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Abstract

We consider a generalization of the classical ruin model to a dependent setting,
where the distribution of the time between two claim occurrences depends on
the previous claim size. Exact analytical expressions for the Laplace trans-
form of the ruin function are derived. The results are illustrated by several
examples.

1 Introduction

The classical Cramer-Lundberg model to describe the surplus process of an insurance
portfolio relies on the assumption of independence among claim sizes and between
claim sizes and claim inter-occurrence times. However, in practice this assumption
is often too restrictive and there is a need for more general models where the inde-
pendence assumptions can be relaxed. Recently, various results have been obtained
concerning the asymptotic behaviour of the probability of ruin for dependent claims.
In the case of light-tailed claim sizes, Nyrhinen [12, 13] derived Lundberg-type lim-
iting results using large deviations techniques and Müller and Pflug [11] introduced
dependence orderings to relate the limiting ruin probabilities. The behaviour of the
Lundberg exponent as a function of a dependence measure has been investigated in
Albrecher and Kantor [2]. For heavy-tailed claim size distributions, the asymptotic
behaviour of the ruin probability with dependent claims was studied e.g. in As-
mussen et al. [5] and Mikosch and Samorodnitsky [9, 10]. However, all these results
are of asymptotic nature and it is a challenging problem to obtain results on the
probability of ruin in a dependent setting, also for smaller values of the initial capital.

Motivated by a related model in queueing theory (cf. Boxma and Perry [6]), in this
paper a generalization of the classical ruin model is considered, where the distribu-
tion of the time between two claim occurrences depends on the previous claim size.
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For this specific dependent model, we derive exact solutions for the probability of
survival by means of Laplace-Stieltjes transforms. This seems to be the first exact
formula for the ruin probability in a continuous-time risk model allowing for depen-
dency and thus should be viewed as a starting point for deriving analytical solutions
in more general dependent scenarios. For example, we would like to consider (i)
more general claim inter-occurrence distributions, and (ii) situations in which the
claim sizes and claim inter-occurrence times depend on a common Markov chain
(cf. [1, 8]). The paper is organized in the following way: In Section 2 we introduce
the risk model and derive the exact expressions for the probability of survival. In
Section 3, several related models that allow for a similar treatment are discussed.
Section 4 contains some numerical illustrations and investigates the effect of ignoring
the dependence structure.

2 The Model

Let us consider the following risk model for the surplus process R(t) of an insurance
portfolio:

R(t) = x + ct−
N(t)∑
j=1

Bj,

where x is the initial capital, c is the premium density which is assumed to be
constant, Bj is the size of the jth claim and N(t) is the number of claims up to
time t. Let Bi be a sequence of i.i.d. random variables with distribution function
B(·), mean β and Laplace-Stieltjes transform (LST) b̃(·). We assume the claim
occurrence process to be of the following Markovian type: If a claim Bi is larger
than a threshold Ti, then the time until the next claim is exponentially distributed
with rate λ1, otherwise it is exponentially distributed with rate λ2. The quantities
Ti are assumed to be i.i.d. random variables with distribution function T (·). In the
sequel, B (T ) shall denote a generic claim size (threshold) with distribution B(·)
(T (·)).

2.1 Exact Solutions

We are interested in the probability of survival φ(x), i.e. P(R(t) ≥ 0∀ t > 0 |R(0) =
x). Let us assume that

β < c[
P(B > T )

λ1

+
P(B ≤ T )

λ2

], (1)

which is the net profit condition, and P(B > 0) = P(T > 0) = 1.
Let φi(x) (i = 1, 2) denote the probability of survival with initial capital x given
that the first claim occurs according to the exponential distribution with rate λi.
Then we get
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φ1(x) = (1− λ1 dt)φ1(x + c dt)+

+ λ1 dt

x+c dt∫

0

[
P(T ≤ y)φ1(x + c dt− y) + P(T > y)φ2(x + c dt− y)

]
dB(y).

