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Abstract—In recent years, there has been notable progress in the
development of inverse problems for image reconstruction in pulse-
echo ultrasound. Inverse problems are designed to circumvent the
restrictions of delay-and-sum, such as limited image resolution and
diffraction artifacts, especially when low amount of data are con-
sidered. However, the radio-frequency image or tissue reflectivity
function that current inverse problems seek to estimate do not
possess a structure that can be easily leveraged by a regularizer,
in part due to their high dynamic range. The performance of
inverse-problem image reconstruction is thus impeded. In contrast,
despeckled images exhibit a more exploitable structure. Therefore,
we first propose an inverse problem to recover a despeckled image
from single-plane-wave radio-frequency echo signals, employing
total-variation norm regularization. Then, we introduce an inverse
problem to estimate the tissue reflectivity function from radio-
frequency echo signals, factoring in the despeckled image obtained
by the first problem into a spatially-varying reflectivity prior. We
show with simulated, in-vitro, and in-vivo data that the proposed
despeckled image estimation technique recovers images almost
free of diffraction artifacts and improves contrast with respect
to delay-and-sum and non-local means despeckling. Moreover, we
show with in-vitro and in-vivo data that the proposed reflectivity
estimation method reduces artifacts and improves contrast with
respect to a state-of-the-art inverse problem positing a uniform
prior. In particular, the proposed techniques could prove beneficial
for imaging with ultra-portable transducers, since these devices
are likely to be limited in the amount of data they can acquire and
transmit.
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I. INTRODUCTION

U LTRAFAST ultrasound has emerged as a new paradigm
in echography competing with traditional focused ultra-

sound. This approach relies on the emission of unfocused waves
by an ultrasound transducer. Human soft tissues can therefore
be imaged with a limited number of insonifications. On the
one hand, this technique enables imaging at potentially very
high frame-rates. These frame-rates act as the backbone behind
methods such as shear-wave elastography [1] or ultrasound neu-
rofunctional imaging [2]. On the other hand, ultrafast ultrasound
can greatly reduce the amount of data that need to be acquired
with respect to focused ultrasound. Thus, point-of-care imag-
ing can be eased since portable ultrasound transducers possess
limitations in terms of data storage and transmission bandwidth.

The reconstruction of radio-frequency (RF) images from the
acquired echo signals is usually performed by delay-and-sum
(DAS) and coherent compounding [3]. DAS possesses
numerous advantages: low computational cost, conceptual
simplicity and stability to noise and aberrations. However, DAS
generates diffraction artifacts—side lobes, grating lobes—in
the reconstructed images, and the severity of the artifacts
increases when the amount of data considered is reduced. In
particular, diffraction artifacts affect the diagnosis capability of
images reconstructed from a low amount of data. In addition,
the resolution of images reconstructed using DAS is limited by
the center frequency of the ultrasound transducer, as well as its
physical aperture.

To circumvent the limitations of DAS, a series of methods re-
cast image reconstruction as an inverse problem involving a lin-
ear measurement model relating the RF measured echo signals to
the unknown image of interest. In addition, a regularization term
accounting for some a-priori knowledge on the unknown image
is considered. The inverse-model-based image reconstruction
approaches can be separated into two categories depending on
if the method aims at improving resolution or not. We denote
this class of techniques as regularized beamforming, and they
are typically able to improve contrast—and, for some methods,
resolution—with respect to standard beamformers such as DAS.

We denote the latter category as regularized beamforming
methods. Two main difficulties arise in this class of problems.
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Two main difficulties arise in this set of problems. First, the di-
mensionality of the measurement model—and thus the memory
footprint of the matrix discretizing the model—is in practice
very large. Second, the choice of regularizer is difficult since
RF images do not admit a straightforward structure that can be
easily leveraged by a regularizer in a general case. Second, the
choice of regularizer is difficult since ultrasound images do not
admit a straightforward structure that can be easily leveraged
by a regularizer in a general case. Several measurement models
have been proposed, including frequency-domain approaches
[4], [5], and spatial-domain models [6], [7], [8]. Importantly, a
matrix-free spatial-domain approach has been proposed in [9],
where an �1 norm in a wavelet basis is used as a regularizer. Other
regularizers comprise �1 and �2 norms [6], [10], a combination of
space and frequency domain regularizers [7], and, more recently,
regularization through a plug-and-play approach [8].

The regularized beamforming methods seen up to now seek
to recover a high-quality image from measured echo signals.
However, another set of techniques aims at estimating the
tissue reflectivity function (TRF or reflectivity) itself. Thus,
such methods can achieve significant resolution improvement
with regards to standard beamforming approaches. However,
the conditioning of the measurement models involved in these
problems is significantly worse than the conditioning of models
seen up to now. There is therefore a large dependency of the
estimated TRF to the choice of regularizer. The latter includes,
�1 norms [11], [12] or, more generally, �p norms [13].

In contrast, a different family of methods targets the estima-
tion of the reflectivity from a high-quality RF ultrasound im-
age, namely deconvolution methods. Such techniques suppose
that the image is the result of the convolution of the TRF by
a point spread function (PSF), assumed constant in a region
of the medium. The first ultrasound deconvolution techniques
were based on Wiener filtering [14]. More complex approaches
proposed since include homomorphic deconvolution [15], blind
deconvolution [16]—where the PSF is estimated alongside the
TRF—, or deconvolution techniques using sparse regulariz-
ers [17], [18]. In particular, generalized Gaussian distributions
(GGD) are now commonly used as reflectivity prior—or, equiv-
alently, the TRF is commonly regularized by an �p norm. Unfor-
tunately, the priors proposed in both deconvolution techniques
and reflectivity estimation methods from echo signals often fail
to take into account the large dynamic range of the reflectivity.
To circumvent this issue, Corbineau et al. assume that the TRF
is drawn from a GGD whose variance and shape parameter vary
within the medium [19]. GGD variance and shape parameter
are supposed constant in a fixed number of zones, whereas
deconvolution and segmentation of the medium are performed
jointly. Since they assume PSFs that are constant in the image
and limited spatially, deconvolution methods are however not
able to model diffraction artifacts, and thus to correct them.
Consequently, deconvolution techniques are unsuited to imaging
configurations using limited amount of data.

A last class of methods we can highlight comprises despeck-
ling algorithms. In practice, their aim is to filter speckle from
B-mode images to ease the analysis of ultrasound images by
a practitioner. Several approaches have been proposed, includ-
ing wavelet-based denoising [20], or non-local means (NLM)

filtering [21]. Importantly, TV norm also lays at the basis of
several despeckling techniques [22], [23], [24]. More generally,
we must emphasize that despeckled images possess a more
easily leverageable structure compared to the TRF, a RF image,
or a B-mode image prior to despeckling. However, despeckling
methods are in general not able to correct for diffraction artifacts.
Therefore, the latter also affect despeckled images. The diagno-
sis capability of ultrasound imaging with a reduced amount of
data is ultimately hindered. Furthermore, despeckled images are
also used as inputs for segmentation algorithms [25]. Thus, the
accuracy of image segmentation is also expected to suffer when
a low number of insonifications is used.

Taking into consideration the methods discussed thus far and
their limitations, we can summarize the contributions of the
article as follows.
� The first contribution is a novel statistical model of data ac-

quisition in pulse-echo ultrasound. In particular, we express
measurements as the realization of a high-dimensional
multivariate Gaussian random variable.

� Based on the proposed statistical model, our second con-
tribution is a regularized inverse problem aimed at the
direct reconstruction of a despeckled image from a limited
number of measured RF echo signals. Specifically, we
propose to identify a despeckled image of the medium with
the log-scale variance of the TRF, whereas we regularize
the latter with a TV norm.

� Our third contribution concerns reflectivity estimation
from RF echo signals. We propose a novel non-uniform
TRF prior factoring in the despeckled image estimated by
the first inverse problem. Thus, our goal is to account for
the high dynamic range of the reflectivity more effectively
than current state-of-the-art approaches.

