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Abstract

The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and
medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key
essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using
an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in
the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-
dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting
effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are
due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that
changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression
determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a
concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and
interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as
protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in
survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour
suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a
paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-
proliferative functions. Data are available via ProteomeXchange with identifier PXD000537.
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Introduction

Molecular chaperones are central to cellular proteostasis. They

are closely involved in essential biological processes such as

translation, folding, complex assembly and disassembly, translo-

cation across membranes and protein degradation [1,2]. The

functional importance of molecular chaperones and their impli-

cations in disease states has identified them as key drug targets in

cancer [3,4]. In eukaryotes, the heat shock protein 90 (Hsp90)

plays a distinctive role amidst chaperones by facilitating the folding

of transcription factors, regulating the activation of kinases [5,6]

and steroid hormone receptors [7], assisting in the formation of

protein complexes [8,9], and playing a role in protein turnover

and trafficking. To achieve all of these functions, Hsp90 associates

with co-chaperones, Hsp90 substrates, and their interacting

partners [2,6,10]. Hsp90 clients are defined as proteins that are

dependent on Hsp90. The net abundances of many, but not all

Hsp90 clients, decrease upon Hsp90 inhibition, most likely due to

proteasomal degradation. Clients with a broad variety of functions

require Hsp90 to acquire the proper conformation, for activation,

and/or for stability. Overexpression of Hsp90 as an activated

multi-chaperone complex is frequent in malignant cells [11,12],

and many Hsp90 clients take part in signalling pathways with

oncogenic relevance [13,14]. Inhibition of Hsp90 can block key

pathways for cancer, which is why Hsp90 has attracted great

interest as a target for anti-cancer drug development [12,14,15].

Hsp90 inhibitors, such as geldanamycin (GA) are competitive

inhibitors of ATP-binding. These inhibit chaperone function, and

as a consequence, they may exert anti-tumour activity by

decreasing the levels of oncogenic clients [12–14]. Currently,

there are about 20 inhibitors in clinical trials [13,15].

Recent efforts have been directed to identify and to quantify the

portion of the proteome that is dependent on Hsp90, most

commonly using standard SILAC (Stable Isotope Labelling by

Amino acids in cell Culture, stSILAC)-based quantitative

proteomics [11,16–19]. Results from these and previous studies
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using different proteomic approaches have improved our under-

standing of the role of Hsp90 in cancer, as well as a target of

promising anticancer drugs [20]. Protein profiling was used

together with proteomic screening to identify components of the

inhibitor-bound Hsp90 complexes [11]. Quantitative and kinase-

targeted chemo-proteomic analyses [17,19] of the Hsp90-depen-

dent proteome highlighted Hsp90 clients, which are directly

affected by its inhibition, and proteins that are indirectly

influenced. Hsp90 inhibition was found to specially affect the

proteome-wide abundance (stSILAC) of proteins taking part in the

protein folding machinery, the DNA damage response, as well as

protein phosphorylation and signalling by kinases [18,19]. To

expand our knowledge of the Hsp90-dependent proteome and the

effect of GA-mediated Hsp90 inhibition in T-cells, we applied a

novel integrated systematic approach. First, we analysed the

dynamic (over time) changes in stSILAC abundances during short

(up to 6h) and long-term (up to 20h) GA-treatment, detecting

changes in protein groups with distinct behaviours. Since Hsp90

inhibition is believed to affect large portions of the proteome (1–

10%) through changes in both decay and synthesis, we applied a

novel pulse-chase SILAC (pcSILAC) strategy that provided

insights into how changes in protein abundance are generated

(Fierro-Monti et al., accompanying article). Differential and

dynamic changes in de novo synthesis and decay were identified

in proteins in terms of decay rate constants [kd] and rates of

synthesis [Vs]. We detected a greater global decrease in protein

synthesis than protein stability, while many key protein families

decreased their half-lives due to Hsp90 inhibition. Modelling of

our quantitative dataset onto an Hsp90 interaction database [21]

helped to distinguish and evaluate more specific dynamic changes

validating potentially novel Hsp90 clients within the Hsp90

interactome. As protein abundance can be influenced by changes

at the level of transcription, mRNA levels were therefore

determined for a selection of proteins with increased or decreased

net stSILAC abundances upon GA-treatment. Altogether, our

analysis of Hsp90 inhibition allowed an integrated assessment of

the dynamics of the T-cell Hsp90-dependent proteome, giving

further insights on the mechanism of action of an inhibitor of

Hsp90.

Experimental Procedures

Cells
Jurkat T-lymphocytes clone J77.20 were a kind gift of Dr.

Oreste Acuto, University of Oxford and have been previously

described [22,23]. Cells were cultured in Roswell Park Memorial

Institute (RPMI) 1640 medium (Cell Culture Technologies,

Gravesano, Switzerland) with 10% (v/v) dialyzed fetal bovine

serum (FBS) (Invitrogen), while performing stSILAC or pcSILAC

experiments.

stSILAC experiments
Isotope-labeled amino acids (13C6-L-lysine, 13C6

15N4-L-argi-

nine, Cambridge Isotope Laboratories (CIL), Andover, MA) were

included in the ‘heavy-stSILAC medium’ at 100 mg/l, whereas

proline was supplied at 180 mg/l (a 9-fold excess over its standard

concentration in RPMI medium) in all stSILAC and pcSILAC

media. Heavy or light-stSILAC labelling (same as heavy-stSILAC

medium, but containing standard lysine and arginine) was

achieved by culturing the cells for 2 weeks to allow for at least 5

cell divisions. Before start of the experiments, tests were carried out

to verify that heavy labelling was . 98%, and Arg to Pro

conversion was lower than 5%. Heavy-stSILAC labelled cells were

treated with 1 mM Geldanamycin (GA) (Cell Signalling, Danvers,

MA) in dimethylsulfoxide (DMSO) for 6 or 20h, and light-

stSILAC-labelled cells were treated with the same volume of

DMSO and used as a control. Three independent biological

replicates of treated (heavy-labelled) or untreated (light, control)

cells were conducted in parallel. One out of the three replicates

was inverted using light-label for the treated, and heavy-label for

the untreated cells.

Cells were lysed in 4% sodium dodecyl sulphate (SDS), 100 mM

Tris/HCl pH 7.5, 100 mM dithiothreitol (DTT) followed by

heating at 95uC. After centrifugation and protein concentration

measurements, equimolar extracts from light/heavy- or heavy/

medium-labelled cells were combined, alkylated with iodoaceta-

mide and digested as described [24]. The obtained peptide

mixtures (200 mg total material) were desalted on SepPak C18

cartridges (Waters Corp., Milford, MA), dried, dissolved in 4M

Urea with 0.1% Ampholytes pH 3–10 (GE Healthcare) and

fractionated by off-gel focusing as described [25]. The 24 fractions

obtained were desalted on a microC18 96-well plate (Waters

Corp., Milford, MA), dried and resuspended in 0.1% formic acid,

3% (v/v) acetonitrile for LC-MS analysis. Samples were analysed

on a hybrid linear trap LTQ-Orbitrap Velos mass spectrometer

(Thermo Fisher, Bremen, Germany) interfaced via a nanospray

source to a Dionex RSLC 3000 nanoHPLC system (Dionex,

Sunnyvale, CA, USA). Peptides were separated on a reversed-

phase Acclaim Pepmap nanocolumn (75 mm ID615 cm, 2.0 mm,

100 m, Dionex) with a gradient from 5 to 85% acetonitrile in 0.1%

formic acid (total time: 120 min). Full MS survey scans were

performed at 60’000 resolution. In data-dependent acquisition

controlled by Xcalibur 2.0.7 software (Thermo Fisher), the twenty

most intense multiply charged precursor ions detected in the full

MS survey scan were selected for Collision-Induced Dissociation

(CID) fragmentation in the LTQ linear trap with an isolation

window of 3.0 m/z and then dynamically excluded from further

selection during 120s. The mass spectrometry proteomics data

have been deposited to the ProteomeXchange Consortium

(http://proteomecentral.proteomexchange.org) via the PRIDE

partner repository [26] with the dataset identifier PXD000537.