Taylor expansion and rearranging yields

c
dφ1

dx
(x)− λ1φ1(x) + λ1

x∫

0

P(T ≤ y)φ1(x− y)dB(y)+

+ λ1

x∫

0

P(T > y)φ2(x− y)dB(y) = 0. (2)

Similarly we obtain

c
dφ2

dx
(x)− λ2φ2(x) + λ2

x∫

0

P(T ≤ y)φ1(x− y)dB(y)+

+ λ2

x∫

0

P(T > y)φ2(x− y)dB(y) = 0. (3)

Define, for Re s ≥ 0:

χ1(s) := E[e−sB 1(B>T )] =

∫ ∞

x=0

e−sx T (x)dB(x),

χ2(s) := E[e−sB 1(B≤T )] =

∫ ∞

x=0

e−sx(1− T (x))dB(x),

and denote the Laplace transform of φi(x) by

φ̃i(s) :=

∫ ∞

0

e−sxφi(x) dx.

Note that χ1(s) + χ2(s) = b̃(s).

From (2) and (3) it follows that for Re s ≥ 0 we have

φ̃1(s)
[
c s− λ1 + λ1χ1(s)

]
+ λ1φ̃2(s)χ2(s) = cφ1(0+),

φ̃2(s)
[
c s− λ2 + λ2χ2(s)

]
+ λ2φ̃1(s)χ1(s) = cφ2(0+),

which can further be simplified to
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φ̃1(s) =
cφ1(0+)

[
c s− λ2 + λ2χ2(s)

]
− cλ1χ2(s)φ2(0+)

[
c s− λ1 + λ1χ1(s)

]
·
[
c s− λ2 + λ2χ2(s)

]
− λ1λ2χ1(s)χ2(s)

(4)

and

φ̃2(s) =
cφ2(0+)

[
c s− λ1 + λ1χ1(s)

]
− cλ2χ1(s)φ1(0+)

[
c s− λ1 + λ1χ1(s)

]
·
[
c s− λ2 + λ2χ2(s)

]
− λ1λ2χ1(s)χ2(s)

. (5)

Note that the denominators on the right-hand side of (4) and (5) coincide.

Remark: If we set λ1 = λ2 := λ in (4) we obtain

φ̃1(s) =
cφ1(0+)

[
c s− λ + λχ2(s)

]
− cλχ2(s)φ1(0+)

(c s− λ + λχ1(s))(c s− λ + λχ2(s))− λ2χ1(s)χ2(s)

=
cφ1(0+)

c s− λ + λb̃(s)
,

and thus we retain the classical Pollaczek-Khintchine formula for the independent
setting.

For complete solution we now need to determine the quantities φi(0+). Since
lim

x→∞
φi(x) = 1 we have

lim
s→0

sφ̃i(s) = 1 (i = 1, 2). (6)

Using (6) w.l.o.g. in (4) (equation (5) would lead to the same result), we obtain

1 = lim
s→0

(
s

cφ1(0+)
[
c s− λ2 + λ2χ2(s)

]
− cλ1χ2(s)φ2(0+)

[
c s− λ1 + λ1χ1(s)

]
·
[
c s− λ2 + λ2χ2(s)

]
− λ1λ2χ1(s)χ2(s)

)

=
cλ2φ1(0+)(−1 + χ2(0))− cλ1χ2(0)φ2(0+)

lim
s→0

(c s−λ1+λ1χ1(s))·(c s−λ2+λ2χ2(s))−λ1λ2χ1(s)χ2(s)
s

=
cλ2φ1(0+)(−1 + χ2(0))− cλ1χ2(0)φ2(0+)

cλ1(χ1(0)− 1) + cλ2(χ2(0)− 1)− λ1λ2(χ′1(0) + χ′2(0))
] . (7)

Now we can use the relations χ2(0) = P(B ≤ T ), χ1(0) = P(B > T ) and thus
χ1(0) + χ2(0) = 1 and also E(B 1(B≤T )) = −χ′2(0), E(B 1(B>T )) = −χ′1(0) and
β = −χ′1(0)− χ′2(0). In this way (7) can be substantially simplified yielding

(1− φ1(0+))
P(B > T )

λ1

+ (1− φ2(0+))
P(B ≤ T )

λ2

=
β

c
. (8)
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Remark: For the special case λ1 = λ2 := λ we obtain from (8)

φ1(0+) = φ2(0+) =
c− λβ

c
, (9)

which is the well-known formula for the survival probability with zero initial capital
in the classical independent case.

We now need a second equation for φ1(0+) and φ2(0+). Using Rouché’s theorem,
one can show the following:

Lemma 1. The denominator of (4) has exactly one zero σ with Re σ > 0.

Proof. Rewrite the denominator of (4) and (5) as cs(h1(s) + h2(s)), in which

h1(s) := cs− λ1 − λ2,

h2(s) := λ1χ1(s) + λ2χ2(s) +
λ1λ2β

c

1− b̃(s)

βs
.

