslides and Engineered Slopes (Vol. 2, pp. 1089–1094). Xi'an, China. 500 

Blikra, L. H., Kristensen, L., & Hole, J. (2010). Mannen in Romsdalen: Monitoring and data analyses. Report 03/2013. Stranda, 501 
Norway: Åknes/Tafjord Beredskap. 502 

Blikra, L. H., & Kristensen, L. (2013). Monitoring Concepts and Requirements for Large Rockslides in Norway. In: Margottini, C., 503 
Canuti, P. & Sassa, K. (Eds.), Landslide Science and Practice (Vol.2, pp. 193–200). Springer Berlin Heidelberg. 504 
DOI:10.1007/978-3-642-31445-2_25. 505 

Blikra, L. H., & Christiansen, H. H. (2014). A field-based model of permafrost-controlled rockslide deformation in northern Norway. 506 
Geomorphology, 208, pp. 34–89. DOI:10.1016/j.geomorph.2013.11.014. 507 

Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small 508 
baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), pp. 2375–2383. 509 

Bozzano, F., Cipriani, I., Mazzanti, P., & Prestininzi, A. (2011). Displacement patterns of a landslide affected by human activites: 510 
insights from ground-based InSAR monitoring. Natural Hazards, 59(3), pp. 1377–1396. DOI:10.1007/s11069-011-9840-6. 511 

Braathen, A., Blikra, L., Berg, S. S., & Karlsen, F. (2004). Rock-slope failures in Norway; type, geometry, deformation mechanisms and 512 
stability. Norwegian Journal of Geology, 84, pp. 67–88. 513 

Caduff, R., Schlunegger, F., Kos, A., & Wiesmann, A. (2014). A review of terrestrial radar interferometry for measuring surface change 514 
in the geosciences. Earth Surface Processes and Landforms, 40(2), pp. 208–228. DOI:10.1002/esp.3656. 515 

Casagli, N., Catani, F., De Ventisette, C., & Luzi, G. (2010). Monitoring, prediction, and early warning using ground-based radar 516 
interferometry. Landslides, 7(3), pp. 291–301. DOI:10.1007/s10346-010-0215-y. 517 

Chen, C. T., Hu, J. C., Lu, C. Y., Lee, J. C., & Chan, Y. C. (2007). Thirty-year land elevation change from subsidence to uplift following 518 
the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. 519 
Engineering Geology, 95(1), pp. 30–47. DOI:10.1016/j.enggeo.2007.09.001 520 

Coe, J. A.; Ellis, W. L., Godt, J. W., Savage, W. Z, Savage, J. E., Michael, J. A., Kibler, J. D., Powers, P. S., Lidke, D.J., & Debray, S. 521 
(2003). Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field 522 
instrumentation, July 1998-March 2002. Engineering Geology, 68, pp.67–101. 523 

Collins, B. D., & Znidarcic, D. (2004). Stability Analyses of Rainfall Induced Landslides. Journal of Geotechnical and 524 
Geoenvironmental Engineering, 130(4), pp. 364–372. DOI:10.1061/(ASCE)1090-0241(2004)130:4(362). 525 

Crosta, G. B., & Agliardi, F. (2003). Failure forecast for large rock slides by surface displacement measurements. Canadian 526 
Geotechnical Journal, 40(1), pp. 171–191. DOI:10.1139/t02-085. 527 

Dahle, H., Anda, E., Saintot, A., & Saetre, S. (2008). Faren for fjellskred fra fjellet Mannen i Romsdalen. Report 2008.087 (in 528 
Norwegian). Trondheim, Norway: Norges Geologiske Undersøkelse (NGU). 529 

Dahle, H., Saintot, A., Blikra, L. H., & Anda, E. (2010). Geofagleg oppfølging av ustabilt fjellpati ved Mannen i Romsdalen. Report 530 
2010.22 (in Norwegian). Trondheim, Norway: Norges Geologiske Undersøkelse (NGU). 531 

Dalsegg, E., & Rønning, J. S. (2012). Geofysiske målinger på Mannen i Rauma kommune, Møre og Romsdal. Report 2012.024 (in 532 
Norwegian). Trondheim, Norway: Norges Geologiske Undersøkelse (NGU). 533 

Davis, R. O., & Selvadurai, A. P. (1996). Elasticity and Geomechanics. New York: Cambridge University Press. 534 

Del Ventisette, C., Intrieri, E., Luzi, G., Casagli, N., Fanti, R., & Leva, D. (2011). Using ground based interferometry during emergency: 535 
the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Natural Hazards and Eath System Sciences, 536 
11, pp. 2483–2495. DOI:10.5194/nhess-11-2483-2011. 537 

Derron, M.-H., Jaboyedoff, M., Pedrazzini, A., Michoud, C., & Villemin, T. (2011). Remote Sensing and Monitoring Techniques for the 538 
Characterization of Rock Mass Deformation and Change Detection. In: Lambert, S. & Nicot, F. (Eds.), Rockfall Engineering 539 
(pp. 39–65). ISTE and Wiley & Sons. 540 

Elvebakk, H. (2012). Borehullslogging med optisk televiewer, KH-02-11, Mannen, Rauma kommune, Møre og Romsdal. Report 541 
2012.032 (in Norwegian). Trondheim, Norway: Norges Geologiske Undersøkelse (NGU). 542 

Federico, A., Popescu, M., Elia, G., Fidelibus, C., Internò, G., & Murianni, A. (2012). Prediction of time to slope failure: a general 543 
framework. Environnemental Earth Sciences, 66(1), pp. 245–256. DOI:10.1007/s12665-011-1231-5. 544 

Froese, C. R., & Moreno, F. (2014). Structure and components for the emergency response and warning system on Turtle Mountain, 545 
Alberta, Canada. Natural Hazards, 70(3), pp. 1689–1712. DOI:10.1007/s11069-011-9714-y. 546 

FylkesROS-fjellskred. (2011). Risiko- og sårbarheitsanalyse for fjellskred i Møre of Romsdal. Report (in Norwegian). Norway: 547 
Fylkesmannen i Møre og Romsdal, Møre og Romsdal fylkeskommune & Norges Geologiske Undersøkelse (NGU). 548 

Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar 549 
interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), pp. 9183–9191. DOI:10.1029/JB094iB07p09183. 550 

Galloway, D. L., & Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology 551 
Journal, 19(8), pp. 1459–1486. DOI:10.1007/s10040-011-0775-5. 552 

Gischig, V. S., Loew, S., Kos, A., Moore, J. R., Raetzo, H., & Lemy, F. (2009). Identification of active release planes using Ground-553 
Based Differential InSAR at the Randa rock slope instability, Switzerland. Natural Hazard and Earth System Sciences, 9, pp. 554 
2027–2038. DOI:10.5194/nhess-9-2027-2009. 555 

Goldstein, R. M., Engelhardt, R., Kamp, B., & Frolich, R. M. (1993). Satellite radar interferometry for monitoring ice sheet motion: 556 
Application to an Antarctic ice stream. Science, 262, pp. 1525–1530. DOI:10.1126/science.262.5139.1525. 557 



Geomorphology Submission – revised version Rouyet, et al. 2015

  

28 

 

Henderson, I. H., & Saintot, A. (2007). Fjellskredundersøkelser i Møre og Romsdal. Report 2007.043 (in Norwegian). Trondheim, 558 
Norway: Norges Geologiske Undersøkelse (NGU). 559 

Herrera, G., Ferández-Merodo, F. A., Mulas, J., Pastor, M., Luzi, G., & Monserrat, O. (2009). A landslide forecasting model using 560 
ground based SAR data: The Portalet case study. Engineering Geology, 105(3-4), pp. 220–230. 561 
DOI:10.1016/j.enggeo.2009.02.009. 562 

Herrera, G., Notti, D., García-Davalillo, J. C., O., M., Cooksley, G., Sánchez, M., Arnaud, A. & Crosetto, M. (2011). Analysis with C- 563 
and X-band satellite SAR data of the Portalet landslide area. Landslides, 8(2), pp. 195–206. DOI:10.1007/s10346-010-0239-3 564 

Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., & Casagli, N. (2012). Design and implementation of a landslide early warning system. 565 
Engineering Geology, 147-148, pp. 124–136. DOI:10.1016/j.enggeo.2012.07.017. 566 

Jaboyedoff, M., Baillifard, F., Derron, M.-H., Couture, R., Locat, J., & Locat, P. (2005). Modular and evolving rock slope hazard 567 
assessment methods. In: Senneset, K., Flaate, K. & Larsen J. (Eds.), Proceedings of the 11th International Conference and 568 
Field Trip on Landslides (ICFL). Norway. 569 

Jaboyedoff, M., Metzger, R., Oppikofer, T., Couture, R., Derron, M.-H., Locat, J. & Turmel, D. (2007). New insight techniques to 570 
analyze rock-slope relief using DEM and 2D-imaging cloud-point: COLTOP-3D software. In: E. Eberhardt, D. Stead, & T. 571 
Morrison (Eds.) Rock mechanics: Meetings Society’s Challenges and Demands (Vol.1, pp. 61–68). Taylor & Francis. 572 

Jaboyedoff, M., Couture, R. & Locat, P. (2009) Structural analysis of Turtle Mountain (Alberta) using digital elevation model: Toward a 573 
progressive failure. Geomorphology, 103, pp. 5-16. DOI:10.1016/j.geomorph.2008.04.012. 574 

Johansson, J. (2014). Impact of Water-Level Variations on Slope Stability. Licentiate Thesis. Division of Mining and Geotechnical 575 
Engineering, Department of Civil, Envionmental and Natural Resources Engineering, Luleå University of Technology. 576 

Kristensen, L., & Blikra, L. H. (2013). Monitoring displacement on the Mannen rockslide in Western Norway. In: Margottini, C., Canuti, 577 
P. & Sassa, K. (Eds.), Landslide Science and Pratice (Vol.2, pp. 251–256). Springer Berlin Heidelberg. DOI:10.1007/978-3-578 
642-31445-2_32. 579 

Kristensen, L., Rivolta, C., Dehls, J., Blikra, L. H. (2013). GB InSAR Measurement at the Åknes rockslide, Norway. Italian Journal of 580 
Engineering Geology and Environment - Book Series, 6, pp. 336-228. DOI: 10.4408/IJEGE.2013-06.B-32 581 

Kvakland, M. R. (2009). Drenering i fjell. Sporstoffstudier ved de to ustabile fjellsidene (in Norwegian). Åknes og Børa, Møre og 582 
Romsdal. Masteroppgave i Geografi, Geografisk Institutt, NTNU, Trondheim, Norway. 583 

Larsen, Y., Engen, G., Lauknes, T. R., Malnes, E., & Høgda, K.-A. (2005). A generic differential InSAR processing system, with 584 
applications to land subsidence and SWE retrieval. Proceedings ESA Fringe, ESA ESRIN, Frascati, Italy, 28 November - 2 585 
December 2005. 586 

Lauknes, T. R. & Larsen, Y. (2011). InSAR Time Series using an L1-norm Small-Basline Approach. IEEE Transaction on Geoscience 587 
and Remote Sensing, 49(1), pp. 536–546. 588 

Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2008). Remote Sensing and Image Interpretation (6th ed.). Hoboken, U.S.A: John 589 
Wiley & Sons. 590 

Luzi, G. (2010). Ground based SAR interferometry a novel tool for Geoscience. In: Imperatore, P. & Riccio, D. Geoscience and Remote 591 
Sensing New Achievements. INTECH Open Access Publisher. 592 

Mantovani, F., Soeters, R., & Van Westen, C. J. (1996). Remote sensing techniques for landslide studies and hazard zonation in Europe. 593 
Geomorphology, 15(3-4), pp. 213–225. DOI:10.1016/0169-555X(95)00071-C. 594 

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of Landers 595 
earthquake mapped by radar interferometry. Nature, 364(8), pp. 138–142. DOI:10.1038/364138a0. 596 

Mazzanti, P., Brunetti, A. (2010). Assessing rockfall susceptibility by Terrestrial SAR Interferometry. Proceedings of the mountain risks 597 
international conference, Florence, Italy. 598 

Mazzanti, P., Bozzano, F., Cipriani, I., & Prestininzi, A. (2015). New insights into the temporal prediction of landslides by terrestrial 599 
SAR interferometry monitoring case study. Landslides, 12(1), pp. 55–68. DOI:10.1007/s10346-014-0469-x. 600 

Metternicht, G., Hurni, L., & Gogu, R. (2005). Remote sensing of landslides: An analysis of the potentiel contribution to geo-spatial 601 
systems for hazards assessment in mountainous environments. Remote Sensing of Environment, 98(2-3), pp. 284–303. 602 
DOI:10.1016/j.rse.2005.08.004. 603 

Michoud, C., Abellan, A., Derron, M.-H., & Jaboyedoff, M. (2010). SafeLand Deliverable 4.1. Review of techniques for landslide 604 
detection, fast characterization, rapid mapping and long-term monitoring. Deliverable leader: IGAR-UNIL. 7th Framework 605 
Programme. Cooperation Theme 6 Environment. Sub-Activity 6.1.3 Natural Hazard. Available at http://www.safeland-fp7.eu. 606 

Monserrat, O. (2012). Deformation measurement and monitoring with Ground-Based SAR. PhD. Disseration. Active Remote Sensing 607 
Unit, Institute of Geomatics, Universitat Politècnica de Castelldelfels, Spain. 608 

Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS 609 
Journal of Photogrammetry and Remote Sensing, 93, pp. 40–48. DOI:10.1016/j.isprsjprs.2014.04.001. 610 

Mosar, J. (2000). Depth of extensional faulting on the Mid-Norway Atlantic passive margin. Norge Geologiske Undersøkelse Bulletin, 611 
437, pp. 33–41. 612 

Noferini, L., Pieraccini, M., Mecatti, D., Macaluso, G., Atzeni, C., Mantovani, M., Marcato, G., Pasuto, A., Silvano, S. & Tagliavini, F. 613 
(2007). Using GB-SAR technique to monitor slow moving landslide. Engineering Geology, 95(3-4), pp. 88–98. 614 
DOI:10.1016/j.enggeo.2007.09.002. 615 

Petley, D. N., Mantovani, F., Bulmer, M. H., & Zannoni, A. (2005). The use of surface monitoring data for the interpretation of landslide 616 
movement patterns. Geomorphology, 66(1-4), pp. 133–147. DOI:10.1016/j.geomorph.2004.09.011. 617 

Rouyet, L. (2013). Monitoring and characterization of rock slope instabilities in Norway using GB-InSAR (Ground-based Interferometric 618 
Synthetic Aperture Radar). Master thesis. Faculty of Geosciences and Environment, University of Lausanne, Switzerland. 619 



Geomorphology Submission – revised version Rouyet, et al. 2015

  

29 

 

Saintot, A., Elvebakk, H., Oppikofer, T., Ganerød, G., & Farsund, T. (2011a). Mannen unstable rock slope (Møre & Romsdal): Logging 620 
of borhole and drill core KH-01-10, geomorphologic digital elevation model interpretation & displacement analysis by 621 
terrestrial laser scanning. Report 2011.026. Trondheim, Norway: Norge Geologiske Undersøkelse (NGU). 622 

Saintot, A., Henderson, I. H., & Derron, M.-H. (2011b). Inheritance of ductile and brittle structures in the development of large rock 623 
slope instabilities: examples form western Norway. Geological Society, London, Special Publications, 351(1), pp. 27–78. 624 
DOI:10.1144/SP351.3. 625 

Saintot, A., Oppikofer, T., Derron, M.-H. & Henderson, I. (2012). Large gravitational rock slope deformation in Romsdalen valley 626 
(western Norway). Revista de la Asociación Geológica Argentina, 69(3), pp.354–371. 627 

Salvini, R., Vanneschi, C., Riccucci, S., Francioni, M., Gulli, D. (2015). Application of an integrated geotechnical and topographic 628 
monitoring system in the Lorano marble quarry (Apuan Alps, Italy). Geomorphology, 241, pp. 209–223. 629 
DOI:10.1016/j.geomorph.2015.04.009. 630 

Sivakugan, N., Shukla, S. K., Das, B. M. (2013). Rock mechanics, an introduction. Boca Raton, U.S.A.: CRC Press, Taylor & Francis. 631 

Schmidt, D. A., & Bürgmann, R. (2003). Time‐dependent land uplift and subsidence in the Santa Clara valley, California, from a large 632 
interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth, 108(B9), pp. 1978–2012. 633 
DOI:10.1029/2002JB002267. 634 

Schneider, T. R. (1982). Abnormal Behaviour of Zeuzier Arch-Dam (Switzerland), IV. Geological Aspects of the Extraordinary 635 
Behaviour of Zeuzier Arch Dam. Wasser, Energie, Luft, 74(3), pp. 81–94. 636 

Schulz, W. H., Coe, J. A., Shurtleff, B. L., & Panosky, J. (2012). Kinematics of the Slumgullion landslide revealed by ground-based 637 
InSAR surveys. Processings of Landslides and Engineered Slopes: Protecting Society through Improved Understanding - the 638 
11th International and 2nd North American Symposium on Landslides and Engineered Slope, Banff, Canada. 639 

Smelror, M., Dehls, J., Ebbing, J., Larsen, E., Lundin, E., Nordygulen, Ø., Osmundsen, P.T., Olesen, O., Ottesen, D., Pascal, C., 640 
Redfield, T. F. & Rise, L. (2007). Towards a 4D topographic view of the Norwegian sea margin. Global and Planetary 641 
Change, 58(1), pp. 382–410. 642 

Solheim, A., Bhasin, R., De Blasio, F. V., Blikra, L. H., Boyle, S., Braathen, A., Dehls, J., Elverhøi, A., Etzelmüller, B., Glimsdal, S., 643 
Harbitz, C. B., Heyerdahl, H., Høydal, Ø. A., Iwe, H., Karlstud, K., Lacasse, S., Lecomte, I., Lindholm, C., Longva, O., 644 
Løvholt, F., Nadim, F., Nordal, S., Romstad, B., Røed, J. K. & Strout, J. (2005). International Centre for Geohazards (ICG): 645 
Assessment, prevention and mitigation of geohazards. Norwegian Journal of Geology, 85(1-2), pp. 45–62. 646 

Skrede, I., Kristensen, L., Hole, J. (2015). Geologisk evaluering av Veslemannen – eit mindre fjellskred i utvikling. Rapport nr 41-2015 647 
(in Norwegian). Stranda, Norway: Norges vassdrags-og energidirektorat (NVE). 648 

Stumpf, A., Kerle, N., & Malet, J.-P. (2011). SafeLand Deliverable 4.4. Guidelines for the selection of appropriate remote sensing 649 
technologies for monitoring different types of landslides. Deliverable Leader: ITC-University of Twente. 7th Framework 650 
Programme. Cooperation Theme 6 Environment. Sub-Activity 6.1.3 Natural Hazard. Available at http://www.safeland-fp7.eu. 651 

Strozzi, T., Delaloye, R., Poffet, D., Hansmann, J., Loew, S. (2011). Surface subsidence and uplift above a headrace tunnel in 652 
metamorphic basement rocks of the Swiss Alps as detected by satellite SAR interferometry. Remote Sensing and 653 
Environment, 115(6), pp. 1353–1360. DOI:10.1016/j.rse.2011.02.001. 654 

Tarchi, D., Rudolf, H., Luzi, G., Chiarantini, L., Coppo, P., & Siber, J. (1999). SAR Interferometry for Structural Changes Detection: a 655 
Demonstration Test on a Dam. In: Geoscience and Remote Sensing Symposium. IGARSS'99 Proceedings, 28 June - 02 July 656 
(Vol.3, pp. 1522–1524), Hamburg, Germany. DOI:10.1109/IGARSS.1999.772006. 657 

Tarchi, D., Casagli, N., Fanti, R., Leva, D. D., Luzi, G., Pasuto, A., Pieraccini, M. & Silvno, S. (2003). Landslide monitoring by using 658 
ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Engineering Geology, 68(1-2), 659 
pp. 15–30. DOI:10.1016/S0013-7952(02)00196-5. 660 

Tofani, V., Gili, J., Luzi, G., & Catani, F. (2010). Ground-Based InSAR. In: Michoud, C., Abellán, A., Derron, M.-H. & Jaboyedoff, M. 661 
(Eds.), SafeLand Deliverable 4.1. Review of techniques for landslide detection, fast characterization, rapid mapping and 662 
long-term monitoring. 7th Framework Programme. Cooperation Theme 6 Environment. Sub-Activity 6.1.3 Natural Hazard. 663 
Available at http://www.safeland-fp7.eu. 664 

Turner, A. K., & McKuffey, V. C. (1996). Organization of investigation process. In: Turner, A. K. & Schuster, L. R. (Eds.), Landslides 665 
investigations and mitigation. Special report 247 (pp. 121–128). Washington, D.C.: National Academy Press. 666 

Zangerl, C., Evans, K. F., Eberhardt, E. & Loew, S. (2008). Consolidation settlements above deep tunnels in fractured crystalline rock: 667 
Part 1 - Investigations above the Gotthard highway tunnel. International Journal of Rock Mechanics & Mining Sciences, 45, 668 
pp. 1195–1210. DOI:10.1016/j.ijrmms.2008.02.002. 669 

Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote 670 
Sensing, 30(5), pp. 950–959. DOI:10.1109/36.175330. 671 

Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., & Werner, C. L. (1994). On the derivation of coseismic displacement fields 672 
using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research, 99(B10), pp. 19617–673 
19634. DOI:10.1029/94JB01179. 674 

Zebker, H. A., Rosen, P. A., & Hensley, S., (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation 675 
and topographic maps. Journal of Geophysical Research, 102(B4), pp. 7547–7563. DOI:10.1029/96JB03804. 676 



 

 

 

 

 

 

 

 

 Annex B1 

Michoud C, Derron MH Abellán A, Jaboyedoff M and Fornaro G: Radar Wave Principles, 

Interferometric Radar Distance-Meter and Differential SAR Interferometry. Deliverable 4.1 of the 

European project SAFELAND: Review of Techniques for Landslide Detection, Fast Characterization, 

Rapid Mapping and Long-Term Monitoring. Edited in 2010 by Michoud C, Abellán A, Derron MH and 

Jaboyedoff M, 105-125, 2010 

 

 





2. Data and Techniques Rev. No: 2 
Part C – Active Microwave Sensors Date: 2012-02-15 
 
 
 

 
 
Grant Agreement No.: 226479  Page 105 of 401 
SafeLand - FP7 

1. RADAR WAVE PRINCIPLES 

1.1. INTRODUCTION 

Radar technologies have been developed since the beginning of the 20th century, first to 
remotely detect objects. The acronym Radar states for Radio Detection And Ranging. Radio-
waves, or microwaves, are electromagnetic waves of wavelength from 1 mm to 1 m. Then 
radar methods have been used for accurate detection of movements and Earth surface 
imaging. The principles Radar technologies and applications are described in many 
publications, books and encyclopedias. About the radar imaging part used in environmental 
and Earth sciences, Massonnet and Feigl (1998), Hanssen (2001) and Woodhouse (2006) 
provide worthy introductions and overviews. 

There are two kinds of Radar systems (Hanssen, 2001): bistatic radars use two different 
antennas, one for the emission and one for the reception of the electromagnetic wave; On the 
other hand, monostatic radars use only one antenna for both tasks. This last configuration is 
the most frequently applied technology for environmental purposes. A Radar transmitting 
antenna emits a wave by pulses with a predefined wavelength (Table 10) amplitude and 
phase. The Radar receiving antenna estimates the range (with the two-way travel time) and 
measures the amplitude and the phase of the backscattered pulses. The way the radar waves 
travel and are reflected to the antenna depend on several factors such as: pressure, temperature 
and partial water pressure of the environment, atmospheric layering, roughness and dielectric 
properties of the target (strongly influenced by the moisture and salt content) (Hanssen, 2001; 
Norland, 2006). In remote sensing, environmentalists usually describe a radar wave by its 
wavelength, because it gives some information about how the waves interact with the surface 
(roughness, interferences). Signal processing specialists prefer to work with frequencies as 
most of the computations are done in the frequency domain (convolution, filtering). 

Table 10 : Main bands traditionally used by the Standard Radar Nomenclature (Woodhouse, 2006). 

Band Wavelength Frequency 

P Decimetric   (  30 cm to ~ 1m ) 0.3 – 1 GHz 

L Decimetric   (~ 15 to 30 cm) 1 – 2 GHz 

S Decimetric   (7.5 cm to ~ 15   ) 2 – 4 GHz 

C Centimetric   (~ 3.75 to 7.5 cm) 4 – 8 GHz 

X Centimetric   (~ 2.5 to 3.75 cm) 8 – 12 GHz 

 

Compared to the optical and near infrared sensors, the radio waves are much less influenced 
and attenuated by the atmospheric conditions. As shown in the Figure 43, the attenuation of 
waves used by Radar systems is less than 0.1 decibel per kilometer (after Preissner, 1978). So 
data can be acquired even during heavy rainfalls (even though some significant interactions 
are reported for X-Band systems) or strong fog; however these are not the optimal conditions. 
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Moreover, as a radar is an active sensor (sending the initial signal), data can be acquired as 
well during the night than during the day. 

 
Figure 43 : attenuation of an electromagnetic wave by the atmosphere, depending of the wavelength for a clear 
weather, with shown for fog, heavy rain and drizzle. Contrary to the optical and near infrared, radio waves are 
only few attenuated by the atmospheric conditions (After Preissner 1978, cited in Peckham 1991 and Woodhouse 
2006). 

The choice of the frequencies used by the Radar sensors is regulated by the International 
Telecommunications Union. Usually, the space-borne sensors are transmitting radio waves in 
the bands X, C and L (Table 10). The longer the wavelength is, the worse the accuracy is both 
in terms of spatial resolution and measurement precision, but the better is the penetration 
capacity and the stability of the returned signal with respect to environmental changes.. 

1.2. RANGE AND PHASE SHIFT 

Mathematically, the phase shift corresponds to: 

Φ  2
λ

  ΔR    where   ΔR  2R 

  Φ   4
λ

  R 
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In this formula, Φ is the phase shift in radians, λ the wavelength in meter and R the distance in 
meter from the sensor to the ground target. 

  
Figure 44 : representation of the Radar wave alond the line of sight. The wave with a wavelength of λ is doing 
the 2-way of 2R from the sensor S to the ground target. As the sensor emitted the wave knowing the original 
phase, it can record the phase shift when the wave comes back. 

So we can deduce in theory the distance R knowing the phase shift: 

  R  λ
4

  Φ 
 

2. INTERFEROMETRIC RADAR DISTANCE-METER 
One direct application of the phase shift principle is the continuous monitoring of instabilities 
assessing the movements of punctual ground targets by Radar distance-meters. All the 
information including in this chapter comes from the case study of the Tafjorden instability in 
Norway (Norland, 2006). 

As described before, the phase shift is function of the wavelength and the range: 

  Φ  4
λ

  R 
 

But practically, R is defined as 

R  1
n

  
Co  t2way

2
   where   



Co  velocity of light in vacuum

t2way  travel time sensor  target  return
n  spatial and temporal index of refraction

 
 

Indeed, even if the Radar amplitudes are only few influenced by atmospherically conditions 
(the attenuation of the signal is negligible in almost all used bandwidths), the phases are very 
sensitive (Figure 45 and chapter 3.3.3.2). In fact, the spatial and temporal index of refraction 
depends of the pressure, the temperature and of the partial water vapor pressure which can be 
estimated using the relative humidity of the atmosphere (Norland, 2006). 
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n  77.6  p
T

  3.734.105  e
T2   where   



p  pressure in mbar
T  temperature in °K
e  partial water vapor pressure in mbar

 
 

 
Figure 45 : strong correlations between the spatial and temporal index of refraction n (left) and the variation of 
range measured (right) (Norland, 2006; modified). 

As shown in the figures above, there is a strong correlation between atmospherically 
conditions and displacement results. To separate the signal influenced by the atmosphere and 
the signal influenced by ground displacements, it is useful to introduce a second target on a 
stable part (Figure 46).  

 
Figure 46 : theoretical arrangement for interferometric distance-meter (Norland, 2006). 

So, assuming one reflector as fix, all variations of phase coming from the spatial and temporal 
index of refraction and not from the displacement can be filtered. Then, comparing phase 
results between the two reflectors by interferometry (phases differences), it is possible to 
assess the displacements of the second target (Norland, 2006). 

Δφ  Φ2  Φ1   4π
λ

  ( )R2  R1  
 

 ΔR  λ
4π

  Δφ 
 

So, in the case study of the Tafjorden instability, the reflectors are monitored with accuracy 
better than 0.1 mm at 2.9 km (Norland, 2006). 

3. DIFFERENTIAL SAR INTERFEROMETRY 
The main use of Differential Synthetic Aperture Radar Interferometry (DInSAR) is the 
detection of small deformations or movements at the surface, analyzing the phase differences 
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between two scenes acquired at different times. The Differential Synthetic Aperture Radar 
Interferometry is a combination of three main processing steps: first the Synthetic Aperture 
Radar (SAR), then the Interferometry (InSAR), and finally the Differential InSAR (DInSAR). 
These steps are described hereafter.  

3.1. SYNTHETIC APERTURE RADAR 

3.1.1. Radar imagery 

In Radar imagery, a coherent and polarized wave is emitted by an antenna and the amplitude 
and the phase shift of each backscattered pulse are recorded in a complex number 
(Woodhouse, 2006): 

z  A.ei.Φ   where   


z   value for each cells
A   amplitude
Φ   phase shift

 
 

The amplitude of the backscattered signal is a function of the wave initial state, the 
environment crossed by the wave and the capacity of the target (reflectance, moisture) to 
reflect the wave (Figure 47). During the post-processing, it is easy to distinguish the emitted 
signal from the backscattered one. Moreover, airborne and satellite sensors are not looking 
vertically downwards but they are side-looking, avoiding the problem of knowing from which 
side of the nadir the pulse is backscattered.  

 
Figure 47 : Complex SAR image with the return amplitudes (left) and phases (right) of Bam area in Iran, 
December 2003 (Michoud et al., 2009). 