MS data analysis: identification and quantitation
MS data were analysed and quantified using MaxQuant version

1.0.13.13 [27], combined with Mascot (Matrix Science, London,

UK) version 2.3. Peaklists were generated with MaxQuant with

standard parameters. Database searches were performed on the

IPI Human v3.68 database, filtered to keep only the entries

mapping a UniProtKB/Swiss-Prot identifier (34743 entries

actually searched) in order to maximize sequence and annotation

quality in further analysis steps. Cleavage specificity was trypsin

(cleavage after K, R, no cleavage at KP, RP) with two missed

cleavages. Mass tolerances were of 7 ppm for the precursor and

0.5 Da for CID tandem mass spectra. The iodoacetamide

derivative of cysteine was specified as a fixed modification, and

oxidation of methionine and protein N-terminal acetylation were

specified as variable modifications. Protein identifications were

filtered at 1% false discovery rate (FDR) established by MaxQuant

against a reversed sequence database. A minimum of one unique

peptide was necessary to discriminate sequences which shared

peptides. Sets of protein sequences which could not be discrim-

inated based on identified peptides were listed together as protein

groups and are fully reported in the tables. Details of peak

quantitation and protein ratio computation by MaxQuant are

described elsewhere [27]. All proteins with quantified values

(minimum evidence count = 1) were retained at first but filtered in

subsequent steps (see below).

T-cell Proteome Dynamics upon Hsp90 Inhibition
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StSILAC data analysis: quality filtering of the dataset
All the filtering steps were carried out with custom-made Perl

scripts (Perl v5.10.1, scripts available as supplementary data).

Protein group tables from MaxQuant were further processed to

remove contaminants annotated in the database and matches to

reverse sequences. A further 63 proteins from an internal lab list

of 65 environmental contaminants were also removed. Further

on, ratios were removed when calculated based on single

evidences, as well as, for each time point, proteins if they were

identified only in one replicate. Outlier protein groups, defined

as proteins with a ratio differing by more than a factor 1.41

among any two replicates at any time point, were removed (28

proteins). Outlier definition was done by plotting the data and

selecting points with the software Perseus. This resulted in the

‘‘Quality-filtered SILAC dataset’’ containing 4050 proteins

(Table S2), each detected and quantified in no less than two

replicates, at least at one time point.

T-test and clustering
Starting with the ‘‘Quality-filtered SILAC dataset’’, only

protein groups quantified in all three replicates (3333 proteins)

(Table S3) were kept. For each time point, log2 of quantified

ratios were subjected to a two-tailed Welch t-test for one

sample (null hypothesis H0: m = 0) followed by correction for

multiple testing (Benjamini-Hochberg). All proteins with at

p,0.05 (after correction) were considered significant. Protein

groups significant at least at one time point were subjected to

Model Correlation Clustering to detect patterns of behaviour

as a function of time. T-tests and clustering were carried out

with the R software version 2.12.1 (2010-12-16). After addition

of a (0,0) reference time point, data were fitted by computing

Pearson correlation coefficient to ad hoc defined models

considering in a simplified qualitative form (0 = no change,

1 = log2(H/L).0, –1 = log2(H/L),0) all possible changes over

the two time points. To discriminate changes as a function of

time four more behaviours were considered when a protein

had two values with the same sign. This resulted in the

following 13 patterns: [0,2,1] [0,1,2] [0,1,1] [0,1,0] [0,1, –1]

[0,0,1] [0,0, –1] [0, –1,1] [0, –1,0] [0, –1, –1] [0, –1, –2] [0, –

2, –1] [0,0,0]. Protein groups with t-test p.0.05 at all time-

points were assigned to cluster 13. Proteins detected only at

one time point were assigned to cluster 14.

Annotation analysis: removal of subsets and update of
protein annotation

To simplify post-MaxQuant comparisons of datasets, subset

proteins (identified with a subset of peptides) were removed from

the protein groups. To ensure that the UniProt, GO, KEGG

and PFAM annotations were completely up-to-date, a Perl

script automatized REST (Representational State Transfer)

requests to the UniProt (http://www.uniprot.org/uniprot/) and

EBI websites (http://www.ebi.ac.uk/QuickGO/GAnnotation)

and Simple Object Access Protocol (SOAP) requests to the

KEGG (Kyoto Encyclopedia of Genes and Genomes) website

(http://soap.genome.jp/KEGG.wsdl), as well as re-importation

of these data into the result table on the basis of the simplified

protein groups. The assignment of each annotation term to each

identifier in a protein group was mapped, and is reported in

Table S4. Gene Ontology (GO) term enrichment analysis was

carried out with the online tool Gorilla (http://cbl-gorilla.cs.

technion.ac.il/) [28], using the protein genes in each cluster as

query, to be compared against the whole set of identified

proteins.

Network-based data organisation and discovery
Integration of experimental data in protein-protein interaction

(PPI) networks to build explorable maps using Cytoscape (http://

www.cytoscape.org) has been previously described [29,30]. We

assumed that statistical significance is less important in a network

analysis, which privileges connections and patterns and thus we

used a less stringently filtered dataset as input. Using the human-

centred PPI database [21], it was possible to extract a network

with the 1263 proteins that passed the t-test (p , 0.05) before

multiple testing correction at least at one of the two time points (6h

or 20 h). One "node" in this network corresponds to a protein and

the connection between them is called "edge" and it refers to the

PPI between these two nodes. The normalized H/L ratios for the

stSILAC 6h and 20h datasets were then loaded onto this network.

Nodes were coloured with a red-to-blue gradient (heat map

thermogram) according to their log2 ratios/fold-change values,

such that red and blue represent enrichment and depletion,

respectively. Information for the different members of the network

was also loaded from different databases (UniProt, Gene

Ontology, OMIM) to have it available in the graph as metadata.

Based on the network organization, stSILAC data integration and

information about protein function, the Cytoscape plugin Mcode

[31] allowed the detection of highly interconnected groups of

nodes (subgraphs) that can be considered as protein complexes and

functional modules for different processes of interest. Once a

functional module of interest (with similar functions and similar

behaviour in the stSILAC data) was detected, this sub-network was

further explored to find other connected modules (present in the

main network) involved in related biological processes in health or

disease. These efforts were then complemented by literature

mining to improve our understanding of the biological relevance

of these connected modules.

Alignment of datasets
Protein groups in analysed datasets from pcSILAC and

stSILAC were matched by IPI identifiers. Only when all IPI

identifiers in a protein group were identical in two datasets, the

protein groups and quantitative values were matched and aligned

in a joint table.

Antibodies
The polyclonal anti-OGT antiserum was a gift from Winship

Herr, CIG, University of Lausanne. Polyclonal anti-BRAT1, anti-

ITK, anti-eIF2a and anti-phospho-eIF2a antisera were obtained

from Cell Signaling Technology, Inc. (Danvers, MA, US).