We wish to show that this denominator has exactly one zero for Re s > 0; note
that the behaviour of φi(s) at s = 0 has already been analysed and exploited in
(7). Let us now apply Rouché’s theorem to the closed contour C, consisting of the
imaginary axis from −ir to +ir and a semi-circle in the right halfplane with radius
r and origin O; we shall let r → ∞. h1(s) and h2(s) are analytic inside C; notice

that 1−b̃(s)
βs

is the LST of
∫ x

0
1−B(y)

β
dy which is the residual (forward recurrence) claim

size distribution. Hence it is analytic and (as will be used below) bounded by one
in absolute value in the right halfplane. Furthermore, h1(s) has exactly one zero
inside C for r large enough. For the application of Rouché’s theorem it remains to
show that |h1(s)| > |h2(s)| on C. This is clearly true on the semi-circle. On the
imaginary axis, |h1(s)| ≥ λ1 + λ2, whereas, under the condition (1),

|h2(s)| ≤ λ1χ1(0) + λ2χ2(0) +
λ1λ2β

c
< λ1 + λ2. (10)

2

In fact, it is easy to see that σ is real, with 0 < σ < λ1+λ2

c
, since h1(0) + h2(0) < 0

and h1(
λ1+λ2

c
) + h2(

λ1+λ2

c
) > 0.

Since φ̃i(s) is an analytic function for Re s ≥ 0, σ must also be a zero of the
numerators of (4) and (5). In both cases this yields the same relation between
φ1(0+) and φ2(0+), namely

φ2(0+) =
cσ − λ2 + λ2χ2(σ)

λ1χ2(σ)
φ1(0+) =

λ2χ1(σ)

cσ − λ1 + λ1χ1(σ)
φ1(0+). (11)

Combined with (4), (5) and (8), this completes the determination of φ̃i(s), i = 1, 2.
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Remark. Note that whenever χi(s) (i = 1, 2) are rational functions (which is
e.g. fulfilled if the corresponding conditional distributions are phase-type), then the
Laplace-Stieltjes transforms (4) and (5) can be inverted explicitly to yield exact
formulae for φi(x) (i = 1, 2) (see e.g. Spiegel [14]). Since the class of phase-type
distributions is dense (in the sense of weak convergence) in the class of all distribu-
tions on the positive half-line, one can approximate any given distribution arbitrarily
closely by a phase-type distribution and use the exact solutions above (algorithms
for phase-type fitting are e.g. discussed in Asmussen [3]).

Example 1. For the special case T ∼ Exp(µ) we obtain

χ2(s) =

∫ ∞

x=0

e−sxe−µxdB(x) = b̃(s + µ),

χ1(s) = b̃(s)− b̃(s + µ).

If in addition B ∼ Exp(ν), with ν = 1/β, then we have

χ2(s) =
ν

ν + s + µ
, χ1(s) =

ν

ν + s
− ν

ν + s + µ
,

and thus σ in (11) is the unique solution s with Re s > 0 of
(
c s +

λ1µν

(ν + s)(ν + µ + s)
− λ1

)(
c s +

λ2ν

ν + µ + s
− λ2

)
− λ1λ2µν2

(ν + µ + s)2(ν + s)
= 0.

Since the Laplace-Stieltjes transforms are rational functions in this case, they can
be inverted explicitly for any given parameter values (see Section 4 for a specific
numerical example).

Example 2. For a deterministic threshold (i.e. Ti = T ∗ a.s. for all i ≥ 1 and some
constant T ∗ > 0) and exponential claim sizes (Bi ∼ Exp(ν)) we obtain

χ1(s) =
ν

ν + s
e−(ν+s)T ∗ and χ2(s) =

ν

ν + s
(1− e−(ν+s)T ∗). (12)

2.2 Comparison to Model with Independence

The availability of analytical solutions for the survival probability allows one to
investigate the error produced by neglecting a dependency structure of the above
kind. Indeed, assuming independence when in fact the dependency structure of
Model 1 is present, an estimation of distribution of the inter-occurrence time Wi

would lead to the mixing density

fWi
(x) = P(Bi > Ti)λ1e

−λ1x + P(Bi ≤ Ti)λ2e
−λ2x,

i.e. one would assume to have a renewal model (also called Sparre Andersen risk
model) with a hyper-exponential inter-arrival distribution. For such a model, the
Lundberg coefficient R, given it exists, can easily be determined as the unique
positive solution of b̃(−R)w̃(cR) = 1, where w̃(·) denotes the Laplace transform of
fWi