The article is organized as follows. Section II presents the
measurement model we use to relate the TRF to the measured
RF echo signals, the definition of the inverse problem for the
despeckled image and the optimization of the associated loss
function. Finally, the reflectivity inverse problem is introduced.
We detail in Section III the experiments performed to assess
the proposed methods. Section IV presents the results of the
despeckled image and reflectivity estimation techniques. Ulti-
mately, we discuss the results in Section V, whereas Section VI
concludes the article.

II. THEORY

A. Notation

We begin this section by briefly detailing the notation we use
throughout this article. We denote vectors by bold lowercase
letters, whereas matrices are represented by bold capital letters,
with I the identity matrix. Diag(x) denotes the linear operator
constructing a diagonal matrix from a vectorx, whereas diag(A)
is its adjoint constructing a vector from the diagonal elements
of A. In the following, � represents the element-wise product
between two vectors, |x|2 is the element-wise squared modulus
of x, and ex is the element-wise exponential of x. In addition,
x(i,j) is an alias for the (i(N − 1) + j)-th element of x ∈ R

MN

or x ∈ C
MN . Finally,N (μ,Σ) denotes a complex multivariate
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centrally-symmetric Gaussian distribution with mean μ and
covariance matrix Σ.

B. Measurement Model

We present herein the fundamental building block of the
proposed method, namely the measurement model. We detail the
imaging configuration and the fundamental assumptions behind
our model of the received echo signals.

We suppose that a single, unsteered, plane wave (PW) is
emitted by a linear ultrasound transducer. Furthermore, we sup-
pose that the N el piezoelectric elements of the transducer record
back the echo signals generated by local impedance variations
occurring within the insonified medium. Throughout this article,
we assume that the transducer is aligned with the x-axis and
emits waves propagating towards the positive z direction. We
represent the acquired signals as a vector of complex radio-
frequency (CRF) signals m ∈ C

N elN t
, with N t the number of

time samples. In practice, Hilbert transform is used to obtain
analytic CRF signals from the real RF signals. We justify in
Section II-E our choice of working with CRF signals instead of
their RF counterparts.

We consider a linear measurement model linking the mea-
surement vector m to the TRF, a complex function factoring in
local impedance variations. We rely on the model detailed in [9],
[13] defined as

m(k,j) =

∫
r

oTx (r) oRx
k (r)

vpe
(
ts
j − τTx(r)− τRx

k (r)
)
γ(r) dr, (1)

where ts
j denotes the j-th sampling time instant, k = 1, . . . , N el

is the index of the piezoelectric transducer in reception and r =
[x, z]T represents an arbitrary points in the medium. In (1), τTx

and τRx are the transmit (Tx) and receive (Rx) propagation times,
defined as

τTx(r) =
1

c0
z, (2)

and

τRx
k (r) =

1

c0

√(
x− xel

k

)2
+ z2, (3)

where c0 is the speed of sound (SoS) of the medium. Functions
oTx and oRx are real positive factors, whereas γ denotes the
continuous TRF. Finally, vpe is the pulse-echo wavelet defined
in [26]. Factors oTx and oRx in (1) account for magnitude effects
affecting signals scattered at point r, in transmission and recep-
tion respectively. Such effects mostly include the decay of waves
with distance, the focusing of the acoustic lens or the directivity
of the sensors.

Several hypotheses are required to define (1). Most impor-
tantly, we suppose a first-order Born approximation. Namely,
multiple scattering is neglected. In addition, we assume linear
and isotropic wave propagation in the medium, large-scale vari-
ations of SoS and attenuation are neglected, and we posit that the
latter does not depend on frequency. Finally, we postulate that
the medium is entirely located in the far-field of the transducer’s
elements.

In the following, we consider that the reflectivity map is
discretized according to a grid of points r(m,n) with m =
1, . . . , N x, n = 1, . . . , N z such that it is represented by a vector
γ ∈ C

N xN z
. Thus, we represent the measurement model as a

matrix A ∈ C
N elN t×N xN z

. Importantly, we never construct ma-
trix A explicitly and matrix-vector multiplication is implement
according to (1) using linear interpolation. A similar strategy
is used to implement AH . We refer the reader to [9], [13]
for a detailed description of the measurement model and its
implementation.

Ultimately, we model the signals as

m = Aγ + ν, ν ∼ N (0, σ2
νI
)
. (4)

In (4), vector ν represents thermal noise, but more importantly
the inaccuracies of A. The neglect of multiple scattering, spatial
variations of speed of sound and attenuation, as well as the
estimation of vpe by a Gaussian pulse introduce errors in the
estimated signals. We ultimately model them by white Gaussian
noise added to the signals predicted by the proposed measure-
ment model.

We must highlight that additive Gaussian noise applied toAγ
is a simplistic hypothesis. The quality of the method proposed
herein is therefore expected to suffer compared to a technique
that would consider a more complex—most likely non-linear—
measurement model factoring in multiple scattering, SoS vari-
ations, frequency-dependent attenuation or space-dependent at-
tenuation. However, this assumption is enforced to keep the
model computationally tractable. Furthermore, the Gaussian
noise hypothesis—or equivalently, the use of a least-squares data
term—is supposed in the vast majority of regularized beamform-
ing and reflectivity estimation methods proposed previously [6],
[7], [9], [13].

C. Inverse Problem for the Echogenicity Map

In this subsection, we introduce an inverse problem to estimate
the local variance of the reflectivity in a logarithmic scale—that
we interpret as despeckled image—from the measured echo
signal. We also detail the statistical model underpinning the
inverse problem and the assumptions it is based on, as well as
the regularization strategy.

We first establish several assumptions with regard to the
reflectivity. We suppose that each component γk, k = 1, . . . ,
N xN z of the discrete reflectivity vector γ are uncorrelated. Be-
sides, we posit that the probability distributions from which each
γk is drawn have zero means and variances E{|γk|2} = σ2

k <
∞. Importantly, we assume that the variance of the reflectivity
σ2
k can be different for each k. In other terms, we suppose that

the reflectivity variance varies within the medium.
The absence of correlation between the discrete reflectivity

at different points of the medium is a standard hypothesis in
ultrasound image deconvolution [18], [19] and inverse-problem-
based pulse-echo ultrasound imaging [13]. Even if the TRF is
ultimately continuous, the scale of the variations is typically
inferior to grid size—especially in zones appearing as speckle
in B-mode image. Thus, this fact justifies a lack of correlation
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between the reflectivity at adjacent pixels. However, this argu-
ment is mitigated in the case of specular reflections. In the future,
we can thus imagine a more complex model better suited for the
imaging of specular reflectors.

Based on the hypotheses detailed above, the covariance matrix
Σ of the measured signals m is then given by

Σ(κ) = ADiag (eκ)AH + σ2
νI, (5)

whereκ denotes the element-wise logarithm of the TRF variance
σ2
k, ∀k = 1, . . . , N xN z.
Importantly, we interpret κ as a despeckled image expressed

in a logarithmic scale. We refer it as the echogenicity in the
following. The logarithmic scale is chosen to better account
for the high dynamic range of the echogenicity inherent to
pulse-echo ultrasound imaging. To the best of our knowledge,
this article represents the first attempt to establish an explicit
link between reflectivity variance and despeckled images in
ultrasound imaging. However, this claim follows from the theo-
retical work of Michailovich and Tannenbaum [22]. There, the
reflectivity is first estimated through image deconvolution. Its
squared norm—expressed in a logarithmic scale—is then filtered
to estimate a despeckled image. We argue for the similarity
between the approach of [22] and an estimation of the log-scale
reflectivity variance.