Immunoprecipitation
Cells were lysed for 15 min on ice in lysis buffer (20 mM Tris-

HCl pH 7.4, 150 mM KCl, 0.2 mM MgCl2, 1 mM dithiothreitol,

2% Triton X-100). Extracts were sonicated and cleared by

centrifugation at 12’000 rpm for 30 min at 4uC. 1 mg of proteins

of the supernatant (in 1 ml) was incubated with each antibody

overnight at 4uC. After washing the immunoprecipitates with Tris-

buffered saline, proteins were eluted in SDS-PAGE sample buffer

without DTT by boiling. 50 mM DTT was added to the

supernatants and proteins separated by SDS-PAGE and processed

for immunoblotting. For re-probing the blots with a different

antibody, they were stripped for 2 hours at 65uC with Tris-

buffered saline containing 0.2% Tween-20.

Cell cycle analysis
Cells (26106) were fixed with 2% paraformaldehyde for 10 min

at RT, and were made permeable following treatment with

T-cell Proteome Dynamics upon Hsp90 Inhibition
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phosphate buffered saline (PBS) containing 0.5% saponin (Sigma),

2% FCS, and 2 mM EDTA, for 5 min at RT. They were then

incubated with Hoechst 33342 (20 mg/ml; Invitrogen) for 5 min at

RT. Data were acquired on a LSR II (Becton Dickinson) and were

analysed with FlowJo software (TreeStar).

RNA: NanoString nCounter quantitative analysis
From each biological replicate (3 for stSILAC and 2 for

pcSILAC) and time point, two independent cell samples were

taken and processed separately. RNA was purified from cell

extracts using mini spin columns (RNeasyPlus Mini Kit from

Qiagen, Hilden, Germany). 200 ng of total RNA were hybridised

with multiplexed Nanostring probes and samples were processed

according to published procedure [32]. Barcodes were counted for

1150 fields of view per sample. Background correction was done

by subtracting the mean plus two standard deviations of the

negative controls for each sample. Values , 1 were fixed to 1.

Positive controls were used as quality assessment. This was done

by checking that the ratio between the highest and the lowest

positive controls average among samples was below 3. Then,

counts for target genes were normalised with the geometric mean

of the 12 reference genes (gene list) selected as the most stable

using the geNorm algorithm [33]. Fold-changes were calculated as

ratios of the geometric mean of the counts in experimental

conditions (GA) over that of control condition (DMSO) and were

expressed as log2 values.

Results

Experimental system
The Jurkat T-lymphocyte cell line has previously been used as a

model for defining mechanisms of susceptibility of cancers to drugs

[34] and to analyse the impact of Hsp90 inhibitors on individual

proteins or cellular functions [35–39]. Hsp90 family members in

eukaryotic cells are represented by cytosolic Hsp90b (constitutive,

encoded by HSP90AB1) and Hsp90a (inducible, encoded by

HSP90AA1), endoplasmic reticulum (ER) Grp94 (endoplasmin)

and the mitochondrial isoform Trap1. Treatment of cells with GA

has been shown to inhibit Hsp90b, Hsp90a, and Grp94, while

Trap1 is possibly less or not affected by GA in intact cells [40].

First, we performed a standard SILAC (stSILAC) global analysis

of the effects of Hsp90 inhibition during the course of the

treatment, expressed as changes in relative abundances in GA-

treated versus control DMSO cells. We used a sub-lethal drug

concentration [1 mM] in the medium (below the estimated

intracellular protein concentration of Hsp90). The concentration

of GA used was found to reduce cell numbers at t = 20h after

treatment. This occurred most likely by inducing a cell cycle

arrest, which was detected by a flow cytometry analysis as an

enrichment of cells blocked either in G1 or in G2/M phase (Fig.

S1A-B), and were accompanied by a depletion of cells in S phase.

We assessed the induction of apoptosis by immunoblotting,

detecting cleavage of the caspase substrate poly (ADP-ribose)

polymerase (PARP1), but observed no strong induction of

apoptosis under the assay conditions (Fig. S1C). The dynamics

of the effects of the Hsp90 inhibitor on protein abundances was

monitored by sampling aliquots of cells and extracting proteins at

time points t = 6h and t = 20h post addition of the drug. Samples

were also collected at t = 5h and t = 19h for total mRNA

purification to determine transcript levels (Figure 1A). Data from

stSILAC were integrated with protein-protein interactions to build

a network and with synthesis and decay rates from pcSILAC and

mRNA data for a multi-parameter analysis of the system (Figure

1B).

Global features of the stSILAC datasets
Analysis of the MS data with MaxQuant with standard

parameters identified 5707 protein groups (Table S1) before

filtering. Sets of identified proteins were highly similar among

replicates, with 73% of the total protein groups identified in all

three replicates at each time point. The Pearson’s correlation of

treated/control ratios between replicates at 20h was greater than

0.85 (Fig. S2A-B), indicating good reproducibility. Differences

between GA-treated and control cells increased with time, as

shown by the widening of the distribution of ratios in going from

6h to 20h (Fig. 2A). The correlation between median ratios at 6h

and 20h was only partial (r = 0.59, Fig. S2C), suggesting that,

although in most cases protein levels changed in the same

direction, more complex patterns of changes in time could be

observed.

Analysis and clustering of stSILAC data
For the analysis of the whole proteome data, the stSILAC

dataset was filtered to retain only proteins detected in all three

replicates (Table S3) and then subjected to a t-test to identify

proteins that varied significantly between control and inhibitor-

treated samples. 565 proteins ( 17%) passed the t-test (p , 0.05

with Benjamini-Hochberg correction) at least at one of the two

time points and thus showed statistically significant changes upon

GA treatment. This dataset was fitted to ad hoc defined patterns

resulting in 12 clusters, each representing qualitatively distinct

patterns of fluctuation in abundances, or behaviours at 6 and 20h

(Fig. 2B) (Fig. S3, Table S3). Proteins not significantly affected by

GA were omitted from the cluster analysis. The advantage of this

approach compared to unsupervised clustering methods is that a

common behaviour of proteins in each cluster could easily be

deduced. Interestingly, the four largest clusters (clusters 2, 6, 7, and

11) contained each more than 80 proteins and together they

accounted for 94.3% of all clustered proteins. These 4 clusters

corresponded, respectively, to proteins increasing or decreasing

continuously from 6 to 20h (respectively, clusters 2 [0:1:2] and 11

[0: –1: –2]), or to proteins significantly varying only at 20h (cluster

6 [0:0:1] and 7 [0:0: –1]) (Fig. 2B). All other clusters contained

smaller numbers of proteins, with a maximum of 10 for cluster 5.

Effects of Hsp90 inhibition based on GO terms enriched
in the clusters and on additional experiments

To determine if functionally or structurally related proteins

were fluctuating in the same manner upon drug treatment, we

performed an annotation enrichment analysis on each of the 12

clusters (Table S4, a selection of clusters and some of their

associated GO terms is shown in Table 1). Globally mild (max. 4-

fold increase to max. 5-fold decrease) effects on proteins and

protein complexes involved in a wide variety of processes and

signalling pathways were detected.

Clusters with increasing levels upon Hsp90 inhibition
At early stages of Hsp90 inhibition by GA (cluster 2), we

identified an upsurge of proteins involved in the response to

folding stress in the cytosol but also in the ER, in agreement with

previous results in myeloma cells treated with Hsp90 inhibitors

[41,42]. Many proteins located in vesicle compartments were also

increased. The same or related GO terms were also enriched in

later-increasing proteins in cluster 6, together with cytoskeletal

components, membrane-bound small GTPases (Rab proteins),

Golgi proteins and the proteasome. Overall, an up-regulation of

the folding apparatus in the cytosol and ER, together with a

general stress- and pro-survival response emerge from the set of

T-cell Proteome Dynamics upon Hsp90 Inhibition
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increased proteins. Considering the observed ER stress re-

sponse, we evaluated the phosphorylation of the a subunit of the

eukaryotic initiation factor 2 (eIF2a), either by protein kinases

that localise to the cytoplasm (PKR), or at the ER membrane

(PERK), as it has been established as a stress response

mechanism to inhibit protein synthesis [43]. We confirmed a

mild increase of phosphorylation of the eIF2a shortly after GA-

treatment (Fig. S4), in agreement with previous studies

performed in HeLa cells [44].