(x) (see e.g. Asmussen [4]). An illustrative example for the difference of the
corresponding survival probabilities is given in Section 4.
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3 Related Models

In the following, we list a number of related dependency models for which exact
solutions for the survival probability can be derived in an analogous way:

3.1 Model 2

Let for every t > 0 the risk process be in one of the two states i = 1, 2, corresponding
to the rate λi of the exponential distribution for the time until the next claim occurs.
At the time of a claim occurrence the state of the system may change depending
on the corresponding claim size. If a claim Bj is smaller than a threshold Tj, then
the state of the risk process changes, otherwise it does not. The quantities Tj are
again assumed to be i.i.d. random variables with distribution function T (·). The
net profit condition in this model is

2β < c(
1

λ1

+
1

λ2

). (13)

Then the analysis of φi(x) (which is the survival probability with initial capital x,
given that the system starts out in state i) is analogous to the previous section and
we obtain

c
dφ1

dx
(x)− λ1φ1(x) + λ1

x∫

0

P(T ≤ y)φ1(x− y)dB(y)+

+ λ1

x∫

0

P(T > y)φ2(x− y)dB(y) = 0 (14)

and

c
dφ2

dx
(x)− λ2φ2(x) + λ2

x∫

0

P(T ≤ y)φ2(x− y)dB(y)+

+ λ2

x∫

0

P(T > y)φ1(x− y)dB(y) = 0, (15)

from which it follows that for Re s ≥ 0

φ̃1(s) =
cφ1(0+)

[
c s− λ2 + λ2χ1(s)

]
− cλ1χ2(s)φ2(0+)

[
c s− λ1 + λ1χ1(s)

]
·
[
c s− λ2 + λ2χ1(s)

]
− λ1λ2χ2

2(s)
(16)

and

φ̃2(s) =
cφ2(0+)

[
c s− λ1 + λ1χ1(s)

]
− cλ2χ2(s)φ1(0+)

[
c s− λ1 + λ1χ1(s)

]
·
[
c s− λ2 + λ2χ1(s)

]
− λ1λ2χ2

2(s)
, (17)
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where φ̃i(s) is again the Laplace transform of φi(x). Note that the denominators on
the right-hand side of (16) and (17) again coincide.
Let us now determine φ1(0+) and φ2(0+). As for Model 1, one equation for these
two unknowns follows from lims→0 sφ̃i(s) = 1, yielding

λ2(1− φ1(0+)) + λ1(1− φ2(0+)) = 2
λ1λ2

c
β. (18)

A second equation is obtained by noticing that there is a real number τ ∈ (0, λ1+λ2

c
)

that makes the denominator of (16), and similarly (17), zero. Indeed, write the
denominator of (16) and (17) as cs(k1(s) + k2(s)), in which

k1(s) := cs− λ1 − λ2,

k2(s) := (λ1 + λ2)χ1(s) +
λ1λ2

cs
[(1− χ1(s))

2 − χ2(s)
2].

Now observe that k1(0) + k2(0) < 0 if the net profit condition (13) holds, whereas
k1(

λ1+λ2

c
) + k2(

λ1+λ2

c
) > 0. Since φ̃i(s) is an analytic function for Re s ≥ 0, τ must

also be a zero of the numerators of (16) and (17). In both cases this yields the same
relation between φ1(0+) and φ2(0+), namely

φ2(0+) =
cτ − λ2 + λ2χ1(τ)

λ1χ2(τ)
φ1(0+) =

λ2χ2(τ)

cτ − λ1 + λ1χ1(τ)
φ1(0+). (19)

We have not proved that τ is the only zero of the denominator of (16) for Re s > 0
(application of Rouché’s theorem seems much more involved here than in the case of
Model 1). However, that is not needed: If (13) holds, then there should be unique
solutions φ1(x) and φ2(x) of the integro-differential equations (14) and (15). φ̃1(s)
and φ̃2(s) as given in (16) and (17) with φ1(0+) and φ2(0+) given by (18) and (19)
are the Laplace transforms of functions φ1(x) and φ2(x) that satisfy those integro-
differential equations, so we need not look further. See Cohen and Down [7] for more
general ideas about handling queueing systems without taking recourse to Rouché’s
theorem.