We now present the fundamental hypothesis underpinning
the proposed method. We assume that the measurement vector
m is given by a single realization of a circularly-symmetric
complex multivariate Gaussian variable with zero mean and
covariance matrix Σ(κ). In particular, the probability density
function (PDF) of the distribution is given by

P(m|Σ) =
1

π
∣∣Σ∣∣e−mHΣ−1m. (6)

Our goal is, first, to estimate κ. To do so, we propose to solve
the following optimization problem:

min
κ∈RNxNz

L(κ) + μR(κ), (7)

with

L(κ) = log
∣∣Σ(κ)

∣∣+mHΣ−1(κ)m, (8)

and Σ(κ) the covariance matrix as defined in (5). Problem (7)
is a maximum-a-posteriori (MAP) estimator of κ, where the
regularizer μR is a positive functional acting as a Bayesian prior
on the echogenicity map κ, and where L denotes the negative
log-likelihood that the measurement vector m is generated by
the distribution defined in (6).

In this article, we propose to use the following regularizer

R(κ) =

(N x−1)(N z−1)∑
i

√
[Dxκ]2i + [Dzκ]2i

+ χ]−∞,κmax](κ), (9)

where Dx and Dz denote forward finite difference operators
along the x and z axes, respectively. Furthermore, χ denote
the characteristic function of the interval ranging from −∞ to
κmax. The first part of the regularizer corresponds to an isotropic

TV-norm. The second part ensures that the echogenicity remains
within an expected range upper-bounded by κmax. This last
term is present to alleviate potential convergence issues of the
algorithm we will present in Section II-D. The strength of
the prior is encoded by the regularization parameter μ. The
choice of the TV norm is motivated by its previous uses as a
prior on despeckled images [22], [23], [24]. More generally,
the piece-wise constancy enforced by TV norm is a hypothesis
regularly assumed to model the spatial distribution of physical
properties of human tissues in medical imaging [27], [28], [29],
[30].

D. Natural Proximal Gradient Descent

We describe in this subsection how we propose to solve the
inverse problem defined in Section II-C. In particular, we detail
the optimization algorithm used.

In practice, we determine the solution of (7) with an approx-
imate natural proximal gradient descent algorithm. The basic
principle of natural gradient descent is to replace the Euclidean
metric implicitly assumed by gradient descent by the Kullback-
Leiber (KL) divergence between the distribution parameterized
by the variable the algorithm seeks to optimize—here, κ [31],
[32]. This metric is estimated locally by the following distance

d(κ, κ̂) =

√
[κ− κ̂]T F (κ) [κ− κ̂], (10)

where F denotes the Fisher information matrix. Due to the high
dimensionality of the problem in our case, we approximate the
Fisher information matrix by a diagonal matrix F ≈ Diag(f).
To handle the proposed non-smooth TV-norm regularizer, we
use a proximal step similar to the one introduced for proximal
Newton-type methods [33]. The proposed optimization scheme
can thus be written as{

κ̂ = κk − ηDiag−1 (f(κk)) [∇κL(κk)] ,

κk+1 = Prox
Diag(f(κk))
ημR (κ̂),

(11)

for a specific iteration k and step size η. Furthermore, the
proximal step in (11) is defined as

Prox
Diag(f)
ημR (κ̂) =

arg min
κ

ημR(κ) +
1

2
[κ− κ̂]T Diag(f)[κ− κ̂]. (12)

Algorithm (11) requires the gradient of the data term L. It can
be split into two terms, namely

∇κ

[
log
∣∣Σ(κ)

∣∣] = diag
(
AHΣ−1(κ)A

)� eκ, (13)

and

∇κ

[
mHΣ−1(κ)m

]
= − ∣∣AHΣ−1(κ)m

∣∣2 � eκ. (14)

Unfortunately, the dimensions of the covariance matrix Σ(κ)
prevent the direct computation of its inverse due to the pro-
hibitive computational and memory cost it would require. There-
fore (14) and (13) must be approximated.

Indeed, the computation of the gradient of the log-det term
(13) is the most critical aspect of the proposed method. For
example, the loss function L is also involved in the inference
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of Gaussian processes and the gradient of the logarithm of
determinant represent the main hindrance to their application
to large datasets [34], [35]. To estimate it, we first observe that

diag
(
AHΣ−1(κ)A

)
=

E
m̂∼N (0,Σ(κ))

∣∣AHΣ−1(κ)m̂
∣∣2 , (15)

following from operator diag(·) applied to the identity

E
m̂∼N (0,Σ(κ))

{[
AHΣ−1(κ)m̂

] [
AHΣ−1(κ)m̂

]H}

=
[
AHΣ−1(κ)

]
Σ(κ)

[
AHΣ−1(κ)

]H
= AHΣ−1(κ)A. (16)

Therefore, we propose the subsequent Monte-Carlo estimation

diag
(
AHΣ−1(κ)A

) ≈ 1

N est

N est∑
i=1

∣∣AHΣ−1(κ)m̂i

∣∣2 , (17)

with

m̂i = Aγi + νi,γi ∼ N (0,Diag (eκ)) ,

νi ∼ N
(
0, σ2

νI
)
, ∀i = 1, . . . , N est, (18)

and where N est is the number of sample vectors. In particular,
(17) shares strong similarities with (14). Thus, the computation
of∇κL requires the solutions to N est + 1 systems of equations,
one to compute (14) and N est to estimate (13) according to (17).

However, instead of solving directly the systems in (17) and
(14), we first rewrite them as

AHΣ−1(κ)m =

Diag
(
e−κ
) [

1
σ2
ν
AHA+ Diag

(
e−κ
)]−1

1
σ2
ν
AHm. (19)

Then, we propose to solve the series of N est + 1 system with
a block conjugate gradient (BCG) algorithm [36]. The BCG
allows us to benefit from a faster convergence time than, for
example, applying conjugate gradient independently for each
of the N est + 1 systems. The BCG is ultimately stopped when
the relative norm of the residuals becomes inferior to a stop-
ping criterion εBCG. We choose to compute the solutions to
the systems in the spatial domain (19)—in opposition to the
signal domain in (17) and (14)—since we can find an effective
diagonal preconditioner. Finally, we present our estimation of
the diagonal of the Fisher information matrix in Appendix A,
whereas Appendix B describes the algorithm used to compute
Prox

Diag(f)
ημR (κ̂) (12).

The complete proximal natural gradient descent algorithm is
detailed in Algorithm 1. We must emphasize that the objective
function (7) is in general not convex. Thus, we cannot guarantee
that the proposed scheme will converge to a global minimum.
However, we noticed empirically that the algorithm converges
satisfactorily if the initial estimation of κ is superior to the
solution of (7). Therefore, we propose to set the initial estimate
ofκ as a the upper boundκmax onκ imposed by the regularizerR
(9). Our choice of a natural gradient approach—compared to an
accelerated proximal gradient descent such as the fast iterative

Algorithm 1: Proximal Natural Gradient Descent.

input: m ∈ C
N elN t

the CRF measurement vector, a
maximum number of iterations N iter

κ0 ← κmax

k ← 0
do

Generate m̂i ∼ N (0,Σ(κk)), ∀i = 1, . . . , N est

M ← [m̂1, . . . , m̂N est ,m]
P ← 1

σ2
ν
AHM

Solve
[

1
σ2
ν
AHA+ Diag(e−κ)

]
Q = P using BCG

R← Diag(e−κ)Q

g ←
[

1

N est

N est∑
i=1

∣∣ri∣∣2 − ∣∣rN est+1

∣∣2]� eκ

f ←
⎡
⎣ 1

N est

N est∑
i=1

∣∣ri∣∣4−
[

1

N est

N est∑
i=1

∣∣ri∣∣2
]2⎤⎦� e2κ+f reg

κ̂← κk − ηDiag−1(f)g
κk+1 ← Prox

Diag(f)
ημR (κ̂)

k ← k + 1
while k < N iter

return κk

shrinkage-thresholding algorithm (FISTA) [37]—is motivated
by its faster convergence time and the iteration stability it allows.
In contrast, our experiments showed a lack of stability of FISTA
in that case, which lead the nearly systematic divergence of the
algorithm.