Clusters with decreasing levels upon Hsp90 inhibition
We observed a sharp decrease (up until 6h) of ATP-binding

proteins and protein kinases (cluster 11). Among these protein

kinases, we noticed a continuous and progressive decrease of

members of the T-cell receptor signalling pathway. We observed

a considerable number of proteins linked to kinetochore and

condensed chromosome functions. Most of these proteins were

nuclear pore proteins implicated in nucleo-cytoplasmic trans-

port. Late effects (cluster 7) reflected the enrichment of several

GO terms linked to ribosome biogenesis (rRNA processing,

nucleolar proteins). Some factors essential for DNA replication

(elongation step) were also decreased at late times. Ribosome

biogenesis, one of the most expensive cellular processes in terms

of energy, is known to be correlated to cell cycle progression

through the MDM2-p53 pathway [45]. Overall, a downregu-

lation of the protein synthesis machinery together with changes

linked to cell cycle arrest seem to emerge from the set of

decreasing proteins.

Network analysis
Drug treatment led to a reduced abundance of both known and

many potentially new Hsp90 clients. We reasoned that depletion

cannot be taken by itself as meaning that a protein is an Hsp90

client, and we explored other strategies to dissect the events. We

thus modelled the quantitated stSILAC datasets onto the previously

constructed Hsp90 protein-protein interaction (PPI) network

Hsp90Int [21]. Several highly interconnected subgraphs and

functional modules were extracted from the Hsp90Int database to

display dynamic changes based on the stSILAC dataset.

Components of the Hsp90 molecular chaperone machine
The molecular chaperones Hsp70 and Hsp40 were detected to be

highly enriched at 6h compared to other components of the Hsp90

chaperone machine that experienced minimal changes (Fig. 3A). At

20h, the majority of the constituents of the Hsp90 machine became

substantially enriched, including the cytosolic Hsp90 isoforms and

several key co-chaperones (Aha1, Cdc37, Hop, and Fkbp52). In

contrast, the levels of two Hsp90 co-chaperones FKBP51 and

AARSD1 decreased. Considering that different co-chaperones can

differentially affect the global or client-specific activities of Hsp90,

this indicates that the Hsp90 chaperone machine itself becomes

considerably remodelled with potentially far-reaching consequences.

Molecular chaperones, Hsp90 clients, ubiquitination
machinery and proteasome complex

Somewhat expectedly, molecular chaperones and the protea-

some complex displayed high and intermediate enrichments,

Figure 1. stSILAC experiments and workflow for data analysis. A) Labelling and sample preparation scheme. Geldanamycin or DMSO were
added at t = 0. Total protein extracts were collected at t = 6h and 20h, while total mRNA was taken at t = 5h and t = 19h. B) Data analysis and
interpretation combined data on protein abundance changes (stSILAC) with protein-protein interactions (PPI) analysed as a network, synthesis and
decay values for proteins in the two conditions and transcript levels. Enrichment of Gene Ontology annotation terms was used to extract functional
information on protein categories with common behaviours.
doi:10.1371/journal.pone.0080425.g001
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respectively, and they appeared to establish a link between

degraded clients and the proteasome complex (Fig. 3B). Some

components of the ubiquitination machinery were also

induced, presumably to help with the increased load of

misfolded proteins. Unexpectedly, a substantial proportion of

the ubiquitination machinery that was connected to client

proteins by protein-protein interactions eventually suffered the

same fate.

Figure 2. Distribution of stSILAC quantitative ratios at two time points of GA treatment and clustering of proteins with significant
changes. A) Histograms of normalized treated/control ratios for the stSILAC 6h (yellow), and 20h (green) datasets (4050 proteins). B) Twelve possible
patterns of change upon GA treatment were defined (small plots) as models for correlation clustering. Additional clusters (not shown) included
proteins with no significant changes (cluster 13) and proteins with data only at one time point (cluster 14). The number of genes (encoding proteins)
identified in each cluster are indicated in the box.
doi:10.1371/journal.pone.0080425.g002
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Figure 3. GA-induced remodeling of the Hsp90 chaperone and protein degradation machineries. A) Components of the Hsp90
molecular chaperone machine (Hsp90Int, [21]) showing significant changes in the stSILAC data are schematized in a graph. Edges (lines) represent
protein-protein interactions amongst members of the machinery. stSILAC data is integrated in the graph and represented as a colour gradient (red
corresponds to enrichment, white is no change and blue is depletion) (see legend). B) GA-induced changes of the proteasomal/ubiquitination
machinery with connected Hsp90 clients. Members of the proteasomal complexes, ubiquitination machinery, molecular chaperones and known or
potential Hsp90 client proteins are interconnected by edges indicating protein-protein interactions. Relative levels of proteins at 6h and at 20h after
GA treatment are integrated in the graph and represented as a colour gradient (red corresponds to enrichment, white is no change and blue is
depletion) (see legend).
doi:10.1371/journal.pone.0080425.g003
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Oncogenes and tumour suppressors
Protein complexes related to cancer development were identi-

fied, extracted from the Hsp90Int to be further analysed.

Oncogene and tumour suppressor categories [46], including

depleted and partially changed proteins gave rise to 9 different

sub-graphs, which were further categorised into functional groups

through literature mining (Figure 4). As expected, GA-treatment

enriched several tumour suppressors and depleted critical onco-

proteins and kinases (Fig. 4). However, two ‘danger zones’ were

identified, where GA-treatment of T-cells appeared to be

enriching oncoproteins and depleting tumour suppressors.

Amongst oncogenes we found a large number of members of

the Ras family of GTPases with a moderate increase, especially

Rab proteins, which have been reported to be abnormally

expressed in several cancers, and to be required for adhesion

and migration of cancer cells [47]. The retinoblastoma protein

(pRb) amid other tumour suppressors (Figure 4) appeared to be

depleted. A key regulator of entry into cell division, pRb promotes

G0-G1 transition when phosphorylated by CDK3/cyclin-C, and

its underphosphorylated active form interacts with E2F1 and

represses its transcription activity, leading to cell cycle arrest.

Validation of novel potential Hsp90 clients and
associated network

Hsp90Int assisted in the identification of proteins that exhibited

the expected behaviour for a novel Hsp90 client, i.e. GA-induced

depletion, and no previously reported interaction with Hsp90 at

the same time of the analysis. Concurrently, these potential

candidates could be selected based on the fact that they were

associated with protein complexes that contained known Hsp90

interactors (2nd level Hsp90 interacting protein) (Fig. 5A). We

made use of functional metadata contained in the Hsp90Int to

detect interesting potentially novel clients, such as the IL2-

inducible T-cell kinase (ITK), the BRCA1-associated ATM

activator 1 (BRAT1), and the UDP-N-acetylglucosamine-peptide

N-acetylglucosaminyltransferase 110 kDa subunit (OGT) (Table

S6). ITK is a tyrosine kinase that plays an essential role in

regulation of the adaptive immune response. It is recruited to the

cell membrane upon activation of the T-cell receptor following a

series of phosphorylation events. BRAT1 is required for the

activation of ataxia telangiectasia mutated (ATM) following

ionizing radiation, and it may act by regulating the dephosphor-

ylation of ATM [48]. OGT is an O-GlcNAc transferase, the main

enzyme responsible for intracellular O-glycosylation. It is a

component of the THAP1/THAP3-HCFC1-OGT complex

required for the regulation of the transcriptional activity of

RRM1, which catalyses the biosynthesis of deoxyribonucleotides,

providing the precursors necessary for DNA synthesis. Each one of

the three proteins was independently shown to co-immunoprecip-

itate with Hsp90, and their levels decreased post-GA-treatment as

confirmed by immunoblotting (Fig. 5B).