Remark: For the special case λ1 = λ2 := λ we again obtain from (18) the survival
probability (9) with zero initial capital in the independent case.

If, alternatively, the state of the risk process changes at the time of a claim occur-
rence, given that Bj is larger than a threshold Tj and remains in its state otherwise,
we get instead of (16) and (17):

φ̃1(s) =
cφ1(0+)

[
c s− λ2 + λ2χ2(s)

]
− cλ1χ1(s)φ2(0+)

[
c s− λ1 + λ1χ2(s)

]
·
[
c s− λ2 + λ2χ2(s)

]
− λ1λ2χ2

1(s)
, (20)

and

φ̃2(s) =
cφ2(0+)

[
c s− λ1 + λ1χ2(s)

]
− cλ2χ1(s)φ1(0+)

[
c s− λ1 + λ1χ2(s)

]
·
[
c s− λ2 + λ2χ2(s)

]
− λ1λ2χ2

1(s)
, (21)
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and φ1(0+) and φ2(0+) follow from (18) and

φ2(0+) =
cζ − λ2 + λ2χ2(ζ)

λ1χ1(ζ)
φ1(0+) =

λ2χ1(ζ)

cζ − λ1 + λ1χ2(ζ)
φ1(0+), (22)

where, similar to τ above, ζ is the real zero of the denominator of (20) in (0, λ1+λ2

c
).

3.2 Another Variant of Model 1

Let us now look at the following variant of Model 1 with applications in reinsurance:
As in Model 1, we take the claim intervals Wi+1 ∼ Exp(λ1) if Bi > Ti, and Wi+1 ∼
Exp(λ2) if Bi ≤ Ti for all i ≥ 1, where Ti are again i.i.d. threshold variables.
However, now the actual claim payment is min(Bi, Ti). Thus the threshold Ti can
be interpreted as the retention level of an XL-type reinsurance on the claim size
(note that a deterministic threshold is a special case of this model). For the analysis
of this model, we have to introduce the Laplace-Stieltjes transform

ψ(s) := E[e−sT 1(T<B)] =

∫ ∞

x=0

e−sx(1−B(x))dT (x).

Note that χ2(s) + ψ(s) = E[e−s min(B,T )] and thus E[min(B, T )] = −χ′2(0)− ψ′(0).
A similar derivation along the lines of Section 2.1 leads to

φ̃1(s) =
cφ1(0+)

[
c s− λ2 + λ2χ2(s)

]
− cλ1χ2(s)φ2(0+)

[
c s− λ1 + λ1ψ(s)

]
·
[
c s− λ2 + λ2χ2(s)

]
− λ1λ2ψ(s)χ2(s)

(23)

and

φ̃2(s) =
cφ2(0+)

[
c s− λ1 + λ1ψ(s)

]
− cλ2ψ(s)φ1(0+)

[
c s− λ1 + λ1ψ(s)

]
·
[
c s− λ2 + λ2χ2(s)

]
− λ1λ2ψ(s)χ2(s)

, (24)

where φi(0+) (i=1,2) are the solutions of the two equations

λ2P(B > T )(1− φ1(0+)) + λ1P(B ≤ T )(1− φ2(0+)) =
λ1λ2

c
E[min(B, T )] (25)

and

φ2(0+) =
cγ − λ2 + λ2χ2(γ)

λ1χ2(γ)
φ1(0+) =

λ2ψ(γ)

cγ − λ1 + λ1ψ(γ)
φ1(0+),

where here γ is the unique positive zero of the denominator of (23). Note that the
existence and uniqueness of γ can, as in Model 1, be easily shown by Rouché type
arguments.

Remark. In Boxma and Perry [6] a queueing model with the above dependence
structure between service and subsequent interarrival times has been investigated.
However, sample path duality between the corresponding workload process and our
risk process does not hold for this particular dependence structure, as can also be
seen from the difference between (23) and (24) and the formulae (3.8) and (3.9) of
[6].
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4 Numerical Illustrations

Example 1. Let T ∼ Exp(2), B ∼ Exp(1), c = 2, λ1 = 3, λ2 = 1. The net profit
condition (1) is obviously fulfilled. Then the inversion of the Laplace transforms (4)
and (5) yields

φ1(x) = 1− 0.007 e−3.161 x − 0.938 e−0.065 x,

φ2(x) = 1− 0.003 e−3.161 x − 0.867 e−0.065 x, (26)

where here and in the sequel all numerical values are rounded to their last digit (cf.
Figure 1a).