In most cases, space borne Radar sensors are monostatic. So, the power of the return wave 
can be determined by the following formula detailed in the ESA Radar course III (website 
address in references):  

 π 
 

-π
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Pr  Pt  G2.λ2.σ

( )4 3.R4
   where   




Pr  Power received ( )W

Pt  Power emitted ( )W
G  Gain of the antenna
λ  Radar wavelength ( )m

σ  radar scattering cross section ( )m2

R  distance antenna – target ( )m

 

 

But the effective area of the antenna is related to the gain by: 

S  λ
2.G
4

       Pr  Pt  S2.σ

4.λ2.R4
 

 

The formula above gives the mean power per pixel in function of the size of the antenna. The 
bigger the antenna is, the higher the mean received power will be. And the higher the mean 
received power is, the better is the resolution. So one practically limit of the system is the 
maximal possible size of the antenna in space. It was demonstrated that to get a metric 
resolution from space borne sensor, a kilometer long antenna is needed (Prati, 2008).  

To overcome this technical impossibility and obtain a reasonable ground resolution, a new 
acquisition method has been developed since the 50s (Wiley, 1954): the Synthetic Aperture 
Radar (SAR). 

3.1.2. Synthetic Aperture Radar 

Imagined in 1951 by Carl Wiley (Wiley, 1954; Hanssen, 2001), the Synthetic Aperture Radar 
principle wants to sum several echoes of the same target during the post-processing to 
improve the azimuthal resolution. Indeed, when the sensor transmits pulses along its track, the 
same ground target can reflect several times different echoes (Figure 48). Using the Doppler 
beam sharpening with the frequency information contained in the phase (Woodhouse, 2006), 
it is possible to differentiate two scatterers within the beam. So, the effective antenna aperture 
moving along the flight line is larger than in reality. In this way, the azimuthal resolution is 
improved (Figure 49). This process of synthesis can be compared to the multi-tracks 
processes in seismic geophysics. 

 
Figure 48 : Synthetic Aperture Radar principles. The same ground scatterer is shot from different points of view 
synthesizing an aperture much larger than the physical size of the real antenna, increasing the azimuth 
resolution (Lauknes, 2004). 
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Figure 49 : Real Aperture Radar (left) and Synthetic Aperture Radar (right). The azimuth resolution is much 
better with SAR technology (Prati, 2008). 

Once the azimuthal resolution has been improved by the SAR acquisition, it is also important 
to increase the range resolution. As explained in Woodhouse (2006), the shorter the pulse is, 
the better the range resolution is; but generating short pulses requires high peak power, 
actually not available on a satellite. In practice, a linear frequency modulated or chirped pulse 
(Figure 50) is used (Hanssen, 2001; Lauknes, 2004; Woodhouse, 2006). Thanks to a 
frequency post processing using the Fourier Transform, the echoes can be separated and re-
attributed to their original ground target. Indeed, this technology allows to emit a chirped 
pulse of 40 μs with a range resolution similar with a pulse of 60 ns (Woodhouse, 2006). 
However, to perform this technique, it has to be assumed that the fly is stable (reasonable in a 
satellite) and that the frequency variation law (modulation) is well known. 

 
Figure 50 : linear chirp waveform – amplitude function of time (arbitrary units). Typical pulse durations for 
ERS and Envisat ASAR are between 30 and 40 micro seconds. (Lauknes, 2004). 

3.1.3. Terminology and Space Resolution 

The spaceborne acquisition of SAR images often uses specific terms which have to be defined 
or remembered in this section (to go further, see the website of the Canadian Center for 
Remote-Sensing).  

 Ascending / Descending orbit: South-North / North-South trajectory of the platform. 
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 Azimuth: distance along the spaceborne flight direction. The azimuthal resolution can 
be performed by Synthetic Aperture Radar techniques. 

 Complex signal: each pixel is registered by a complex number, keeping the 
information on the amplitude and the phase of the return signal. This is the raw data 
for an InSAR study. 

 Ephemerides: satellite position and velocity vectors at any time t. 

 Fringe: line of an interferogram corresponding of one color cycle. 

 Ground range: distance along the perpendicular of the flight direction on the ground’s 
surface. The range resolution can be performed emitting chirped pulses. 

 Line of Sight: trajectory of the chirp between the radar antenna and the ground 
scatterers.  

 Look angle θ: angle between the vertical and the LOS. 

 Master / Slave images: reference / comparative images in interferometry. 

 Nadir: projection on the Earth’s surface of the platform’s trajectory. 

 Near / Far range: part of the image closest to / furthest from the Nadir. 

 Resolution: size of the smallest object detectable by the sensor. 

 Slant range: distance along the perpendicular of the azimuth on the SAR image. The 
slant range can be different of the ground range due to geometrical distortion, as 
explained in the following chapter. 

 Track / Frame: Est-West / North-South limit of a SAR image. 
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Figure 51 : geometry of SAR acquisition (Prati, 2008, modified) 

3.1.4. Geometric and radiometric distortions 

The satellite does not emit pulses vertically; there is always a look angle generally higher of 
10° (depending of the sensor). Two types of geometric distortion (Hannsen, 2001; Squarzoni, 
2003; Lauknes, 2004; Woodhouse, 2006) can be produced in rough relief areas: the 
foreshortening and the layover. A third possible effect, the shadowing, is a radiometric 
distortion (Figure 52).  

 
Figure 52 : from ground range to slant range. (Hanssen, 2001, modified) 



Deliverable 4.1 
Review of Techniques for Landslide Detection, Fast Characterization, Rapid Mapping and Long-Term Monitoring. 
 
 
 

 
 
Grant Agreement No.: 226479  Page 114 of 401 
SafeLand - FP7 

Foreshortening may happen when a slope, with its normal vector looking towards the sensor, 
is less steep than the look angle. In this case, the surface will be smaller in the slant geometry 
than in reality (e.g. Figure 53). The layover may happen when the slope is steeper than the 
look angle. In this case, the backscattered pulse from the top of the slope will be collected by 
the sensor before the pulse reflected from the bottom of the slope (Figure 9). Then the top of 
the slope will be considered as closer in the slant range than the bottom, and the slope will 
look as reversed. The closer the slope is from the Nadir, the stronger the geometric distortions 
will be (Woodhouse, 2006). Indeed, the look angle is smaller close to the near range than to 
the far range and so more distortions are typically observed in the near range. 

To correct both geometric distortions, foreshortening and layover, information on the real 
topography are used. By geocoding SAR images using a DEM, it is possible to rectify these 
distortions, as schematized in the Figure 54.  

 
Figure 53 : schematic differences between ground range (left) and slant range (right), with a foreshortening 
slope (Prati, 2008). 

The last distortion, shadowing, is a radiometric distortion that corresponds to an absence of 
signal (Figure 52). This distortion is the most restricting because the lost information is not 
recoverable. The only way to obtain additional data is to shoot from different positions, e.g. 
once in ascending orbit and the second time in descending orbit. 

The last and facultative step of all processing is the geocoding, to transform and uniform the 
pixel sizes in a ground-coordinate system (Lauknes, 2004). For this process, Ground Control 
Points, DEM and precise orbit data are needed (ESA, Figure 54).  
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Figure 54 : Geocoding of SAR image (ESA document, 2008, modified) 

3.2. SAR INTERFEROMETRY (INSAR) 

Interferometric Synthetic Aperture Radar (InSAR) is a method to produce images of the 
interferometric phases of an area using images acquired from two different points of view. 
With SAR images as in optical stereoscopy, two images of an object from two distinct points 
of view allow seeing in relief and building Digital Elevation Models. 

The interferograms shown as examples in the following chapters are processed using free 
ESA Envisat ASAR dataset of the Bam region (southeast Iran), where a strong earthquake 
occurred the 26th of December 2003. 

Table 11 : raw input of Bam interferograms (free raw Envisat ASAR dataset provided by ESA). 

Image Sensor Date Normal Baseline 

Sar1 (Slave) ASAR Envisat 11th of June 2003 475 m 

Sar2 
(Master) ´´ 3rd of December 2003 0 m 

Sar3 (Slave) ´´ 7th of January 2004 520 m 

3.2.1. Preparation of the dataset 

3.2.1.1.Focusing 

SAR is radar: similarly to surveillance radars, it therefore allows discriminating, i.e., 
resolving the targets in distance by measuring the delays of the transmitted pulses: the 
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narrower the pulse the higher the system range resolution. As already pointed out in a 
previous section, in order to limit the peak power and therefore to simplify the transmitter, 
usually chirp signal are used in transmission. These classes of pulses are characterized by 
large bandwidth duration products: to achieve short pulses the echoes that form the radar 
image must be correlated with the transmitted replica of the chirp signal. The received signal, 
i.e. the raw data, is therefore subject to a processing (range focusing) to achieve the maximum 
range resolution. Furthermore, SAR exploits the movement of the sensor to synthesize an 
antenna which is much larger, typically between 100 and 1000 times, the size of the real 
antenna mounted on-board the satellite (about 10m for the ERS and Envisat cases). 
Accordingly, the raw data must be further processed (azimuth focusing) along the azimuth 
direction to synthesize the large antenna and hence to achieve the highest azimuth resolution. 
Depending on the frequency and resolution, the azimuth focusing is generally more complex 
than the range focusing: it is intrinsically two-dimensional and space variant. However, thank 
to the research carried out in the last years, efficient focusing algorithms that make use of Fast 
Fourier Transform codes have been developed. In Bamler (1992) different focusing 
algorithms are compared. 

It should be pointed out that to trade off between the coverage (swath width) and the 
resolution, SAR sensors may operate in different modes, see Fig 13. In the classical mode, 
referred to as stripmap mode, the antenna pointing is fixed: The movement of the sensor 
allows collecting the information from a ground strip. In the spotlight mode, the beam is 
steered backward in such a way to illuminate only a fixed portion (the ground spot): the size 
of the synthesized antenna and therefore the resolution is increased at the expense of the 
coverage. On the other hand by steering or better scanning the beam over different range 
swaths, SAR system may increase the range coverage at the expense of the azimuth 
resolution. Depending on the operational mode, the focusing operation must take into account 
the characteristics of the acquisition in order to properly process the signal and hence to 
achieve a full focusing. Most of the commercial packages allow focusing data for any 
acquisition mode. However, in case of beam steering the acquisition characteristics can 
impact also the subsequent interferometric processing steps: for instance spotlight and scansar 
interferometric acquisitions must be synchronized along the azimuth in such a way to limit the 
variability of the response of the scene as a function of the azimuth angle (aspect angle). 

 
Figure 55 : different operational modes of SAR systems 
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3.2.1.2.Co-registration 

Image registration is a process that aims to obtain a precise overlap between two or more 
images relative to the same object. Such images may be acquired from separated positions, by 
different sensors and/or at different times. For SAR interferometry, images need to be 
precisely aligned, with sub-pixel accuracy, to extract the phase interference relative to the 
same ground target, which is imaged at different positions in the two images due to distortion 
effects related to the different imaging geometry associated a) with a non zero orbit spatial 
separation, b) with the presence of orbit crossing. Incorrect alignments of the focused images, 
usually known as Single Look Complex (SLC) images,  cause coherence losses in the 
interference operation, which, in turn, translate into inaccuracies in the final product.  

Co-registration procedures for SAR images are based on the estimation of the so called 
azimuth and range warp-functions, i.e., the functions describing the transformation that maps 
the slave image onto the reference master image and that are subsequently used for 
resampling the slave image onto the reference master image grid. Warp functions are 
generally modeled in such a way to account for a few distortion effects: bilinear expansions 
are frequently used to account for rotation and scaling effects due to acquisition track 
crossing. Accordingly, warping functions are described in terms of few parameters that are 
estimated starting from control points. In the case of radar images, for the accuracy required 
in coherent data processing, such control points cannot be generally identified starting from 
features (road crossing, edges, etc.), because of the speckle noise. Ground corner reflectors 
could be exploited; however in practice matching measures of small image patches are 
employed to evaluate a sufficient number of tie points for the parameters estimate.  

Standard image co-registration procedures based on polynomial expansion of the warp 
functions have been extensively used in the past to implement interferometry at small spatial 
baseline separation. However, accurate image registration of SAR data takes on a sub-pixel 
basis, where the passes span an orthogonal baseline interval of the order of few kilometers 
and the temporal intervals of several years (as it happen in interferometric stacking and 
persistent scatterers Interferometry for ground deformation monitoring) becomes a rather 
challenging step due to effects of topography and the presence of large temporal decorrelation 
which impair the accurate measurements of local distortions. Even more challenging is the 
registration of images for the latest high resolution SAR systems (i.e. TerraSAR-X and 
COSMO/SKYMED). To overcome the limitations of standard techniques, modern co-
registration techniques make use of a geometrical computation of the warp functions starting 
from the orbital information and from an external (rough) DEM, (Sansosti 2006). This 
procedure allows easily achieving very accurate registration almost in all cases of interest for 
interferometrical application, 

3.2.1.3.Filtering 

In differential SAR Interferometry, angular imaging diversity is an unavoidable effect due to 
the impossibility to repeat exactly the same orbit: it also plays a positive role for the 
localization of the gorund scatterers: In any case it is the source of noise that adds to the 
interferograms Besides the generation of image geometric distortions, which are usually 
compensated via a registration step, the interferometric phase associated with the topography 
plays a modulation role that causes, for a distributed scattering, the presence of incoherent 
components between the two images. For a planar surface this effect is known as spectral shift 
effect and it is shown schematically in the left part of Figure 14. The result is the introduction 
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of decorrelation noise on the interferometric fringes which is usually referred to as 
geometrical, spatial, or baseline decorrelation. Spatial decorrelation can be counteracted by 
proper filtered of the co-registered SLC images aimed at zeroing the unwanted components: 
the filtering is known as Common Band filtering and is schematically shown in the right part 
of Figure 14. Angular decorrelation is also present in the azimuth direction due to possible 
differences in the antenna beam pointing in the two acquisitions (Doppler centroid 
decorrelation). Common band filtering can be therefore beneficial also along the azimuth 
direction in the presence of large excursion of the Doppler Centroid. While in the azimuth 
direction the common band filtering is space invariant, the range filtering should be dependent 
on the local topography. In Fornaro and Monti Guarnieri 2002 it is discussed an efficient 
procedure for range space variant filtering. It should be pointed out that common band 
filtering should be performed only when the scattering is assumed to be distributed: this 
assumption is not verified in the case of strong scatterers and hence it is generally not 
implemented in permanent scatterers monitoring: Conversely it is usually performed in 
approaches like the low resolution monitoring via the Small BAseline Susbet approach. 

f

f

scene spectrum
on board filter
correlated contributions 
common band filters 

f

f

 
Figure 56 : the spectral shift effect (left) and the common band filtering (right) 

3.2.2. Interferometric phase 

Mathematically, the radar interferometry is defined by the difference of 2 phase shifts 
acquired by the sensor in two distinct times. So the formula 1 is the base of this method. More 
mathematical developments, which use the variables introduced in the Figure 57, are available 
on the following publications: Bamler & Hartl (1998), Massonnet and Feigl (1998), Hanssen 
(2001), Lauknes (2004), Catani et al. (2005), Colesanti & Wasowski (2006), Woodhouse 
(2006), Ferretti et al. (2007). 
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Figure 57 : InSAR acquisition parameters. S1 and S2 are the two antennas acquiring the image SAR 1 and SAR 
2. S1 flight at the altitude H. P is a ground scatterer at the altitude h. R1 and R2 are the distances between P and 
S1 or S2. B is the distance between the two sensors (baseline), Bp and Bn being resp. the parallel and normal of 
B to R1. The angle between the vertical and R1 (resp. R2) is θ1 (resp. θ2). (Catani et al., 2005, modified) 

Mathematical approach for one reflector acquired twice: 

φ  Φ1  Φ2  

  φ  4
λ

  R1  4
λ

  R2  4
λ

  ( )R1  R2  
 

Due to the big distance considered, the approximation Bp ≈ R1 – R2 can be admitted. 

  φ  4
λ

  Bp 
 

  φ  4
λ

  Bn  tan ( )θ1  α   4
λ

  B  sin ( )θ1  α  
 

Published with these two different forms, the formula 2 expresses the theoretical geometric 
relations of a raw interferogram (Figure 58).   
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Figure 58 : interferogram using the images Sar2 and Sar3. One fringe is represented by one color cycle (from 
blue to yellow). (Michoud et al., 2009; processed with Erdas Imagine 9.2™) 

3.2.3. Interferogram flattening 

The topography is not the only contribution in an interferogram; there is also the flattening 
phase, which can be defined as “the phase variation proportional to the slant range 
displacement of the point target” (Ferretti et al., 2007). Removing this orbital contribution by 
an operation called interferogram flattening, it results fringes only influenced by the 
topography (and possibly the ground displacement) and proportional to it (Ferretti et al., 
2007). 

 
Figure 59 : theoretical interferogram simulating a pyramid. Left: raw interferogram – Center: flattening phase – 
Right: fringes proportional to the topography. (Woodhouse, 2006) 
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3.2.4. Altitude of ambiguity 

The variation of the topography which creates an interferometric cycle of 2π is called altitude 
of ambiguity ha (Massonnet and Feigl, 1998). In an interferogram, it corresponds to the 
altitude constituted by one complete fringe (from blue to red in the Figure 58). 

Δφ  n  2   ,   n IN  

ha  λ
4

  
H.tan θ1

Bn
  2  λ

2
  

H.tan θ1
Bn

   and for ERS   ha  9400
Bn

 
 

Considering the case of a normal baseline of 200 m, the altitude of ambiguity for ERS is 
47 m. A shown later, the shorter the normal baseline is, the bigger the altitude of ambiguity is 
and the less accurate the altitude measurement is (Figure 64). But regarding to the geometrical 
loss of coherency, the normal baselines cannot be indefinitely long (cf.). To generate DEMs 
from ERS-satellite images, there is an optimum of the normal baseline at about 300-400 m 
(Ferretti et al., 1997). 

3.2.5. Phase unwrapping 

The fact that the interferometric phase is measured modulo 2π creates an ambiguity that must 
be removed by a course of phase unwrapping. This step converts each ambiguous 2π cycle to 
the absolute value of the interferometric phase (Figure 60 and Figure 61).  

As suggested in the Figure 60, a certain continuity of phase values recorded is required to 
unwrap correctly the interferogram. Actually, several answers are acceptable for one initial 
wrapped interferogram (Ferretti et al., 2007). Actually, if the variation of the topography 
between two following scatterers is equal to the altitude of ambiguity (unwrapped phase 2 in 
the Figure 60), this gap is not considered in this processing step and the result will be without 
gap (unwrapped phase 1 in the Figure 60). Ferretti et al. (2007) emphasizes on the necessity to 
use “a-priori information to get the right solution”. 

The other key point to assure a continuity of the values is to use only pixels which have a 
good coherence (cf. chapter 3.3.3), reducing the incoherent noise. Bernardino et al. (2003) 
advise to take only the pixels whose coherence is greater than 0.3. 
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Figure 60 : difficulties of phase unwrapping. In fact, it exists several ways to unwrap correctly an interferogram. 
(Massonnet and Feigl, 1998, modified) 

 
Figure 61 : unwrapped interferogram [Sar2|Sar3] of Bam area. (Michoud et al., 2009; processed with Erdas 
Imagine 9.2™) 

3.2.6. DEM construction 

The last step of the processing aims to construct numerically the DEM. The Figure 62 shows 
the helpful parameters needed to perform the model. The platform flying always at the same 
altitude, α is nil (cf. Figure 57). Moreover, the approximation [S1L] = [S1P] = R1 is admitted. 
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Figure 62 : parameters needed to calculate the altitude variations. (Michoud et al., 2009) 



cos ( )θ    H

R1

cos ( )θ  Δθ    ( )H  Δh
R1

       


R1   H

cos ( )θ
Δh   H  R1  cos ( )θ  Δθ

 

 

Now,   cos ( )θ  Δθ    cos θ  cos Δθ – sin θ  sin Δθ    and for Δθ small,   


cos Δθ   1
sin Δθ   Δθ  

 

  Δh   H  R1( )cos θ – Δθ  sin θ  
 

  Δh   H  H
cos θ

( )cos θ – Δθ  sin θ  

 

  Δh   H 




1  cos θ

cos θ
  Δθ  sin θ

cos θ
 

 

  Δh   H  Δθ  tan θ  

Now, deriving φ in the formula 6 according to θ, we obtain   dφdθ  4π
λ

  B  cos θ 
 

As L and P are close, therefore we admit Δθ small and   dφ
dθ

  Δφ
Δθ

 
 

  Δθ   1
B

  λ
4

  Δφ
cos θ

 
 

  Δh   H  1
B

  λ
4

  Δφ
cos θ

  tan θ 
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  Δh  λ
4

  H.tan θ
Bn

  Δφ 
 

Therefore, it is possible to obtain from the interferometric phase of two close scatterers the 
variation of altitude. Performing this method for all the pixels in the SAR images, it is 
possible to get a relative DEM of the area (Figure 63). Due to the initial ambiguity of 2π, the 
model cannot characterize the absolute altitudes, but only the variations of the topography. If 
the exact altitude of one pixel is known, it is then possible to shift the entire area to achieve a 
good DEM. To get a good DEM accuracy and to limit noise artifacts, it is advisable to process 
several SAR pairs and to average the results in order to decrease the signal to noise ratio 
(Ferretti et al., 2007). 

 
Figure 63 : Topography of BAM area, provided by the processing of the interferogram [Sar2|Sar3]. The model 
has a 20 m grid and a vertical accuracy of 1.5 m. (Michoud et al., 2009; processed with Surfer 8™) 

The Shuttle Radar Topography Mission (SRTM), achieved in February 2000 by the NASA, 
scanned the Earth surface with two Radar antennas (C-band and X-band). Thanks to SRTM, it 
exists now a worldwide DEM at 90 m resolution (from 60°N to 56°S) and an American DEM 
at 30 m resolution (SRTM technical factsheet, JPL 2005). 

For the data from the satellites ERS, the threshold of detection of a coherent signal regarding 
to the noise is π/6 (Catani et al., 2005). The following formulas show the importance of the 
normal baseline in the vertical accuracy (Δh) of a DEM (Figure 64). The longer the normal 
baseline is, the more accurate the DEM is. 

As   Δh  λ
4

  H.tan θ
Bn

  Δφ   and   Δφ  
6

 
 

  Δh  λ
24

  
H.tan( )θ1

Bn
   and for ERS,   Δh  800

Bn
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Figure 64 : vertical accuracy of a DEM regarding to the normal baseline of the interferometric pair. The 
function is calculated with the ERS parameters: λ = 5.6 cm, H = 785 km and θ1 = 23°. The longer the normal 
baseline is, the more accurate the DEM is. 

3.3. DIFFERENTIAL SAR INTERFEROMETRY (DINSAR) 

The main goal of differential InSAR (DInSAR) technique is to identify and quantify small 
ground deformations. Indeed, the phase difference is produced, provided by two 
contributions: the topography and the deformations (Figure 65). More information is available 
on Massonnet and Feigl (1998), Lauknes (2004), Catani et al. (2005), Colesanti and 
Wasowski (2006), Woodhouse (2006), Ferretti et al. (2007). 

φ way = φ topography + φ deformation    

 
Figure 65 : Influences of a slope deformation on the phase decay. The way of the slave SAR image is longer than 
the way of the master SAR image, due to the rotational landslide (Michoud et al., 2009, modified). 
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3.3.1. Topographic phase 
In DInSAR, the topographic phase is considered as an artifact. Indeed, the relief contribution 
scrambles the signal created by the ground deformations. The base of DInSAR techniques 
consists in using a ante-deformation DEM to perform a theoretical interferogram synthesizing 
the phase contribution of the topography. In this way, it is then possible to remove from the 2-
way travel phase this topographical contribution to extract the deformation phase (Figure 66). 

φ deformation = φ way - φ topography  

There are two methods to estimate the topographic contributions (Figure 66): 

 Using an interferometric pair with the shortest temporal baseline as possible (e.g. from 
ERS Tandem). It is assumed that there is no ground deformation between the two 
acquisitions. Then the 2-way travel phase is equal to the topographic phase. But, this 
solution is not the best way to process due to recommendations made in the chapter 
3.2.6 and for the unavoidable effects related to the propagation of the radiation 
through the atmosphere which typically varies between the two passes. 

 Using an external DEM produced by another method (ALS, topographic maps, etc.). 
This way to process is the most powerful, because it uses one product independent of 
the SAR images. It allows to prevent errors due to bad SAR raw dataset. 

 
Figure 66 : creation of a Differential SAR Interferogram. The DEM injected provides a theoretical 
interferogram only influenced by the relief. The topographical phase is removed of the 2-way travel phase to 
isolate the deformation phase. (ESA, 2008, modified) 

3.3.2. Deformation phase 
Let consider the processing to be perfect and that all the contributions, the deformation phase 
excepted, are removed. The movements detected (Figure 68) by the formula shown below is 
in reality a projection of the deformations along the LOS (Figure 67) and not the 3D vector of 
displacement. The first publications on landslide monitoring with DInSAR techniques were 
published by Fruneau et al. (1996) and Carnec et al. (1996). 
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Figure 67 : projection of the displacements on the LOS. The red vector dlos is the projection of the real 
displacement (orange vector d) on the LOS. (Prati, 2008, modified) 

Therefore, displacements perpendicular to the LOS are not detectable. In the following 
development, d represents the deformation and dlos is the projection on the real displacement 
on the LOS. 

Rs  Rm  d  

  φdef  4
λ

  d
los

 

  d
lo s

  λ
4

  φdef 
 

 
Figure 68 : unwrapped DInSAR [Sar2|Sar3] of Bam. (Michoud et al., 2009; processed with GSAR) 

Finally, the accuracy of the detection depends on the Radar wavelength used and the 
threshold of detection of π/6 (chapter 3.2.6). 
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As Δφd  
6

 ,   Δdlos  λ
4

  Δφd  λ
4

  
6

  λ
24

 
 

Admitting a perfect processing, the accuracy expected can be subcentimetric; ERS and 
Envisat, which use C-band (5.6 cm), can reach an accuracy of 2.33 mm.  

Unfortunately, all expressions and formulas shown above are available only for ideal 
conditions, and it is never the case on the Earth. Indeed, the SAR signal can be noised by 
atmospheric disturbances, orbital inaccuracy, etc. So it is very important to know all the 
contributions which can influence the radar signal, to process the data and interpret properly 
the results. 

3.3.3. Limitations of conventional DInSAR 
Several noise sources can influence the phase of the SAR signal. It is important to know all of 
theme to be able to isolate only the interesting phases (Massonnet and Feigl, 1998; Lauknes, 
2004; Hanssen, 2005; Colesanti and Wasowski, 2006; Ferretti et al., 2007). 

φ total = φ decorrelation + φ atmospheric + φ orbital + φ way 

This section aims to explain those contributions. 

3.3.3.1.Geometric and temporal decorrelation 
Both temporal and spatial decorrelations contribute to a loss of coherence (2.3.4) between 
different SAR acquisitions. 

The temporal decorrelation is due to changes of geometrical and electrical properties of the 
scatterer surface. Indeed, the evolutions of vegetation, morphology (erosion, rockfall, etc.), 
land use (farmed crops, fallow field, etc.) and soil moisture influence a lot the reflected signal. 
Now, those factors can change in time according to seasons and human activities. Therefore 
Massonnet and Feigl (1998) advise to use SAR images acquired always at the same period of 
the year to limit the temporal decorrelation. Usually, the best seasons are beginning of spring 
and end of fall, when trees have only few leafs and without snow covering the ground.  

A too big difference of point of view (too long spatial baseline) between two SAR 
acquisitions creates the geometrical decorrelation. Bamler and Hartl (1998) indicate the 
existence of a critical baseline above which the interferometric signal is only composed by 
noise; this critical baseline is estimated at almost 1000 m for ERS dataset. It can be calculated 
thanks to the following formula (sarmap, 2008): 

Bncritical
   λ  R  tanθ

2  Rs
 

 

where λ is the wavelength, R the range, θ the look-angle and Rs the pixel spacing 
(respectively 5.6 cm, 870 km, 23° and ~12.5 m for ERS). 

3.3.3.2.Atmospheric artifacts 

Even if the Radar wave amplitudes are not much attenuated by the atmosphere (Figure 1), the 
phase is sufficiently influenced by atmospheric conditions to perturb results. Atmospheric 



2. Data and Techniques Rev. No: 2 
Part C – Active Microwave Sensors Date: 2012-02-15 
 
 
 

 
 
Grant Agreement No.: 226479  Page 129 of 401 
SafeLand - FP7 

conditions will change the velocity of propagation. Actually the variation in time and space of 
the partial water pressure in the troposphere is the main controlling factor (Zebker et al., 
1997; Norland, 2006). Moreover, the variations of pressure and temperature can influence 
slightly the signal (Norland, 2006). Massonnet and Feigl (1998) advise to use SAR images 
acquired during night to limit the atmospheric artifact. As the atmosphere is colder and dryer 
than during the day, the Radar signal is less perturbed. 

3.3.3.3.Orbital artifacts 
It is very important to know the relative position of the platforms during the acquisitions. 
Indeed, as exposed in the formulas shown above, the values of the normal baselines are 
required by the interferometric equations. To limit the orbital artifacts due to bad positioning, 
precise orbits datafiles, called ephemerides (e.g. Delft or Doris precise orbits) are imported 
during the processing (Lauknes, 2004; Ferretti et al., 2007). 

3.3.4. Coherence 
To have an objective idea of the accuracy and the final reliability of an interferogram, the 
coherence index was created. Massonnet and Feigl (1998) define the coherence as “the degree 
of agreement between neighboring pixels in an interferogram”. The bigger the coherence is, 
the lower the artifacts are and the better the processing will be.  

The coherence γ of an interferogram (Figure 69) processed with the complex SAR images S1 
and S2 is calculated in this way: 

γ  
E.