E. Reflectivity Estimation

To conclude this section, we describe herein how to esti-
mate the reflectivity map itself—interpreted as a deconvolved
image—from the measured signals, factoring in the echogenicity
map obtained by solving (7). We detail the definition of the
optimization problem used to do so, the statistical model it is
based on, as well as the optimization algorithm proposed to
solve it.

Once the log-scale local reflectivity variance κ is estimated,
we can use it to define a prior on the discrete reflectivity map
γ. Following prior work on image deconvolution and inverse-
model-based reflectivity estimation, we propose to model an
element ofγ as a single realization of a centered GGD [13], [19].
Since we consider a complex reflectivity map, we additionally
impose the GGD to be centrally-symmetric. Therefore, the PDF
of an element k of γ is given by

P(γk) =
p

2πc2kΓ
(

2
p

)e−∣∣γk

ck

∣∣p
. (20)

Distribution (20) is parameterized by a scale parameter ck >
0—supposed different for each pixel—and a shape parameter
p—supposed constant within the medium and known a priori.
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TABLE I
TRANSDUCER SPECIFICATIONS

Moreover, the variance of (20) is given by

E
[|γk|2] = eκk = c2k

⎡
⎣Γ
(

4
p

)
Γ
(

2
p

)
⎤
⎦ , (21)

with κ the echogenicity map solution of (7), and Γ the gamma
function [38].

We assumed in Section II-B that the measurement vector m
is the result of operator A acting on the reflectivity map γ, plus
a realization of white Gaussian noise with σ2

ν variance. The PDF
of m given γ is thus expressed as

P(m|γ) = 1

π [σ2
ν ]

N xN z e
− 1
σ2
ν
‖m−Aγ‖2

, (22)

where N xN z is the dimension of γ. Taking into account (20),
(21), and (22), we define a MAP reflectivity estimate as the
solution to the following minimization problem

min
γ

1

σ2
ν

∥∥Aγ −m
∥∥2

+

⎡
⎣Γ
(

4
p

)
Γ
(

2
p

)
⎤
⎦

p
2 ∥∥∥Diag

(
e−

1
2κ

)
γ
∥∥∥p
p
. (23)

In this article, we investigate 4 different values of the scale
parameters; p = 1, p = 4

3 , p = 3
2 , and p = 2. Values p < 2 are

chosen to select distributions (20) presenting sparse behaviours.
The Gaussian hypothesisp = 2 is tested for comparison purpose.
In addition, we ensure that (23) remains convex by selecting
p ≥ 1, and select values of p such that the proximal operator of
the regularizer in (23) admits a closed-form expression.

In particular, the proposed inverse problem automatically
increases the weight of the prior in medium areas posessing
a low echogenicity—with respect to a uniform prior—and re-
duces its importance in areas with high echogenicity. Since
echo signals originating from hypoechoic zones are weak, an
accurate prior is of upmost importance therein. Thus, problem
(23) is especially designed to improve reflectivity reconstruction
in low-echogenicity areas.

To solve problem (23), we implement FISTA according to
Algorithm 2. In practice, the Lipschitz constant L is set using
power iterations, and the computation of γk+1 is detailed in
Appendix C.

Fig. 1. Flow chart summarizing the proposed approach, whereA is the discrete
measurement model, σ2

ν is the signal noise variance, R is a bounded isotropic
TV norm regularizer, μ is the regularization parameter, and p is the GGD shape
parameter.

Ultimately, we display the absolute value of the reflectivity
γ expressed in decibels, analogous to the depiction of B-mode
images reconstructed with DAS. In particular, this fact justifies
the use of a complex-valued vector γ instead of a real vector.
Indeed, depicting a real reflectivity map in this manner requires
applying envelope detection. However, doing so leads to artifacts
since the bandwidth of the axial and lateral frequencies of the
estimated reflectivity map γ is larger than the ones of images
reconstructed using DAS.

A visual summary of the proposed approach for both
echogenicity and reflectivity estimation is provided in Fig. 1.

III. EXPERIMENTS

A. Parameters

For all the experiments performed in this article, we used
a GE9L-D ultrasound transducer (GE Healthcare, Chicago,
Illinois, USA) linked to Verasonics Vantage 256 Ultrasound
system (Verasonics, Kirkland, WA, USA). The specifications of
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Algorithm 2: FISTA to Evalutate (23).

input: m ∈ C
N elN t

the CRF measurement vector,
κ ∈ R

N xN z
the solution of (7), a stopping criterion

εFISTA > 0
γ0 = 0
z0 = 0
t0 = 1
k ← 0
L← ‖ 1

σ2
ν
AHA‖

do
γ̂ ←

[
I − 1

L
1
σ2
ν
AHA

]
zk

γk+1 ← arg min
γ

[
Γ( 4p )

Γ( 2p )

]p
2 ∥∥∥Diag

(
e−

1
2κ

)
γ
∥∥∥p
p

+
L

2
‖γ − γ̂‖2

tk+1 ← 1

2
[1 +

√
1 + 4t2k]

zk+1 ← γk + tk−1
tk+1

[γk+1 − γk]

k ← k + 1

while
1√

N xN z
‖γk − γk−1‖ > εFISTA

return γk

the transducer are summarized in Table I. All the experiments
required either the emission of a single unsteered PW, or the
emission of a series of 115 steered PWs whose steering angles
are uniformly spaced between −28.5° and 28.5°. The 115 PWs
data are used solely for comparison.

In particular, almost every parameter of the measurement
model A are set according to the parameters provided in Ta-
ble I, whereas we assume a medium SoS c0 of 1540m/s. In
addition, we suppose that vpe is a Gaussian pulse whose central
frequency is given in Table I, and whose the standard deviation
σpe = 0.16µs is determined to best predict the spectral power
density of signals acquired on the phantom figuring uniform
speckle—CIRS model 054GS general-purpose in-vitro phantom
(Sun Nuclear, Melbourne, FL, USA). Similary, function oRx (1)
is determined to best fit the local variance of 100 signals m
acquired on the same uniform phantom.

With respect to the parameter of the inverse problem (7),
we set σ2

ν = 10−5, μ = 1.910−5, and κmax = 34 due to their
empirical success in-vivo. In Algorithm 1, we set N est = 20,
η = 8 · 10−3, f reg = 10−5, εBCG = 4 · 10−7, N iter = 120, and
εProx = 10−7 as a trade-off between convergence time and the
error with respect to the solution of (7). Regarding the opti-
mization of (23) and (24) with Algorithm 2, we set the stopping
tolerance to εFISTA = 10−7.

B. Simulated Data

As an initial test, we apply the proposed method to simulated
data. To generate data, we rely on the linear acoustics simu-
lator Field II [40]. We suppose a medium spanning the width
of the transducer—with a 7mm margin on both sides of the

geometrical model of the probe—, a depth of 60mm, and a
height of 5.8mm.

We simulate the presence of 10 scatterers per resolution
cells—unless mentioned otherwise—whose positions are drawn
from a uniform distribution and whose intensities are drawn
from Gaussian distribution. The variance of the Gaussian varies
spatially according to a reference echogenicity map.

Simulated data allows us to test the proposed method in
the absence of error caused by the most significant inaccura-
cies of the measurement model—namely, multiple scattering,
frequency-dependent attenuation or spatial variations of SoS and
attenuation. Moreover, we can compare explicitly the results of
the proposed method with the ground truth echogenicity. The
ground truth map will be presented in Section IV-A, alongside
the results of the proposed method.

C. Phantom and In-Vivo Data

We also test the proposed method with data acquired on a
CIRS model 054GS phantom. The imaged medium comprises
a series of three far-field inclusions; One anechoic and two
hypoechoic, 6 dB and 3 dB below the background echogenicitiy,
respectively.