Analysis of changes in protein synthesis and decay by
pcSILAC

Given the complex role played by Hsp90 in regulating protein

homeostasis, we reasoned that a stSILAC analysis alone would not

allow a sufficiently direct interpretation of the primary effects of an

Hsp90 inhibitor. Therefore, we implemented pcSILAC, a novel

labelling strategy, which is an expansion of the pulsed-SILAC

scheme [49]. pcSILAC (described in detail in Fierro-Monti et al.,

accompanying article) measurements can, through a dedicated

mathematical model and computational framework, lead to

determination of decay rate constants (kd), and synthesis rates

(Vs) for two biological conditions and therefore help decomposing

changes in net protein levels into their mechanistic components. In

Figure 4. Both beneficial and detrimental effects of Hsp90 inhibitors on cancer-related proteins. Cancer proteins categorized by Higgins
et al. [46] as oncogenes or tumour suppressors were retrieved and identified in the stSILAC data. These results were further refined and confirmed by
literature mining, and organized in a protein-protein interaction network. Relative levels of proteins at 20hs after GA treatment are integrated in the
graph and represented by the same colour gradient as in Fig. 2.
doi:10.1371/journal.pone.0080425.g004
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pcSILAC, metabolic labelling is used to discriminate between

pre-existing and newly synthesized proteins. On one hand, the

evolution in time of the relative levels of pre-existing proteins in

the two conditions (GA vs. control) is used to calculate decay

rates (‘‘chase’’ measurement). On the other hand, the evolution

of the pool of proteins synthesized after drug treatment is used

to derive net de novo synthesis rates (‘‘pulse’’ measurement).

pcSILAC experiments were carried out under the same

experimental conditions (drug concentrations, times of treat-

ment and harvesting) as for stSILAC, leading to the determi-

nation of decay rate constants and synthesis rates for nearly 900

proteins in both the control and treated samples (Fierro-Monti

et al., accompanying article). We describe here results from one

of two independent experiments (Fierro-Monti et al., accompa-

nying article).

GA reduces global protein synthesis and increases decay
The analysis of kd and Vs revealed important differences in

global proteostasis between control and GA-treated cells. We

observed a strong global decrease in protein synthesis rates in

treated cells, which were reduced to almost half of the levels

measured in the control (median of VsGA/VsDMSO = 0.57). A

global decrease in protein synthesis in GA-treated cells is

consistent with previous reports [50] and assumed to be partly

the result of the observed phosphorylation of eIF2a [44] (Fig. S4).

In parallel to the changes in synthesis, pcSILAC data showed an

important, generalized increase in protein decay rate constants

(median of kdGA/kdDMSO = 1.73). As a consequence of this, the

median of total protein half-life decreased from 55.9h in the

control to 32.0h in the GA-treated cells. Both global shifts in

synthesis and decay rates (visible in Fig. S7) appeared to be

‘systemic’, i.e. affected uniformly most proteins. Besides such

global changes, protein-specific changes in synthesis and decay

rates were detected, whereby changes in synthesis were generally

of greater magnitude and affected a larger number of proteins

than changes in decay rates (Fierro-Monti et al., accompanying

article). Analysis of pcSILAC data through other parameters

(fluxes), confirmed that changes in synthesis play a bigger role than

changes in decay in shaping the proteome after GA treatment

(Fierro-Monti et al., accompanying article).

Figure 5. Validation of new Hsp90 clients. A) Network analysis of a selected set of potentially new Hsp90 client proteins. stSILAC data and the
Hsp90 interaction network Hsp90Int [21] were combined to identify interesting candidates (OGT, ITK and BRAT1) with no reported interactions with
Hsp90 at the time of the analysis. Edges connecting candidate proteins with known Hsp90 interacting proteins are highlighted in red. B). Co-
immunoprecipitation (co-IP) experiment demonstrating interactions between BRAT1, OGT and ITK with Hsp90b in Jurkat cells. Equal concentrations
of specific antibodies against BRAT1 (rabbit), OGT (rabbit), ITK (mouse), Hsp90b (mouse), and the corresponding non-immune (NI) control antibodies
from rabbit and mouse were used in co-IP experiments, and then analysed by immunoblotting (WB). C) GA-induced degradation of BRAT1, ITK and
OGT in Jurkat cells. Lysates from cells treated with GA or with the equivalent volume of the solvent DMSO (control) for 6 and 20 h were analysed by
WB for these three mentioned proteins and also for Hsp70 and CDK6 as positive controls of GA action.
doi:10.1371/journal.pone.0080425.g005
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Analysis of synthesis, decay and mRNA levels for
individual categories and proteins of interest

To correlate changes in net protein levels (stSILAC) with

changes in synthesis and decay (pcSILAC), we considered 12

protein categories defined by GO annotation terms enriched in the

four main clusters 2,6,7, or 11 of the stSILAC dataset (or closely

related ones), together with 4 other categories of interest identified

from the network analysis. We then extracted proteins corre-

sponding to these same categories from the pcSILAC dataset. Plots

of normalized category averages (Fig. 6) and full data are

presented (Fig. S6-7, Table S5). The categories selected span a

wide range of synthesis and decay rates, and thus of steady-state

abundances in the cell (Fig. S5). Average ratios of decay rate

constants, synthesis rates and half-lives for categories (Fig. 6),

illustrate the varying extent of changes in kinetic parameters upon

GA treatment and allow a qualitative correlation with changes in

net protein abundance. For example, it can be observed that the

change in synthesis largely determines the net change in protein

abundance, with the exception of the protein kinase family for

which changes in stability play an important role. Also interesting

is the fate of ribosomal proteins, which, while less synthesized, also

seem to be somehow stabilized, resulting in a diminished turnover.

While averages for categories can show trends, a more detail

dissection of the events requires examination of values for

individual proteins.

Hsp90, cofactors, and chaperones are more synthesized
but also decay faster

Components of the Hsp90 molecular machinery (Hsp90 and

cofactors), stress response chaperones and ER lumen folding

chaperones (Fig. 7A) expectedly displayed strongly increased

synthesis rates, with the exception of the mitochondrial Hsp90

isoform Trap1. Many molecules in this category showed

surprisingly higher than average increases in decay (i.e. destabi-

lisation). This was especially true for TPR- or CS domain-

containing Hsp90 cofactors, such as CACYBP, CHORDC1,

CYP40, STIP1 (Hop), NUDC, but also for HSPD1. Hsp90a and

Hsp90b themselves had clearly an increased decay. Unexpectedly,

Grp94 was not destabilised, nor was the heat shock cognate

71 kDa protein Hsc70 (HSPA8). Overall, the average half-life for

the category decreased strongly, from 321 h to 43.5h.

Tyrosine and cyclin-dependent protein kinases have
decreased synthesis and/or decay

Presumably due to their low abundance, pcSILAC quantitated

only 16 protein kinases and yet, the data suggest interesting

differences in the mechanism of decrease amongst tyrosine kinases

Lck, CSK, Zap70 and BAZ1B (Fig. 7B). Both Lck and Zap70 are

recruited to the T-cell receptor (TCR) complex, and are essential

for the proximal events of TCR signalling which lead to T-cell

activation. Net levels of Lck and Zap70 decreased upon GA-

treatment (stSILAC data), likely inhibiting TCR signalling and T-

cell activation [39,51]. In accord with previous reports [39] the

oncoprotein Lck showed both increased decay and decreased

synthesis (Fig. 7B). Zap70 in contrast had a strong reduction of

synthesis while its decay seemed not to be specifically affected.