S1. S2

E.[ ]│S1│
2 .E.[ ]│S2│

2
 

 

where E represents the statistical expectation and 2S  the conjugated complex of S2. A 
coherence of 0 means that results are only composed by random phase noise and a coherence 
of 1 by very good signal with no noise (Prati, 2008). Colesanti and Wasowski (2006) explain 
that in practic, the coherence is computed ”assuming ergodicity for the interferometric signal 
and, therefore, estimating E[#] using all pixels within a (e.g. rectangular) window centred in 
the image element”. 

Hanssen (2005) advises to consider a-priori coherence expected in an area before ordering 
dataset to assess the feasibility and reliability of processed interferograms. Indeed, according 
to practical observations (Massonnet and Feigl, 1998; Berardino et al., 2003; Colesanti et al., 
2004; Lauknes, 2004; Michoud et al., 2009), the coherence is better in arid or urban areas than 
in wooded counties where temporal decorrelations are stronger. 

The following figure aims to compile all notes written before to optimize the coherence and 
the reliability of differential interferometric results. 



Deliverable 4.1 
Review of Techniques for Landslide Detection, Fast Characterization, Rapid Mapping and Long-Term Monitoring. 
 
 
 

 
 
Grant Agreement No.: 226479  Page 130 of 401 
SafeLand - FP7 

 
Figure 69 : coherences of the interferogram [Sar2|Sar3] of Bam. (Michoud et al., 2009; processed with Erdas 
Imagine 9.2™) 

 

 

Figure 70 : optimization of the DInSAR processing. The best way to process dataset with good coherences and 
reliability is to choose night scenes from the beginning of spring or end of fall (snow and leafs free) with the 
shortest baselines as possible. (Michoud et al., 2009, modified) 
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Abstract 

During the past 20 years, the fast development of several remote sensors (e.g. Optical imaging, 
LiDAR, RADAR, etc.) assembled on satellite, aerial or terrestrial platforms is changing our 
perception and analysis of the Earth's surface processes. Particularly, LiDAR technology is capable of 
acquiring faster, denser and more precise information about land terrain surface, allowing the 3D 
geometrical modelling of mountains, valleys and cliffs at different scales and with an unprecedented 
level of detail. Consequently, LiDAR applications on landslide mapping, characterization, monitoring 
and modelling are shedding a light into how landslides behave and evolve along space and time. Some 
examples include:  (a) the precise landslide mapping through the identification of geomorphological 
features, (b) the accurate extraction of discontinuities characteristics that play a key role in slope 
stability, (c) the monitoring of landslides in order to analyse 3D displacements, (d) the 
magnitude/frequency quantification of fallen volumes along time in order to study erosion rates, (d) 
the improvement of rockfall hazard assessment, (e) the modelling of mass movements run-out, etc.  

 

INTRODUCTION 

During the last decade, the research on surface processes has taken profit from two main 

developments: (a) faster and more portable remote sensing devices and (b) more powerful computer 

processors and graphic capabilities. Since the beginning of the 21st century, one of these remote 

sensing techniques, the Light Detection And Ranging (LiDAR), also known as laser scanner, provides 

detailed and accurate topographic surveys (1). LiDAR  allows to acquire more than 10.000 points per 
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second from fixed or moving positions, leading to huge sets of data in a three-dimensional Cartesian 

coordinate system (i.e. X, Y, Z coordinates), normally referred to as “point clouds”. This detailed and 

accurate representation of the terrain surface has been extensively used to characterize, monitor and 

model landslides (2; 3; 4; 5; 6).  

The two main categories of LiDAR for mapping and monitoring landslides are static and mobile 

devices. Static devices are commonly named such as Ground-Based LiDAR or Terrestrial Laser 

Scanners (TLS).  Regarding mobile devices, the different instruments are normally classified 

depending on the platform configuration: either boats (7), cars (8) or flying devices (9). The latter, 

also known as Airborne Laser Scanners (ALS), include LiDAR assembled on airplanes, Unnamed 

Aerial Vehicles (UAV), and helicopters, and can be adjusted to the shooting direction (10). Examples 

of point cloud density for TLS systems normally range from 100 to 500 pts./m2, whereas ALS systems 

range from 0.5 to 50 pts./m2. 

Point clouds can be converted to surfaces through different surface reconstruction processes, usually 

involving Delaunay triangulation. For instance, the point cloud produced by ALS is normally 

transformed into Digital Elevation Models (DEM) or High Resolution DEM (HRDEM), which 

provides very detailed geomorphological information (11; 12). 

The main achievements on the application of the LiDAR technique to landslide investigations include: 

(a) the improvement of landslide mapping and inventories using HRDEM; (b) a complete 

characterization of the 3D slope deformation, allowing the forecasting of landslides failures (13; 19; 

21; 14); (c) a more accurate and detailed monitoring of rock failures (15; 16; 17; 18; 19; 20; 21; 22); 

(d) the improvement in rock slope characterization in inaccessible areas thanks to the automatic 

extraction of discontinuity orientation (23; 24; 25); and (e) the identification of geomorphic 

signatures of debris flows based on HRDEM and accurate erosion and deposit quantification (26, 27).  

Comparing LiDAR, with other 2D techniques, allows for the analysis of the surface features and real 

changes in 3D. Therefore, the main future challenges include: (a) the development of a software that 

may allow us to fully extract the 3D information from the point clouds; (b) coupling LiDAR with 
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other techniques such as InSAR or multi-spectral cameras. The accomplishment of these challenges 

will open new perspectives for a better understanding of the 3D behaviour of landslides, with 

significant implications on monitoring and early warning systems. 

1. LiDAR AND LASER SCANNING TECHNIQUES 

1.1 History 

The history of LiDAR technology is directly linked to the LASER (Light Amplification by Stimulated 

Emission of Radiation) evolution. In 1957, the physicists Charles Townes and Arthur Shawlow at the 

Bell Labs investigated the development of optical MASER (Microwave Amplification by Stimulated 

Emission of Radiation), which later on became laser in 1959 (28). In May 1960, the first instrument 

which successfully produced a series of pulsed laser was designed (29). Less than one year later, the 

first LiDAR was manufactured for military purposes (28). Then in the Seventies, laser technologies 

became generalized for civilian applications such as surveying. Some examples include the use of 

Electronic Distance Meter (EDM) in quarries and tunnel environments (30; 31; 32). 

At the same time, first ALS systems were able to measure the range of the emitted pulse with a 

precision of 1 m (33; 34), for altimetry and bathymetry purposes (35 and 36, respectively). 

Nevertheless, this technology was limited by the poor accuracy on the position and orientation of the 

airplane given by the Inertial Navigation Systems (INS). Afterwards, laser devices became more 

accurate, less heavy, less expensive and eye-safe. Moreover in the early nineties, the improvements on 

the navigation satellite constellations GPS-NAVSTAR (USA) and GLONASS (USSR) allowed for 

the  overcoming of the limitations of former INS, considerably improving the ALS accuracy (37; 38). 

In the late nineties, theoretical and practical aspects of ALS techniques were well known and several 

important works were published (39; 40). Early applications of ALS consisted in the production of 

DEM (1; 41), the mapping of topographical changes of Greenland’s ice sheet (42; 43), and the 

creation of a 3D model of an urban environment (44). The mapping and modelling of landslides from 

HRDEM at regional scale started at the beginning of the 21st century. 45; 46; 47;  48; 49).  
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During the last decade, the GLAS sensor (Geoscience Laser Altimeter System) illuminated the Earth 

with three lasers. One of these sensors was especially designed to monitor different environmental 

variables, such as polar ice sheet mass balances, vegetation canopy and land elevation with a vertical 

accuracy of 3 cm (50; 51; 52). One of the most relevant topographic products derived from the 

ICESat mission was the 500 m pixel resolution DEM of Antarctica (9; 53). Meanwhile, a spaceborne 

EDM device named MOLA (Mars Orbiter Laser Altimeter) was developed to observe Mars from 

1999 to 2001 in order to survey its topography and atmosphere (54; 55). This sensor was measuring 

the surface of Mars during fifteen months, obtaining a DEM of Mars with a resolution of a few square 

kilometres and a vertical accuracy of 1 m (54). 

At the same time, pioneering triangulation-based TLS systems were designed and used for 

archeological purposes (56). Later on, ground-based LiDAR sensors have been used for surveying 

and monitoring deformations of urban structures (57; 58). Geological applications of TLS are 

experiencing fast developments since 2002, including: (a) extraction of orientations and roughness of 

rock slope discontinuities (2; 59; 60; 61; 62; 63; 86; 117); (b) monitoring of volcanic activity (64); 

(c) litho-stratigraphic modelling (65; 66; 67); (d) rockfall detection (17; 18; 19; 21); and (e) landslide 

monitoring (16; 19; 68). 

1.2 Instrument principle 

(a) LiDAR functioning 

A LiDAR device consists of a combination of a laser rangefinder and a scanning mechanism which 

allows for the precise measurement of a distance to a target and the orientation of the laser beam. The 

scanner device works through the internal rotation of one or two mirrors and/or the rotation of the 

whole device. Additional components normally include an electronic unit, an imaging device (e.g. 

digital camera) and specific software to control the whole system.  

There are three main types of LiDAR, corresponding to three different ways of measuring the range, 

for instance the distance along the Line Of Sight (LOS) between the sensor and the terrain (see Fig. 
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1): (1) pulse LiDAR measures the Time-Of-Flight (TOF) of a laser pulse, (2) phase LiDAR uses 

phase shift between emitted and received signal and (3) triangulation LiDAR uses a camera to locate 

the laser spot on the scanned surface (69).  

Pulse LiDAR is based on the measurement of the time delay (TOF) of a laser pulse travelling from the 

source (e.g. TLS) to a reflective target (e.g. ground surface) and back to the source, as follows: 

d = 1
2

c × ∆t [Equation 1, 32] 

Where d is the range, c is the speed of light in the air (3x108 m/s) and ∆t is the TOF. This technique 

allows for centimetre accuracy measurements at several kilometres distance. Phase LiDAR allows for 

more precise acquisition (some millimetres) but it only works for short ranges (less than 100m). Phase 

LiDAR uses a continuous amplitude or/and frequency modulated beam instead of pulses. The range is 

deduced from the phase shifts between emitted and backscattered signal for a couple of frequencies 

(32). Triangulation LiDAR estimates the range from two angles: the illumination angle of the laser 

beam and the observation angle of the camera (38). With a high accuracy (around 0.1 mm), 

triangulation LiDAR has very short ranges (less than 5 m). Pulse (or TOF) LiDAR is the main device 

used for landslide monitoring and mapping, since it is the only one that makes possible acquisitions 

for ranges longer than 100 m (up to a couple of kilometres for the most advanced sensors). There are 

few applications of phase and triangulation LiDAR for landslides, such as very detailed 

characterization of sliding surfaces or analogue modelling in the lab (70).  

The footprint size depends on the range and on the width of the laser beam. The shape of the footprint 

on the surface depends on the local incidence angle, i.e. the angle between the LOS and the normal to 

the surface (Fig. 2). The range is measured at the peak of intensity of the backscattered pulse. If the 

surface is normal to the laser beam, it corresponds to the centre of the footprint (point P in Fig. 2). If 

the incidence angle is high (more than 70°) or the local relief is rough, the recorded point of location 

(point P’ in Fig. 2) can lie anywhere within the spot (71; 72).  
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(b) Multiple echoes 

Even if strongly collimated, laser beams of LiDAR are affected by divergence, i.e. the beam width 

increases with the range. Typical diameters of beam footprints are 30-50 cm for ALS at 1 km range, 

and 10 cm for TLS at 500 m range (71). As a result, the consequences are that several back-scattered 

pulses can correspond to a single emitted pulse (multiple echoes). For instance, when a pulse hits a 

tree part of the pulse can be reflected by the top of the canopy, another part by branches and the last 

one by the ground (see Fig. 2). This characteristic of the beam to “penetrate” the vegetation is a key 

advantage of LiDAR compared to photogrammetry, in order to get ground elevation models of 

vegetated areas. However, a dense forest may prevent the beam to reach the ground surface. Full wave 

LiDAR devices, usually ALS, provide a continuous record of the backscattered signal (full 

waveform). Most of TLS record only one or several discrete pulses. In landslide studies, the last 

pulse, (i.e. the pulse backscattered by the ground surface) is generally used. But it may be convenient 

to have other return pulses for vegetation removal purposes (32). 

(c) Other parameters: Intensity + colour  

In addition to 3D surface point locations, LiDAR devices measure the signal intensity of the 

backscattered laser signal. Intensity mainly depends on the type of material, orientation of the slope, 

range and laser wavelength. Additional external cameras can be coupled with LiDAR during 

acquisition, allowing the assignment of a colour attribute (i.e. RGB) to each point of the LiDAR point 

cloud. During ALS acquisitions, natural colours and/or infrared images are usually taken 

simultaneously. A SLR digital camera is frequently used to provide natural colours to TLS point 

clouds, but more advanced imaging devices such as hyperspectral cameras can be used too (73). Some 

of the main uses of intensity values or colour attributes for landslide studies include bedrock mapping, 

vegetation removal and interactive visualization of point clouds (74). 

(d) ALS versus TLS 

Aerial Laser Scanners are widely used, either by national topography agencies and private companies, 

to cover large areas for topographical surveying or forest management (9). The plane usually flies 
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1000 m above the ground and the ALS records 1-2 points by ground square-metre, with a position 

accuracy of 5-30 cm (37). Mobile techniques require a precise recording of the location and altitude of 

the scanning device during the acquisition, which is actually carried out by coupling the LiDAR with 

a GNSS (usually a differential GPS) and with an Inertial Measurement Unit (IMU). Then the location 

of each point of a scan is recalculated as a function of the LiDAR position and orientation during a 

post-processing stage. Due to its heavy logistics, ALS is operated by professional surveying 

companies. Other smaller mobile platforms are also occasionally used for laser scanning of landslides. 

For instance, LiDAR sensors can be assembled to helicopters, taking profit of its relatively low flying 

speed and flying heights close to terrain surface, which allows acquiring 3D information on cliffs 

from a an oblique view. It was used to scan a 2 km2 area around the Åknes rock slide (Norway), 

providing 20 measurement points per m2 with a position precision of 5 cm (75; 76). Also, offshore 

laser scanning from boat is used for coastal cliffs and river banks stability analysis, with a typical 

average point spacing of 10-20 cm (77). Finally, a fast growing technique is the set-up of laser 

scanners on cars or trains in order to acquire high resolution ground models along transport corridors. 

(8) This technique has been used to assess rock wall stability along roads and railways in Ontario 

(Canada) with an average point density of 100 points/m2.  

TLS is a fixed position scanning technique that only requires the device set-up on a tripod opposite 

the surface to scan within the maximum range limit. Because of this relatively easy implementation, 

TLS is usually operated directly by geoscientists in charge of the landslide investigation. With a high 

point density (up to 10000 points/ m2) and accuracy (about 1 cm), it is mostly limited by the 

availability of a good point of view, the maximum range of acquisition and the relatively small areas 

that can be covered in single acquisition due to a limited Field of View (FOV) angle (for instance, 40° 

in TLS Ilris3D). Usually, in order to cover the whole area of interest, several scans have to be 

acquired from different points of view. 
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(e) Spacing, accuracy, resolution and data types 

The major differences between the two most commonly used techniques (i.e TLS and ALS) are: 1) 

average point spacing: metre scale for ALS and centimetre scale for TLS; 2) position and range 

accuracy: some tens of cm for ALS and about 1 cm for TLS; 3) point cloud geometry: as ALS is 

always shooting sub-vertically, it is very efficient in order to produce horizontally projected surface, 

such as gridded digital elevation models. But it only provides a poor representation of steep areas like 

rock cliffs. In addition to this, and opposite TLS devices, ALS is not able to have several ground 

surface elevation values of ground elevation (Z) for each horizontal position (X, Y), and thus it is 

unable to represent overhanging walls. Properly speaking, ALS products are 2.5 elevation surfaces 

and not full 3D representations of the terrain surface. As a result, most of ALS processing software is 

inefficient to work properly with point clouds from TLS acquisitions. 

Measurement accuracy on single points depends on range, surface reflectivity and incident angle (78; 

79; 80; 71). Inaccuracy of surface location and geometry is due not only to single measurement 

errors, but also to alignment and merging processes. This is particularly critical when several 

acquisitions are merged in one dataset. The quality of the final dataset must be carefully checked, as 

discussed in (81).  

Point cloud resolution determines the level of detail that can be observed from a scanned point cloud 

(82), where the laser beam width plays an important role (83). However, TLS resolution and point 

spacing are normally mixed up. (83) It is recommended to place the optimal point spacing as 86% of 

the laser beam width at a given distance.  

(f) Data acquisition issues: Occlusion and Biases 

OCCLUSION: Due to relief roughness and natural variability, the acquisition of rock slope geometry 

from a single station is normally affected by the existence of shadow areas (also called occluded 

areas). In order to minimize occlusion issues, (24) different series of best practices and protocols are 
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proposed for survey planning. For instance, occlusion can be minimized using data acquisition from 

multiple locations (84; 85). 

BIASES: Discontinuity characterization may be affected by biases depending on the intersection 

angle between discontinuity sets and the sensor’s LOS (84; 86): the density of those families with 

normal vector parallel to the LiDAR’s LOS may be overrepresented compared to the density of 

families with normal vector perpendicular to the LOS of the instrument. Indeed, this is a similar effect 

observed by (87), in which the density of families with direction parallel to the slope orientation may 

be over represented compared with those families perpendicular to the slope. 

DATA QUALITY: the resolution of the datasets also plays an important role on the analysis of 

discontinuity orientation. As discussed in (86), low resolution datasets may lead to: (a) a truncation of 

non-persistent discontinuity sets due to a lack of information and (b) a shifting on discontinuity 

orientation due to a non-realistic smoothening of the surface geometry. 

1.3 Data treatment 

A series of pre-processing steps are necessary in order to transform the RAW LiDAR data (unfiltered 

point cloud both in ALS and TLS) into real terrain points, as follows (see Fig. 3): 

(a) Full-waveform and automatic filtering 

The first truly-operational Full-Waveform (FW) LiDAR systems for airborne applications appeared in 

1999 (88). This new generation of instruments is able to capture not only the discrete signal return but 

also the entire waveform. The first experimental full-waveform LiDAR system was originally 

developed for forestry canopy and building segmentation. At the present time, full-waveform data are 

mainly used for ALS applications in order to discriminate the surface terrain from forestry, which is 

of great interest for vegetation removal and DEM generation. Current research on FW LiDAR data 

includes signal decomposition for object classification: terrain, vegetation, wires, buildings, etc.  

 



10 

(b) Non ground points filtering (including vegetation removal) 

Non ground points (e.g. vegetation, cables, birds, dust, etc.) filtering is a time consuming task that is 

commonly performed manually. Although this approach may be straightforward when non ground 

points appear at small portions of the terrain, new semi-automatic methods aiming to classify ground 

points are being currently developed. These methods of classification, which are normally supervised 

by the user, are based on the identification of different values of the point cloud that allow to separate 

ground from non-ground points. For instance, while some methods use the colour coded value (RGB) 

or intensity of the laser return (e.g. 89; 90), other approaches include the study of some geometrical 

parameters as single point statistics (e.g. 91), local three dimensional point cloud statistics (e.g. 92), 

multi-scale dimensionality criterion (93) or using classifiers as Support Vector Machine (94), EM 

and/or Gaussian Mixture Models (95). Although these methods are highly promising, manual 

vegetation removal is still currently necessary in most of the cases. 

(c) Co-registration and georeferencing 

Georeferencing (also known as alignment) is the process of coordinates transformation from an 

internal referential system relative to the LiDAR device into a real world system of reference (e.g. 

UTM, lat/long, national grid coordinates, etc.). This process is typically a rigid-based body 

transformation consisting of a combination of translation and rotation (96). Two methods are often 

used for georeferencing: (a) target-based registration: the alignment of the TLS point cloud is 

classically carried out with Ground Control Points (GCPs) whose coordinates are previously acquired 

using dGPS, Total Station, etc. Complementarily, some modern techniques include the alignment of 

the 3D point cloud using co-registration of the scanned well-known geometries (i.e. cubes, spheres, 

cylinders, etc.) (97); (b) iterative closest points methods: aiming at minimizing the Euclidian distance 

between different point clouds, as proposed by (98) and (99). For a fast convergence of the alignment 

using this technique, an a priori alignment is normally carried out using either ground control point or 

already oriented and referenced commercial Digital Elevation Models (DEM). 
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Co-registration aims at: (a) reducing occlusion and shadow areas by merging multiple scans from the 

same epoch and different viewpoints into one single point cloud; (b) comparing different datasets and 

detecting changes on the topographical surface by aligning scans acquired sequentially, for instance 

by performing a multi-temporal TLS survey during a certain time lag in order to study slope 

evolution. 

Co-registration errors mainly depend on instrumental accuracy, point spacing and percentage of 

overlapping area. Techniques for error propagation control must be performed when dealing with the 

overlapping of several scans, especially in long linear features, as when studying landslides along 

transportation corridors, marine cliffs, etc. (100). Although it is evident in classical surveying 

techniques, the points used for alignment must be restricted to stable areas, for instance the 

surroundings or the stable parts of a given landslide.  

 (d) Point cloud comparison 

Point cloud comparison between sequential LiDAR datasets allows the detection of temporal 

differences in terrain morphology (17; 101). In order to make a comparison, several steps are 

required: (a) acquisition of a reference point cloud at initial time (t0); (b) construction of a reference 

surface at t0; (c) acquisition of successive data point cloud at different time lapses (t1, t2, etc.); (d) co-

registration between reference surface and successive data point clouds (c.f. previous paragraph, 98; 

99); and, (e) change detection through the calculation of the differences for each period of 

comparison. 

The single point distances between reference and successive point clouds are normally computed 

along a user defined vector in 1D. This vector can be defined both using a fixed orientation (17; 102) 

or using different local vectors defined perpendicular to the rock face at each section of the slope, as 

described in (93). Another method of comparison includes the use of the “shortest distance” between 

data point cloud and the reference model. Finally, the real 3D deformation of single blocks in terms of 

rotations and translations can be quantified by using the RT matrix technique as described in (19; 68)  
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Regarding sign criteria, a positive value is normally interpreted as an increase of material (e.g. 

deposition) or a displacement toward the external part of the slope (pre-failure deformation). 

Similarly, negative values are normally interpreted as a loss of material on a given period (e.g. soil 

erosion, rockfalls, etc.). 

2. APPLICATIONS FOR LANDSLIDES  

2.1 Landslides 

Since the beginning of the 2000s, the ALS system has been widely used to produce HRDEM at 

regional scale (37). This technique quickly became an essential document of a regional landslide 

inventory map (3; 5). By creating hill shaded surface it is possible to highlight structures that cannot 

be seen from aerial photos or in field observation (e.g. 46; 48; 49; 103) either due to landslide scale 

(from metric to kilometric), or location (in inaccessible or densely vegetated areas)  [Fig. 4]. Different 

approaches are usually employed for landslide mapping and identification, with various degrees of 

automation: (a) manual or expert-based approach, which focuses on the identification of landslides 

based on geomorphological evidences of crowns, main scarps, flanks, foot or toe and vegetation cover 

(104; 105; 106; 107; 108); (b) automatic geomorphological features recognition, which extracts 

different information derived from HRDEM, such as slope angle, curvature or roughness (109).  

When several generations of ALS scans are available, then change detection between HRDEM can be 

used to characterize topographic changes. This technique has been employed to detect slope failures, 

soil erosion, slope displacements and terrain deformation (103; 110; 111; 112). Some examples of 

ALS for coastal cliff monitoring and erosion analysis are discussed in (113; 114). Furthermore, high 

resolution topography from airborne LiDAR can also be compared with less accurate historical aerial 

photographs, in order to analyse the kinematics of the landslide over a long-term period (115). 
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2.2 Rock slopes 

(a) Structural analysis 

The aim of the structural study is the detection and characterization of the main joint sets responsible 

for the fracturing of the rock mass. The analysis of the network of discontinuities is an essential step 

to study a rockfall scar or to assess the potential instable areas of a rock slope. The measurements of 

the orientation (Fig. 5), undulation, persistence, spacing, opening, roughness and water presence of 

the main joint sets are usually taken in the field with classical methods, such as photography, direct 

observations and compass measurements (116). TLS allows to perform most of these tasks faster, 

with a high accuracy, and even in inaccessible vertical areas (15; 25; Erreur ! Signet non défini.; 62; 

84; 117; 118; 119; 86; 120). Georeferenced 3D TLS point clouds (see section 1.3c) allow us to 

extract the orientation of structures and to perform distance or volume measurements (96). Similar 

results can be obtained from HRDEM generated from aerial LiDAR, but with significant limitations 

imposed by the vertical shooting direction and by the size of the cells. The representation of structural 

features like planes or lines, which is classically done with stereoplots (116), can also be 

automatically extracted using modern algorithms. Early studies used a manually selected section of 

the point cloud and calculated the best-fitting plane (86; 96), which can be laborious and time-

consuming. Later on, some authors proposed the construction of 2.5D surfaces such as Triangular 

Irregular Networks (TIN) for the automatic calculation of the discontinuity orientation (2; 24). More 

recently, techniques allow automatically computing local plane orientations directly from the point 

cloud (25; 62; 63; Erreur ! Signet non défini.121). In order to facilitate structural interpretations, the 

orientation and inclination of each point of a TLS point cloud, or of a DEM cell, can be represented 

using a unique colour (61).  

(b) Monitoring of fragmental rockfalls 

Due to the steepness of rockslopes, terrestrial LiDAR is more extensively used than airborne LiDAR 

for the monitoring of fragmental rockfalls. Moreover, terrestrial LiDAR provides an unprecedented 

level of detail at site specific slope, both resolution and accuracy ranging from several mms to a few 
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cms. A pioneer approach for monitoring fragmental rockfalls along a section of marine cliffs in NE 

England was developed by (17; 18). Since then, TLS has become a widely used tool for automatic 

rockfall detection and volume calculation (21; 85; 122; 123; 124). Using the TLS technique, (125) 

detected a series of progressive rockfalls that occurred in exfoliated granitic rocks, analysing how a 

given fracture event initiated subsequent adjacent failures. A common application of TLS for rockfall 

monitoring includes the analysis of Magnitude-Frequency (MF) characterization of fragmental rock 

falls. Indeed, several authors have observed a scale-invariant pattern in a MF dimension under log-log 

scale (17; 101; 80; 126; 100; 127; Fig. 6), suggesting that a Self-Organized Criticality (SOC) may rule 

rockfall phenomena (128). Some other applications include the monitoring of several million cubic 

metres of rockslides (Fig. 7) in order to quantify deformation rates and failure mechanisms (19; 96; 

129; 130), and the failure forecasting based on a given precursory indicator: either minor scale 

rockfalls or tertiary creep deformation (13; 21;131).  

(c) Rockfall susceptibility assessment 

The simplest way to detect the potential rockfall source areas is by defining a slope angle threshold 

above which rockfalls are more susceptible to occur (132). This method can be optionally coupled 

with other criteria such as the presence of cliff areas (133). The slope threshold can be gathered from 

a detailed statistical analysis of slope angles, thus allowing to identify the cliff area (134; 135; 136, 

137). A simple GIS approach developed by (138) allows identifying potential rockfall source areas 

along roads according to the presence or absence of four parameters: faults, scree slopes, rock cliffs, 

and steep slopes. A great improvement related to the use of DEMs for the detection of rockfall prone 

areas consists in the automatic realization of a kinematic analysis along the whole area (139; 140). 

This analysis allows detecting the topography areas where a discontinuity of a given orientation can 

lead to an instability. Using a standard classic stability criterion (141) together with a statistical 

analysis of the kinematic tests, (140) were able to produce probability maps of different failure 

mechanisms such as planar sliding, toppling and wedge sliding. More recently, the kinematic analysis 

criterion was applied to accurately detect the most unstable areas from TLS data (142). Spacing and 

persistence of the joint sets, which can be determined both in the field and on LiDAR point clouds 
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(86; 84), should also be taken into account in the stability calculations, as suggested by (143). 

According to these authors, the number of potential failures per cliff area can be calculated based on 

the spacing and on the trace length values, which considerably improves the rockfall susceptibility 

maps (144). 

 2.3 Debris flows 

LiDAR is used for various tasks related to debris flows mapping, characterization and modelling. 

HRDEM from ALS are frequently used to identify and characterize initiation and propagation zones 

of debris flows (145; 146; 147; 148; 149), deposition fans (150), or to estimate the eroded and 

deposited volumes (151; 152; 153). Remarkably, (81) have used TLS to detect surface changes along 

a debris flow channel, and (26) have combined TLS and ALS to quantify sediment transport for debris 

flows events in the Austrian Alps, observing several metre changes between the two epochs  (Fig. 8). 

ALS data are also used to estimate the volume of sediments that can be potentially entrained along the 

channels by a future event (154). Apart from geomorphic analysis, DEM from laser scanning is also 

used in debris flows propagation modelling. For instance, (155) have assessed the impact of HRDEM 

cell sizes (1, 4 and 25 m.) on modelled propagations, in particular the effect of resolution on debris 

flows confinement along recent channels. 

2.4. Input for modelling 

Mass movement modelling is the process of simulating its stability and/or its propagation across time. 

This analysis can be carried out using conventional representations of a terrain’s surface, either DEM 

or HRDEM. Note: current models do not utilize real 3D point clouds but 2.5D projections of the 

topography. 

One of the first applications of LiDAR topographic data for landslide modelling was presented by 

(156) using the SHALSTAB model. These authors showed that susceptibility mapping of shallow 

landslides can be considerably improved when using a HRDEM of 1m cell-size obtained from ALS. 

The results of this simulation demonstrated that the distribution of potentially unstable areas were 
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closer to the inventoried landslides than when using low resolution DEM. In addition, the total surface 

of affected terrain was smaller. The same trend has also been observed in other available models such 

as TRIGRS, which include more sophisticated infiltration models (157; 158). 

The optimal accuracy and resolution of the DEM for modelling should be carefully considered. 

Although HRDEM usually improves the modelling of the phenomena, most of the conventional 

modelling packages do not necessarily require more than a 5 to 10 m DEM resolution (159). 