In addition, we apply the proposed method to in-vivo data.
We consider two images of the carotid artery of a healthy
volunteer (a 28 years old male), one figuring a longitudinal slice
of the artery and one figuring an axial slice. Data acquisition
was conducted in accordance with the Declaration of Helsinki.
Moreover, the ultrasound sequence has been approved by the
Cantonal Commission on Ethics in Human Research of the
Canton of Vaud, Switzerland.

D. Reference Image Despeckling Method

We compare the proposed echogenicity recovery method to
DAS followed by a despeckling algorithm. In particular, we
selected a non-local means approach due to its use in commercial
ultrasound systems [8], [21]. To correct for the spatial variations
of echogenicity caused by beamforming, we normalize the im-
age according to [39]. We first define a normalization mask as
the average of 100 B-mode images acquired on a zone of the
CIRS model 054GS phantom presenting a uniform echogenicity.
We then subtract the normalization mask to the B-mode image
of interest prior to despeckling. This procedure ensures that a
medium with uniform echogenicity will indeed appear uniform
in the despeckled image. Finally, we set the beamforming SoS
c0 to 1540m/s, namely the same medium SoS assumed in
measurement model A.

A ground-truth echogenicity map is available for experiments
with simulated data. However, this is not the case with in-vivo
or in-vitro experiments. There, we also reconstruct high-quality
images using 115 PW acquisitions to act as surrogates for
ground-truth echogenicity maps.

E. Reference Reflectivity Estimation Method

To reconstruct a deconvolved image from CRF measurement
vectorm, we propose to follow the procedure introduced in [13].
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Fig. 2. From left to right: The ground-truth echogenicity of the numerical phantom used to generate simulated data, the result of delay-and-sum (DAS) applied to
the data, a despeckled version of the image reconstructed with DAS, and the result of the proposed method. The zones used for the different contrast experiments
are highlighted on the ground-truth echogenicity map.

It involves an inverse problem similar to (23), albeit assuming a
constant echogenicity κref in the medium. The inverse problem
in this case is written as

arg min
γ

1

σ2
ν

∥∥Aγ −m
∥∥2 + e−

p
2κ

ref

⎡
⎣Γ
(

4
p

)
Γ
(

2
p

)
⎤
⎦

p
2 ∥∥γ∥∥p

p
. (24)

As demonstrated in [13], the use of a physical model of data
acquisition A alleviates the drawbacks associated with decon-
volution methods assuming a constant PSF. These drawbacks
include the lack of accuracy resulting from the variation of the
effective PSF with position, the necessity to estimate the PSF
itself, and the presence of non-local diffraction artifacts in the
image. In fact, the latter represent the main hindrance to the
use of deconvolution techniques in the present case of single
PW imaging. Thus, the reference method based on a uniform
prior (24) represents the current state-of-the-art in terms of the
estimation of a deconvolved image from a low quantity of PW
data.

Regarding the parameters of (24), we propose to use the same
noise variance than the proposed method (σ2

ν = 10−5). In the
phantom case, we set κref to the median value of κ obtained by
solving (7) in the background. In the in-vivo case, we set κref

according to the median value of κ in the whole medium.

IV. RESULTS

A. Echogenicity Results With Simulated Data

We present herein the results of the proposed despeckled
image recovery method. Regarding first the experiments with
simulated data, we depict in Fig. 2 the results using DAS and
the proposed method, as well as the numerical phantom used
for the simulation. Three types of experiments are performed in
the phantom. First, the top of the phantom comprises a series
of five anechoic inclusions—designated as A1 to A5—with
decreasing radii—3mm, 1.5mm, 1mm, 0.5mm, and0.25mm,
respectively. Two hypoechoic inclusions—12 and 6 dB below
the background echogenicity—are present below the anechoic
inclusions. They have a radius of 3mm and are denoted as B1

and B2. In addition, there are two hyperechoic inclusions—B3

and B4—with the same radius and whose echogenicities are 6
and 12 dB above the background one. Finally, four rectangular

areas—indexed from C1 to C4—are present in the bottom of
the phantom, with an echogenicity 6 dB above the background
one. Until now, we assumed 10 scatterers per resolution cell
during simulation. Experiments C1 to C4 are designed to test
the behaviour of the proposed method when the number of
scatterers is reduced, namely when an image of the medium
does not present a fully resolved speckle pattern. In particular,
we reduced the number of scatterers per cell by factors of 27, 9,
and 3 with respect to the standard value of 10 in experiments C1

to C3. Experiment C4 assumes 10 number per resolution cells
for comparison purpose.

Table II presents the contrast ratios (CRs) in every cases
with respect to the echogenicity of the background, for both
the proposed method and DAS followed by despeckling. The
CRs for each inclusion are given by

CR[dB] =
1

|Kin|
∑
k∈Kin

κdB
k −

1

|Kout|
∑
k∈Kout

κdB
k , (25)

where κdB denotes either a desepckled DAS B-mode image or

κdB = 20 log10(e)κ, (26)

when the proposed method is tested. In (25), Kin is the set of
pixels inside the inclusion andKout is the set of pixels located at
at most 3mm from the outer boundary of the inclusion.

Regarding first the anechoic inclusions, we can see that
inclusions A1 to A3 are visible with DAS—before and af-
ter despeckling—and the proposed approach. Inclusion A4 is
scarcely discernible with DAS, but cannot be distinguished with
the proposed method, whereas inclusion A5 is not visible for
both methods. Quantitatively, the proposed approach allows for
a significant contrast improvement with respect to DAS for cases
A1 to A3. Moreover, the contrast increases with the radius of the
inclusion.

As it can be observed in Fig. 2, inclusion B1 is hidden behind
a grating lobe artifact when DAS is used. This results in a poor
contrast, both visually and quantitatively. The proposed method,
however, successfully removes the grating lobe and contrast
is improved considerably. Regarding inclusions B2 to B4, the
proposed and reference methods achieve similar results both
quantitatively and quantitatively, even if the boundaries of the
inclusions are better defined with the proposed approach.
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TABLE II
CONTRAST RATIOS WITH SIMULATED DATA

Fig. 3. Despeckled images of the phantom (top row) and in-vivo carotid artery (bottom rows). In each case, we depict the result of delay-and-sum (DAS) before
and after despeckling, using both 115 plane waves (PWs) and single PW data, along with the result of the proposed approach. For the in-vivo results, we highlight
two areas of interest.

Finally, we can see the contrast ratios of the four areas C1 to
C4 diminish with both techniques when the number of scatterers
per resolution cell is reduced. However, this trend is significantly
alleviated by the proposed method with respect to DAS. Visually,
we notice that C1 presents echogenicity variations with DAS.
Uniformity is better enforced by the proposed approach, even
though some punctual structure can be observed within the area.

B. Echogenicity Results With In-Vitro Phantom Data

The top row of Fig. 3 depicts the results of DAS applied
to in-vitro phantom data—with and without despeckling and
using both 115 PWs and 1 PW—alongside the results of the pro-
posed method. In addition, Table III provides the CRs achieved
by the different method for the three inclusion present in the
phantom—denoted as D1, D2, and D3. The latter are computed
in accordance with (25).

TABLE III
CONTRAST RATIOS WITH PHANTOM DATA

Regarding first the anechoic inclusion D1, we can observe
in Fig. 3 a qualitative contrast improvement with the proposed
method compared to DAS with single PW data. The improve-
ment is confirmed quantitatively since we report from Table III
a contrast gain of almost 3 dB. Turning now to the hypoechoic
inclusionsD2 andD3, the CRs achieved by the proposed method
are lower than both the target value and the values obtained by
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Fig. 4. Estimation of the reflectivity in the phantom. On the top, the results of delay-and-sum and the proposed method with the four �p norms are depicted. We
present in the bottom of the figure areas of interest figuring a uniform speckle and the anechoic inclusion. In the latter case, the result of the reference method with
a uniform prior is also displayed.