Let us now compare (26) to φ(x) in a model with the assumption of independence
as described in Section 2.2. The inter-arrival density in the independent model is
then given by fWi

(x) = 2 e−3x + 1
3
e−x. The Lundberg exponent in this renewal risk

model is the positive solution of

1

1−R

(
1

3 + 3cR
+

2

3 + cR

)
= 1,

i.e. R = 0.077. In this specific example, there is even an analytical solution for the
survival probability in the corresponding renewal model available, since the claim
size distribution is exponential. This solution can be derived utilizing a sample path
duality to a related queuing process (see e.g. Asmussen [4]) and we obtain

φind(x) = 1− 0.923e−0.077x.

This should be compared with the stationary version of the dependent setting

φdep(x) =
2

3
φ1(x) +

1

3
φ2(x) = 1− 0.006e−3.161x − 0.915e−0.065x.

Note that concerning the asymptotic behavior, the Lundberg exponent of φdep(x) is
smaller than the one of φind(x), i.e. ignoring the dependence structure underesti-
mates the inherent risk, especially for larger values of initial capital x (cf. Figure 1b).

Example 2. Let T ∼ Exp(1), B ∼ Exp(1), c = 2, λ1 = 1, λ2 = 2. Then the
inversion of the Laplace transforms (4) and (5) yields

φ1(x) = 1− 0.632 e−0.355 x + 0.017 e−1.889 x,

φ2(x) = 1− 0.798 e−0.355 x + 0.028 e−1.889 x. (27)

If we again compare (27) to φ(x) in a model with the assumption of independence,
then the inter-arrival density is now given by fWi

(x) = e−2x + 1
2
e−x. The Lundberg

exponent in this renewal risk model is the positive solution of

1

1−R

(
1

2(1 + cR)
+

1

2 + cR

)
= 1,
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Figure 1: Survival probabilities in Example 1. Left: φ1(x) (solid line) and φ2(x)
(dashed line). Right: φdep(x) (solid line) and φind(x) (dotted line)

2 4 6 8 10
x

0.2

0.4

0.6

0.8

1

2 4 6 8 10
x

0.2

0.4

0.6

0.8

1

Figure 2: Survival probabilities in Example 2. Left: φ1(x) (solid line) and φ2(x)
(dashed line). Right: φdep(x) (solid line) and φind(x) (dotted line)

i.e. R = 0.309. Again, we even have an analytical solution for φind(x) in the
corresponding renewal model available:

φind(x) = 1− 0.691e−0.309x.

The stationary version of the dependent setting yields

φdep(x) =
1

2
φ1(x) +

1

2
φ2(x) = 1− 0.715e−0.355x + 0.023e−1.889x.

Note that in this case, the Lundberg exponent of φind(x) is smaller than the one of
φdep(x), i.e. the independent setting is “more dangerous”. This is, heuristically, due
to the fact that for this choice of parameters a larger claim is likely to be followed
by a longer inter-occurrence time (see also Figure 2b).

Example 3. Let us again consider the setting of Example 2, but now with a
deterministic threshold Ti = 1 a.s. for all i ≥ 1 (so the value of Ti equals the
expected value of the threshold variable of Example 2). According to (12) we have
χ1(s) = 1

1+s
e−s−1 and χ2(s) = 1

1+s
(1 − e−s−1) and we obtain φ1(0+) = 0.337 and

φ2(0+) = 0.190. The resulting Laplace transforms (4) and (5) can easily be inverted
numerically by a Bromwich contour integration. Table 1 illustrates the fact that the
distribution of the threshold has a significant effect on the survival probabilities.
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T = 1 T ∼ Exp(1)
x φ1(x) φ2(x) φ1(x) φ2(x)
0 0.337 0.190 0.384 0.230

0.5 0.419 0.285 0.477 0.343
1 0.499 0.380 0.559 0.445

1.5 0.570 0.469 0.630 0.533
2 0.632 0.545 0.690 0.609

2.5 0.684 0.610 0.740 0.672
3 0.730 0.666 0.782 0.725

3.5 0.768 0.714 0.818 0.770
4 0.802 0.755 0.847 0.807

4.5 0.830 0.790 0.872 0.839
5 0.854 0.820 0.893 0.865

Table 1: Comparison of φi(x) for Examples 2 and 3
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