Modelling using a higher resolution DEM can even introduce artefacts and non-realistic noises that 

can mask the main terrain features (160). For instance, ALS derived DEM used for mapping debris 

flows kinematics have a strong dependency on lateral spreading on the DEM resolution (161; 155). 

These authors observed how a too fine resolution also produced geometric artefacts degrading the 

quality of the modelling results. Similarly, the use of HRDEM for the simulation of rockfall 

propagation can lead to significant differences when compared with lower resolution DEMs (163; 

162). For instance, the lateral dispersion of the trajectories and the kinetic energy vary with DEM 

resolution that controls the roughness of the terrain surface (163). According to (163), the maximum 

kinetic energy normally increases with the DEM resolution. However, the opposite result is presented 

in (164). This discrepancy may be explained by the fact that a higher resolution DEM has little impact 

on the accuracy of the results when other parameters (geology, vegetation, etc.) are poorly described 

(165). The resolutions of the LiDAR DEM are often too fine compared to the other required input 

data (166). 

Erosion and hillslope evolution modelling has been greatly enhanced by using HRDEM (167). 

However, most of the current packages for landslide modelling are not able to make the best use of 

high resolution LiDAR data. The increasing power of computers will certainly lead to an extensive 

use of HRDEM as input for stability and run-out modelling. One can expect that the exploitation of 

full 3D data will be attained in the near future. 
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3. CONCLUSIONS and PERSPECTIVES 

The current knowledge concerning the mapping and monitoring of landslides is now far beyond what 

was expected by the end of the nineties. This is mainly due to the recent advances in remote sensing 

techniques (including LiDAR) together with the exponential growth of computational capabilities. For 

instance, laser scanning has allowed for the development of new techniques to monitor slope changes 

and slope movements, providing innovative ways for hazard qualification and a better understanding 

of the surface processes such as rockfall failures. 

Dense 3D data has become popular thanks to LiDAR. Nevertheless, one of the present-day key issues 

is the lack of software to extract all the landslide-relevant information from the LiDAR data, 

especially from full waveform data. At present, different modelling techniques benefit only partially 

from the full resolution of the LiDAR derived DEMs. This is linked to the fact that the density and the 

quality of the geometrical information are much higher than other parameters required for hazard 

assessment, such as geological maps. Despite this, the recent advances achieved on the study of 

rockfalls and rock slopes indicate that HRDEMs possess a great potential for the development of new 

methods and techniques for the analysis of landslide phenomena. 

New applications and techniques are now emerging and will be used as a routine in a near future: (a)  

the development of new algorithms for the analysis of complex slope deformations in space and time; 

(b) the detection of slope movement in real-time and its integration on early warning systems (168); 

(c) the possibility to rapidly acquire accurate 3D data along transport corridors using mobile mappers 

(Fig. 9); (d) the improvement of TLS technical capabilities, including maximum range, accuracy and 

point density; (e) the acquisition of Earth surface topography by a new generation of satellite LiDAR 

(50; 53), such as ICESat-2 planned for 2017. 

The integration of LiDAR derived 3D data with complementary information registered by other 

remote sensing methods is also in development. For instance, the coupling of LiDAR and InSAR data 

is a promising technique for displacement monitoring (169; 170; 171). Other spectral attributes 
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provided by multi-spectral imaging can also help improve interpretation and segmentation of 3D 

LiDAR data (73). 

Summarizing, LiDAR is a tool that has completely revolutionized the landslide research and study 

concerning the characterization, mapping and monitoring of landslides. However, the scientific and 

engineer community still needs to develop innovative tools to rapidly extract Geo-hazard related 

information from LiDAR data.  
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Figure 1: (a) Sketch of LiDAR functioning principle showing TLS device, Line of Sight and Spot 

Dimension; (b) Signal intensity vs. time of flight for two different methods of measurements: full 

wavelength method vs. pulse method. 
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Figure 2. LiDAR footprint deformation (θ: incidence angle, N: normal to the surface). The point 

position is attributed to the centre of the beam (point P), but the range is measured at the maximum 

intensity of the backscattered pulse. Then, the actually measured point P’ is located slightly before the 

rockface on the line of sight. 
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Figure 3. Workflow showing the main steps on data treatment. 
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Figure 4. Mapping of a large scale landslide detected using a LiDAR based HRDEM. Bern canton, 

NW Switzerland (Data from Géodonnées © Swisstopo, DV084371) 
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Figure. 5. Discontinuity mapping on a Terrestrial LiDAR point cloud, rendered using greyscale 

intensity values <Source: From Sturzenegger and Stead, 2009, with permission>. 
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Figure 6. (a) Picture of La Cornalle study area (Vaud, Switzerland); (b) Model comparison showing 

the changes (i.e. rockfalls) along time. 
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Figure 7. Different techniques for the quantification of a mass movement located on Montatuay 

mountain (Valais, Switzerland) using a ground-based LiDAR. (a) Picture of the study area; (b) filtered 

point cloud of the study area; each point is coloured according to the differences calculated between 

the 2009 ALS DEM and the TLS point cloud captured in April 2011; (c) rotated perspective of the 

LiDAR point cloud including the manual selection of different blocks for subsequent tracking; (d) 

velocity computation for each of the previously selected blocks; the straight line in log-log scale 

shows a progressive stabilization of the slope. 
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Figure 8. Surface differences between pre-event (ALS) and post-event (TLS) datasets (negative values 

for erosion) Source: <from Bremer and Sass 2012, with permission>. 
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Figure 9. Example of discontinuities mapping along a highway at Pontarlier (East France) using an 

Optech Lynx Mobile Mapper LiDAR. 
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Chapter 5
Preliminary Slope Mass Movement
Susceptibility Mapping Using DEM
and LiDAR DEM

M. Jaboyedoff, M. Choffet, M.-H. Derron, P. Horton,
A. Loye, C. Longchamp, B. Mazotti, C. Michoud
and A. Pedrazzini

Abstract Hazard mapping in mountainous areas at the regional scale has greatly
changed since the 1990s thanks to improved digital elevation models (DEM). It is
now possible to model slope mass movement and floods with a high level of detail
in order to improve geomorphologic mapping. We present examples of regional
multi-hazard susceptibility mapping through two Swiss case studies, including
landslides, rockfall, debris flows, snow avalanches and floods, in addition to
several original methods and software tools. The aim of these recent developments
is to take advantage of the availability of high resolution DEM (HRDEM) for
better mass movement modeling. Our results indicate a good correspondence
between inventories of hazardous zones based on historical events and model
predictions. This paper demonstrates that by adapting tools and methods issued
from modern technologies, it is possible to obtain reliable documents for land
planning purposes over large areas.

Keywords DEM � Lidar � Rockfall � Debris-flow � Floods � Snow avalanches �
Regional hazard mapping � Models � Flow-R � RAS � Conefall � HISTOFIT

5.1 Introduction

Slope mass movement hazard mapping has been a major concern since the 1970s.
In Varnes (1984), the authors made an overview of the principal mapping practices
that were mainly linked to field investigations and aerial photo interpretations
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(Cruden and Thomson 1987). Since the appraisal of geographical information
systems (GIS) (Carrara and Guzzetti 1995) and the production of digital elevation
models (DEM), hazard mapping of slope mass movements has increased signifi-
cantly. In addition over the past decade, new techniques such as airborne laser
scanning by Lidar (Light Detection and Ranging) provide to the earth sciences
community high resolution DEM (HRDEM) with resolutions higher than 0.5 pts/m2

(Shan and Toth 2008).
This computerization of hazard mapping has significantly supported suscepti-

bility mapping at regional scale. This type of mapping is designed to provide a fast
overview of area that is affected by potentially dangerous events. This is of pri-
mary importance for regional authorities and municipalities because of the
responsibilities linked to risk management. The first step of a rational risk
assessment is to have an overview of the area potentially endangered by slope
movements such as deep-seated landslides, shallow landslides, debris flows,
rockfall, flooding and erosion. This is most commonly done by producing pre-
liminary susceptibility maps over the entire territory considered. According to
Swiss guidelines, (Lateltin 1997; Loat and Petraschek 1997), this kind of maps is
the first step of the process leading to detailed so-called ‘‘danger’’ maps used for
local planning in communities.

However, such maps do not give any detailed information on the intensity or the
frequency of occurrence of the slope movements. They only indicate the hazardous
zones for instance at a 1:25,000 scale. The methods of mapping are various and
numerous and some excellent recent overviews and recommendations published
about landslides mapping can be found in Aleotti and Chowdhury 1999,
Van Westen et al. 2006, Fell et al. 2008a, b, Cascini 2008. For floods, there is also
a large variety of approaches (Merz et al. 2007). For snow avalanches, regional
mapping was proposed by Toppe (1987) and more detailed mapping is also well
established (Ancey et al. 2006; PPR 2011).

The present paper focuses on two examples in Western Switzerland of multi-
hazards regional mapping. These examples show the variety of situations
depending on the geological and geographical conditions but also on the number
and types of data currently available. It is thus not possible to follow a unique
method in all situations but it must be adapted to each circumstance (Jaboyedoff
and Derron 2005). The proposed approach is based on deterministic simple
modelling using DEM, interpretation of data produced from HRDEM like hill-
shades and fast field surveys. It demonstrates that up to a certain level, a simple
relative hazard scale can be included in susceptibility maps. The use of all
available modern documents HRDEM, vectorized topographic maps, orthophotos
permits to obtain quite rapidly reliable results at regional scale. The limitations of
such approach are usually: (1) the lack of data to calibrate the models, (2) the
HRDEM permits to improve the quality of the results but they also induce some
problems such as handling very large datasets or introducing some artefacts in the
overly detailed topography.
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5.2 Problem Identification/Conceptual Background

GIS has greatly improved the capacity of mass movement and flood hazard
mapping and currently most such studies use a GIS framework (Carrara and
Guzzetti 1995; Chacón et al. 2006). Hence, one of the principal improvements of
these last ten years is the use of DEM and HRDEM, because it permits first to
perform modeling and second to examine the details of the morphology. It must be
observed that HRDEM often possess a resolution too high for modeling at regional
scale, necessitating that its resolution be decreased. Therefore, regional scale
mapping is now possible by relying on modeling, based only on geomorphologic
approaches using HRDEM. Of course regional mapping benefits from old docu-
ments such as geological maps, which indicate some landslide locations, topo-
graphic maps, etc. However, the availability of new digital documents (vectorized
geological maps, high resolution satellite images, series of orthophotos, etc.) is
making it possible to improve all mapping methodologies, which have become
highly dynamic. As a consequence, methods are no longer set permanently. This is
an issue when working with regional/national authorities who would like to have a
definitive methodology/product. It is possible that if the process of mapping takes
a long time, the product is already outdated when it is issued, i.e., because a new
HRDEM has been released in the mean time. Moreover at present, the coverage of
regions by one type of document is frequently not homogeneous, which makes the
creations of hazard maps more difficult.

One of the solutions for regional mapping purpose is to make cross validations
of simple models using DEM with other documents and especially field investi-
gations. Such an approach is one of the most efficient ways to obtain results
making use of modeling and new documents. It is a heuristic type of approach
mixed with a deterministic approach (Soeters and Van Westen 1996; Van Westen
et al. 2006). The limits of such an approach are linked to the quality of data and the
availability of inventories of events that are very important for calibrating the
methods.

5.3 Review of Literature

Einstein (1988) presented one of the first reviews on landslide risk analysis
including also the description of the maps needed for such purposes. Such risk
approaches have underlined the necessity to use GIS to make further analysis for
both mass movements, floods and erosion (Carrara and Guzzetti 1995; Consuegra
et al. 1995). Nowadays publications on this topic abound and frequently papers
related to GIS hazard assessments present several different methods. These
methods have been classified by Soeters and Van Westen (1996), Van Westen
et al. (2006) (see also Chacón et al. 2006) as:
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1. Inventory based approach
2. Heuristic approach
3. Statistical and probabilistic approach
4. Deterministic approach.

The great difference between hazard assessment methods for landslides versus
floods, erosion or snow avalanches is that the last tree are mainly based on
inventories, because the events are relatively frequent and repeated in an area
(Marco 1994; Gilard and Gendreau 1998; PPR 2011). While landslide mapping is
often based on poor inventories in numbers and as a consequence the potentialities
of events are often difficult to locate precisely. Furthermore the prevention of
floods and snow avalanches is more based on alerts and risk management
(McClung and Schaerer 1993; Directive 2007/60/EC), versus landslides. Never-
theless the objectives of regional hazard maps are the same; they must point out
the areas of conflict between hazardous zone and human activities (Lateltin 1997;
Loat and Petraschek 1997).

Considering the amount of existing literature, we will focus this short summary
on regional hazard mapping using DEM. For landslides, one of the first attempts to
use GIS and DEM was proposed by Carrara et al. (1978, 1991) using the concept
of slope units (Guzzetti et al. 1999); this approach is based on inventory and
statistical methods. By multivariate analysis, using a map of known landslides, a
detailed hazard zoning is then produced. Other statistical methods have been
developed that are mainly based on several multivariate regressions (Chung et al.
1995). DEM are also used in a lot of new techniques for hazard mapping, referred
to as neural networks, i.e., (Zeng-wang 2001; Pradhan and Lee 2010), fuzzy logic
(Ercanoglu and Gokceoglu 2002, 2004; Chung and Fabbri 2008) and also logistic
regression (Bai et al. 2009; Dominguez-Cuesta et al. 2009). However, these
methods are mainly applied at a regional scale, but do not introduce expert
knowledge in a simple way, except during the training step, within the method,
which is based on inventories. More simple approaches use relative ratings of
several parameters including those that derivate from DEM (Gupta et al. 1999).
Similar methods have been also applied to detect rockfall sources areas (Baillifard
et al. 2003, 2004).

For flood hazard mapping and prediction, the main recent advance is TOP-
MODEL, which makes a simple and complete simulation of the hydrological
processes that determines the discharge of rivers using a DEM (Beven and Kirkby
1979; Beven et al. 1995). Hazard assessments using TOPMODEL are closely
linked to the return periods of high discharge, flood depth and velocity (Marco
1994; De Moel et al. 2009; Van Alphen et al. 2009; Loat and Petraschek 1997;
PPR 1999). Flood depth can be modelled by shallow water approximation (Gilard
and Gendrau 1998; De Moel et al. 2009), but the heuristic approach is recom-
mended by both French and Swiss authorities (Loat and Petraschek 1997; PPR
1999), at least at the regional scale. USGS proposes a simplified physical model
TrimR2D that uses Lidar-DEM (Jones 2004). Other models using HRDEM are
based on stochastic approaches (Metzger 2003).
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The philosophy of TOPMODEL (Beven and Kirkby 1979) led to the devel-
opment of several deterministic (introducing random variables if necessary)
models for shallow landslides using a ‘‘pixel’’ stability analysis: SHALSTAB
(Montgomery and Dietrich 1994), SINMAP (Pack et al. 1998) and TRIGRS
(Baum et al. 2002).

For modeling purposes rockfall, snow avalanches and debris flows have similar
procedures; first we need to detect the source areas and second to estimate the
propagations. At regional scale, the detection of source areas is often based on
threshold angles: (1) for snow avalanches above 30� and less than 60� (McClung
and Schaerer 1993; Salm 1983) and also on the slope orientation (McClung and
Schaerer 1993); (2) for rockfall 37� was used as an example for a 10 m grid size
DEM in Dolomites (Italy) (Frattini et al. 2008) and Guzzetti et al. (2003) used 60�
with a 10 m grid size DEM in the special case of extreme glacial valley type of
Yosemite (USA). For debris-flow, the zone of initiations is more complex to detect
because it needs to estimate sediments availability, water input and slope gradient
(Rickenmann and Zimmermann 1993; Takahashi 1981). The use of flow accu-
mulation (Burrough and McDonnel 1998) permits to link slope angle and trig-
gering conditions (Rickenmann and Zimmermann 1993; Heinimann et al. 1998).

The detection of rockfall sources can be refined using structural data that makes
it possible to define the potential source areas that are affected by defined mech-
anisms by performing kinematic tests using the DEM (Willye and Mah 2004). This
can be performed using a statistical approach (Jaboyedoff et al. 2004) that count
the number of discontinuities per unit of topographic surface, or using stability
analysis for each DEM pixel (Gokceoglu et al. 2000; Günther 2003; Günther et al.
2004). Fuzzy logic has also been tested manly based on DEM deduced parameters
(Aksoy and Ercanoglu 2006).

For snow avalanches and rockfall, Toppe (1987) used the simplest evaluation,
based on the concept of shadow angle (Heim 1932; Lied 1977; Perla et al. 1980;
Evans and Hungr 1993). This states that the propagations are most probably
restricted to an area that is defined by the intersection of the DEM and a cone centred
on the source possessing an angle /� equivalent to a friction angle (Jaboyedoff and
Labiouse 2003; Evans and Hungr 1993). For snow avalanches /� can be adapted to
the morphology of the valley flanks (Lied and Bakkehoi 1980).

More advanced techniques for rockfall are using 3D trajectory simulations that
lead to regional assessment, but they require good information on the ground
(Guzzetti et al. 2002, 2003; Agliardi and Crosta 2003; Dorren et al. 2003; Frattini
et al. 2008). In order to obtain a continuous zoning Lan et al. (2007) interpolate the
trajectories results using geostatitics.

Several applications for debris-flows propagation have been proposed but very
few have been used at the regional scale (Van Westen et al. 2006). They are mostly
based on multiple flow direction (Huggel et al. 2003; Heinimann et al. 1998) or on
random walk (Gamma 2000). The runout distance of the debris-flow is either
assessed using a friction model or using a limiting angle slope (Heinimann et al.
1998).
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In addition, the geomorphologic analysis has been greatly improved in the
past ten years by the introduction of airborne Lidar-DEM, because it permits to
recognize in detail landslide features, and deep gravitational deformations (Crosta
and Agliardi 2002). The limitations and the advantages of these mapping tech-
niques are now well known, but has clearly shown its efficacy in creating and
correcting inventories (Haugerud et al. 2003; Ardizzone et al. 2007; Schultz 2004,
2007). Some attempts have been made to automatically detect zones of landslides
using roughness or dispersion of the orientation of the topography (McKean and
Roering 2004; Roering et al. 2005; Glenn et al. 2006). Morphological character-
istics can be also easily extracted from HRDEM (Chigira et al. 2004).

The potential information that can be extracted from HRDEM is probably not
yet fully used, especially for flood geomorphic analysis. The above review shows
that a combination of methods is the best way to fully use all the potentiality
offered by new techniques and data.

5.4 Study Area/Experimental Site

All the examples of susceptibility mapping presented in this paper has been taken
from work conducted by the Institute of Geomatics and Risk Analysis of the
University of Lausanne on two Swiss study areas: (1) the County of Vaud and (2)
the Bagnes Valley. This chapter introduces the main relevant features for geo-
hazards of these two areas.

5.4.1 Vaud County

The susceptibility mapping of potential slope movements (1:25,000) was
performed on the entire territory of the county of Vaud (2800 km2), western
Switzerland, for the following processes: rockfalls, shallow and deep seated
landslides, mud and debris flows (Jaboyedoff et al. 2008). The geology of the
county can be divided into three main regions (Trümpy 1980) (Fig. 5.1): (1) The
northwestern region is located within the limestones of the Jura chain. Its elevation
ranges from 400 m to approx. 2000 m a.s.l.. This area is composed of folded and
thrusted Mesozoic and Tertiary carbonates platform series, in a thin skin tectonic
style. (2) The middle part of the Vaud county belongs to the Swiss Molasse
Plateau. It corresponds to a foreland basin of Oligo-Miocene age. The rocks
are mostly poorly consolidated sandstones with some layers of shales and con-
glomerates. The topography is gently hilly with few cliffs made of competent
sandstones and some steep slopes resulting from fluvial erosion. (3) The southeast
area belongs to the Prealpine units of the Alps. Here the steep and rugged
topography ranges from 400 to more than 3000 m. The main rocks are: massive
limestone, dolomites, marls, evaporites and shales of Mesozoic and Cenozoic ages.
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The morphology of the valleys has been strongly shaped by glacial erosion and
then reworked by fluvial erosion and slope mass movements. This third domain is
by the far the most susceptible to mass movements.

5.4.2 Bagnes Valley

The Bagnes Valley (Valais county, Switzerland) has an area of 300 km2 with an
elevation between 600 m and 4200 m a.s.l. The development of the valley is rapid
because of the fast growing ski resort of Verbier. Susceptibility maps at 1:25,000
have been provided to the local authorities for the following processes: landslides,
shallow landslides, rockfall, debris flows, snow avalanches, flooding and river
overflowing. Similar methods as for the County of Vaud were used. In addition, as
the area is smaller, some methods were improved, historical event were included,
field checks were conducted and feedback from local geologists and specialists
was considered.

The Bagnes Valley is one of the only alpine valleys where the three main
paleogeographical domains of the Alps are present, i.e. Helvetic, Penninic and
Austro-Alpine (Trümpy 1980). An extremely wide variety of rocks is then present,
from some Cambrian polycyclic basements to Mesozoic-Cenozoic sedimentary
covers (Sartori et al. 2006). In the lower part of the valley (Fig. 5.2), the Helvetic
domain is mainly composed of massive limestone that can form high fractured
cliffs. The Lower Penninic unit is dominated by various schists, as on the catch-
ment area of the Merdenson where the quantity of mobilizable fine material
mobilized by debris-flow is very important (Jaboyedoff et al. 2010).

The Middle Penninic unit is mainly constituted of a complex succession of
many different types of silicate rocks, from the old polymetamorphic basements to
Permo-Trias sediments. It includes quartzites, quartzitic micaschists, various
volcano-detritic sediments, granites and several felsic intrusions, meta-gabbro and

Fig. 5.1 The canton Vaud
could be divided in three
distinct geological areas,
characterized by a different
lithology and a different
tectonic history (hillshade,
swisstopo� 2005 SIT)
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various types of amphibolitic gneisses. These lithologies are mainly outcropping
between Le Châble and Mauvoisin and over all the width of the valley, it is the
most important unit of the study area. All these rocks have been quite intensively
deformed and metamorphised. Most of them are quite massive except some
smicaschists and remnants gypsum and dolomites. It is in this tectonic unit that the
most cases of rockfall occur along the road between Lourtier and Fionnay, or in
Plamproz too (Jaboyedoff et al. 2010).

The Upper Penninic Unit in the Val de Bagnes is represented by a thick suc-
cession of calc-micashists and metamorphised ophiolites. The Borne du Diable
cliff, on the left shore of the Mauvoisin Lake, is mostly composed of schists and it
concentrates in a small areas two debris flows channels, a major rockslide, several
shallow landslides and repeated rockfalls (Jaboyedoff et al. 2010). Finally, the
Dent Blanche Nappe from the Austro-Alpine domain is mainly composed by
massive orthogneisses forming the highest peak of the area and abrupt cliffs at the
Southern end of the valley.

Fig. 5.2 Tectonic Units of the Val de Bagnes, from the geological national map. The valley cuts
the three main belts of the Alps based on the Mesozoic paleogeography, the Helvetic, the
Penninic and the Austro-Alpine belts. (modified from Thélin et al. 1994; geological national map
and hillshade: �swisstopo)
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5.5 Data and Tools

First we briefly introduce datasets used for the Vaud County and Valley of Bagnes
projects. In addition, four original software programs were developed by the
authors to draw these susceptibility maps. For three of them we only provide a short
description of their principles and functionalities. The fourth one, the numerical
model FLOW-R, is described more in detail as it has been extensively used in these
projects, as well for debris flows, rockfall, snow avalanches and flooding.

5.5.1 Data

For the County of Vaud, a 1 m resolution digital elevation model (HRDEM)
derived from aerial laser scanning was available. With a mean point density of 2
point per m2, it has an altimetric accuracy of 30 cm, with ±5 cm corresponding to
one standard deviation. According to Van Den Eeckhaut et al. (2007), two dif-
ferent hillshade maps were created from this DEM, one with a sun elevation angle
of 30� and a sun azimuth angle of 315� and another with a sun elevation angle of
30� and a sun azimuth angle of 45�. High resolution orthophotos with a ground
resolution of 0.25 or 0.5 m were also used to complete and verify the DEM
observations. National topographic maps 1:25,000 (Swisstopo), in both vector and
raster format were been used to characterize the present-day land use.

For the Bagnes Valley, a 2 m resolution DEM performed by aerial laser scanning
was used for the altitudes lower than 2000 m. As for the County of Vaud dataset, the
elevation accuracy is 30 ± 5 cm (Swisstopo 2005). For the altitudes higher than
2000 m, a 25 m DEM (MNT25, swisstopo) derived from the national maps at
1:25,000 (CN25, swisstopo) was used. The altimetric accuracy is between 2 and 5 m
in the study area, with a horizontal accuracy from 2.5 to 7.5 m (Swisstopo 2004).
National topographic maps 1:25,000 (Swisstopo), in both vector and raster format
were also used to characterize the present-day land use, in addition to maps of the
geological atlas of Switzerland at 1:25,000 in the raster format (edited by Swisstopo),
as well as geological and tectonic vector maps at 1:500,000. Finally, the whole Val de
Bagnes is covered by orthophotos (0.5 m resolution) taken in 1999 from Swisstopo.

5.5.2 Tools

5.5.2.1 HISTOFIT

HISTOFIT is an Excel�-based application that computes the most-likely Gaussian
curves in an iterative way, so that the sum of those gaussian curves fits the slope
angle frequency distribution of a topography. The fitting process is done by
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minimizing the standard error using optimisation procedures of the Excel solver.
This tool enables to fit the sum of up to 5 gaussian curves to a target function
represented here by a slope angle histogram. HISTOFIT is a freeware available at
www.unil.ch/igar.

5.5.2.2 CONEFALL

CONEFALL is a freeware that enables to model the runout area of rock fall.
The method used to simulate rockfall runout surface generalizes the shadow angle
(Fahrböschung) theory (Heim 1932; Scheidegger 1973; Evans and Hungr 1993) in
a 3D GIS environment. Using this approach, rockfall is considered as a sliding and
rolling process going down a slope with a certain average friction angle. The
model considers thus that an individual block can reach any place in the area
situated inside a cone of given aperture 90� � up (Fig. 5.3). The shadow angle
method is empirical and does not require detailed input parameters, such as
coefficient of friction and restitution coefficients.

Fig. 5.3 a Longitudinal
cross-section of the idealized
shadow angle method
showing the relationship
between /p and the
maximum runout distance
(modified from Jaboyedoff
2003). b Scheme of the
shadow angle method in 3D
implemented in the GIS-
based freeware CONEFALL
(modified from Jaboyedoff
and Labiouse 2003)
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The program requires a DEM and sources areas in a grid format. Beside the
computation and display of the runout areas, the program can compute amongst other
elements the number of contributing source pixels, the velocities of the blocs and
their kinematic energy. CONEFALL can be downloaded from www.quanterra.org
(Jaboyedoff 2003; Jaboyedoff and Labiouse 2011).

5.5.2.3 RAS

RAS is a software in development (previously at the Geological Survey of Norway
and now at the University of Lausanne) to obtain a rapid assessment of snow
avalanches and rockfall propagations over very large areas (up to more than one
billion cells DEM). It uses the same shadow angle principle than Conefall, except
that the angle of propagation is not kept constant. The angle of propagation is
estimated for each source cell in function of the topography using the alpha/beta
method of Lied and Bakkehoi (1980); (see also McClung and Schaerer 1993;
Ancey et al. 2006). RAS has been used to map the snow avalanches potential
propagation in the Bagnes Valley.

5.5.2.4 FLOW-R

The numerical model FLOW-R (Flow assessment at a Regional scale) has been
developed for regional susceptibility mapping of gravitational processes (Horton
et al. 2008). One of its strengths is to propose a choice of algorithms and an easy
customization of the method in a graphical user interface (Fig. 5.4). The model,
originally developed for debris flows, has proved to be relevant for other processes
(rockfall, floodings and avalanches).

The procedure used has two steps. First, the sources are identified on the basis
of various layers of data (e.g. DEM, land use map), and then these sources are
propagated using a probabilistic and energetic approach (Horton et al. 2008). The
volumes of the phenomena (debris-flow, rockfall etc.) are not taken into account in
this model. Both the sources identification and the propagation area assessment are
based on a regularly gridded DEM.

Source Area Identification

The source area identification is processed by combining various layers of data.
In each layer, the cells are classified according to user-defined criteria into three
possible values: possible source—excluded—ignored. The possible source option
means that according to the selected criterion, the cell is a potential source area.
The ignored option means that there is no evidence if the cell is a source or not,
so sno decision is fixed. The excluded option means that the cell cannot be a source
area. In combining the grids established for the different criteria, a cell is selected
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as a source area if it was at least once identified as a possible source but never
classified as excluded (Horton et al. 2008). Data can be either of a continuous or a
discrete nature. In the first case, the selection is based on ranges, and in the second,
on values.

Spreading Area Assessment

The spreading can be mathematically estimated by two types of algorithms:
the first ones are called flow direction algorithms and determine the path that the
debris flow will follow; the second ones determine mainly the runout distance
(Horton et al. 2008). The propagation is calculated from each source cell.
To calculate the propagation, only a grid with the source cells and a DEM are
required.

1. Flow direction algorithms
First the flow direction algorithm apportions the flow from one cell to its eight

neighbours in a way that there is always at least one cell in which the flow can run.
The probability of spreading is a function of the slope angle and the persistence,
which is a weighting of the directions according to the previous direction, allowing
an integration of the notion of inertia (Gamma 2000). It is, however, not a prob-
ability in a strict mathematical sense, but it has to be interpreted in a qualitative
way (Huggel et al. 2003).

The slope has a leading effect on the debris flow path. Various flow direction
algorithms have been integrated and evaluated. All these algorithms are imple-
mented in FLOW-R (Horton et al. 2008):

• D8: assigns the flow to only one adjacent cell. It is limited to directions of 45�
and is very sensitive to small errors (Desmet and Govers 1996; Tarboton 1997;
Erskine et al. 2006; Huggel et al. 2003; Endreny and Wood 2003).