DAS, irrespectively of the number of PWs. However, we can
notice that the proposed method manage to consistently recover
a sharper inclusion boundary, especially in cases D2 and D3.

C. Echogenicity Results With In-Vivo Data

The second and third rows of Fig. 3 depict lateral and axial
images of the carotid artery. In addition, we highlight for each
image an area of interest.

Focusing first on the lateral image, we observe that the pro-
posed method successfully removes diffraction artifacts. The
improvement is especially noticeable inside the carotid artery,
for example within the blue ellipse on the right half of the image.
Significant artifacts are present in the single PW images—before
and after despeckling—and they are absent in the result of the
proposed method. The image enhancement is also perceptible
just above the artery wall in the area of interest. Side lobe artifacts
occurs in the single PW image. As it can be observe within
the blue ellipse, artifacts are removed by the proposed method,
leading to a result closer to the 115 PWs despeckled image.
Furthermore, we can see on the area of interest that the proposed
method maintains fine structures within the superficial layer of
the imaged medium.

Regarding the axial image, we see in the area of interest a large
artifact highlighted in blue appearing in the single PW images
above the outer artery wall. As we can see on the left side of
the blue ellipse, the artifact conceals in the single PW image
an horizontal structure that is visible in the 115 PWs image.
Once again, the proposed method removes the artifact to recover
an anatomically correct result on the upper half of the image.

Furthermore, the contrast inside the artery is improved compared
to DAS. Unfortunately, no significant difference between the
proposed method and DAS can be observed in the lower half
of the image. We can attribute this lack of improvement to
the physical phenomenons that are disregarded by the model
A—foremost, multiple scattering and SoS variations—since we
expect their effect to be more severe in the far-field.

D. Reflectivity Results With In-Vitro Phantom Data

Fig. 4 presents the result of the proposed reflectivity estima-
tion method applied to phantom data for p = 1, p = 4

3 , p = 3
2 ,

and p = 2, after log compression. On the left side of the figure,
we depict for comparison a B-mode image obtained with DAS.

Two regions of interest are highlighted in the images. The
top one figures uniform speckle, whereas the bottom one is a
close-up of the anechoic inclusion. In addition to the result of
the proposed method, we also display the anechoic inclusion as
reconstructed by the reference reflectivity estimation method.
Since the echogenicity κref assumed by the reference method
is identical to the background echogenicity recovered by the
proposed echogenicity estimation technique, the reflectivities
estimated by the two methods are otherwise very similar outside
of the inclusions.

Focusing first on speckle, we can clearly observe the resolu-
tion improvement allowed by the inverse-problem approach. To
quantify this phenomenon, the upper half of Table IV presents
the axial and lateral full width at half maximum (FWHM) of
the reflectivity autocorrelation within the top region of interest.
We can notice that the axial FWHM is significantly improved
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TABLE IV
SPECKLE RESOLUTION AND ANECHOIC CONTRAST IN THE PHANTOM

compared to DAS, whereas the improvement in FWHM along
the lateral dimension is more marginal. The influence of p on
speckle resolution is otherwise limited. We can observe a small
FWHM improvement with p = 1 with respect to the three other
cases. Yet, the speckled pattern does not seem to present in
Fig. 4 a finer grain size than with p > 1. Moreover, the speckle
distribution is significantly affected. In contrast, the speckle
pattern recovered with p = 2 appears like a less coarse version
of the one reconstructed with DAS.

Turning now to the anechoic inclusion, we can appreciate in
Fig. 4 the large contrast improvement permitted by the proposed
approach compared to a uniform prior. To provide a quantitative
estimation of contrast, we compute the tissue-to-clutter ratio
(TCR) between the interior of the inclusion and the adjacent
background [41]. Formally, the TCR is defined as

TCR[dB] = 20 log10

[
1

|Kin|
∑
k∈Kin

|γk|
]

− 20 log10

[
1

|Kout|
∑
k∈Kout

|γk|
]
, (27)

where Kin denotes the set of pixels inside the inclusion, and
Kout is the set of pixels located at at most 3mm from the
inclusion boundary. The choice of TCR rather than CR—more
regularly used in the literature and employed in Section IV to
compare despeckled images—stems from the fact that some
pixels of γk are null with p < 2, which would lead to a CR of
−∞. We present TCR values in the lower half of Table IV, for
both the proposed and uniform priors. Again, the large contrast
improvement observed visually is confirmed quantitatively since
the improvement in TCR allowed by the proposed prior varies
from 8.75 dB (p = 3

2 ) to 15.73 dB (p = 1). As a final remark,
we can emphasize that the reflectivity estimated by the proposed
method using p = 1 is null for 99.2% of the pixels within the
inclusion, whereas this number falls to 79.8% with a uniform
prior. The proposed approach is therefore able to recover an
almost truly anechoic inclusion.

E. Reflectivity Results With In-Vivo Data

We depict in Fig. 5 the reflectivity maps achieved by the pro-
posed method with the two in-vivo datasets. The DAS B-mode
image and the reflectivity maps obtained when a uniform prior
is assumed are depicted alongside the results of the proposed

TABLE V
CONTRAST AND RESOLUTION IN VIVO

method. Moreover, we highlight in Fig. 5 two zones of interest
in the reflectivity maps using red ellipses.

To quantify imaging quality, we estimate the resolution of
the images by measuring the axial FWHM of one the muscular
fibers present in the near field of the lateral carotid image—
in a zone depicted in blue in Fig. 5. To estimate contrast, we
compute the TCR (27) between the interior and the exterior of
the carotid artery in the lateral carotid image. The sets Kin and
Kout are depicted in yellow in Fig. 5 using plain and dashed lines
respectively. We present in Table V the quantitative FWHM and
contrast value using both uniform and proposed priors, alongside
the values obtained with DAS.

First of all, we can notice qualitatively that the model inversion
allows for a significant improvement of the resolution with
regard to DAS. Interestingly, the improvement is more important
in areas with low echogenicity compared to areas with high
echogenicity. The resolution improvement is confirmed quanti-
tatively, since the relative improvement in axial FWHM varies
from 26% to 34% compared to DAS. Similarly to the results
obtained in Section IV, there is a small FWHM improvement
as p decreases, for both priors. However, we can notice that the
proposed prior do not provide improvement in terms of axial
FWHM with respect to the reference one.

We notice an improvement of the contrast of the carotid artery
between the proposed and reference priors. Quantitatively, the
TCR improvement varies from 1.71 dB (p = 1) to 2.62 dB
(p = 3

2 ). Furthermore, we observe that the reflectivity estimates
suffer from substantial side-lobe-like artifacts. Their severity
generally increase with p, and they are especially visible in the
superficial layers of both examples and within the carotid artery
in the lateral image. However, the proposed regularizer is able
to alleviate artifacts significantly with respect to a uniform prior.
In Fig. 5, we highlight in red two zones where the reduction in
artifact level is especially visible.

F. Dependency on Noise Variance

The proposed echogenicity and reflectivity estimation tech-
niques both rely on a set of parameters. The most important of
them is arguably the noise variance σ2

ν . To test its influence,
we propose to repeat the in-vitro phantom experiments with
values of σ2

ν ranging from 10−6 to 10−3. We depict in Fig. 6
four examples of despeckled images, whereas Fig. 7 presents
the evolution of the metrics of Table IV computed on estimated
reflectivity maps.



1202 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024

Fig. 5. In-vivo reflectivity maps estimated with single plane-wave data. We present the reflectivity map obtained by the proposed method for the two carotid
images using the four �p norms. For comparison, we present the results of delay-and-sum (DAS) and the results of the reference method using a uniform prior.

Fig. 6. Examples of phantom echogenicity maps estimated by the proposed
method, for four values of the noise variance σ2

ν .