Two cyclin-dependent kinases, Cdk1 and Cdk6, showed strong

decreases in net levels by stSILAC, whereas the pcSILAC analysis

indicated differences in the combinations of kinetic parameters.

While Cdk1 had a stronger decrease in synthesis with a less

dramatic increase in decay, Cdk6 showed a strong increase in

decay along with a smaller decrease in synthesis indicative of

distinct underlying mechanisms. Influenced by the behaviour of

tyrosine kinases and Cdk’s the average half-life for the category

decreased from 39.9h to 22.5h. In some cells, Cdk1 has shown an

anti-proliferative effect, and indeed it has been classified as a

tumour suppressor, while in hematopoietic cells, Cdk6 is very

abundant and essential for proliferation [52].

Oncoproteins and tumour suppressors show
heterogeneous changes

These two categories include proteins of very different classes

and the changes observed were also very varied (Fig.7C). Rab

proteins (cluster 6) appeared to be both more synthesized and

stabilized. PARK7 (cluster 6), an oncogene that drives Akt-

mediated cell survival [53], showed a similar trend, as did the

regulatory subunit of cAMP-dependent protein kinase type I-alpha

(PRKAR1). By contrast, oncogenes or tumor suppressors which

were also Hsp90 clients (FASN, Lck), displayed major decreases in

synthesis and/or stability.

Transcripts coding for decreasing proteins exhibit mostly
mild changes

We then evaluated the effects of Hsp90 inhibition on a selected

group of 88 targets both at the transcript and protein levels to

gain a better understanding of the mechanism of action of GA.

Transcripts coding for proteins already quantitated by stSILAC,

and in some cases further analysed by using pcSILAC were

quantitated using NanoString Expression Analysis [32] (Table

S6). mRNA samples were derived from cells harvested during

the stSILAC, and two similar independent pcSILAC experi-

ments (exp 1 and 2, Fig. 8A-F). The set of transcripts quantified

included 72 mRNAs for proteins decreasing by stSILAC (among

which 16 bona fide Hsp90 clients) and 16 for increasing proteins

(including Hsp90 and cofactors). Overall, most selected tran-

scripts displayed mild changes in levels, generally within a two-

fold change. As expected, the most strongly increased transcripts

(fold-increase 3-7.8) encoded molecular chaperones and co-

chaperones, which were also found to display higher synthesis

rates by pcSILAC. These increased transcripts corresponded to

proteins belonging to clusters 2 and 6, with increasing protein

levels (stSILAC) over time (Fig. 8A-B) and a positive correlation

between mRNA levels and protein abundances or de novo

synthesis during drug treatment. Transcripts for most of the

selected proteins with decreasing abundances (by stSILAC)

displayed no change or only mild decreases (, 2-fold change)

upon Hsp90 inhibition (Fig. 8).

Bona fide Hsp90 clients and protein kinases (encoded by CDK6,

FASN, LCK, ZAP70, PLK1), which showed decreased stability

(increased decay) and synthesis rates (Fig. 8C-F and Fig. S8)

exhibited variable transcript levels at 5 or 19h post-treatment in all

three experiments, with a trend towards a mild decrease in

transcript abundance (,two-fold change). However, transcripts

coding for other clients were moderately increased (Fig. 8 and

Table S6). Only FASN, a known Hsp90 client [54] showed a clear,

consistent decrease in mRNA (max. 2.8-fold decrease). Some

increase in decay and/or decrease in synthesis rates were detected

for our new Hsp90 clients ITK, BRAT1 and OGT, but at the

transcript level, there were no great changes detected for any of

them upon GA-treatment (Table S6).

Discussion

While a multitude of effects could have been expected, the

extent of the proteome perturbations and adaptations was not. We

take into consideration that stSILAC or pcSILAC experiments

may be limited to the detection of changes in the most abundant
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proteins during the time of drug treatment, and that the

magnitude of changes in only some of these proteins may be of

critical biological relevance.

Changes in the abundance of the Hsp90-dependent
proteome

Our datasets on abundances (stSILAC) exhibited a good

correlation with those of recent analyses [18,19] performed with

other human cell lines upon Hsp90 inhibition (Fig.S9),

identifying more than 500 proteins (565, 17% of the quantified

proteome) that changed significantly during the time course of

drug treatment. However, while the previous study of Sharma et

al. [18] showed that a larger number of proteins was decreasing

than increasing, our results from Jurkat cells show a more

balanced picture of the Hsp90-dependent proteome with 297

(52.7%) proteins increasing and 261 (47.3%) decreasing. An

increase in stress-resistance proteins is a well characterised

response to Hsp90 inhibition. The decreases in abundance of

Hsp90 clients must be due to the direct role of Hsp90 in their

activation and stabilisation. For others, the abundance may be

indirectly affected by Hsp90 clients that are, for example

involved in signal transduction pathways, including those linked

to regulators of gene expression. Thus, as a result of direct and

indirect effects, Hsp90 inhibition leads to both decreases and

increases in protein abundance.

Effects on transcript levels, de novo protein synthesis, and
decay

Earlier studies have provided evidence for a dynamic relation-

ship between Hsp90, transcription, and chromatin biology [30,55–

57]. More recently, Hsp90 was shown to play a role in

maintenance of RNA polymerase II pausing by stabilisation of

the negative elongation factor complex. Early events of Hsp90

inhibition, (up to 120 min) triggered the release from RNA

polymerase II pausing. As a result, many transcripts increased, but

mRNAs that are induced by signalling decreased their levels [58].

We analysed the levels of a selection of transcripts together with

associated de novo protein synthesis and decay rates during longer

drug treatment of cells (6-20h). Expectedly, levels of Hsp90- and

cofactor-encoding transcripts increased. Otherwise, most Hsp90

clients displayed a mild decrease in transcript levels (,two-fold

change), a decrease in protein stability as well as synthesis rates,

confirming expected effects due to Hsp90 inhibition (Fig. 8 C-F,

Fig. S8). Some of the results from our measurements of transcript

levels seem to agree with recent evidence [59] which suggests that

unstable proteins (here protein kinases) tend to be controlled at the

level of translation (here Vs) as the fastest way to change their

abundances, while stable proteins (here Hsp90 and cofactors) tend

to be modulated more by changes in transcription. In general,

whether changes in protein abundance mainly depended on

changes measured at the transcript level, or whether they were due

Figure 6. Changes in decay rate constants, synthesis rates, abundance and half-life for protein categories in response to treatment
with geldanamycin. Relative average changes in synthesis (log2 [Vs_GA/Vs_DMSO]), decay (log2 [kd_GA/kd_DMSO]), abundance (log2 [pGA/pDMSO]), and
half-life (log2 [T1/2_GA/T1/2_DMSO]) for selected protein categories. Numbers of proteins in each category are indicated in brackets. All values shown are
adjusted for global proteome changes in synthesis and decay by subtracting the median of ratios for the whole dataset (911 proteins).
doi:10.1371/journal.pone.0080425.g006
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to the effect of a global decrease in synthesis or stability, or a

diverse combination of all these factors remains to be determined.

As mentioned before, a transient increase in eIF2a phosphoryla-

tion detected in GA-treated HeLa cells [44], and previous

evidence in GA-treated cells based on 35[S]-methionine/cysteine

pulse labelling studies with rat pancreatic tumour AR42J cells,

supported a moderate global decrease in protein synthesis [50].