• D?: assigns the flow to one or two adjacent cells (Tarboton 1997).

Fig. 5.4 Graphical user interface of the Flow-R model
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• q8: stochastic method which gives a probability to every cell having an altitude
inferior to the central cell. The path is randomly determined afterwards,
producing a single flow direction (Fairfield and Leymarie 1991).

• Multiple flow direction: based on the previous method and considers the
spreading over every non-zero cell in a continuous, and not random, way (Quinn
et al. 1991).

• Multiple flow direction modified: an exponent of 1.1 was added by Freeman
(1991).

• Parametric flow direction: a variable exponent was added to control the
spreading (Holmgren 1994). The higher is the exponent, the more convergent
the flow becomes (Eq. 5.1).

fSi ¼ ðtan biÞx
P8

j¼1
ðtan biÞx

for all tan b[ 0 ð5:1Þ

where i, j = flow directions (1 to 8), fsi = flow proportion in direction i, tan
bi = slope gradient indirection as defined above and x = variable exponent.

A weighting of the directions is included to take into account the persistence of
the debris flow. Based on Gamma (2000), the weight is a function of the change in
angle from the last flow direction (Eq. 5.2).

fpi ¼W0 if ai ¼ 0�

fpi ¼W45 if ai ¼ 45�

fpi ¼W90 if ai ¼ 90�

fpi ¼W135 if ai ¼ 135�

fpi ¼ 0 if ai ¼ 180�

8
>>>><

>>>>:

ð5:2Þ

where i = flow directions (1 to 8), fpi = flow proportion in direction i, ai = angle
between the previous direction and the direction from the central cell to cell
i, w0,45,90,135 = weights for the corresponding change in direction.

Resulting probabilities are the combination of the slope-related algorithm and
the persistence (Eq. 5.3).

fi ¼ fsi � fpi

P8

j¼1
fsj � fpj

� f0 ð5:3Þ

where i, j = flow directions (1 to 8), fi = total flow proportion in direction i,
fsi = flow proportion from the slope-related algorithm, fpi = flow proportion from
the persistence, f0 = previously determined flow proportion of the central cell.

Each cell with a probability more than a minimal threshold is then included in the
path. For the spreading assessment of a source cell, the calculation thus integrates
different paths or divergences in one run (Fig. 5.5). There is no need for random
multiple runs as the field of all probabilities is covered (Horton et al. 2008).
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2. Runout distance calculation
The runout distance algorithms are energy-based calculations that define if a

part of the flow can potentially reach the next cell of the DEM. Thus, they control
the distance reached by the debris flow and in addition reduce the divergence.
Therefore, the energy-based algorithms also influence the flow direction, as each
cell that cannot be reached has a probability set to zero.

In a first regional assessment, the source mass is unknown. Thus, runout dis-
tance calculation is based on a unit energy balance (Eq. 5.4), a loss function and
eventually a maximum threshold. This approach does not aim to represent exact
physical processes, but to remain realistic (Horton et al. 2008).

Ei
kin ¼ Ei�1

kin þ DEi
pot � Ei

loss ð5:4Þ

where i = time step, Ekin = kinetic energy, DEpot = change in potential energy
and Eloss = loss.

The energy loss can be of two different kinds. The first case is a two parameters
friction model (Perla et al. 1980) and the second is a constant loss characterized by an
average slope angle along the path. The maximum threshold aims to limit the energy
to reasonable values, mostly for the constant loss approach (Horton et al. 2008).

Figure 5.6 illustrates the runout distance calculation principles.

(a) At the start, a source has a certain unit of potential energy (without considering
the volume) regarding its adjacent cells downhill

(b) During propagation, part of this energy is lost in friction
(c) The kinetic energy is increasing and may reach the maximum threshold,

leading to an energy line having the same shape as the terrain
(d) The debris flow stops when the energy becomes null.

Results

The spreading areas of all sources are combined by keeping the maximum or the
sum of the probability values. There are three outputs of the model: the sources,
the propagation probabilities and the propagation kinetic energy (Fig. 5.7).

Fig. 5.5 Illustration of the conservative spreading. After Horton et al. (2008)
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5.6 Methodology

5.6.1 Landslide Inventory and Susceptibility

A landslide inventory is frequently the first step in landslide hazard identification.
Several authors have outlined the importance of a uniform and well documented
database to better define the potential unstable areas (Guzzetti et al. 2000;
Malamud et al. 2004; Galli et al. 2008). Nowadays, the availability of high resolution
digital data such as Aerial Laser Scanning digital elevation model, orthophotos and
land use maps has made detailed mapping of geomorphological features possible
(Chigira et al. 2004; Van Den Eeckhaut et al. 2007; Kasai et al. 2009).

Fig. 5.6 Illustration of the
runout distance calculation
principles. After Horton et al.
(2008)
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5.6.1.1 Method

In both cases, Vaud County and Bagnes valley, the following method (Fig. 5.8)
has been used to develop landslide (shallow and deep) inventories:

(1) A visual analysis of high resolution DEM (hillshade and 3D viewing) and
orthophotos to provide the main relevant geomorphological features (trench,
scars, slope deposits, undulation, etc.)

(2) An analysis of the 1:25,000 geological maps (www.swisstopo.ch) to include
the sensitivity of lithologies to landslide and structural elements such as fault
systems and tectonic lines

(3) An analysis of the slope angle map to identify active erosion areas, morpho-
logical changes and asses the activity of some mass movements

(4) The integration of registered historical events and fieldwork observations.

All the information related to the landslide inventory was stored in a GIS
database. In order to improve the objectivity of the methodology, the database
includes geomorphological criteria that have allowed the identification of the
unstable area. The database contains five main attributes describing the charac-
teristic of each detected landslide area:

Fig. 5.7 Model outputs illustrations: sources, kinetic energy and probabilities (photos from
GoogleEarthTM)
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(1) The document(s) used for its detection
(2) Relevant geomorphological features
(3) Main processes leading to the instability (pure gravity-driven, fluvial erosion

of the toe, etc.)
(4) Relative age (‘‘old’’ when the geomorphological feature is smoothed and

‘‘recent’’ where the geomorphological feature of the landslide could be clearly
differentiated compared of the surrounding topography)

(5) Depth (shallow: 0–4 m, medium: 4–10 m, deep [10 m or unknown).

The uncertainty about the real extension and the present-day activity was also
qualitatively assessed using descriptive terms (verified, probable and undeter-
mined). When at least two geomorphological evidences are detected and reliable
(landslide scar and deposit or landslide scar and morphological depression, etc.)
the landslide polygon is considered as ‘‘verified or proved’’. When morphological
evidences are less distinct, with blur limits, the landslide polygon is considered as
‘‘probable or suspected’’. If the landslide area has been delimited in previous
inventory maps or in the geological map but the HRDEM and the orthophoto
observations do not point out any geomorphological evidence, the attribute
‘‘undetermined’’ was employed.

The limiting factor in interpreting HRDEM hillshade 2D and its 3D visualization
depends principally on the data artefacts and the application of intense human
reworked areas. Artefacts are mostly related to the occurrence of locally very dense
vegetation cover or occurrence of clouds during the data acquisition as well as some
steep rugged topography that truncates the laser signal during the data acquisition.
Human activities (urban areas, roads or agricultures) disturb the original surface and

Fig. 5.8 Flowchart of the landslide inventory map creation
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remove the typical features associated with landsliding, in particular in case of
ancient or dormant landslide. For these reasons, the landslide detection in strongly
human–modified area needs to be supported by direct field investigations.

5.6.2 Shallow Landslides

The inventory provides information only on landslides that already occurred.
To assess the potential extension of shallow instabilities and detect critical areas
without any entry in the inventory, the SINMAP model (Pack et al. 1998) was
used. This GIS-based approach allows a rapid and objective slope stability eval-
uation through a large territory based on relatively coarse information. SINMAP is
limited to the detection of ‘‘starting zones’’ of shallow landslides (Fig. 5.9). It does
not compute any runout. However, it is possible to couple with the propagation
part of the models FLOW-R (Horton et al. 2008).

5.6.2.1 Methodology

The SINMAP (Stability INdex MAPping) methodology is based on the infinite
slope stability model (Montgomery and Dietrich 1994) coupled with a steady state
hydrological model, where the computed depth of saturated soil must be sufficient
to sustain a lateral discharge proportional to the specific catchment area (Pack et al.
1998). The topographic wetness index used in SINMAP is a simplified version of
the classical hydrological model as TOPMODEL (Beven and Kirby 1979).
The main difference is that SINMAP does not account for a decreasing of the
hydraulic conductivity with depth but assumes a uniform conductivity of the soil
mantel (Pack et al. 1998). The factor of safety formulation became the following:

Fig. 5.9 Schematic representation of areas detected by the model SINMAP. Only the initiation
zones are identified, while zones of accumulations are not detected (modified after Jaboyedoff
et al. 2008)
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FS ¼ C0 þ cos2 h 1� wr½ � tan /
sin h cos h

ð5:5Þ

Where C0 = dimensionless cohesion coefficient (integrating both soil and root
cohesion and independent of soil thickness), h = slope angle, / ¼ friction angle,
r = water to soil density ratio and w = wetness index.

In Eq. 5.5 the wetness index defined for a given specific catchment area is
represented by the ratio between the steady state recharge R [m/hr] and the soil
transmissivity [m2/hr], and is always equal or less than 1:

w ¼ Min
Ra

T sin h
; 1

� �

ð5:6Þ

Where a = Specific catchment area and h = slope angle
SINMAP allows entering variables uncertainties through the specification of

lower and upper bounds for hydrological and geotechnical parameters adopting
uniform distribution. These introduce a probabilistic approach in the calculation of
the factor of safety that allows proposing different possible scenarios. The derived
dimensionless susceptibility index (SI) is given by Pack et al. (1998):

SI ¼ C0 þ cos h 1�min Ra
T sin h ; 1
� �

r
� �

tan /

sin h
ð5:7Þ

Where C0 = dimensionless cohesion coefficient, h = slope angle, / = friction
angle, r = water to soil density ratio, a = specific catchment area, R/T = ratio
corresponding to the steady state recharge relative to the effective rainfall quantity
and the soil transmissivity.

The worst scenario is defined when tan /;C parameters are close of the lower bound
and R/T ratio close the upper bound (complete saturation). Areas under this worst
case scenario, where FS is greater than 1, could be defined as unconditionally stable
(SI [ 1). Inversely, the best scenario is defined when the values for the parameters
tan /, C are close to the upper bounds and for the ratio R/T are minimal. Areas under
this best case scenario, where FS is lower than 1, could be defined as unconditionally
unstable (SI = 0). In between, different intermediate classes can be defined.
Following Pack et al. (1998), six susceptibility classes are defined (Fig. 5.10).

5.6.2.2 Application of the SINMAP Model

The input data set for SINMAP consists of the DEM, the cohesion and the friction
angle for the mechanical proprieties of the soil and the ratio R/T describing the
hydrological conditions. The geomechanical parameter introduced in the model
mainly emanate from the literature (Morrisey et al. 2001; Lan 2004; Salciarini
et al. 2006) and from punctual in situ analyses (CPT and VAN test). The R
(Recharge) parameter is more difficult to calculate. Hence, in our study, it was
assumed to be the effective precipitation for 24 h rainfall with a return period of
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100 years. The T (Transmissivity) parameter was derived from the hydraulic
conductivity (minimal and maximal) of the different lithologies. These values have
been chosen in order to give a maximal extension of the potential unstable area for
rare event situations (Fig. 5.11).

The final stability map was compiled following an iterative approach
(Fig. 5.11). In the first step of the calculation, the applied geomechanical and
hydrological parameters were deduced based on the available literature and
adapted to the geological and land use conditions. A first susceptibility map was
created and compared to the location of the well-know shallow instability. In a
second step, the geomechanical parameters were adjusted for each lithology until
the stability fit the know landslide areas. During this adjustment process, all the
parameters remained in the range of values suggested in the literature.

5.6.3 Debris Flows

5.6.3.1 Introduction

Physical modelling of debris flows in the framework of regional mapping is difficult
because of their complexity and the variability of controlling factors. GIS-based
approaches associating an automatic detection of the source areas to a simple
estimation of the debris flow propagation provide a substantial basis for a preliminary

Fig. 5.10 Representation of the stability index in an Area-Slope space defining the different
stability classes (modified after Pack et al. 1998)
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susceptibility assessment at regional scale. Figure 5.12 illustrates the principles of
the methods used in both case studies, the Vaud County and the Bagnes Valley.

5.6.3.2 Source Areas Identification

According to Rickenmann and Zimmermann (1993) and Takahashi (1981), three
criteria in a critical combination are relevant for a debris flow initiation: sediment
availability, water input and slope gradient. As not all the lithologies produce the
same amount of sediments, a detailed study of the area was conducted by means of
a geological or lithological map. The upslope contributing area can account for
water input. The slope gradient is a determining factor in triggering of debris flows
(Takahashi 1981). Most debris flows occur from terrain with a slope higher than
15� (Rickenmann and Zimmermann 1993; Takahashi 1981). Some initiation
thresholds of other factors can be expressed as a relation with the slope angle, as
for the contributive area. Such a relationship was first defined by Heinimann et al.
(1998), and a second one was assessed on the basis of the 1987 observations of
debris flows made by Rickenmann and Zimmermann (1993) after the extreme
rainstorms of 1987. The 1987 events in Switzerland could be considered as
extraordinary, so it may be advisable to distinguish the obtained limits as an
approximation for different probabilities of occurrence (Horton et al. 2008). Thus,
two new limiting curves were established: the first one for rare events, based on the
Heinimann et al. (1998) limit, and the second one for extreme events, based on
Rickenmann and Zimmermann (1993) observations (Fig. 5.13). Both curves are
bounded by the theoretical 15� limit gradient. Every point above a curve is con-
sidered as critical. The new limit for extreme events is given by Eq. 5.8:

Fig. 5.11 Flow chart
describing the input data and
the iterative procedure used
for construction of the final
susceptibility map
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tan blim ¼ 0:31 � S�0:15
UA if SUA\2:5km2

tan blim ¼ 0:26 if SUA� 2:5km2

�

ð5:8Þ

where tanb lim = slope gradient, SUA = surface of the upslope contributing area.
Another potential morphological characteristic is the curvature, as debris flows

are found where the slope is concave (Delmonaco et al. 2003; Wieczorek et al.
1997). To allow an identification of gullies, the plan curvature, which is perpen-
dicular to the steepest slope, was considered. The contributing area, the slope and
the curvature are morphological data processed on the DEM.

Other data can be added to improve the source area accuracy, like a geological
map or a landuse map. Those layers help identifying the sources previously
selected that are not accurate due to another criterion that is not morphological.

5.6.3.3 Spreading Area Assessment

In FLOW-R, several spreading algorithms and parameters can be selected for
debris flows to characterize the flow direction. Holmgren’s algorithm was used in
both applications because it is a good compromise between highly dispersive and
overly channelised flows.

Fig. 5.12 Flow chart describing the input data and the iterative procedure used for construction
of the final susceptibility map
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For the energetic part of the propagation both the two parameters friction model
and the constant loss function can be used for debris flow spreading.

5.6.4 Rockfall

A major issue in mapping rockfall hazard at regional scale is the identification of
potential rockfall sources. Nowadays, high resolution topographic data (aerial/
airborne LiDAR) can account for realistic landscape details even at a regional
scale. For the preliminary assessment of rockfall runout areas, the integration of
empirical or process-based methods in GIS environment have shown very prom-
ising results (Van Dijke and Van Westen 1990).

5.6.4.1 Identification of Potential Rockfall Source Areas

Potential rockfall initiation areas are identified by analysing the slope angle
distribution (SAD) of the topography. A main factor required for the detachment
of boulders is a slope greater than the frictional angle of the rock mass, hence,
a steep slope (Heim 1932). According to Strahler (1950), the slope angle frequency
distribution of a morphological unit (MU) of the relief varies randomly around its
mean slope angle. The SAD expresses a range of slope angle values that are
characteristic for a given morphology and rock type. The SAD can therefore
be decomposed into several Gaussian slope angle frequency distributions that
are characteristic of a specific morphological unit (GDMU) (Fig. 5.14a). In an
Alpine topography for example, at least four morphological units (MUs) can be
encountered:

Fig. 5.13 Built gradient
thresholds with regard to the
upslope area for rare and
extreme events. After
Heinimann et al. (1998),
Rickenmann and
Zimmermann (1993), Horton
et al. (2008)
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a. Low slope angles units corresponding to the plains formed by fluvio-glacial
deposits.

b. Mid/gentle slope angles units featuring the lower part of the hillslope, called
here ’footslopes’, and characterized by alluvial fans (debris flow) and landslides
deposits.

c. Steep slope angles units corresponding to the valley flanks covered with till
deposits or consisted of rock outcrops lightly covered with vegetation

d. Very steep slope angle units representing the cliff faces, outcropping areas and
bare rock surfaces.

The sum of those Gaussian distribution must reproduce the SAD. The standard
error can be minimized by using best-fitting methods, such as HISTOFIT
(cf. Chapter Tools). Initial parameters can be defined according to the shape of the
SAD, where the unsteadiness in the distribution tends to reveal a MU.

5.6.4.2 GDMU Interpretation

The slope angle distribution of each Gaussian curve in the SAD analysis can be
seen as typical of the topography under consideration. Their mode can be con-
sidered as an average apparent slope angle of stability of their corresponding MU.
Therefore, the SAD analysis and its decomposition in GDMU can be interpreted as
follows (Fig. 5.14b):

1. A threshold angle is set at the intersection (noted A) between the two steepest
MUs: the GDMUs ‘‘Steep slopes’’ and ‘‘Cliffs’’ (Rouiller et al. 1998). Above
this slope angle, the cliffs MU become dominant over the steep slopes MU and
can be potentially considered as rockfall sources. This is done independently of
the local lithology and the land cover and includes therefore rocky slope surface
lightly covered with vegetation.

2. There are some cases where the GDMU cliffs are missing within the SAD
analysis. The highest GDMU is thus referred to the rocky steep slopes MU.

3. In very rugged landscape, such as the Alpine topography, the SAD analysis can
reveal two GDMU cliffs. In this case, the lower value GDMU cliff is used to
assess the threshold slope angle (see point 1).

4. When geo-thematic information (e.g. cliffs map, rocky outcrop map) is avail-
able, the SAD analysis can provide a second threshold angle taken at the mode
of the GDMU steep slopes. Hence, cliffs zones and rocky outcropping areas
lying above this threshold slope angle can be assumed as being above the
average, often close to 35�, that is therefore more prone to be considered as
potential rockfall source areas because these slopes will tend to readjust toward
the average.

The SAD analysis provides finally two criteria to identify potential rockfall
sources according to the morphology of the area under study. More details about
this approach can be found in Loye et al. (2009).
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5.6.4.3 Assessment of the Maximum Runout Length

The maximum rockfall runout zones are estimated by a simple approach inspired
from the shadow angle (Fahrböschung) method (Heim 1932) and generalized in
3D under the form of a cone. This model considers that an individual falling
rock slides and rolls down the slope with a certain average friction angle /p

(Scheidegger 1973; Evans and Hungr 1993). The angle of aperture ODF of the
cone 90� - /p then determines the runout and is estimated as follows:

Fig. 5.14 a Example of the slope angle distribution of an undisturbed scree slope (delineated in
white); The SAD shows that the slope angle values follow a normal distribution around an
average close to 35� (orthophoto, swisstopo� 2005 SIT). b Example of the SAD of an alpine
Valley featuring GDMU decomposition; a indicates the threshold angle above which the slope
belongs dominantly to the cliffs and are therefore considered as potential rockfall source area; b
indicates the mode of GDMU steep slopes. The two cliffs units represent two families of bare
rock cliff faces lithologically distinct (Modified after Loye et al. 2009)
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/p ¼ arctan
Hb

Xb

� �

ð5:9Þ

where Hb is the height difference between the source area and the furthest runout reach
and Xb the maximum runout length defined horizontally. The angle of aperture is
defined empirically based on different aspects, such as information contained in the
literature (Toppe 1987; Jaboyedoff and Labiouse 2003), comparison with known
rockfall events taken from aerial photos and historical records or fieldwork. The results
of several studies give an angle /p ranging between 28.5� and 35� (Crosta et al. 2001).
For the lateral dispersion of the rockfall runout area, experience has shown that rockfall
trajectories can be restricted to 15� from one side to the other of the greater slope
gradient (Crosta and Agliardi 2003). As this approach doesn’t require specific input
parameters, such as coefficient of friction and bounding velocity, but is based exclu-
sively on the topography (DEM), the cone angle method implemented in a 3D GIS
environment is very convenient to be applied for large scale runout assessment. The
runout area is then given as the maximum propagation zones that a boulder can reach.
This first estimation can be further corrected for specific topography. For instance,
source zones located high in steep mountain cliffs that overhang alluvial plains tend to
model a maximum runout length that goes too far compared to field observations.
Indeed, boulders reaching flat zones tend to greatly reduce their energy when the talus
slope gets flat. Correction for valley-bottom can be then added to the previous con-
sideration for particular topographical configuration (Fig. 5.15).

5.6.5 Snow Avalanches

To assess the susceptibility to snow avalanche, a two steps method was used:
(1) Detection of the sources areas, (2) assessment of propagation zones. These
avalanche susceptibility maps aim to provide a first overview of existing or

Fig. 5.15 Reduction of the length of the Fahrböschung line according to the rapid change of
slope when boulders reach the bottom of the valley
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potential danger without any information on the intensity or the probability of
occurrence of the phenomenon.

5.6.5.1 Source Areas Identification

For the detection of the sources areas, three criteria are used: (1) the slope, (2) the
elevation, (3) the landuse, (4) source surface area. The slope is the most important
factor to define avalanches source areas. In fact, 90% of the avalanches take place
in slopes between 30� and 50� (Salm 1983; McClung and Schaerer 1993; Lied and
Kristensen 2003). Depending of the region, there is a lower elevation that provide
a lower limit to the occurrence of source areas. This limit is located at 1’100
meters above sea-level for the Swiss Alps (Gruber and Bartelt 2007). A landuse
digital cover is available for the whole Swiss territory. For snow avalanches, we
are interested in forest areas which influence their triggering. Depending on the
goal of the study, source areas in the forested zones may or may not be ignored.
The DEM resolution is another important limiting factor that defines the minimum
area that can be detected for the avalanche sources. If the DEM has a high reso-
lution, than this minimum area may be too small to be significant; a filter must
then be applied to ignore these areas. In our case study in the Bagnes Valley, a
morphological filter (opening) was applied.

5.6.5.2 Propagation Zones Assessment

Two models were used to estimate the avalanches propagation areas. One is
based on a alpha–beta method (RAS, Sect. 5.5.2.3) and the other one on a Perla
multiple-flows model (FLOW-R, Sect. 5.5.2.4).

RAS (Alpha–Beta Methodology)

The propagation is defined by a cone angle of propagation, alpha, using the
software RAS. Alpha is automatically calculated for each source cell of the DEM
using the alpha–beta method of Lied and Bakkehoi (1980). To estimate the
propagation area, the alpha–beta relationship (Eq. 5.10) must be calibrated using
an inventory of events (using the maximum propagations of avalanches).

a ¼ m� bþ n ð5:10Þ
Several sets of empirical coefficients were tested and the differences in the

final results were negligible. Finally the coefficients of Adjel (1996) for snow
avalanches in the Haute-Tarrentaise (French Alps) were used because of the
geographical proximity with our area and the large number of observations utilized
(alpha = 0.82*beta ? 2.82; N = 168). A minimum angle for alpha of 18� was
used to avoid unrealistic long propagations.
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FLOW-R

The details of FLOW-R, a multiple flow model with an energetic component, are
described in Sect. 5.5.2.4. The main difference with the model RAS is that FLOW-R
is much more sensitive to the topography. This has advantages, i.e. avoiding some
overestimated lateral spreading, and some drawbacks, i.e. flat bottom valleys where
it does not spread enough. Both models were used in the Bagnes Valley; both are very
rough compared to the complexity of a snow avalanche and none of them allows the
estimation of dynamic pressures, but they can be applied to large regions.

5.6.5.3 Avalanche Susceptibility Mapping

The susceptibility map of the Bagnes Valley was drawn combining the results of
the two models: FLOW-R and RAS. The FLOW-R model tends to simulate the
common avalanches (with a short return period) and the RAS model the extreme
propagations. We chose to classify the susceptibility mapping in two categories,
probable and potential. The Table 5.1 shows how we classify those two categories.

5.6.6 Flooding and Erosion

The goal of this chapter is to clarify the methods used to develop an indicative
mapping of flood hazards on the territory of an Alpine valley. The study focuses on
the main waterway and tributary streams crossing the valley and its purpose is to
identify the areas subject to flooding. The proposed method is based on five
distinct stages summarized in Fig. 5.16.

The fives stages allow to identify the potential sources of overflow and the
model FLOW-R allows to simulate the propagation of those.

5.6.6.1 GIS Analysis

The analysis of geographical documents allows the characterization of the alluvial
geomorphology of the waterways present in the studied area. GIS is extremely
useful for support, which can improve the detection of possible source of

Table 5.1 Susceptibility area classification methodology for snow avalanches

Susceptibility type Propagation area Known event

1. Probable Flow-R and RAS Or Yes
2. Potential Flow-R or RAS And No
3. Not susceptible No one and No
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overflows. A high-resolution Digital Elevation Model allows the calculation of the
flow direction, which helps to identify all the waterways that must be investigated
next steps of the analysis. Using aerial photography observations, it is possible
to identify eroded areas that may provide material which can dam the river.
The geological maps are also an important indicator of potential erosion areas.
A field survey is necessary to complete and validate the preliminary observations.
Different factors could be extracted from the GIS analysis:

• alluvial plains and the different levels of alluvial terraces which correspond to
different levels that can be reached by potential outburst;

• an assessment of bridge capacity is conducted.
• identify areas of bank erosion representing potentially mobilized material and

areas of possible collapse;
• known elements, (i.e.: geological map, student works, and cadastre of events).

The inventory of past events can improve the mapping and must be considered
in the analysis. In fact, historical information is usually a good indicator for
mapping hazard areas. It provides additional information on possible events and
improves the evaluation of hazard.

5.6.6.2 Field Work

Field work is a necessary step to confirm or disprove the observations made during
the GIS analysis. Moreover, it helps identifying pathologies of the hydrographical
network, such as erosion banks, mobilizable material (trees with an eroded base,
bank erosion, landslides along the waterway, important sediments deposits, etc.) or
indices of past floods. These elements are used to calibrate the model FLOW-R
described below.

Fig. 5.16 Stages contributing to the development of the analysis
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5.6.6.3 FLOW-R Modelling

The model FLOW-R (Horton et al. 2008) is adapted to hydrological flows without
material. It allows evaluating the propagation of flood. The location of sources of
potential overflows areas is given according to two criteria:

• at the top of the channel for tributary streams and for the main river
• along the streams for simulation of dams.

Regarding the identification of the source areas of potential overflows, various
criteria are chosen:

• the presence of a low bridge;
• the narrowing of the waterway;
• an obstacle to the flow;
• banks with a low level;
• the visual presence of past overflows;
• mobilized materials in abundance obstructing the waterway or threatening to

obstruct it.

The algorithm used for spreading the water is the multiple flow direction
algorithm, which makes possible to limit the lateral spreading by the topography
only. Regarding the energy algorithm, the chosen approach is a linear decrease of
the spreading energy.

5.6.6.4 Calculation of Maximum Discharge

The model Hydriff (OFEG 2003) of the Swiss Confederation is used to estimate
the maximum discharge. It estimates the discharge based on the size of the
watershed, the length of the hydrographical network and a growth factor,
depending the considered return period and the catchment area deduced using
standard GIS functions. This method is derived from multi-scale methods and it is
applied for watersheds of medium size (1–500 km2).

5.6.6.5 Record of Alluvial Traces

A geomorphlogical analysis of the alluvial terraces is necessary in order to assess
the historic levels of the river is taken into account in hazard mapping as, infra-
structures present in the major and minor stream bed can be potentially threatened
by rising waters. A distinction is made between the three following levels: sedi-
mentary deposits from the river, lower terraces (representing the first terrace level
above the river) and the upper terraces (representing the second terrace level above
the river). The data used for this analysis are aerial photos and geological maps.
The result of the analysis is integrated in the susceptibility map.
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5.6.6.6 Classes and Scenarios

To provide a focused analysis, two classes for the assessing hazard are defined.
The first class is related to the propagation resulting from a simulation in the
channel. The second class is related to the propagation simulated using a chosen
source outside the channel, simulating a jam.

The methods described in this chapter are applied to four distinct geographical
sections (Table 5.2), namely:

• tributary streams
• the threat of jams in tributary streams;
• the main river
• the threat of jams in the main river.

5.7 Results

5.7.1 Landslide Inventory Map

5.7.1.1 County of Vaud

In the county of Vaud, a former instability database was created in the 1990s by
aerial photo analysis and field investigation (Noverraz 1995). This database con-
tains 6455 landslides differentiated according to their depth (shallow, medium and
deep landslides) and their activity (geomorphological evidences). The first step of
the inventory updating was to check and redraw landslide perimeters based on the
high-resolution DEM (HRDEM) and digital orthophotos. The second step was to
identify and redraws instabilities indicated by the geological maps (Geological
Atlas of Switzerland 1:25,000; www.swisstopo.ch) on the HRDEM. Finally,
the HRDEM of the entire county was re-examined in order to identify new
instabilities.

Finally the new database contains 8501 slope instabilities. The mapped insta-
bilities cover around the 8% of the study area which is close to the 6% obtained for
the whole Switzerland by Lateltin et al. (1997). 2718 landslides were identified as
not correctly delimited on the previous inventory and they were redrawn based on
the new HRDEM. For 608 landslides described in the former inventories, the
HRDEM analysis could not provide any valuable delimitation (Fig. 5.17). This
was usually the case for landslides in human-modified slopes or near urban centres.
For these landslides, a distinctive specification in the attribute table has been
introduced. The analysis of the available geological maps has made possible
to identify 909 new instabilities. Most of these instabilities, identified during
fieldwork, affect only small areas (\10,000 m2) along river banks. During the

5 Preliminary Slope Mass Movement Susceptibility Mapping 139

http://www.swisstopo.ch


T
ab

le
5.