We observe in Fig. 7 that contrast in the despeckled image
generally improves as σ2

ν decreases. Anechoic contrast ratios of
−13.03 dB,−19.34 dB, and−22.32 dB are obtained with σ2

ν =
10−3, σ2

ν = 10−4, and σ2
ν = 10−5, respectively. However, when

the noise variance becomes too low—σ2
ν = 10−6—detrimental

artifacts appear in the far field. We strongly suspect that these
artifacts results from the inability of the method to discard mul-
tiple scattering and frequency-dependent attenuation modeling
errors when σ2

ν is too low.
The axial speckle FWHM generally worsens as σ2

ν increases
for p > 1, whereas the lateral FWHM remains approximately
constant. In contrast, a reduction of speckle FWHM is observed
with p = 1. Importantly, we do not construe this reduction as an
improvement in resolution. We rather interpret this change as a

decrease of the quality of autocorrelation FWHM as a resolution
estimator, as reflectivity maps becomes increasingly sparse.

In opposition, the contrast of the deconvolved images gener-
ally decreases with increasing values of σ2

ν . Also, the proposed
prior constantly achieves a large contrast improvement with
respect to the uniform one as long as σ2

ν ≥ 10−5. Specifically,
this threshold corresponds to the point where significant artifacts
appear in the echogenicity map κ.

V. DISCUSSION

A. Echogenicity Estimation

As we already highlighted in Section IV-C, diffraction ar-
tifacts present in despeckled DAS images are almost entirely
removed by the proposed echogenicity estimation method. We
also saw that the proposed method suffers from some limitations,
including a lack of contrast improvement with respect to DAS
in the far field, or the oversight of some fine details. We use a
TV norm to regularize the echogenicity map κ. Therefore, the
morphology of the estimated echogenicity maps differs from
the structure of both the image despeckled with NLM and the
results of despeckling algorithms implemented in commercial
scanners. To solve this issue and alleviate the drawbacks high-
lighted above, we can imagine more complex regularization
strategies for κ. Instead of an explicit regularizer, plug-and-play
regularization could be used. For example, a NLM algorithm
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Fig. 7. Evolution of the axial and lateral speckle full width at half maximum
(FWHM) in the phantom with respect to the noise variance σ2

ν , along with the
evolution of the tissue-to-clutter ratio (TCR) of the anechoic inclusion, for both
the proposed and reference priors.

is used in [8] to enforce the desired image structure. A learned
prior on high-quality despeckled image could also be imagined.

We focus in this article on single PW imaging. This choice
is motivated by the simple implementation of operator A rela-
tively to other imaging configurations. In addition, the low data
size limits the computational burden of the method. However,
the proposed model is valid for other configurations as well
and considering, for example, several PWs could alleviate the
negative effects of multiple scattering.

Finally, modeling errors caused by local variations of SoS
and attenuation probably have a significant negative impact on
the echogenicity map estimated by the proposed method. A
radical approach to solve this issue would be to take into account
SoS and attenuation maps in the model and estimate them with
problem (7) alongside echogenicity.

B. Reflectivity Estimation

We saw in Section IV-E that the in-vivo reflectivity estimates
are affected by side-lobe-like structures. We suppose that the
latter originates, on the one hand, from aberration phase shifts
affecting the signals—typically caused by SoS variations in the
medium. On the other hand, frequency-dependent attenuation
causes the pulse-echo wavelet vpe to distort as waves propagate
through the medium, a phenomenon disregarded by the proposed
model. We believe it is another important source of artifacts
in the reflectivity map. Further tests are however necessary to
properly quantify the sensitivity of the proposed approach to SoS

and attenuation effects—including their effect on the estimation
of despeckled images. However, as detailed in Section V-A, a
solution would be to directly take into account variations of SoS
and attenuation in the model.

We observe that the side-lobe-like artifacts are greatly al-
leviated by changing the reflectivity prior—such as replacing
the uniform regularizer with the proposed one or reducing the
value of p. More accurate reflectivity priors could therefore
further improve image quality, including, for example, taking
into account a non-uniform value of p [19]. More generally,
our work emphasizes the crucial role played by the prior in
reflectivity estimation methods.

Finally, our proposed reflectivity estimation method is doubly
affected by multiple scattering. First, the oversight of multiple
scattering reduces the accuracy of the measurement model.
Second, the reflectivity prior defined by the echogenicity map
loses in quality. Again, our preferred approach to alleviate this
issue is to consider several insonifications in the measurement
model.

C. Parameter Selection

The proposed approach comprises a series of parameters that
must be determined. Most parameters—N est, η, f reg, εBCG,N iter,
εProx, and εFISTA—do not affect the theoretical solutions of (7)
and (23). They solely enforce a trade-off between the conver-
gence times of the optimization algorithms and the accuracy of
the solutions.

However, three parameters besides p—κmax,μ andσ2
ν—affect

the solutions of (7) and (23). The influence of κmax is extremely
limited in practice—when set sufficiently large—beyond its
positive effect on convergence.

In contrast, the strength μ of the TV norm regularizer must
achieve a critical trade-off. If μ is too low, the despeckling
capability of the proposed method is affected. In contrast, an
overly large value of μ prevents the method to recover the fine
details of the image—such as muscular fibers.

As detailed in Section II-B, the additive white noise ν of
variance σ2

ν in (4) is modelling mostly the inaccuracies of the
measurement model A. Consequently, we cannot determine σ2

ν

by estimating the amount of noise only from m, and we rather
set σ2

ν from the empirical performances of the method. As seen
in Section IV-F, a high value of σ2

ν reduces contrast in de-
speckled images. Fine details of the image are also increasingly
overlooked, as it can be observed directly above and below the
inclusions of Fig. 6. However, if σ2

ν is set too low, the proposed
approach is not able to discard physical phenomenons neglected
by the measurement model. Thus, significant artifacts are bound
to appear in the despeckled images. Even though a high value of
σ2
ν increases the contrast in deconvolved images, the improve-

ment occurs at the cost of a reduction of resolution. Overall,
we therefore recommend to set σ2

ν to the lowest value possible
before significant artifacts affect the echogenicity map κ.

An interrogation regarding the proposed parameters concerns
their generalizability to different transducers, patients and or-
gans. We can see that the same parameters lead to meaningful re-
sult with simulated, in-vitro and in-vivo data. This fact provides a
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first positive indication for their general effectiveness for a given
transducer and system. Regarding the implementation of the
method with other configurations, we propose to set parameter
σ2
ν as a fraction of the median squared modulus of the input CRF

echo signals m, for a series of acquisitions. We recommend
a ratio of 500, even though more thorough investigations are
necessary to determine this value precisely. We theoretically
expect the regularization parameter μ to be independent of the
imaging configuration. Indeed, the strength of the regularizer
does not vary with grid size nor the amplitude of the input signals
m. Again, additional experiments are necessary to confidently
establish this independence.

D. Applicability

We must highlight that the most important drawback of
the proposed echogenicity estimation method in its current
form is its computational complexity. If Algorithm 1 converges
quickly in term of iterations, its computational cost per iteration
is extremely high. Our current prototype implementation can
therefore take up to one full day to converge with a computer
comprising a Intel Core i9 CPU (Intel, Santa Clara, CA, USA),
64 GB of RAM and a Nvidia RTX 2080 Ti GPU (Nvidia,
Santa Clara, CA, USA). However, we believe that our code can
be significantly sped-up. Other—potentially quicker—inversion
methods can also be investigated, such as approaches based
on Langevin diffusion [42], [43]. We can also imagine using
such a method to perform a joint estimation of reflectivity and
echogenicity.

To reduce the computational burden of the proposed tech-
nique, another possibility is to replace the covariance matrix Σ
(5) by an approximation admitting a computationally efficient
inversion—for instance, a block-diagonal matrix. Such a simpli-
fication could, for example, be performed with data expressed in
the frequency domain [4]. A trade-off would however be neces-
sary between accuracy and computational cost. We also believe
that self-supervised learning based on deep neural networks
could offer a powerful way to harness the proposed model while
achieving real-time imaging. Overall, our next line of research
is to reduce the computational burden of the proposed method.