Also, GA-treatment of HeLa S3 cells reduced the ability of eIF4E

to interact physically with eIF4G, a critical translation initiation

complex that drives cap-dependent translation of mRNA [60]. In

addition, components of the R2TP-Hsp90 complex, which has a

role in assembling multi-molecular protein complexes involved in

gene expression, were confirmed as Hsp90 clients [61]. These

observations, as well as a slow and sustained mild decrease of

proteins identified in our stSILAC analysis as taking part in post-

transcriptional control processes, attest to an Hsp90-mediated

regulatory role in the control of gene expression [58,60,62,63].

During Hsp90 inhibition de novo protein synthesis more than

decay appeared to affect changes in global protein abundances

(Fierro-Monti et al., accompanying article). The relatively small

impact of changes in decay may be surprising since proteasome-

mediated degradation of Hsp90 clients is known to be a major

consequence of Hsp90 inhibition [64,65]. Perhaps the extent of

degradation could have been greater, but considering that some

unfolded clients cause proteasome inhibition leading to formation

of protein aggregates [66], the consequences in terms of decay

were possibly dampened. Nonetheless important, a general

increase in protein decay implied a global decrease in protein

stability (decreased half-lives). Though underlying mechanisms are

not yet elucidated, it may seem unlikely that such global

destabilisation was mainly due to a direct effect of Hsp90

inhibition. The global shift towards higher decay rates could be

related to a mechanism like autophagy, which leads to unspecific

sequestration and degradation of portions of the cytoplasm,

affecting the whole proteome. ER stress, as observed in response to

GA, is a potent inducer of autophagy [67], often mediated by

phosphorylation of eIF2a. Sustained activation of autophagy by

treatment of oligodendrocytes with the GA derivative 17-AAG has

been associated with an increased level of LC3BII [68] and

indeed, higher levels of LC3BII and other autophagy-related

proteins were detected in our data (MAP1LC3, GABAPARL2,

CAP1 in cluster 2). In view of the extent of proteotoxic stress and

the conditions that harm cellular metabolism upon Hsp90

inhibition, regulation of energy-costly protein synthesis rather

than degradation may represent a better option for the cell.

Following a gradual general decrease at the protein synthesis level,

severe and continuous proteotoxic stress due to Hsp90 inhibition

could trigger alternative pro-apoptotic mechanisms [45,69].

Figure 7. Relative changes in kinetic parameters upon GA treatment. Relative changes in synthesis (log2 [Vs_GA/Vs_DMSO]), decay (log2 [kd_GA/
kd_DMSO]), abundance (log2 [pGA/pDMSO]), and half-life, (log2 [T1/2_GA/T1/2_DMSO]) for selected proteins are represented in the respective plots according
to the bar colour codes. Proteins were selected from the following categories: A) Hsp90 and cofactors B) Protein kinases and C) Tumour suppressors
and oncogenes. As for Figure 6, all values are adjusted by the median of the entire proteome. PRKAR1 and FASN are annotated as both possible
oncogenes and tumor suppressors [73].
doi:10.1371/journal.pone.0080425.g007
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Figure 8. Dynamic changes in mRNA levels and net protein abundances (stSILAC), protein synthesis, or decay (pcSILAC) rates for a
selection of transcripts/proteins from several clusters upon Hsp90 inhibition. Plots show data derived from stSILAC (A and B) and from
pcSILAC experiment 2 (C, D, E, and F). A) Variations in mRNA (log2 fold-change) versus protein levels at 5-6h. B) Variations in mRNA (log2 fold-change)
versus protein levels at 19-20h. C) Plot describing the variations in mRNA (log2 fold-change) at 5h versus protein synthesis rates (log2 [Vs_GA/Vs_DMSO]).
D) same as C) but mRNA at t = 19h. E) Plots describing the variations in mRNA (log2 fold-change) at 5h versus decay rates (log2 [ks_GA/ks_DMSO]). F)
same as E) but at t = 19-20h. A selection of transcripts encoding Hsp90, cofactor DNAJB1, Hsp90 clients Cdk6, Lck, FASN and the novel potential
Hsp90 client ITK, are labelled.
doi:10.1371/journal.pone.0080425.g008
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It should be noted that the pcSILAC method has a specific

limitation when measuring synthesis and decay in the context of

Hsp90 inhibition. The levels measured in either the pulse or chase,

reflect the total populations of proteins detectable, thus including

(in unknown proportions) both mature proteins as well as synthesis

and folding intermediates. Since pcSILAC measures the net (total)

level of de novo synthesized protein, it cannot distinguish a ‘‘true’’

decreased synthesis rate (caused e.g. by translation inhibition) from

an increase in decay that affects specifically folding intermediates

and not the pool of mature protein. Therefore, it is likely that the

decreased synthesis observed for some Hsp90 clients partly

reflected co-translational degradation. This bias should however

be restricted to Hsp90 clients, which are a minor (though

functionally relevant) subset of the proteome.

Multiple, diverse, and dynamic effects
The up-regulation of the protein folding machinery, in addition

to the strong down-regulation of kinase activity and DNA damage

response, were previously reported to be the main major effects

due to Hsp90 inhibition [18,19], and were confirmed by our study.

Short-term Hsp90 inhibition leading to a transient global decrease

in protein synthesis [50] remarkably correlated with the strongest

increase in abundance in some molecular chaperones, including

Hsp90 family members [18,19], with a great increase in both

synthesis (Hsp90a and Hsp90b) and decay. In effect, this leads to a

higher turnover with potential implications for the role of the

Hsp90 chaperone machine, and indeed deserves to be further

analysed. Though underlying mechanisms are not yet fully

elucidated, a decrease in stability associated with higher synthesis

of a molecular chaperone like Hsp70 (HSPA1A) was proposed as

part of stress recovery mechanisms and of the return to normal

proteostasis [70]. An alternative hypothesis is that, paradoxically, a

decrease in stability may help accelerate the rate of up-regulation

of the Hsp90 machine. Indeed, Schwanhäusser et al. recently

suggested [59] that a short half-life is a prerequisite for the

possibility to modulate the protein level rapidly (thus have a short

so-called ‘‘response time’’). The decrease in half-life for Hsp90 and

cofactors could thus be dictated by the need to make the levels of

these intrinsically stable proteins more reactive, allowing a faster

increase.

Besides the Hsp90 family and cofactors, protein kinases

displayed higher than average decreased stability in response to

GA-treatment. Kinases were the largest group of bona fide Hsp90

clients quantitated by stSILAC (29 (22%) of 130 clients in total)

followed by phosphatases (22 (17%)). Roughly 69% of the

quantitated kinases were invariant in net abundances (stSILAC)

but 24% decreased rapidly in response to GA-treatment while only

7% of them increased. Sharma et al showed that Hsp90 inhibition

in HeLa cells mostly down-regulated phosphorylation events on

proline-directed motifs present in substrates of the cyclin-

dependent kinase subfamily [18]. A few Hsp90 client kinases,

including cell cycle regulators and tyrosine kinases, exhibited the

largest total decrease in stability with various extents of decrease in

synthesis (Fig. S8), supporting recent reports on an intrinsic Hsp90

client kinase instability [6,19]. Therefore, an abrupt depletion of

kinases appeared to confirm an immediate regulatory effect of

Hsp90 on signalling. Finally, the novel putative Hsp90 clients

BRAT1 and ITK were confirmed experimentally, together with

OGT, which was independently reported as a new Hsp90 client

during the course of our study [71]. BRAT1, implicated in the

DNA damage pathway, was shown to cause rigidity and multifocal

seizure syndrome, and its aberrant expression can be neonatal

lethal [72]. Thus, we deduce that BRAT1 is potentially an Hsp90

client that could be risky to deplete by Hsp90 inhibition.