2
D

if
fe

re
nt

sc
en

ar
io

s
an

al
yz

ed
an

d
th

ei
r

ch
ar

ac
te

ri
st

ic
s

fo
r

fl
oo

ds
an

d
er

os
io

n

T
yp

e
of

ar
ea

T
ri

bu
ta

ry
st

re
am

Ja
m

in
a

tr
ib

ut
ar

y
st

re
am

M
ai

n
ri

ve
r

Ja
m

in
th

e
m

ai
n

ri
ve

r

T
yp

e ev
al

ua
ti

on
F

lo
w

-R
m

od
el

li
ng

an
d

ge
od

at
a

an
al

ys
is

,
F

ie
ld

w
or

k

F
ie

ld
w

or
k

F
lo

w
-R

to
m

od
el

th
e

sp
re

ad
F

lo
w

-R
m

od
el

li
ng

an
d

ge
od

at
a

an
al

ys
is

,
F

ie
ld

w
or

k

F
ie

ld
w

or
k

F
lo

w
-R

to
m

od
el

th
e

sp
re

ad

D
oc

um
en

ts
an

d
su

pp
or

t
G

eo
gr

ap
hi

ca
l

da
ta

,
ge

ol
og

ic
al

m
ap

G
eo

gr
ap

hi
ca

l
m

at
er

ia
l,

ge
ol

og
ic

al
m

ap
,

ex
is

ti
ng

ha
za

rd
m

ap
G

eo
gr

ap
hi

ca
l

da
ta

,
ge

ol
og

ic
al

m
ap

G
eo

gr
ap

hi
ca

l
m

at
er

ia
l,

ge
ol

og
ic

al
m

ap
,

ex
is

ti
ng

ha
za

rd
m

ap
C

ri
te

ri
a

–
B

ri
dg

es
,

sh
ri

nk
ag

e,
ac

cu
m

ul
at

io
n

of
m

at
er

ia
l

in
th

e
st

re
am

,
ba

rr
ie

rs
to

th
e

fl
ow

,
lo

w
ba

nk
s

–
B

ri
dg

es
,

sh
ri

nk
ag

e,
ac

cu
m

ul
at

io
n

of
m

at
er

ia
l

in
th

e
st

re
am

,
ba

rr
ie

rs
to

th
e

fl
ow

,
lo

w
ba

nk
s

S
ou

rc
e

ar
ea

s
S

ou
rc

e
of

th
e

ri
ve

r,
in

th
e

dr
ai

na
ge

ch
an

ne
l

O
ve

rfl
ow

ov
er

th
e

to
p

of
th

e
ba

nk
S

ou
rc

e
of

th
e

ri
ve

r
O

ve
rfl

ow
ov

er
th

e
to

p
of

th
e

ba
nk

C
la

ss
P

ro
ba

bl
e

P
ot

en
ti

al
P

ro
ba

bl
e

P
ot

en
ti

al

140 M. Jaboyedoff et al.



reanalysis of the entire Vaud County, 812 new instabilities were identified only
using the HRDEM and the orthophotos. Most of these new detected instabilities
were identified in the Plateau area (457 new instabilities) and in the Jura regions
(183 new instabilities).

Fig. 5.17 Summary of the main results of the updating the landslide inventory map. a Origin
of the different landslides listed in the database (hillshade, swisstopo� 2005 SIT). b Results of
the revision of the Noverraz (1995) inventory
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5.7.1.2 Valley of Bagnes

Contrary to the County of Vaud, no pre-existing landslide database was available
for this region. The landslide inventory map of the Val de Bagnes was thus created
based on the Geological Atlas of Switzerland 1:25,000 (www.swisstopo.ch), the
HRDEM, the DEM25 and orthophotos. As the area is relatively small (300 km2),
some fieldwork was conducted to check this inventory.

Based on the geological maps, 13 shallow landslides and 132 medium land-
slides were inventoried, representing almost 40% of the total number of landslides.
Among them, 42 cannot be confirmed by geomorphological evidences on DEM or
field investigations.

By comparing HRDEM, DEM25 and orthophotos, 21 new shallow landslides
and 98 new medium landslides were detected (34% of the total). 67% of the
landslides detected on the geological maps were updated based on these other
documents. The 15 deep-seated slope gravitational deformations (DSGSD) were
inventoried only based on DEM analysis.

Field investigations were consequently performed in order to verify the
document analysis and to complete the inventory. At the end, each landslide was
classed as ‘‘proved’’ or ‘‘suspected’’, according to the criteria explained in the
Sect. 5.6.1.1.

Finally, 15 DSGSD, 245 medium and 102 shallow landslides were identified in
the Val de Bagnes.

5.7.2 Susceptibility Map of Shallow Landslides

5.7.2.1 Vaud County

The input dataset of SINMAP consists of the DEM and a few parameters quan-
tifying the hydrological and geotechnical conditions. Due to the large area to be
mapped, the LiDAR DEM was re-sampled into a grid of 15 x 15 m cell size. The
study area was divided into three main zones corresponding to the 3 main tectonic
subdivisions (Jura, Plateau and Alps). The lithology variation was introduced by
the mean of the ‘‘Geotype maps’’ covering the entire Vaud area (Turberg et al.
2008). The Geotype map is a kind of lithological—genetic map in which the
formations with similar rock or soil proprieties are merged together.

For the hydrological parameters, the effective precipitation for 24 h rainfall
with a return period of 100 years was estimated for the different region based on
the Hydrological Atlas of Switzerland (2006). The model calibration was per-
formed based on pre-existing inventory maps (Noverraz 1995) and orthophoto
interpretations. SINMAP model was originally developed to model translational
landslides in a hilly topography. Its direct application to a more rugged topography
like the Alps is not perfect. In fact, for steep mountain slope the SI will be very
low even if the effective soil thickness is too thin to develop a landslide-type
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instability. To avoid this problem, all the bedrock outcrops were delimited with the
1:25,000 topographic vector map and the source area identified during the rock
susceptibility map. In these zones the geomechanical parameter, the transmissivity
and the recharge parameters were adapted to keep the SI high. The final raster map
was cleaned and smoothed of small scale artefacts using a majority filter (Arc-
GIS�) based on four contiguous neighbourhoods.

According to the goal of the susceptibility mapping project, the results of the
SINMAP analysis were reclassified in two different ways (Fig. 5.18):

A map containing a single susceptibility class for the pixels where the Stability
index is lower than 1.

A map containing three susceptibility classes corresponding to a SI between
1 and 0.5, (lower threshold) between 0.5 and 0 (upper threshold) and equal to 0
(defended).

5.7.2.2 Bagnes Valley

As for the application to the Canton of Vaud, the input dataset for SINMAP
consisted of a HRDEM degraded to a 10 m cell size grid below 2000 m a.s.l. and
the DEM25 above 2000 m. a.s.l. However for this area, there was no numerical
document which distinguishes the type of substratum such as the Geotypes of the
Vaud County. The first step of the processing was then to identify the superficial
formations. To perform this classification, the information of two documents was
used: the land use occupation indicated by the Vector25 and the 1:500,000 vec-
torized geological maps. As shown in the Fig. 5.19, twelve classes of soil with
distinct geotechnical parameters have been extracted: alluvium, breccia, bedrock,
dense forest, flysch, high altitude soils, moraine, reworked soils, schist, scree
deposits, sparse forest and sparse shrubs.

The geotechnical and hydrological parameters assigned to each class were
taken from Morrisey et al. (2001), Lan (2004), Salciarini et al. (2006), Hydro-
logical Atlas of Switzerland (2006). To calibrate the model, 67 shallow landslides
that occurred during summer 2009 were inventoried in various types of superficial
formations (Fig. 5.20).

The results of the SINMAP analysis were provided in one map containing six
susceptibility classes corresponding to:

• Class 1: 0 \ SI \ 0.001 Defended area
• Class 2: 0.001 \ SI \ 0.5 Upper threshold
• Class 3: 0.5 \ SI \ 1 Lower threshold
• Class 4: 1 \ SI \ 1.25 Quasi-Stable
• Class 5: 1.25 \ SI \ 1.5 Moderate Stable
• Class 6: 1.5 \ SI Stable

Finally, 46% (almost 140 km2) of the Bagnes Valley has a stability index lower
than 1. The major part (52%) of the susceptibility areas (SI \ 1) are in the class 3
‘‘Upper threshold’’.
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5.7.3 Debris Flows

5.7.3.1 Vaud County

The DEM available for the Canton de Vaud territory is a laser DEM with a
resolution of 1 meter. In order to reduce the processing time and to be more
consistent with the phenomenon scale, it was degraded to a 10 m cell grid.

Fig. 5.18 Close up of the shallow landslide susceptibility map, showing the good agreement
with the inventoried shallow landslide. a 3 classes map and b single class map (hillshade and
topographic map, swisstopo� 2005 SIT)
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Several types of processes were addressed in the study of this region: debris flows,
deposits remobilization, mud flows and hyperconcentrated flows. Only the debris
flows are presented hereafter.

Source Areas Identification

Although the curvature is often used to recognize the gullies, there is no admitted
threshold. A limit had to be established on the basis of aerial photographs and
the analysis of the 10 m DEM. For this study area, a curvature of -2/100 m-1 was
found as optimal on the basis of the analysis of orthophotographs (Horton et al.
2008).

The minimum flow accumulation threshold chosen was of 1 ha, after calibra-
tion on observed debris flows. The extreme threshold was selected in accordance
with the work objective which is to make an indicative map, supposed to cover the
worst case scenario (Horton et al. 2008).

The lithology was taken into account by means of a ‘‘geotypes’’ map (Perret
2007; Turberg et al. 2008), which contains uniform and complete information
about surface formations for the whole study area. The selected lithologies are
debris flow prone rocks (marl, slate, siltstone) and slope deposits.

Fig. 5.19 Representation of the classified superficial formations issued from the Vector25 and
the 1:500,000 geological atlas of Switzerland
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Landuse maps helped to detect certain inaccurate sources, located in developed
areas or due to man-made infrastructures. Outcropping or suboutcropping rocks
were also excluded from potential sources (Fig. 5.21).

Spreading Area Assessment

The Holmgren’s algorithm was chosen because it best fits the events that can be
observed on orthophotographs. Its exponent was set to 4, as proposed by Claessens
et al. (2005) on the basis of field and laboratory measurements.

The probable maximum runout is characterized by an average slope gradient of
11� (Huggel et al. 2002). The chosen energy threshold was set to a maximum
velocity of 15 m�s-1. The observed maximum velocity among various debris flows
events in Switzerland is 13 to 14 m�s-1 (Rickenmann and Zimmermann 1993).

5.7.3.2 Bagnes Valley

The main difference between this case study and the County of Vaud is that source
areas were divided in two classes: proved and potential. In addition field inves-
tigation was carried out in order to evaluate the real debris flows susceptibility.

Fig. 5.20 S-A plot within SINMAP allowing the calibration of geotechnical and hydrological
parameters for reworked soils according to shallow landslides inventoried
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The FLOW-R model was applied, and four test sites in the valley were chosen to
calibrate the model parameters for the source areas detection and the propagation.
The datasets used in this case are: a 10 m resolution DEM, the 25 m land-use map
(Vector25), the topographic maps, the orthophotos and the local inventory of
historical debris flows events.

Source Areas Detection

As describe in Chap. 6.3.2, at least the slope, the curvature (Delmonaco et al.
2003) and the water input (Rickenmann and Zimmermann 1993; Horton et al.
2008; Jaboyedoff et al. 2008) are needed to detect the debris flow sources.
The criteria used are described in Table 5.3:

In the case of Val de Bagnes, the landuse and the geological information were
also taken into account in order to suppress source areas detected on bedrock or

Fig. 5.21 Identified debris
flows sources and
corresponding spreading in
the Diablerets region
(hillshade, swisstopo�
2005 SIT)
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man-made structures. The source areas classification is a crucial step in the
creation of the debris flows susceptibility map. In this case, a distinction between
proved, potential and incorrect detected source area has been made. The Table 5.4
presents the different parameters for the different kind of sources.

Propagation Area Assessment

Field observations and numerical data analysis (orthophotos, DEM, topographic
maps) were used to calibrate the model parameters (Table 5.5). After several tests,
the 2-parameters friction model (Perla et al. 1980) was chosen because it provides
the best results comparing with the archived events.

The propagation area classification depends on the sources area classification.
For example, if a source area is classified as ‘‘probable’’, the spreading area will be
‘‘probable’’ too. For the probable propagations, a distinction was made between
the probabilities that are under 2% (probable danger) and higher than 2% (strong
probable danger) (FLOW-R, Sect. 5.5.2.4).

Table 5.3 Debris flows source detection criteria

Criteria Slope Curvature Water input

Parameters [15� -2/100 m-1 1 ha

Table 5.4 Sources classification methodology

Source types Past
event

Phenomena evidences Debris

Proved source area Recorded Recent evidences of debris
flow activities

Debris stock sufficient
for debris flow
triggering

Potential source area No record Fossil evidences of
debris flow activities
or suspected
activities

Debris stock sufficient for
debris flow triggering

Incorrect detection No record No activity evidences
Not enough debris stock for

debris flow triggering

Table 5.5 Spreading parameters

Criteria Inertia Flow direction algorithms Runout distance calculation
l M/D

Parameters Default mode Holmgren exp. 6 0.09 30
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In two watersheds, historical debris flow propagations are longer than expected
within a normal parameterization of the model. This is due to the high amount of
loose material that can be mobilized, their important size or hydrological char-
acteristics. For these special cases, the method was adapted to obtain the known
maximum runout distances. An average propagation slope angle of 5� with an
energy threshold of 15 m/s (the other parameters are the same) were chosen.

Detection and Propagation: Example of the Merdenson

The Fig. 5.22 shows the result of the source detection and debris flow propagation
simulation for one watershed of the Bagnes valley. This region contains active
debris flows gullies and a main road is often affected by events (numbers 1 and 2 in
Fig. 5.22). In this example, the sources detected by the model correspond well
with the field observations, confirming a good correlation between the model’s
simulated propagation and field investigations (Figs. 5.22, 5.23), picture taken
from the point 3, 4 and 5). Point 5 in Figs. 5.22 and 5.23 represents the debris flow
triggering area and the black arrows shows the most probable propagation path.

5.7.4 Rockfall Susceptibility Map

5.7.4.1 Vaud Territory

The decomposition of the slope angle distribution in Gaussian populations was
performed with the 1 m cell size DEM of the Vaud County (2800 km2). The
potential source zones were aggregated to a cell size of 25 m and the run-out
model was run with a DEM of same cell size. The runout areas were computed
with CONEFALL. The territory was divided into 5 five distinct zones: the Alpine
part is composed of the Helvetic, Ultrahelvetic and Prealpines Nappes; the Jura
Mountains and the molassic Plateau are the last two zones. The slope angle dis-
tribution decomposition in Gaussian distribution was performed with HISTOFIT.
Results of the threshold slopes angle are summarized in Table 5.6.

Therefore, potential rockfall sources were defined by all slopes belonging to
the units cliffs defined according to the slope angle histogram decomposition.
Moreover, all rocky outcrops and cliffs available from the 1:25,000 topographic
vector map where their slope angle is steeper than the mode of the unit steep slopes
were added to the map of potential rockfall sources. Finally, a minimum size of
10 m2 was set in order to consider a surface as rockfall source zones. This had
the advantage of filtering out possible artefacts contained in the DEM without
removing any essential information.

For the runout area assessment, CONEFALL was applied to each potential
source defined previously. The angle of aperture /p = 33� was the best com-
promise with all the information collected through the available documents
Fig. 5.24. Furthermore, an angle of 33� has the advantage of including a potential
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Fig. 5.22 Example of spreading assessment in the Mauvoisin region (orthophoto and isolines:
�swisstopo)

Fig. 5.23 Field investigation. Correspondences with the spreading assessment in Fig. 5.22
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remobilization of the screes located beneath the rockfall sources area, which
usually have a mean slope angle of 35� (Loye et al. 2009).

The correction for the flat bottom valleys was performed when a surface bigger
than 2.5 km2 has a mean slope gradient lower than 11�. Based on orthophotos
analyses of scree deposits along flat zones, maximum runout length of boulder
reaching those plains was limited to 60 m for tributaries valley-bottom. This limit
was expanded to 100 m in the alluvial plain of the Rhône Valley due to its higher
falling velocities resulting from the greater size of its valley flanks (Fig. 5.24).

Table 5.6 Threshold slope angles above which rockfall source areas are potentially considered

Location HMA Threshold angles for

A. Minimum threshold angle
for the unit cliffs

B. mode of the unit
steep slopes

Alps Helvetic 54� 36�
Préalpes Médianes 53� 34�
Ultrahelvetic 49� 33�

Plateau Molassic Plateau 46� 30�
Jura Jura Mountains 46� 32�

Fig. 5.24 (Left) Susceptibility rockfall hazard map for the canton of Vaud (Switzerland).
Rockfall sources zones are drawn in red and the runout perimeters in brown. (Right) Correction
for the Valley-bottom performed on the maximum runout area, limiting the very unlikely
propagation of boulders far into the flat lands (light beige) (hillshade and topographic map,
swisstopo� 2005 SIT)
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5.7.4.2 Bagnes Territory

To identify to potential rockfall source areas, the homogeneous morphometric areas
HMA were extracted from the 1:500,000 vectorised geological Atlas of Switzerland.
Then the Slope Angle Distribution for each HMA area was extracted on the HRDEM
for altitudes lower than 2000 m and on the DEM25 for the entire study area.

The SAD decomposition in Gaussian distributions was performed with the tool
HISTOFIT. As for the Canton of Vaud, the potential rockfall source areas resulted
from a combination of two sources defined by minimum threshold angles
(Table 5.7): Areas which have a slope angle higher than the threshold angle of
slopes belonging to the population cliffs;

Areas of the Vector25 mapped as crops which have a slope angle higher than
the mode of the population steep slopes.

The differences of threshold slope angles detected with the HRDEM and the
DEM25 were expected. As shown in Loye et al. (2009), the bigger the resolution,
the lower the threshold angle for the same cliff. Source areas less than 10 m2 were
filtered out to avoid artefacts due to potential local errors of the DEM.

Two propagation simulations were performed in order to estimate two
susceptibility classes, one with CONEFALL and one with FLOW-R (Fig. 5.25).
Both computations were performed on the DEM25 to ensure continuous and
homogeneous results. According to previous detailed works on the valley of
Bagnes and the experience of the county of Vaud, the propagation angle used was
33�. Even if FLOW-R is based on constant friction loss which relates this model to
the shallow angle method, the algorithms simulates far fewer propagations than
pure geometrical models as CONEFALL. Furthermore, the multiple flow direction
algorithm (Holmgren 1994) used in FLOW-R calculates more channelized runouts.

The final results were presented in two classes: (1) Probable propagation
areas, corresponding to runout assessed by FLOW-R with higher susceptibility,
(2) potential propagation areas, corresponding to runout assessed only by
CONEFALL with lower susceptibility.

Table 5.7 Threshold slope angles above which rockfall source areas are potentially considered
in the Val de Bagne

HMA HRDEM DEM25
A. Minimum
threshold angle for the
unit cliffs

B. mode of the
unit steep
slopes

A. Minimum
threshold angle for the
unit cliffs

B. mode of the
unit steep
slopes

Acid rocks 47� 36� 46� 35�
Basic rocks Not present 48� 32�
Conglomerate 52� 34� 45� 32�
Flysch 52� 36� 47� 35�
Limestone 52� 37� 46� 36�
Moraine 51� 30� 38� 30�
Marble and

breccia
50� 35� 46� 33�

Schists 49� 35� 48� 32�
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5.7.5 Snow Avalanches

5.7.5.1 Bagnes Valley

The data upon which this case is based consist of a 2 m resolution DEM under
2000 m elevation and the DEM25 above 2000 m, the 1:25,000 landuse map
(Vector25), the topographic maps and the inventory of historical avalanches
propagations. The used resolution extracted from the 2 m DEM was 10 m for the
entire study area in order with the phenomenon scale and to reduce the processing
time (24 h of processing with this resolution). Moreover, we conducted a
smoothing operation on the DEM to better simulate the inertia of this phenomenon
(smoothing of the topographic irregularities).

Source Ares Identification

The Table 5.8 shows the parameters used for this analysis case for the four
detection criteria:

Fig. 5.25 Rockfall susceptibility map. The runout was separated in two classes: probable
susceptibility, which belongs to FLOW-R processing, and potential susceptibility, which belongs
to CONEFALL processing (hillshade and isolines: �swisstopo)
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Spreading Area Assessment

To use the model RAS (Fig. 5.26, right), we first had to calibrate the relationship
between a and b. After some tests, we decided to use the coefficients determined
by Adjel (1996) in Haute-Tarentaise in the French Alps (Table 5.9). In the Bagnes
valley itself, only 5 to 10 sectors have good inventories; this is not enough
sufficient for making good calibrations.

For the model FLOW-R (Fig. 5.26, left), (as explained in Sect. 5.5.2.4), we
must calibrate the inertia, energy and direction algorithms on past, well archived,
propagation events. We selected four test areas homogeneously distributed in the
study area and we chose to use the following propagation parameters (Table 5.10):

Table 5.8 Avalanche source detection parameters

Detection criteria Parameters

Slope 30� to 50�
Altitude [1,000 meters high
Landuse Outside of forest area
Minimum surface of avalanches triggering Sources area [900 m2

Fig. 5.26 Example of propagations. At left: Flow-R propagations. At right: RAS propagations.
The dark lines are the maximum avalanche propagations recorded in the archives (hillshade and
topographic map: �swisstopo)
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Detection and Spreading, Example of the Folorsi

To illustrate our choices and the ability of our method to create an avalanche
susceptibility map, we now present the case of the Folorsi corridor (Fig. 5.27).
This corridor is marked by annual avalanches cutting the forest roads (3 and 5).
In this example we can see that there is a good correspondence with the detection
of the triggering areas (1, 2 and 4), the spreading area and the event shown in the
picture on the left. In addition we can observe that an avalanche with a large
volume has the potential to flow beyond the point 5, down to the valley bottom.

5.7.6 Flooding

5.7.6.1 Bagnes Territory

The methodology presented in the Chap. 6.6 was applied to create the indicative
map of flood hazard in Val de Bagnes (Valais, Switzerland). The Val de Bagnes
has a particular hydrological context because of the presence of glaciers in the
watershed and the strong human impact on rivers. For example, the Mauvoisin
dam, with a retention capacity of over 210 million m3, plays an important role in
flood control for the valley. Many conducts redirecting water of various water-
sheds have an impact on discharges.

For this study, it was decided to take into account the ‘natural’ watersheds,
which correspond to the boundaries of an extreme event in case of flooding.
In-depth field work was conducted to identify potential overflow areas feeding the
model FLOW-R. These include the various weakness of the hydrographical system
such as shrinkage, bridges, debris that could create a jam or other obstructions to
the watercourse (Fig. 5.28). The indicative map of danger does not take into
account the intensity of the phenomenon.

The final map shows that the main danger comes from tributary streams
(Fig. 5.29). Indeed, the watersheds composing the valley are large and present
relatively strait outlets, resulting in many opportunities for overflows. Moreover,

Table 5.9 Law alpha–beta used for the avalanche spreading assessments with the RAS model

Location Number of event Alpha–beta relationship r r

Haute-Tarentaise 168 a = 0.82 * b +2.82� 0.81 2.6

Table 5.10 Spreading parameters used with the FLOW-R model

Flow direction algorithm Runout distance calculation (Perla et al. 1980)

l M/D

Holmgren exp. 4 0.28 2,500
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the human impact on rivers has led to a change in their natural course, creating an
additional danger. Propagations performed with the software FLOW-R highlight
those areas to be considered in a subsequent study of risk.

Fig. 5.27 Correspondence between the sources detected, the spreading area assess and the
reality (Folorsi sector), the numbers indicate the same location on the picture and the map
(hillshade and topographic map: �swisstopo)
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5.8 Discussion

The above-described multi hazard susceptibility assessment is based on quite
simple models, but they are cross-checked with field observations and inspections
of other sources of information such as orthophotos, partial inventories, and
feedback from local people in charge of natural hazards. This point makes this
approach quite flexible. One of the major advantages is the fact the parameters
used in the model are few, except for SINMAP, and are tangible. Yet this approach
has its own limits and does not reflect the local controlling factors and specific
conditions. The specific conditions have to be integrated in more detailed studies
when the scale of study is more precise than 1:2,500; this scale corresponds for
instance to the ‘‘danger maps’’ in Switzerland, contrasting with the present
approach that correspond to the ‘‘indicative danger map’’ (Lateltin 1997; Loat and
Petraschek 1997). Nevertheless, the proposed method demonstrates the efficiency
of such a simplified approach, with results in good agreements with the obser-
vations. It must be noticed also that the original results of the models are usually
kept, but a relative rating of the ‘‘plausibility’’ of these results is assigned, creating
a susceptibility scale.

Because the models are mainly based on DEM, the DEM is the source of any
issues that may arise. For instance, DEM generated topography is sometimes too
detailed; source areas containing bridges or ditches do not permit to assess the
potential area of propagation of debris-flows or floods, because the flow is chan-
nelize and thus to simulate flooding or debtis-flow propagation the bridges or
ditches must be artificially broken, which must be prefomred manually.

Fig. 5.28 An example of a potential source of overflow ant its corresponding modeled spreading
(orthophoto: �swisstopo)

5 Preliminary Slope Mass Movement Susceptibility Mapping 157



5.8.1 Landslide Inventory Maps and Shallow Landslides

Both examples coming from Vaud and Bagnes show different situations. In the
first case, an existing inventory was available (DUTI 1985) and 1:25,000 geo-
logical maps were available in addition to orthophotos and vectorized topographic
maps. In the second case, no inventory was available, only a partial cover of
geological maps, but the local knowledge was used. This discrepancy shows the
problem of data collection and treatment. The large area did not permit to make a
detailed field check but the available inventory was the base of the investigations.
The main issue was to link the former inventory based on relief interpretation at
1:25,000 (DUTI inventory ? info from geological maps) to the Lidar-DEM hill-
shade with a resolution of 1 m. As shown by Ardizzone et al. (2007), this creates a
problem of merging information without losing information. As the time allocated
for this work was short it was not possible to create a completely new inventory;
instead rules were used to obtain a scale of ‘‘plausibility’’. This problem occurred
also in Bagnes to a lesser extent as little information existed from previous studies.
However it was possible to validate the inventory according to local geologists’
knowledge because of the relatively small size of the concerned area. According to
the local experts, the landslide inventory map created for the Val de Bagnes was
quite reliable. Nevertheless, this study has demonstrated the necessity to use a

Fig. 5.29 Lots of tributary streams could be a danger for infrastructure. The final map illustrates
the propagation of possible overflows (hillshade: �swisstopo)
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HRDEM in order to identify landslides. Another issue linked to the data is that
above 2000 m, mapping is based on the DEM25, because the Lidar-DEM does not
exist. The use of orthophotos and aerial photo observations were the only way to
check the results.

Shallow landslide modeling is one the most standard and used assessment
method. Nevertheless it faces the usual problems: lack of information on soil and
hydrological parameters and also limitations as the model only considers a con-
stant soil thickness. Nonetheless, on average the results are valuable and reliable if
they are connected with other information.

In the County of Vaud the comparison between the SINMAP results and the
inventory landslide map shows that 78% of the inventoried landslides are con-
tained in the predicted unstable zone. In general, 85% of inventoried landslides are
found in a buffer of 50 m around the predicted unstable areas. The main differ-
ences between SINMAP results and the inventory map are found in the Jura region
where the particular hydrological system (mainly karstic) makes the application of
SINMAP model more difficult. Compared to the total surface of the study area,
the SINMAP analysis shows that 18% (576 km2) of the County of Vaud can be
potentially affected by shallow landslides. The most susceptible region is the
alpine region were the susceptible area increases to 55% of the overall surface. For
the Val de Bagnes area 46% (almost 140 km2) of the territory shows a stability
index lower than 1. The main portion of the detected unstable areas have been
classified in the susceptibility classes 2 and 3 respectively ‘‘Lower’’ and ‘‘Upper
threshold’’ (Fig. 5.30). If only surface areas below 2000 m a.s.l. are considered for
statistics, the area showing a stability index lower than 1 increases to 71%
(Fig. 5.31). This is related to the presence of steep slopes glacier and rock-glacier
surfaces above 2000 m a.s.l., where no shallow landslide can be initiated.

Some interesting points can be deduced form the relationship between shallow
landslides, landslides and DSGD and other features:

• The DSGSD, which represent 13% of the Val de Bagnes territory (almost 40.5
of 300 km2), are destabilizing entire slopes and promoting the formation of

Fig. 5.30 Percentage of the total Val de Bagnes territory classed according to the different
stability classes
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shallow and medium landslides. Indeed, 42% of the surfaces of shallow and
medium landslides (almost 8.8 of 21.3 km2) are linked to DSGSD.

• Main structural features (faults and thrusts) increase the development of slope
instabilities. Indeed, considering a buffer of 200 m along ground features, it
represents 19% of the total surface of the Val de Bagnes (58 km2). Nevertheless,
almost 34% of sliding surfaces are located at less than 200 m of a fault or thrust.

• 32% of the landslides are concentrated in moraine formations, which include up
to 12% of the territory (30 km2).

SINMAP or other similar models are very powerful methods to obtain a first
overview of the most susceptible area for shallow landslides. However, the
modeling results need to be critically interpreted. In particular three main points
need to be considered for an objective interpretation:

The accuracy and the artifacts present in the DEM (HRDEM or DEM25) have a
lot of influence on the SINMAP results especially in urbanized or forested areas;

Reliability of results is strongly related to the quality of the geomechanical
parameters;

SINMAP results are useful and could be qualitatively or semi-quantitatively
analyzed for small to intermediate scale (1:50,000–1:25,000) but they cannot
be used at a greater scale than 1:25,000 without an important local parameter
calibration.