VI. CONCLUSION

We devise in this article a statistical model for ultrasound
imaging. We show that the proposed model can improve the
estimation of despeckled and deconvolved images from a limited
amount of data, with respect to DAS followed by a despeckling
algorithm and a state-of-the-art inverse problem for reflectivity
estimation, respectively.

We introduce a novel physical interpretation of a despeckled
image as the reflectivity variance. We believe this interpretation
can provide meaningful insights for the design of despeckled
image reconstruction methods, especially when a low number
of data is considered. More widely, we consider that the proposed
approach relying on the covariance matrix of measured signal
can act as a powerful basis for future pulse-echo ultrasound
imaging techniques, including quantitative ones.

APPENDIX A
ESTIMATION OF THE DIAGONAL OF THE FISHER INFORMATION

MATRIX

We need to estimate the diagonal f of the Fisher information
matrix. Let us first recall the definition of the latter. For an
arbitrary probability distributionG associated with a PDFP(·|θ)
and parameterized by a vector θ ∈ R

N , the Fisher information
matrix F (θ) ∈ C

N×N is defined as

F (θ) = E
x∼G(θ)

{
[∇θ log (P(x|θ))]

[∇θ log (P(x|θ))]H
}
. (28)

In our case, the probability distributionG is the multivariate zero-
mean circularly-symmetric Gaussian distribution whose PDF
is given in (6). Moreover, the parameter vector θ is given by
κ ∈ R

N xN z
. The diagonal of the Fisher information matrix can

thus be written as

f(κ) = E
m̂∼N (0,Σ(κ))

{∣∣∣∇κ

[
log
∣∣Σ(κ)

∣∣
+ m̂HΣ−1(κ)m̂

]∣∣∣2}. (29)

Introducing (13) and (14) in (29) leads to

f(κ) =

[∣∣diag
(
AHΣ−1(κ)A

)∣∣2
− 2

[
E

m̂∼N (0,Σ(κ))

{∣∣AHΣ−1(κ)m̂
∣∣2}]�

diag
(
AHΣ−1(κ)A

)
+ E

m̂∼N (0,Σ(κ))

{∣∣AHΣ−1(κ)m̂
∣∣4}]� e2κ, (30)

and

f(κ) =

[
E

m̂∼N (0,Σ(κ))

{∣∣AHΣ−1(κ)m̂
∣∣4}

−
[

E
m̂∼N (0,Σ(κ))

{∣∣AHΣ−1(κ)m̂
∣∣2}]2]� e2κ,

(31)

after taking into account (15). Therefore, we propose to intro-
duce a second Monte-Carlo approximation, similar in nature to
the one used in (17), leading to

f(κ) ≈
⎡
⎣ 1

N est

N est∑
i=1

∣∣AHΣ−1(κ)m̂i

∣∣4

−
[

1

N est

N est∑
i=1

∣∣AHΣ−1(κ)m̂i

∣∣2]2
⎤
⎦� e2κ, (32)

where vectors mi, i = 1, . . . , N est are generated according to
(18). In particular, we can reuse in (32) the solution of the
linear system of equation computed to estimate (17). In practice,
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Algorithm 3: Computation of ProxDiag(f)
ημR (κ̂).

input: κ̂ ∈ R
N xN z

, f ∈ R
N xN z

+ , ημ > 0, an initial guess
x0 ∈ R

2(N x−1)(N z−1), a stopping criterion εProx > 0
y = x0

L← [ 4
Δx2 + 4

Δz2 ]/f
reg

k ← 0
do
x̂← κ̂+ 1

LDProj]−∞,κmax](κ̂− Diag−1(f)DTy)
xk+1 = Proxημh(x̂)

tk+1 = 1
2 [1 +

√
1 + 4t2k]

y ← xk+1 +
tk−1
tk+1

[xk+1 − xk]

k ← k + 1
while 1√

2(N x−1)(N z−1)‖xk+1 − xk‖ > εProx

return Proj[κmin,κmax](κ̂− Diag−1(f)DTxk)

however, the value of f we use in the optimization algorithm is
given by (32), plus a regularization factor f reg > 0. The latter
alleviates the statistical variations of estimator (32). In addition,
an iterative optimization algorithm—detailed in Appendix B—is
required to compute ProxDiag(f)

μR (κ̂) (12). Its convergence speed
depends on the minimum of f and a non-zero value of f reg

allows us to limit its running time.

APPENDIX B
PROXIMAL OPERATOR OF THE TOTAL-VARIATION NORM

To compute the proximal operator of the regularizerμR in (7),
we rely on the dual approach introduced in [37]. However, we
modified the algorithm to include the diagonal matrix weighting
Diag(f) present in the data fidelity term. The scheme in question
is detailed in Algorithm 3.

Function h in Algorithm 3 is defined as

h(x) =

(N x−1)(N z−1)∑
k=1

√
[xx

k]
2 + [xz

k]
2,

with x =

[
xx

xz

]
, xx,z ∈ R

(N x−1)(N z−1), (33)

whereas its proximal operator is defined as

Proxμh (x̂) =

[
xx

xz

]
,

with

[
xx
k

xz
k

]
=

max

{√
[x̂x

k]
2 + [x̂z

k]
2 − μ, 0

}
√

[x̂x
k]

2 + [x̂z
k]

2

[
x̂x
k

x̂z
k

]
. (34)

In addition,

D =

[
Dx

Dz

]
, with [Dxx](i,j) =

x(i+1,j) − x(i,j)

Δx
,

[Dzx](i,j) =
x(i,j+1) − x(i,j)

Δz
,

i = 1, . . . , N x − 1, j = 1, . . . , N z − 1. (35)

In (35), Δx and Δz denote the discretization step of κ along the
x and z axes, respectively. Finally, we have[

Proj]−∞,κmax](x)
]
k
= min {xk, κ

max} . (36)

APPENDIX C
PROXIMAL OPERATOR OF �p NORMS

Algorithm 2 requires the computation of a proximal operator
taking the form

min
γ∈CNxNz

⎡
⎣Γ
(

4
p

)
Γ
(

2
p

)
⎤
⎦

p
2 ∥∥∥Diag

(
e−

1
2κ

)
γ
∥∥∥p
p

+
L

2

∥∥γ − γ̂
∥∥2, (37)

with p ≥ 1, L > 0. Problem (37) is separable and the solution
can be computed for each element of γ independently through
the following set of problems

min
γi

βi

∣∣γi∣∣p + 1

2
[γi − γ̂i]

2 , ∀i = 1, . . . , N xN z, (38)

with

βi =
1

L

⎡
⎣Γ
(

4
p

)
Γ
(

2
p

)
⎤
⎦

p
2

e−
p
2κi . (39)

According to [44], the solutions of (38) are given by

γi = ρie
j∠γ̂i (40)

with ∠γ̂i the argument of γ̂i and ρi the solution of

ρi + pβiρ
p−1
i = |γ̂i|, ρi ≥ 0. (41)

If p = 1, the solution in the limit case p→ 1 writes

ρi = max{|γ̂i| − β, 0}, (42)

whereas we have

ρi =
|γ̂i|

1 + 2βi
, (43)

if p = 2. For the cases p = 3
2 and p = 4

3 , (41) can be expressed as
quadratic and cubic equations, respectively. Their solutions are
thus obtained with the quadratic formula and Cardano’s formula,
such that

ρi = |γ̂i|+ 3βi

4

[
3βi

2
−
√

4|γ̂i|+ 9β2
i

4

]
, (44)

for p = 3
2 , and

ρi = |γ̂i|+ C − 64β3
i

81C
, (45)

for p = 4
3 , with

C =
4βi

3

3

√√
|γ̂i|2
4

+
64β3

i

729 −
|γ̂i|
2

. (46)
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