Effects of inhibition of Hsp90 by anti-cancer drugs
A decrease in levels of some tumour suppressors and an increase

in several oncoproteins, including many that are part of the Ras

family of GTPases, appeared consistent with a cellular pro-survival

response.

This unexpected finding may have implications for the use of

GA-derivatives or of other similar drugs in anti-cancer therapy. As

suggested by previous reports [39], a sharp decrease in compo-

nents of the T-cell receptor signalling pathway may also have

implications for proliferation and/or T-cell activation in the

context of anti-cancer or immunosuppressant therapies. Even

though targeting Hsp90 remains a promising approach to treat

cancer and possibly other diseases, our results call for a more

balanced consideration of all of its impacts on the proteome.

Supporting Information

Figure S1 Cell viability and apoptosis of Jurkat cells
treated for 24h with 1 mM geldanamycin (GA) assessed
by flow cytometry and western blot analysis. A) Staining of

live cells with 7-aminoactinomycin (7-AAD) was used to detect

necrotic or late apoptotic cells. Forward and side scatter data

revealed similar plots for control and GA-treated cells, with a

higher percentage of ‘‘small’’ cells in GA-treated cultures (24% vs.

13.4% in the experiment shown). Gating and 7-AAD measure-

ment revealed that small cells were mostly 7-AAD-positive in both

cultures, and thus represented dead or damaged cells. Therefore,

under the conditions used, GA treatment induced a limited

increase in cell death. Most ‘‘big’’ (i.e. normal) cells in both

conditions were 7-AAD negative (pie chart). Results from one

representative experiment (containing two replicates) are shown.

B) Cell cycle analysis: after fixation, cells were stained with

Hoechst 33342 dye for analysis of DNA content. Compared to

controls, the GA-treated cell population showed much less cells in

S phase together with a strong increase of cells in G2/M phase. No

increase in cells with degraded DNA (sub-G1) typical of apoptotic

cells was visible (n = 2). C) Anti-PARP-1 western blot analysis.

PARP-1 (110 kDa) is cleaved by Caspase-3 in apoptotic cells to

generate the indicated 85 kDa fragment (*). No major increase in

the amount of this fragment was observed under the treatment

conditions used.

(TIF)

Figure S2 Pearson correlation coefficients between
standard SILAC datasets (replicates and time points).
Pearson correlation coefficients for log2(H/L) (treated/control)

SILAC ratios of protein groups obtained across replicates 1-3,

measured at t = 6h (A), t = 20h (B). Panel (C) shows the correlation

between the median of log2/(H/L) at t = 6h, and the median of

log2(H/L) at t = 20h.

(TIF)

Figure S3 Model correlation clustering of standard
SILAC H/L (treated/control) values for protein groups
at the two time points, t = 6h and t = 20h, after GA
addition. The model adopted is indicated above each plot.

Cluster 13 contains invariant proteins ( t-test p-val .0.05 for all

time points). Cluster 14 (not shown) contains proteins identified

only at one time point.

(TIF)

Figure S4 Increase of P-eIF2a in GA-treated T-cells. Cell

lysates were derived from Jurkat T-cells treated during various

times in the presence of 1 mM GA (+), or DMSO. Equal lysate

protein amounts were separated in a 10% SDS-PAGE, transferred

to nitrocellulose membranes, and probed with anti-P-eIF2a
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(Phosphorylated left side panel) or anti-eIF2a (Total, right side

panel, control) polyclonal antibodies. The bands corresponding to

P-eIF2a (left side panel) or to the control eIF2a (right side panel)

are indicated with arrows. Treatment of cells with 1 mM GA for

0.5h or 6h led to a higher intensity of the P-eIF2a band in the GA-

treated compared to the controls.

(TIF)

Figure S5 Average decay constants and synthesis rates
at steady-state (control cells) for the 16 protein catego-
ries described. High values of kd correspond to short half-lives

(unstable proteins) and viceversa. Given that steady-state protein

concentration is determined by Vs/kd, proteins on the upper left

corner are expected to be the most abundant, proteins in the lower

right corner the least abundant in the cell.

(TIF)

Figure S6 Decay constants and synthesis rates for
control, and GA-treated cells derived from pcSILAC
datasets for the 16 protein categories described. Kc, Kt

= decay rates of control (blue), and treated (green) cells,

respectively; Vc, Vt = synthesis rates of control (orange), and

treated (red) cells, respectively. The line corresponding to the value

of the median is indicated in the boxes.

(TIF)

Figure S7 Ratios of decay rate constants and synthesis
rates derived from pcSILAC datasets. Members of protein

categories are represented by green circles, and grey filled circles

represent the whole protein population. The red lines indicate the

global medians.

(TIF)

Figure S8 Relative changes in decay constants, log2

[kdtreated/kdcontrol], and synthesis rates, log2

[vstreated/vscontrol] at steady-state on treated versus
control cells for bona fide Hsp90 clients. Most protein

kinases (labelled) displayed a greater decrease in stability (higher

decay) than in synthesis, which to various extents was also detected

in most Hsp90 clients, including FASN (labelled). Averages for the

global relative changes in the kinetic parameters are shown in the

plot as dashed red lines.

(TIF)

Figure S9 Comparison of standard SILAC datasets from
this study on Jurkat T-cells with other recently pub-
lished datasets on other malignant human cell lines.
Methods and experimental designs for the three studies are

summarized in table A). The quality-filtered dataset (4050

proteins) on Jurkat T-cells at t = 20h (x axis) was compared with

the one obtained for HeLa cells (1), with the one obtained for

erythroleukemia cell line K562, for the breast cancer line MD-

MBA231, and for the colon cancer COLO205 cell line (2). B) to
F). Protein groups were matched using Uniprot IDs. Ratios were

inverted when necessary for comparison. A few reference proteins

with strong changes are labelled. (1) Sharma, K., Vabulas, R. M.,

Macek, B., Pinkert, S., Cox, J., Mann, M., & Hartl, F. U. (2012).

Quantitative proteomics reveals that Hsp90 inhibition preferen-

tially targets kinases and the DNA damage response. Molecular &

cellular proteomics: MCP, 11(3), doi:10.1074/mcp.M111.014654 (2)

Wu, Z., Moghaddas Gholami, A., & Kuster, B. (2012). Systematic

Identification of the HSP90 Candidate Regulated Proteome.

Molecular & cellular proteomics: MCP, 11(6). doi:10.1074/

mcp.M111.0166750

(TIF)

Table S1 Summary of statistical parameters for stSI-
LAC data at three stages during the filtering procedure
(XLS).

(XLSX)

Table S2 Main stSILAC quality-filtered dataset (4050
proteins) incl. data for 3 replicates (XLS).

(XLSX)

Table S3 Main stSILAC quality-filtered dataset filtered
by occurrence (3333 proteins); includes medians, GO
annotation and cluster assignment for all proteins
(XLS).

(XLSX)

Table S4 Results of annotation enrichment analysis
(GO terms) for proteins in the 12 clusters considered
(XLS).

(XLSX)

Table S5 Protein categories used for analysis in Figures
6,7 with their data from stSILAC and pcSILAC : stSILAC
ratios, decay and synthesis rates, fluxes, functional
protein annotations (XLS).

(XLSX)

Table S6 mRNA levels measured by Nanostring for 88
selected proteins, reported with values from stSILAC
and pcSILAC experiments (XLS).

(XLS)
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