5.8.2 Debris Flows

Again the difference in total area of both territories reveals contrasting results. For
Vaud County the results cannot reflect local controlling factors and specific con-
ditions, nevertheless good correlations exist between simulations and field
observations performed on specific catchments where historical events occurred.
Because of the large area (2,800 km2) it is impossible to take into account the

Fig. 5.31 Percentage of the surfaces above 2000 m a.s.l. in the Val de Bagnes classed according
to SINMAP results
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volume and the type of material of the various debris sources, requiring average
data for large areas.

More generally, the propagation area modelling is strongly dependent on the
quality of the DEM. In case of a wrong representation of the real topography, the
propagation area will contain nonsense results. For example, a stream flowing
under a high bridge will act as a dam; if the DEM is too detailed the channel can
not be overtopped which can occur if the debris-flow erodes or if it is dammed
promoting an outburst. These effects are not simulated by the model.

For the Bagnes Valley more than 50% of the sources detected by the model are
confirmed by field observations, while 35% of the sources are classified ‘‘poten-
tial’’ (i.e. without evidence of past event) and 14% are classified as incorrect. This
last ‘‘false’’ class is mainly due to the fact that the outcropping bedrock infor-
mation was not of high quality. In this case, some actual bedrock areas were
included in the source areas where no debris-flow triggering is possible as there is
not any loose material (soil, moraine, debris, etc.).

The chosen methods show realistic results and allow a first fast assessment of
debris-flow susceptibility over a large region, despite a limited knowledge of the
local controlling factors. Again the results are contrasted:

1. For the Vaud County, both observations and the model are in good agreement,
using a unique source of information, i.e., the DEM and regional geologic
information.

2. The possibility to perform a qualitative classification of the source areas per-
mits to obtain a good first overview of the debris-flow impacts in the communal
territory of Bagnes Valley, which is directly useful for local authorities to
prioritize remediation actions.

3. The propagation assessment based on probabilistic and basic energy calcula-
tions results in debris-flow susceptibility close to observed events.

This model has been applied with success also in Italy and France (Blahut et al.
2010; Lari et al. in review; Kappes et al. 2011), using a similar approach.

5.8.3 Rockfall

The detection of source areas using the slope angle histogram decomposition by
normal distributions is efficient, but it can be improved by additional data such as
geological maps, vectorized topographic maps and orthophotos. The morpholog-
ical units that are identified by decomposing the slope classes in cliff faces and
steep slopes are significant for identifying the morphology (Strahler 1950; Loye
et al. 2009). When using a Lidar-DEM the detection is very detailed even in the
zone covered with vegetation.

The angle /p of the cone aperture was set to 33� for both studies performed
here. The results show to be in good conformity with an orthophotos analysis
and field work. Yet when using CONEFALL at regional scale, a valley-bottom
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correction is required to consider local areas where such an angle of propagation
would be too large. In addition, the unlimited lateral aperture of the cone does not
seem to overestimate the lateral propagation of the rockfall runout. Using the
Flow-R model, the runout length is taken into account. The multiple flow direction
algorithm (Holmgren 1994) used for propagation in Flow-R takes into account
channelized topography. The use of both models permits to create a classification
of susceptibility with the result from Flow-R classified as probable and those from
CONEFALL as potential.

Such a combined approach provides a fast and cost-effective way of identifying
rockfall prone areas, without taking into account the structural setting and
mechanical parameters in detail. This approach can be based on a DEM of poorer
resolution as well, as demonstrated by Loye et al. (2009).

5.8.4 Snow Avalanches

Mapping snow avalanches is a tedious task especially at the regional scale,
because in mountainous areas more or less all slopes from 30� to 60� are sus-
ceptible to snow avalanches, albeit sometimes with a very low frequency. Hazard
assessments in the case of snow avalanches is mainly based on inventories and fine
tuning modelling in specific sites (PPR 2011). This means that implicitly the
frequency is taken into account in the choice of the sites, because snow avalanches
are possible everywhere but in most cases only exceptionally.

Although the methodology used in this study to create an avalanche susceptibility
map shows good correspondence between the archived events and the simulated
one, some limitations should be noted. First there is a problem with the quantity of
avalanche sources detected by the model. Indeed, the detection parameters are only
topographic (slope, altitude) and for a steep alpine region this means that a lot of
sources are detected. To solve this problem, first a reduction of the quantity of the
sources detected according to the source sizes was tried. Then the spreading area
was limited using the forest areas. Those tests were not conclusive because in both
cases, there are some avalanche sources or propagation areas observed in reality that
were ignored by the models. Further investigations still need to be conducted to
decrease the number of potential sources in such steep valleys.

5.8.5 Floods in Bagnes Territory

In general, the application of the methods presented here has allowed covering the
entire territory in a homogeneous and coherent way. Some remarks can be made
about some specific points. The computation of discharge for important return
periods must be applied to all locations where streams flow under bridges. An
estimation of bridge capacity would give major information for the development

162 M. Jaboyedoff et al.



of a hazard map; this requires improving mapping procedures if implemented for
regional susceptibility mapping. The human impact on hydrological network
complicates the representation of reality. In the case of the susceptibility map of
Val de Bagnes, the most critical situations were always considered. The analysis
was particularly focused on the tributary streams of the Dranse Bagnes, where
hazard is higher rather than on the main stream. In fact, it has never been adapted
to raise the possibility of overflow.

In any case, the Laser-DEM geomorphic interpretation is an important input,
but it still needs to be used in a more rigorous approach.

5.9 Conclusion

The possibility to treat large amount of data is mainly due to availability of
powerful computers and GIS technology for hazard assessment at regional scale by
mainly using DEM. In addition, more readily available digital documents such as
topographic maps with attributes such as landuse, geological maps, orthophotos,
etc. greatly improves the simple model used for such purposes. Models must be
simple for two reasons: (1) it is still difficult to use complex models over a large
area if the DEM is a HRDEM having a resolution higher that 1 m; (2) complex
models often require several unknown parameters. In this sense, the usefulness of
SINMAP is borderline when it is applied to large inhomogeneous areas.

Depending on the time available the proposed simple modelling can be
improved, especially based on comparisons with field observations or inspecting
other data. Yet this interaction between the different types of information is of
primary importance to create reliable susceptibility maps. The susceptibility
classification depends on the ability to mixed models with different inputs that are
in accordance with different confidence levels of the input data.

The greatest problem is linked to updating former inventories. The information
produced by Lidar-DEM is often far more detailed than what we can expected
from field observations, especially in forested areas. As a result, ad hoc solutions
must be found in order to maintain past information and to improve the final
product.

Nowadays, the availability of Lidar-DEM is the major input that permits to
obtain a rapid overview of potential unstable areas or to perform more detailed
studies as well. It provides input for geomorphic studies as well as for modelling.

5.10 Summary/Futuristic Vision

As already indicated, the future is linked to the power of computers and to the
availability of new types of mapping documents. We expect that Lidar-DEM will
become available more or less everywhere around the world, and a standard
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procedure for hazard mapping in the near future. At present, the method of
regional hazard assessment is evolving very fast, because new techniques such as
Interferometric Synthetic Aperture Radar (InSAR) are completely revolutionising
the monitoring of mass movements, flood observations etc. Yet InSAR shows also
a lot of limitations due to vegetation cover, slope orientations or mass movement
directions. This example underlines the necessity for hazard assessment methods
to always be validated by another one, which can be simply field investigations.

Thus the greatest current progress in hazard mapping arises from the Lidar
technique, which gives high quality images of the ground even under dense
vegetation. Lidar resolution and information content (full wave forms and inten-
sities) are constantly improving, opening new fields of investigation. It seems that
the geomorphology and soil and rock mechanics have not yet taken full advantage
of the information that can be extracted from the high resolution Lidar-DEM, i.e.,
to characterize the mechanical properties of the ground or curvature of scars,
which contain important information on failure mechanisms.

In addition, the modelling of natural hazards such as landslides, debris-flows,
rockfall, snow avalanches, and floods has to take advantage of the fine resolution
offered by new HRDEM, but as the data are huge and efforts must be made to find
simpler models with few parameters that are suitable for modelling hazard on large
areas.
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2 MONITORING NATURAL HAZARDS

3 Michel Jaboyedoff, Pascal Horton, Marc-Henri Derron,
4 Céline Longchamp, Clément Michoud
5 University of Lausanne, Lausanne, Switzerland

6 Synonyms
7 Observation; Surveillance; Watching

8 Definition
9 The verb “to monitor” comes from the Latin “monere”
10 which means to warn. In geosciences, it means to watch
11 carefully at a hazardous situation and to observe its evolu-
12 tion and changes over a period of time. It is also used to
13 define the activity of a device that measures periodically
14 or continuously sensitive states and specific parameters.

15 Introduction
16 Hazard monitoring is based on the acquisition and the
17 interpretation of a signal indicating changes in behavior
18 or properties of a hazardous phenomenon or the occur-
19 rence of events. This ranges from acquiring basic
20 meteorological data to advanced ground movement mea-
21 surements. Hazards monitoring began sometime ago,
22 when the Babylonians first tried to forecast weather.When
23 Aristotle wrote his treatise Meteorologica, the Chinese
24 were also aware of weather observations (NASA,
25 2012a). Pliny the Elder studied in details the eruption of
26 the Vesuvius in August 79 AD, providing one of the first
27 scientific observations of a natural catastrophe. Presently,
28 the evolution and the precision of monitoring are closely
29 linked to the development of new technologies. A very
30 interesting example highlighting the importance of tech-
31 nological development is provided by hurricane statistics.
32 The number of hurricanes had often been underestimated
33 because of the lack of information prior to the appearance

34of satellite imagery: many hurricanes that did not reach the
35coasts were simply not registered (Landsea, 2007). Today,
36the development of telecommunications and electronics
37has made easier the adoption of monitoring systems.
38In addition, satellite remote sensing has improved greatly
39the detection of changes at Earth surface. Nevertheless,
40monitoring remains a costly activity, implying that
41actually only few hazard types and locations are
42monitored. Moreover, as dangerous phenomena are
43usually complex, several parameters have to be
44monitored, and in most cases one single variable is not
45a sufficient criterion to provide reliable warnings.
46Monitoring can be either linked to an early warning
47system, leading to act directly within the society, or used
48to record hazardous events to provide data for hazard
49assessment and a better understanding of the phenome-
50non. Some of the monitoring results are public and acces-
51sible at no cost, such as earthquake data, whereas
52meteorological data are often sold because they are profit-
53able due to their direct impact on society (such as agricul-
54ture, air traffic, news, and tourism). In any case, with the
55boom of Internet, more and more free data is accessible
56in many countries.
57In the following, we describe briefly the most common
58sensor types used for monitoring several hazards and fur-
59ther discuss monitoring aspects.

60Instruments and measured variables
61Originally, monitoring was mainly done by simple human
62observations or with limited devices, and some were
63performed manually, such as the first rain gauges. Now,
64even if some monitoring is still based on observations, as
65for snow avalanches, it is mainly instrumented, and many
66sensors are also used for remote-sensing techniques. The
67great advance in computer sciences and communication
68technologies has increased the accessibility to instru-
69ments, by improving technology and reducing costs.

Peter T. Bobrowsky (ed.), Encyclopedia of Natural Hazards, DOI 10.1007/978-1-4020-4399-4,
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70 Climatic variables are monitored by satellite and mete-
71 orological stations. According to the World Meteorologi-
72 cal Organization (WMO, 2012a), the global observing
73 system (GOS) acquires “meteorological, climatological,
74 hydrological and marine and oceanographic data from
75 more than 15 satellites, 100 moored buoys, 600 drifting
76 buoys, 3,000 aircraft, 7,300 ships and some 10,000
77 land-based stations.”
78 Hazard monitoring consists primarily of treating
79 a signal in order to obtain information about movement,
80 moisture, temperature, pressure, or physical properties
81 (Table 1). A monitoring sensor is local when it records
82 properties at its own location (thermometer, rain gauge,
83 etc.). Remote sensors are used to collect properties of
84 distant objects. Remote-sensing techniques can be active
85 (a signal is sent and received) or passive (only receiving).
86 For instance, InSAR (interferometric synthetic aperture
87 radar) is an active remote-sensing method to detect ground
88 movement, whether Earth surface temperatures can be
89 measured from satellites by passive remote sensing
90 analyzing specific bands of the electromagnetic spectrum
91 (Jensen, 2007). Currently, satellites using microwaves or
92 bands in the visible and infrared spectra permit one to
93 quantify environmental variables such as rainfall, CO2,
94 water vapor, cloud fraction, and land temperature (NASA,
95 2012b).
96 Two important advances in the last 20 years now allow
97 one to measure ground movements, one key factor for
98 many natural hazards: (1) the GNSS (Global Navigation
99 Satellite System), which allows measuring 3D
100 displacements, and (2) the satellite and terrestrial InSAR
101 techniques that permit one to map very accurate
102 displacements using two successive radar images by
103 comparing the phase signal. Of course, local direct
104 measurements of displacements such as extensometers,
105 tide float gauges, or inclinometers are still very much used
106 and complement these recent techniques.
107 The final goal of hazard monitoring is to provide
108 information about physical parameters directly or
109 indirectly interpreted in order to evaluate the level of risk.
110 The following presents some of the most current methods
111 used to monitor the main hazards affecting human
112 activities.

113 Meteorological monitoring
114 Monitoring meteorological variables is mainly dedicated
115 to weather forecasting but also to the understanding of
116 climate change. It covers phenomena from local to global
117 scale. Spatial and temporal scales of the phenomena are
118 linked. Local and extreme events, such as tornadoes, hail,
119 or thunderstorms, last only a few minutes to hours, and
120 their location and intensity cannot be forecasted in
121 advance. These kind of events are the topics of short-range
122 forecasting, or nowcasting, that rely on observations and
123 measurements of the phenomena after its initiation, as,
124 for instance, by means of satellite or ground-based radar
125 data. Regional events, such as heavy precipitation

126over a mountain range, strong winds over a country, or
127hurricanes, can usually be foreseen a few days in advance.
128These are forecasted at medium range by numerical
129weather forecast models that rely on the actual state of
130the atmosphere, assessed by radiosounding balloons,
131meteorological stations, or satellite images. The global
132scale is related to climate changes and is monitored by
133temperature measurements (Figure 1), sea level rise
134tracking, and various other indices.
135Weather monitoring is thus dedicated to forecasting but
136also to increase the knowledge about the phenomena.
137Most of the data acquired during an event are then used
138by the scientific community for various applications, such
139as statistical analyses, improvement of the understanding
140of the processes, or development of more reliable models.

141Monitoring of local extreme events
142The short-range forecasting, often referred as nowcasting,
143focuses on the pending few hours and the local scale. It
144strongly relies on monitoring to anticipate the displace-
145ments of the occurring hazard.
146Thunderstorms with intense precipitation or hail are
147usually tracked by means of ground-based precipitation
148radars. The returning radar pulses provide the spatial dis-
149tribution of the hydrometeors and so the intensity of the
150precipitation. The diameter of the raindrops or the hail
151may be approximated based on the reflectivity factor or
152the signal attenuation. The main advantage of radar mea-
153surements is that it provides real-time precipitation infor-
154mation on a large area, but there are several issues for
155precipitation estimation. The first one is that the drops
156are detected on a wide range of altitudes and the calculated
157intensity may not match ground observations due to wind
158or evaporation (Shuttleworth, 2012). Another issue is for
159mountainous regions, as mountain ranges are responsible
160for beam shielding (Germann et al., 2006). However, var-
161ious algorithms and correction methods exist to make the
162radar data valuable for nowcasting. The goal of such fore-
163casting is to assess the motion and the evolution of precip-
164itation patterns (Austin and Bellon, 1974). While it was
165initially just an extrapolation of the patterns, it is
166becoming more sophisticated by use of numerical
167forecasting models that are initialized with radar data
168(Wilson et al., 1998).
169Tornado detection is possible using a Doppler radar,
170which uses the Doppler effect on the reflected pulse to
171assess the velocity of hydrometeors, according to the
172radial axis. By displaying the motion within a storm, it
173becomes possible to identify a tornado vortex signature
174(Donaldson, 1970; Brown et al., 1978), which is charac-
175terized by an intense and concentrated rotation. With this
176approach, the presence of tornado genesis can be identi-
177fied before a tornado touches the ground. The US govern-
178ment deployed a network of 158 Doppler radars for
179tornadoes monitoring between 1990 and 1997 (NOAA
180website).

2 MONITORING NATURAL HAZARDS



Comp. by: Karthiga Stage: Proof Chapter No.: 354 Title Name: ENH
Date:2/7/12 Time:12:48:53 Page Number: 3

181 Monitoring of regional meteorological variables
182 Today’s weather forecasts are mainly based on numerical
183 weather prediction (NWP) models. However, these
184 models rely on data assimilation, which is a statistical
185 combination of observations and short-range forecasts,
186 to adjust the initial conditions to the current state of the
187 atmosphere (Daley, 1993; Kalnay, 2003). Data such as
188 temperature, pressure, humidity, and wind are acquired
189 by weather stations, or radiosounding balloons to get
190 a profile of the troposphere (Malardel, 2005).
191 Air temperature, barometric pressure, wind speed, and
192 direction are commonly measured at weather stations,
193 but also with costal or drifting weather buoys. Some boats
194 and aircrafts are also equipped with sensors acquiring var-
195 ious atmospheric variables.
196 Rain gauge stations provide point precipitation mea-
197 surement. It is the first and most common way to measure
198 precipitation, and so it has the advantage that long time
199 series exist. However, these are subject to systematic
200 errors (values lower by about 5–10%) related to the wind
201 and to the choice of the gauge site (over exposure to the
202 wind in open area or shade effect from obstacles around)
203 and gauge design (Shuttleworth, 2012). The height of
204 the gauge is a defined parameter and balances the effect
205 of the wind that decreases closer to the ground, and of
206 the splash-in that increases nearer to the ground. The rain
207 gauges evolved to reduce errors linked to the wind, to
208 evaporation, and to condensation, and changed from man-
209 ual measurements toward automatic recording.
210 Weather station networks are organized at a national or
211 regional scale. In 1995, the World Meteorological Organi-
212 zation proposed a resolution (Resolution 40) to “facilitate
213 worldwide co-operation in the establishment of observing
214 networks and to promote the exchange of meteorological
215 and related information in the interest of all nations”
216 (WMO, 2012b). This database contains time series from
217 all over the world.
218 Precipitation assessment by remote sensing is not as
219 accurate as ground-based measurements, but it provides
220 information in area where no or few observations exist.
221 It is likely to be the only way for precipitation measure-
222 ment to be possible at a global scale (Shuttleworth,
223 2012). The Tropical Rainfall Measuring Mission
224 (TRMM) satellite with precipitation radar onboard allows
225 measuring the vertical structure of precipitation (Iguchi
226 et al., 2000; Kawanishi et al., 2000). Precipitation can also
227 be derived from visible and infrared satellite data (Griffith
228 et al., 1978; Vicente et al., 1998).
229 In addition, the meteorological satellites such as
230 meteosat-9 (www.eumetsat.int) deliver images in visible
231 or infrared spectra providing important data to the meteo-
232 rologist. It is also a very important source of information
233 in case of the development of severe hazards, such as
234 hurricanes.

235Monitoring of climate and climate change
236Climate studies rely on long series of high-quality climate
237records (Figure 1). The most analyzed parameter is the air
238temperature. Scientists use data recorded at weather sta-
239tions over decades and employ different methods to recon-
240struct past data before the beginning of the measurements.
241Data reconstruction, rescue, and homogenization are still
242important topics today.
243Some satellites have radiometers on board to monitor
244clouds and thermal emissions from the Earth and Sea Sur-
245face Temperature (SST) (NASA, 2012a). For instance,
246SSTcan be measured using the calibrated infrared Moder-
247ate Resolution Imaging Spectroradiometer (MODIS)
248installed on Observing System satellites Terra (Minnett
249et al., 2002). The sea level can be measured using
250a Radar altimeter of the Jason-2 satellite, which permits
251one to provide inputs for El Niño or hurricane monitoring.
252Sea level rise is mainly caused by climate change and is
253currently about 3.4 � 0.4 mm/year (Nerem et al., 2010).

254Floods monitoring
255Floods have several origins often linked to intense precip-
256itation, massive snowmelt, tsunamis, hurricanes, or storm
257surges, but several are related to other hazards like land-
258slides and rockfalls. The main instrumental setups to fore-
259cast floods are weather stations, with a particular emphasis
260on the rain gauge, weather radars, and meteorological
261models.
262The direct monitoring of floods is done by measuring
263rivers discharge and/or lakes and sea level. The river dis-
264charge is linked to the measurement of the stage (or level),
265which is the water height above a defined elevation, by
266a stage-discharge relation. The stages of rivers or lakes
267are measured by float, ultrasonic, or pressure gauges
268(Olson and Norris, 2007; Shaw, 1994). The stage-
269discharge relation has to be updated frequently because
270of erosion and deposition problems. This relationship is
271established using current-meters based on rotor or acous-
272tic Doppler velocimeter which establishes the velocity
273contours of the river section (Olson and Norris, 2007;
274Shaw, 1994). Radars are also used and seem to be
275a promising way to obtain discharge (Costa et al., 2006),
276by using ground-penetrating radar (GPR; the echo of emit-
277ted microwave permit to get the river bed profile) coupled
278with a Doppler velocimeter in order to get the discharge
279estimation.
280In several lowland areas, flood monitoring includes the
281embankment monitoring that means stability analysis as
282for landslides. The survey of affected flood area is
283performed by man-made mapping, aerial photography,
284or satellite imaging when the flood area is wide, as in
285Bihar (India) in August 2008 (UNOSAT, 2012).

286Earthquake monitoring
287Earthquakes monitoring has two objectives: one to pro-
288vide data for hazard assessment and the other to develop
289some aspects for prediction. The main recent technologic
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290 advances are GNSS and InSAR techniques that allow one
291 to observe the deformation of the Earth’s crust before
292 (interseismic), during (coseismal), and after (post-seismic)
293 an earthquake (Figure 2). This permits, for instance, to
294 expect large earthquakes like in the Cascadian area
295 (Hyndman and Wang, 1995), California, and Turkey
296 (Stein et al., 1997).
297 The displacements recorded by several seismometers
298 provide the necessary information to estimate the location
299 of an earthquake, its magnitude or the energy released.
300 The statistics of the magnitude for defined zones lead to
301 define the Guntherber-Richter law which may be used to
302 obtain the probability of occurrence for earthquakes of
303 a magnitude larger than a given value. In addition, fine
304 analysis using inversion methods of wave signal
305 provides information to characterize the surface of failure
306 (Ji et al., 2002).
307 The use of monitoring to predict events within a few
308 days or hours is not yet possible because of the variability
309 of geodynamical contexts. For example, a monitored var-
310 iable may display opposite signals depending on the con-
311 text, such as radon which can increase before earthquakes
312 as in Kobe in 1995 (Igarashi et al., 1995) but which can
313 also decrease (Kuo et al., 2006). The amplitude of the sig-
314 nal is thus not significant. The observation of an enhanced
315 activity close to a fault (foreshocks) can be used as signal,
316 but this activity increase does not necessarily lead to
317 earthquakes.
318 The forecast is still not accurate, but observed ground
319 deformations coupled with history of earthquakes permit
320 one to estimate the probability that large earthquakes
321 occur at a location within a period of time (Stein et al.,
322 1997). The two most promising methods are the follow-
323 ing: (1) The first is to characterize the ground mechanical
324 properties using ambient seismic noise. The post-seismic
325 period leads to significant seismic velocity changes
326 (Brenguier et al., 2008), indicating most probably stress
327 field modification, but it seems from recent results that it
328 can also be observed before the earthquake. (2) The sec-
329 ond is to analyze ionospheric anomalies of the total elec-
330 tron content that are detected before earthquakes by
331 GNSS systems (Heki, 2011).

332 Tsunamis monitoring
333 Tsunamis can have different origins including earth-
334 quakes, large volcanic eruptions, submarine landslides,
335 rock falling into water, etc. The indirect monitoring is
336 related to the triggering factors of the phenomenon, which
337 are mainly earthquakes or landslides. The Åknes rockslide
338 in Norway is an example of indirect monitoring applied to
339 mountainside instability of significant volume that can fall
340 into a fjord and generate a tsunami. The monitoring of the
341 instability is part of a full early warning system including
342 the evacuation of villages located on the coast within a few
343 minutes (Blikra, 2008).
344 The direct monitoring of tsunamis is the record of the
345 wave propagation and can be fundamental for different

346reasons: a large earthquake does not lead necessarily to
347a tsunami, then the alarm should be canceled if the closer
348gauges do not indicate any wave (Joseph, 2011); the wave
349can occur later than expected; the occurrence of landslides
350(submarines or not) are not always detected. In addition to
351tide gauges, several seafloor sensors (pressure) are located
352near the coastal areas of continents and islands, but also in
353the middle of the ocean (Joseph, 2011). The most
354advanced monitoring system is the Deep-Ocean Assess-
355ment and Reporting of Tsunamis (DART II), and it con-
356sists in a surface buoy localized by GNSS and
357communicating the pressure recorded at the bottom of
358the ocean by a pressure sensor. The communication with
359a satellite is bidirectional (Meinig et al., 2005). Such
360devices are being deployed all over the world (NOAA,
3612012) showing great results, like the satellite altimeters
362that recorded accurately the 2004 Sumatra tsunami wave
363all around the world (Smith et al., 2005).

364Volcanoes monitoring
365Volcanoes are one of the most spectacular natural hazards
366on Earth and can be the most disastrous. As an example,
367the eruption of the Krakatau (Indonesia) in 1883 killed
368some 30,000 people, releasing a significant volume of
369ash that briefly affected climate (Durant et al., 2010) and
370generated a large tsunami wave (Gleckler et al., 2006).
371As eruption types are so diverse, their monitoring is not
372easy. Several activities can provide precursory signs,
373linked to magma movements which change the properties
374of the ground. The first activity signs that are usually mon-
375itored by seismographs are tremors indicating stress
376adjustments. These stress changes induce ground defor-
377mations that can be observed by high precision tiltmeters,
378indicating changes in slope of the surface. Currently,
379GNSS are commonly used (Figure 3); they can provide
380continuous 3D displacements and have partially replaced
381the electronic distance meter (EDM) laser beam. In addi-
382tion, since the early works of Massonnet et al. (1995),
383the InSAR technique allows one to observe deformation
384of volcanoes, providing information on their behaviors.
385Any change in the ground can influence measurable
386parameters such as gravity, temperature, and magnetic
387field. All those variables can be monitored. The change
388in gas composition in fumaroles is frequently reported,
389especially an increase in CO2 content or a change in the
390ration F/Cl. Nevertheless, it is quite difficult to monitor
391gases because they follow preferential paths up to the sur-
392face that can change during a precursory period (McNutt
393et al., 2000). At Etna volcano, ambient seismic noise sig-
394nature has been recognized as a potential precursor that
395can be monitored in order to forecast an eruption
396(Brenguier et al., 2008).
397The monitoring of volcanoes does not only involve the
398volcano itself, but also ash that can disturb aerial traffic or
399have an impact on the agriculture. Sulfur dioxide, ash, and
400aerosols (sulfuric acid) are mostly monitored by satellite
401imaging (ultraviolet and infrared sensors) which is not
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402 designed directly for that purpose (Prata, 2009). As those
403 processes are closely linked to atmosphere movements,
404 many of the monitoring techniques of weather forecasting
405 are also used.

406 Landslides monitoring
407 Landslides are easily observed because they are moving
408 masses affecting and deforming the relief. As
409 a consequence, the main variables to monitor are the
410 movement and parameters that are modifying the stress
411 or the properties of the material that is under deformation
412 (SafeLand, 2010). Except in the case of earthquakes or
413 exceptional precipitation, the displacement is the main
414 parameter to monitor. In most of the cases, the failure is
415 preceded by an acceleration of movements. Depending
416 on the material geometry and the volume involved, the
417 failure may be forecasted (Crosta and Agliardi, 2003),
418 and this acceleration can sometime be directly correlated
419 with groundwater level using a mechanical model
420 (Corominas et al., 2005).
421 Two types of landslides must be distinguished: shallow
422 and deep-seated landslides. The first are too small and too
423 localized to be easily monitored, but today several
424 attempts are made to create early warnings for shallow
425 landslides (Sassa et al. 2009). The deep-seated failures
426 are usually sufficiently large to display significant move-
427 ments before catastrophic failure.

428 Large landslides monitoring
429 The main instruments used to monitor large landslides are
430 dedicated to movements. Physically, extensometers can be
431 used to measure displacements and crack meters can be
432 used to observe the opening of cracks. When boreholes
433 are available, manual inclinometer or permanent incli-
434 nometer columns may be used, providing the deformation
435 profiles and often the failure surface where most of the
436 deformation concentrates. These devices are often used
437 for early warning system, as for the site of Åknes (Nor-
438 way) (Blikra, 2008). As water plays an important role in
439 controlling movements of a landslide, boreholes can be
440 used to measure the level of the water table (manually or
441 by measuring the groundwater pressure).
442 Surface movements can be followed using targets and
443 total station (laser distance meter), but today, if the
444 required conditions of visibility are appropriate, perma-
445 nent GNSS can be used for a permanent monitoring of
446 the movements (Gili et al., 2000). The disadvantage of
447 these methods is that they are point measurements only.
448 By using advanced satellite InSAR techniques
449 (PS-InSAR, SBAS, etc.), a significant percentage of land-
450 slides can be imaged and monitored. In addition, time
451 series of displacement of ground reflectors can be
452 obtained. One of the last evolutions of the InSAR is the
453 SqueeSAR™ method that enhances significantly the
454 capability of tracking ground displacement (Ferretti
455 et al., 2011). Unfortunately, satellite InSAR is not suitable
456 for early warning because satellites take several days to

457pass over an area a second time. If no appropriate reflec-
458tive object exists on the monitored surface (for instance
459due to forest cover), the InSAR method can be applied
460only if corner reflectors are installed on the ground, pro-
461viding movements on selected points only (Singhroy
462et al., 2011). With ground-based InSAR (GB-InSAR), it
463is possible to follow the movements of the surface of
464a landslide or rockslide, when it is visible in the direction
465of the line of sight. This is very useful to observe the
466deformation evolution of the front of landslides
467(Tarchi et al., 2003).
468The Lidar technique provides full 3D point clouds in
469the case of terrestrial Laser scanner (TLS), which allows
470characterizing rock slopes and landslides (Safeland,
4712010; Jaboyedoff et al., 2012). It permits one to monitor
472and to follow the full evolution of a landslide surface that
473is moving, to understand mechanisms of failure
474(Oppikofer et al., 2008) and also to monitor rock fall
475by comparison of successive acquisitions (Figure 4). The
476airborne Laser scanner (ALS) is less accurate but permits
477one to estimate differences between digital elevation
478models.
479For most landslides, several different sensors
480are required to establish an early warning system
481(Blikra, 2008; Froese and Moreno, 2011). Since a few
482years ago, photogrammetry and image correlation have
483developed, leading to very promising results (Travelletti
484et al., 2012). Geophysics methods are also improving their
485capabilities to image the underground. One of the most
486interesting recent developments is ambient seismic
487noise analysis. For a rock mass, it indicates a decrease of
488the natural frequency before failures and for landslides,
489a decrease of the surface wave velocity (Mainsant
490et al., 2012).

491Debris flow and shallow-landslides monitoring
492Shallow landslides and debris flow landslides are mostly
493dependent on precipitation. As a consequence, the main
494monitored variables are precipitation intensity, and dura-
495tion (Baum and Godt, 2010; Jakob et al., 2011). Satura-
496tion, soil moisture, and antecedent precipitation are
497variables that are also often monitored. In the case
498of shallow landslides, the exact location cannot be
499determined, thus the entire area is considered as hazardous
500if some thresholds are exceeded. It must be noted that an
501early warning system designed for rainfall-induced
502landslides is operational in Hong Kong and has been
503continuously improved since 1977 (Chan et al., 2003;
504Sassa et al., 2009).
505In the case of debris flows, sensitive catchments can be
506equipped in order to issue warnings. The seismic sensors
507and ultrasonic gauges permit one to deduce velocity and
508peak discharge (Marchi et al., 2002).
509Monitoring shallow landslides and debris flows is
510still a topic of research under development because the
511triggering and the localization of such phenomena are
512not yet well understood.
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513 Snow avalanche monitoring
514 Snow avalanches are seasonal events and depend
515 strongly on climate variables such as previous precipita-
516 tion, snowpack depth and strength, and temperatures. As
517 a consequence, snow avalanches monitoring concentrates
518 essentially on hazard level quantification. This is mainly
519 performed using human observations (SLF, 2012)
520 and weather stations equipped by ultrasonic snow depth
521 sensors. Observed variables are strongly dependant on
522 local physiographic conditions. In addition to monitored
523 data, the observers perform snow hardness tests in order
524 to detect the potential mechanical weakness in the snow-
525 pack (Pielmeier and Schneebeli, 2002). The conditions
526 for avalanches are so diverse (wet snow, large amount of
527 fresh snow, etc.), that up to now, human intervention in
528 the monitoring remains the main method to monitor and
529 forecast this hazard.

530 Other monitoring
531 There are other hazards to monitor. Some require the
532 integration of meteorological data in the monitoring
533 design. For instance, a drought corresponds to a period
534 of abnormally dry weather leading to a deficit of water
535 in the hydrologic cycle and finally leading to problems
536 (but the definition of drought is not unique). Forest fires
537 are consequences of dryness, with origins that are often
538 not natural, but anthropogenic. Hail storms are also haz-
539 ardous phenomenon that can lead to serious damage; hail
540 monitoring is mainly based on human observation and
541 meteorological radar. Lightnings are monitored using an
542 electromagnetic sensors network. All the sensors
543 detecting one specific lightning provide the distance to
544 it. The location is then deduced by searching the best
545 agreement between all the detected distances to sensors.

546 Future of monitoring as a demand of the society
547 The monitoring of natural hazards is often a tedious task
548 because if the physics well describes the single phenome-
549 non, in natural environments, the occurrence of an event is
550 controlled by several simultaneous phenomena. It implies
551 that, for the analysis and prediction of events, a number of
552 different variables are required to be able to describe all
553 possible cases.
554 The power of computer science, communication
555 technologies, and the improving quality of sensors,
556 combined with decreasing prices, make the monitoring
557 of environmental data more precise and easy. This leads
558 to new understanding of natural hazards and also to the
559 implementation of early warning systems that will permit
560 one to manage territories in a safer way. In addition,
561 nowcasting, as proposed by World Meteorological Orga-
562 nization, is now an objective of this organization to pro-
563 vide forecasts in less than 6 h. Such developments are
564 mainly possible because of computer power available
565 almost everywhere and a generalized ability to communi-
566 cate rapidly by anybody with the “smartphone”
567 technology.
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t1:1 Monitoring Natural Hazards, Table 1 Description of the most common sensors used to monitor natural hazards

Sensors
Monitored
variables Principles Monitored phenomenont1:2

Pressure measurement Pressure
(air, water), in
situ stress
measurement

Barometer: used a height of fluid in vacuum to
compensate the atmospheric pressure

Atmospheric circulation,
water table, Earth crust
deformationst1:3 Pressure transducer: convert a material

deformation electrical signalt1:4
Radar (RAdio Detecting And
Ranging)

Distance to a hard
object and
velocity

Reflection of an emitted microwave by an object
and received by an antenna. The Doppler effect
permits to estimate the speed of an object

Precipitation imaging,
river discharge
(velocity), sea level rise,
tornadoest1:5

Laser (Light Amplification by
Stimulated Emission of Radiation)
and Lidar (Light Detection And
Ranging)

Distance to
a surface and
orientation

The Laser consists in amplifying coherent light by
using the principle of stimulated emission,
creating a narrow beam that can be reflected by
surfaces. The Lidar uses the principle of range
finder by evaluation of the distance by the time
of flight or the phase comparison. The direction
of the beam is recorder in order to obtain the 3D
coordinates. Information on the reflectivity can
be also obtained

Landslides movements
and characterization,
local atmospheric
circulationst1:6

Thermometer Temperature The measurement is realized using changes of the
properties of materials under temperature
variations such as volume (mercury), or the
electric resistance such as thermistors or
thermocouple which produce a current
proportional to the temperature between two
different materials

Climate, weather
forecasts, volcanot1:7

Accelerometer and seismometer Acceleration,
velocity,
displacement

Measurement of ground acceleration using
transforming movement into electrical signal

Earthquake, surface
deformation (landslides)t1:8

Wind sensor Wind speed and
direction

Anemometer is a rotating device entrained by
wind such as cup. Anemometers usually use
three half spheres like rotating along a vertical
axe. The windvanes is a device which is
orientated parallel to the wind. Measurement of
ultrasonic wave by several sensors permits to
obtain the wind velocity and direction

Weather, hurricanes,
tornadoest1:9

Rain gauge Amount of
precipitation
throughout time

The traditional rain gauges are tipping-bucket,
like a container that is emptied each time the
unitary volume that can be measured is
reached. Precipitations can also be measured
using rain drop impact counts

Weather, bad weathert1:10

InSAR (interferometric synthetic
aperture radar)

Topography, small
surface
displacement
using radar

By using ground-based or satellite InSAR
images, it is possible to extract a distance to the
ground and a very accurate changes between
two images down to millimeter resolution in
the direction of line of site. This is based on
microwave interference

Earth surface deformation:
Earthquakes, volcanoes,
landslides, subsidencet1:11

GNSS (Global Navigation Satellite
System)

Ground position The principle is to acquire several highly precise
travel times of microwaves from at least two
satellites (with highly precise positions) and to
compute the distance and location to calculate
the best position (can be improved include the
phase information). Highest accuracy is
obtained by using differential GNSS method
which computes difference with a well-known
GNSS position. This remove several error such
atmospheric and ionosphere one. The position
resolution reaches a few millimeters

Earthquakes, volcanoes,
landslides, subsidencet1:12
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Monitoring Natural Hazards, Figure 1 Statistics of Swiss monthly temperature differences to the average over the whole period.
This shows a shift of 0.8�C. The probability to get a monthly temperature 3�C greater than the average temperature is at least twice
for the period 1941–2000 compare to 1864–1923 (Modified from Schär et al., 2004).
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Monitoring Natural Hazards, Figure 2 Coseismic crustal deformation of the Tohoku Earthquake. Horizontal and vertical
displacement. These displacements are defined by the difference between the positions on the day before the mainshock (March 10)
and those after the mainshock, March 11 (Modified and simplified after RCPEVE, 2012).
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Monitoring Natural Hazards, Figure 3 PS-InSAR™ showing uplift along the line of sight with data from descending orbit on October
2005–November 2006. Observe the correlation between uplifts, structures, and seismic activity (Modified and synthetized after
Vilardo et al., 2010).
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Monitoring Natural Hazards, Figure 4 Map of the deposit and failed mass thickness of the of the Val Canaria rockslide (Ticino,
Southern Swiss Alps). This map based on the comparison of the airborne and terrestrial Lidar digital elevation model taken before
and after the 27.10.2009 rockslide event (modified after Pedrazzini et al., 2011; the aerial picture and airborne Lidar are provided by
swisstopo).
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Abstract 

Although landslides are usually considered typical examples of natural hazards, they can be 

influenced by human activities. Many examples can be found in the literature about slope 

instabilities induced by anthropogenic activities, ranging from small superficial landslides to rock 

avalanches. Research on this topic is of primary importance for understanding and mitigation of 

landslide risk. Indeed, slope stabilities influenced by human actions contribute significantly to the risk 

level because, by definition, they are located where elements at risk and people are present. Within 

the framework of the European project SafeLand “Living with Landslide Risk in Europe”, we analyzed 

the landslides induced by anthropogenic factors in Europe and elsewhere. During the bibliographical 

research, it appeared that a complete and illustrated classification on human activities influencing 

slope stabilities does not yet exist. Therefore, a new classification is introduced about anthropogenic 

activities affecting slope stability conditions. This classification takes into account conceptual 

processes leading to landslides and the distinction between destabilization factors and triggering 

factors. The classification was tested and improved through fifty-eight well-documented case studies, 

such as Elm, Aberfan, Namsos or even Rissa landslides. Furthermore, the boundary between natural 

and “anthropogenic” landslide triggers (e.g. water run-off modified by new land-uses, creating 

landslides some km farther), and the time during which changes and reactions are to be considered 

as direct consequences of human activities were highlighted. Finally, anthropogenic influences can 

also be positive and examples of (non-voluntary) positive human impacts on slope stability are 

presented. 

Keywords: Anthropogenic activities, Landslide-inducing, Classification. 

1.1 Introduction 

While often natural in origin, many landslides are triggered by anthropogenic activities, with 

reported sizes ranging from small shallow landslides, such as those observed in Gondo, Switzerland, 

to large rock avalanches such as Elm, Switzerland, or Frank slide, Canada. At each scale, landslides 

may present several levels of human implications. Within the framework of the SafeLand European 

project Living with Landslide Risk in Europe, the authors analyzed the landslides induced by 



anthropogenic factors in Europe and elsewhere (Nadim et al. 2010). During the bibliographical 

research, it appeared that a complete and illustrated classification on human activities influencing 

slope stabilities does not yet exist. However, research on this topic is of primary importance. Slope 

stabilities influenced by human actions contribute significantly to the risk level because, by definition, 

they are located where elements at risk and people are present.  

We propose to classify human activities influencing slope stabilities through internal parameters that 

affect the susceptibility, such as topography or geology, and external factors, such as freezing or 

infiltration (Jaboyedoff and Derron, 2005a). The most common factor is the modification of slope 

profile, usually caused by cuts and fills, that changes the slope factor of safety. Moreover, the effect 

of the modification of the ground water by a dam, a pipe leak or modification of overflow path can 

lead to changes in the behaviour of the material or changes in the water infiltration that again 

decrease the factor of safety.  

In his famous paper Mechanisms of Landslides, Terzaghi (1950) highlighted the “internal” and 

“external” causes that can lead to landslides. Within the nineteen identified reasons, nine of them 

can be influenced or directly transformed by anthropogenic activities because of four physical 

agents: 

o Weight of slope-forming material; 

o Transported material; 

o Water; 

o High frequency vibration. 

According to Vaunat et al. (1994) and Leroueil et al. (1996), landslides follow different stages of slope 

movements, i.e. the pre-failure, the onset of failure, the post-failure and the reactivation stages, 

which relate changing mechanical laws and parameters. Champetier de Ribes (1987) characterized 

landslide susceptibilities and activities according to: 

1. Predispositions factors; 

2. Aggravating factors; 

3. Triggering factors. 

Developing further Terzaghi’s (1950) classification, we suggest taking into account conditions 

affecting the stability at different stages of slope movements described by Champetier de Ribes 

(1987), especially differentiating destabilizing and triggering actions. This new classification is 

illustrated by relevant case studies, such as Aberfan, Elm, Namsos or Vaiont landslides. 

Furthermore, we want to highlight the boundary between natural and “anthropogenic” landslides 

(e.g. water run-off modified by new land-uses, creating landslides some km farther), and the time 

during which changes and reactions are to be considered as direct consequences of human activities. 



 

Anthropogenic influences can also be positive. We will show examples of (non-voluntary) positive 

human impacts on slope stability. 

1.2 Classification of anthropogenic activities inducing instabilities 

 Differences between destabilizing and triggering factors 1.2.1

Anthropogenic activities can affect slope stability by changing the strength or effective stresses, 

modifying the boundary conditions or inducing changes in material behaviour could influence the 

factor of safety (Terzaghi, 1950). After Champetier de Ribes’ considerations (1987), we assume that 

human activities can affect predisposed internal parameters or external factors to destabilize stable 

slopes, as well as dormant and active landslides. Human activities can also create completely new 

instabilities (Figure 6.1). 

 
Figure 6.1: Anthropogenic activities can destabilize and trigger stable slopes, dormant or active landslides (modified after 

Vaunat et al. 1994, and Leroueil et al. 1996). 

Then, taking into account the different stages of slope deformation (Leroueil et al. 1996, Vaunat et al. 

1994), who stated that destabilization time durations as onset of failures and reactivations stages of 

slope movements, i.e. the time interval within which a continuous shear band is being formed or 

reactivated. Localized movements can affect some parts of the slope but the whole unstable area 

does not move entirely. Afterwards, the triggering happens when the whole slope is in movement or 

collapse. Terzaghi (1950) defined the destabilization time interval as a progressive decrease of the 



Safety Factor (SF) of the entire unstable slope. The triggering of the whole sliding (or collapse) 

happens once the SF becomes lower than 1 (Figure 6.2). 

 
Figure 6.2: Evolution of the SF of Turtle Mountain before the Frank slide. The natural trend was a slow decreasing in 

stability conditions, due to bad geological settings, with seasonal worsening during melting of snow. Moreover, mining 

activities began to accelerate the aggravation of the SF. The 29 April 1903, the rock avalanche occurred and was probably 

triggered by freezing of melted snow inside joints, which drastically reduced the SF lower than 1 (modified after Terzaghi, 

1950). 

 The Classification 1.2.2

To achieve the classification of all human activities influencing slope stability (Table 1), we first 

identified all physical actions (or non-actions) and their associated agents which can lead to 

instabilities, i.e.: 

1. Modifications of slope profiles; 

2. Modification of pore pressure; 

3. Vibrations; 

4. Degradation of artificial structures; 

5. Head overcharges; 

6. Foot slope destructions; 

7. Rupture of artificial structures; 

8. Explosives. 

The physical effects of these actions on equilibrium conditions of slopes are described in Terzaghi 

(1950). Then, all anthropogenic activities which can affect natural slope regimes have been 

recognized and classified: 

1. Embankments; 

2. Tailing hills; 

3. Fill slopes; 



 

4. Cut slopes; 

5. Pipe leaks; 

6. Dam reservoirs; 

7. Land-use changes; 

8. Heavy traffic; 

9. Filling of torrential check dams; 

10. Weakening of terraced walls; 

11. End of drainage systems; 

12. Leaks in old canalization networks; 

13. Construction work; 

14. Excavation work; 

15. Inappropriate retaining wall; 

16. Pipe bursting; 

17. Blasting. 

 

The activities involved by this classification are explained in the next sections. Illustrated with 54 

published case studies, the consequences of theses influences are multiples: it can contribute and/or 

produce single or multiple landslide events within a confined or large area. This is relevant for rocks, 

debris and earth materials and for sliding and flowing movements (following the classification of 

Cruden and Varnes, 1996). Furthermore, within the synthesis of these case studies, it seems that 

there are three main human activities contexts leading to landslides, namely mining and quarry, 

agriculture and pastures, and civil engineering works. 



 

Table 6.1: New classification of anthropogenic activities affecting stability conditions. It takes into account processes leading 

to landslides and the distinction between destabilization factors and triggering factors. The classification has been tested 

and illustrated with fifty-eight relevant and/or famous published case studies. The initials within the “Type” column refer to 

the classification of Cruden and Varnes (1996): D- Debris, E- Earth, F- Flow, Fa- Fall, R- Rock, S- Slide, T- Topple. 

 



 

1.3 Illustration of destabilizing activities 

 Modification of slope profile 1.3.1

Modifying slope profiles, there are two agents which influence slope stabilities: the weight of slope 

forming material and the transporting material. They essentially decrease material cohesions and 

increase shear strength (Terzaghi, 1950). 

Classically the creation of artificial embankments for civil engineering works increases the weight of 

slope forming material; the associated landslides are mainly linked with new railway or road 

constructions, e.g. along the Irbid-Amman Highway in Jordan (Al-Homoud et al. 1997), and with 

coastal polders, as shown by the French Nice harbour (Assier-Rzadkiewicz et al. 2000). Such event 

occurs when dimensioning errors are performed. 

Created by precarious anthropogenic deposits of non-consolidated mining and quarry debris, tailing 

hills are regularly badly designed. Thus, the material of these poorly stable slopes can become 

sources of debris flows after strong rainfall events, such as the 1966 Aberfan event (Bishop and 

Penman, 1968). 

Fill slopes are essentially linked with civil engineering works and roads in hilly regions, involving the 

added material in rotational earth slides. Even if they usually affect small part of slopes, they can 

have a large impact by cutting important roads or railways (Collins, 2008). A second reason of 

destabilizations by filling is more historical, occurring in cities with long habitation histories. Katz and 

Crouvi (2007) introduced the case of Zefat, Israel. Buildings inside the old district are constructed 

directly on few meters of ballast, deposed during 2000 years of human presence. Thus, built on 

mechanically weak debris, the district is more susceptible to landslides and seismic-shaking. 

Cut slopes are one of the major anthropogenic activities that lead to landslides. Indeed, remove or 

erode toe slopes destabilize rocks, debris and soils materials. Cut slopes are mainly carried out for 

civil engineering works along corridors (Sah and Mazari, 1998; Baillifard et al. 2003; Parriaux, 2007; 

Herrera et al. 2011) or in cities (Schulz, 2007; Befring, 2008). They can even lead to catastrophic rock 

avalanches during mining and quarrying activities, such as the event of 1923 in Arvel illustrated in 

Figure 6.3 (Choffat, 1929; Jaboyedoff, 2003a).  

Along corridors, slopes can be cut and filled. Both linked works are destabilizing, and landslides are 

usually triggered just after heavy rainfalls, especially in mountain areas as shown in Figure 6.4 

(Barnard et al. 2001; Moreiras, 2004, Sudmeier-Rieux et al. 2009). 



 
Figure 6.3: Picture of the deposits below the rock face, after the 1922 rock fall event (Choffat, 1929, in Jaboyedoff, 2003a). 

 

 
Figure 6.4: Cut and filled slope leaded to rotational earth slide along a Nepalese road in 2008 (courtesy of A. Breguet and K. 

Sudmeier-Rieux). 



 

 Modification of pore pressure 1.3.2

Modifications of natural pore pressures are usually dealing with disturbance of water runoff and 

seepage conditions. However, adding water in the system involves a decrease frictional strength, and 

even can create spontaneous liquefaction phenomena (Terzaghi, 1950). Canalization networks are 

leaking up to 30% (Giret and Rathieuville, 1996). Therefore pipe leaks are an important issue. Even if 

usually resulting landslides are small (Figure 6.5), the proximity to houses make them dangerous, 

such as the Lutzenberg earth flow which killed 3 people. Moreover, this destabilization can affect 

large areas, due to several leaks along water galleries leading to quite a lot of landslides (Preuth et al. 

2010). 

 
Figure 6.5: Earth flows occurred in 2007 in Les Diablerets, Switzerland, after a rainfall with a return period of 3 years. 

Previously, the water pipe leak aggravated the stability conditions, increasing the water pore pressure (modified from 

Jaboyedoff and Bonnard, 2007a). 

The impacts of filling and drawdown dam reservoirs (Terzaghi, 1950) have been recently 

reinvestigated, in particular after several dramatic events. The 1963 Vaiont rock slide is one of the 

most famous and studied filling dam reservoir-induced landslides all over the world (Alonso and 

Pinyol, 2010). On the other hand, landslides can also be induced during reservoir drawdown 

(Terzaghi, 1950; Pinyol and Alonso, 2008). For now, China is doing great efforts in reservoir-induced 

instabilities to reduce fatalities from landslides along the world greatest reservoir of the Three 

Gorges dam, through the development of education means, site monitoring, early warning system 

and remediation measures (Wang et al. 2004; Wang et al. 2005). 

Finally, land-use changes are the most important cause in modification of water pore pressure, 

because they relate to long-term and regional processes, such as deforestations (Glade, 2003; 

Remondo et al. 2006), urbanization (Wasowski, 1998; Cascini et al. 2008b) and irrigation works 

(Hermanns et al. 2008). They involved water seepages and run-off changes which can affect slopes 

some km farther than the human activities. After the past decades of fast urbanization without 

organization of superficial water collect, the numerous landslides of the November 2000 in the 



Menton territory (France) is a relevant example of the possible distance between human-modified 

areas and sliding events, linked by water run-off (Nadim et al. 2010). New irrigation effort can lead to 

landslides too; indeed, the South American’s largest irrigation project fertilizes progressively the 

deserted Sihuas plateau (Peru) for 25 years. As a consequence, new infiltrated waters increase 

severely the water pore pressure that is inducing few huge rockslides (Hermanns et al. 2008). 

 Vibrations 1.3.3

Vibrations due to heavy daily traffic along roads and highways can lead to increase shear stresses and 

to decrease the cohesion of materials (Terzaghi, 1950). Vibration-induced landslides are usually rare 

and small, but their impact can be high as they affect transportation ways. Along Californian 

highways, McCauley et al. (1985, in Pantelidis, 2009) counted 10 landslides destabilized by truck 

vibrations 

 Degradations of artificial structures 1.3.4

In the past, people who were living near potential instabilities built many structures which voluntarily 

(or not) acted as remediation systems.More recently, after many decades, population is leaving rural 

areas. As a consequence, some constructions useful for agricultural purposes, such as terraces and 

irrigations systems, are not maintained any more. Then, weakened terraced walls and irrigations 

systems do not play their roles of retaining and draining slopes, leading afterwards to landslides 

(Martin, 1998; Wasowski, 1998; Crosta et al. 2003a). 

A second obvious reason of maintenance lacks is the falling into oblivions of old structures with the 

course of years, after wars and a series of political changes, like in Slovenia (Logar et al. 2000). For 

instance, historical abandoned canalization networks have oversaturated the sandy slopes filled with 

past debris of the Fourvière hill, in Lyon (France), for years. In November 1930, two dramatic debris 

flow occurred in the same night, killing 39 people (Allix, 1930; Albenque, 1931). 

1.4 Illustration of Triggering factors 

Anthropogenic-triggered landslides are usually caused by the same activities introduced before. 

Nevertheless, in these conditions, safety factors decreases compared below limit equilibrium during 

a shorter time lapse than the destabilizing period, inducing the sliding of the entire slope or the 

brutal activation of falls or flows. 

In some cases, human activities release huge quantities of energy in the field, which affect a priori 

stables slopes with high safety factor. Indeed, the break of badly designed retaining walls poured 

tons of coarse materials on a building in 1993 in Malaysia (Gue See Saw and Tan Yean Chin, 2002). 



 

Another example is the Cleuson-Dixence dam gallery, which suddenly burst the 12 December 2000 

and triggered a massive debris flow, which killed three people. However, blasting operations are the 

most relevant examples of huge energy releases (Figure 1.6). They can trigger earth slides (Eden, 

1956; Nordal et al. 2009) as well as large rock falls (Wieczorek and Snyder, 2004; Parriaux, 2007). 

In another cases, human activities just trigger collapses of a priori unstable slopes with safety factors 

close to 1. Indeed, construction and excavation work can make heavy slope heads and severely cut 

toes. For instance, during the construction of the Panama’s canal, recurrent events occurred in the 

Culebra’s and Gaillard’s cuts, even during dry seasons (Van Hise et al. 1916; Alfaro, 1988; Panama 

Canal Authority, 2001). 

1.5 Discussions 

In this section, we discuss the potential limits of this classification to draw attention to some open 

questions. We do not always offer unique answers to these questions, because some of these 

considerations are function of point of view. 

 Destabilization vs triggering 1.5.1

The temporal limit between destabilizing and triggering events is not yet well defined. As Wasowski 

(1998) highlighted, a one-hour intense tropical rainfall is considered as an evident triggering factor. 

Nevertheless, should we accept as trigger a three-day rainfall event? In the same way, the Fully’s 

example illustrates this limit: after heavy rainfall, a water derivation pipe burst and carried water 

inside scree deposits and moraine debris 1500 m lower. After one night of discharge, a debris flow 

occurred (Marquis, 2002). In our point of view, events of one night could be reasonably considered 

as triggering factors. However, the temporal limit between destabilization and triggering is haziness, 

and some publications do not always allow to discriminate clearly both concepts. 

Nevertheless it can be stated that the difference between destabilisation is the observations of three 

stages of deformations which possess very different time scale. The normal slope evolution can last 

hundreds to millions of years). The destabilizing period is the change in the mean behaviour of a 

normal slope deformation; while the triggering occurs in a shorter period compared to the previous 

one. This is not directly related to stages of deformation (Petley and Allison, 1997), this is indeed 

more related to the event that changed the behaviour during the time. 

 Successive events and real triggering 1.5.2

Landslides usually stem from several factors, and not from only one triggering action. We propose 

the terms of “successive events” for triggers initiating processes that lead rapidly to complete failure 



of a slope. The destabilisation of a slope can be initiated in a small zone of the landslide by a human 

activity and propagate in a larger area like in Rissa (Gregersen, 1981) by successive retrogressive 

failures. Often rainfalls are considered as the major external parameter triggering instabilities. But in 

some cases of ruptures of artificial structures, meteorological events are not the direct trigger. For 

instance the water overpressure lead to break retaining walls, such as in Gondo (Rouiller and Joris, 

2001), or to burst pipes, such as in Fully (Marquis, 2002). Thus, rainfalls are the cause but not the 

triggering, which is the massive and sudden carrying of material created by the rupture. 

 Human influences vs. natural causes 1.5.3

In some cases, the limits between human-induced and natural landslides can be unclear and hazy. 

The Caracas – La Guaira landslide (Salcedo, 2009) is a demonstrative example: the landslide 

reactivation was mainly due to the July 1967 Caracas earthquake; then the 19 March 2006 event was 

triggered by neotectonic movements. But Salcedo (2009) did not exclude that the increase of water 

pore pressure in urban areas due to inefficient drainages and limited sewages services acted as a 

second destabilization process. Nevertheless, no additional investigations were carried out and 

published to quantify the exact influences of anthropogenic effects compared to the seismic ones. 

Even if human effects can have only a minor role beside natural causes, they have to be always 

considered for detailed investigations. 

 Non-voluntary positive anthropogenic impacts 1.5.4

Finally, we introduce examples of anthropogenic activities which have non-voluntary positive impacts 

too on slope stabilities. 

In the past, people in rural areas managed the territory carefully. Slope areas were terraced and 

water running off was considered a primordial resource (Nadim et al. 2010) that had to be collected 

in order to develop farming (Martin, 1998; Wasowski, 1998; Crosta et al. 2003a). Indirectly, they 

contributed to reduce the landslide onset probability. 

More recently, the Puerto Rico island example is relevant as an example of non-voluntary 

reforestation. After economic changes, the industry-based economy became more active during the 

second half of the 20th century and human activities decreased in rural areas. In abandoned pastures 

and crops, the tropical forest begins to recover after 15 years post-abandonment (Aide et al. 1995). 

As a consequence, the natural reforestation contributes to stabilize slopes (Walker et al. 1996). 

Another context: in the Swiss Alps, there are a lot of galleries which collect water from elevated 

springs for hydraulic power purposes. Thus, downstream torrents have less water. Consequently, 

debris flow hazard has decreased thanks to non-voluntary positive human impacts. 



 

1.6 Conclusions 

This paper proposes a classification of anthropogenic activities influencing slope stability. Taking into 

account the previous works of Terzaghi (1950), Vaunat et al. (1994) and Leroueil (1996), we classified 

landslide inducing human activities according to their destabilization or triggering ability, and then to 

their physical actions and agents involved. The initial conceptual classification was tested and 

improved through fifty-eight relevant and/or well known case studies. 

Even if all issues are not yet solved, this classification furthers the investigations of human-induced 

landslides. It should help geologist and civil engineers to work together in order to prevent the 

foreseeable consequences of human activities and recommend remediation measures to improve 

the situation.  

For example, in many urban areas, especially in Europe, infrastructures and water canalizations are 

quite old. Thus it is important that future studies focusing on landslide risk assessment in urban areas 

take into account the potential weakening and leaking of the oldest constructions. Thus, new 

assessment methods designed to consider the effects of ageing of the infrastructures have to be 

developed. 
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