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Abstract

During human evolution, individuals interacted mostly within small groups that were connected by 
limited migration and sometimes by conflicts. Which preferences, if any, will prevail in such scenarios? 
Building on population biology models of spatially structured populations, and assuming individuals’ pref-
erences to be their private information, we characterize those preferences that, once established, cannot be 
displaced by alternative preferences. We represent such uninvadable preferences in terms of fitness and in 
terms of material payoffs. At the fitness level, individuals can be regarded to act as if driven by a mix of 
self-interest and a Kantian motive that evaluates own behavior in the light of the consequences for own 
fitness if others adopted this behavior. This Kantian motive is borne out from (genetic or cultural) kin selec-
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tion. At the material-payoff level, individuals act as if driven in part by self-interest and a Kantian motive 
(in terms of material payoffs), but also in part by other-regarding preferences towards other group members. 
This latter motive is borne out of group resource constraints and the risk of conflict with other groups. We 
show how group size, the migration rate, the risk of group conflicts, and cultural loyalty shape the relative 
strengths of these motives.
© 2019 Elsevier Inc. All rights reserved.

JEL classification: A12; A13; B52; C73; D01; D91

Keywords: Strategic interactions; Preference evolution; Evolution by natural selection; Cultural transmission; Pro- and 
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1. Introduction

Preferences are fundamental to economic theory.1 If preferences are transmitted across gener-
ations and if they affect the expected survival and reproduction—the fitness—of their bearer: 
which preferences are likely to be favored by evolution and which preferences are likely to 
disappear? Analysis of the long-term evolution of preference distributions can help under-
stand the proximate drivers and motivation of human behavior in social and economic inter-
actions (Hirshleifer, 1977; Bergstrom, 1996; Binmore, 1998; Robson, 2001; Newton, 2018;
Alger and Weibull, 2019). Here we build on previous work on strategy evolution in structured 
populations (Lehmann et al., 2015) by studying preference evolution in such populations.

For more than a million years, our ancestors most likely lived in groups of hunter-gatherers 
(probably ranging from 5 to 150 grown-ups), extending beyond the nuclear family (Grueter et 
al., 2012; Malone et al., 2012; Van Schaik, 2016; Layton et al., 2012). This population structure, 
whose defining features are small group size and limited migration between groups (i.e., not all 
individuals migrate), is thus part of the environment of evolutionary adaptation of the human 
lineage (e.g., Van Schaik, 2016). Analysis of the long-term evolution of preferences should thus 
take such population structure into account. We here do exactly that, and we ask how such struc-
tural features as group size, migration rates between groups, and the risk of conflicts between 
groups, determine the qualitative nature of the preferences that evolution favors. Combining the 
economics paradigm of utility-maximizing behavior with methods from population genetics, we 
obtain predictions about the nature of individuals’ preferences and motivations in the canonical 
model of evolution in structured populations, the so-called island model of migration originally 
due to Wright (1931, 1943). The model allows us to examine both genetic and cultural transmis-
sion of preferences in such structured populations.

1 Throughout this paper we use concepts and terminology that are standard in economics, and model behavior as 
a choice of action (or stream of actions) from a set of feasible actions, where this choice is guided by a striving to 
maximize some goal (utility) function. The utility function together with the information and the constraints imposed by 
the environment are thus what biologists would call the proximate causes driving behavior. Furthermore, by contrast to 
the evolutionary biology literature where the terms “altruism” and “spite” are used to refer to the fitness consequences of 
a behavior on the actor and others, in economics they are used to describe the proximate causes behind behaviors. Thus, 
in economics, an individual who has a utility function which puts a positive weight on another individual’s material 
well-being is altruistic; and an individual who has a utility function which puts a negative weight on another individual’s 
material well-being is spiteful. For further discussion of the meaning of these terms in different academic disciplines, we 
refer to West et al. (2007) and Bshary and Bergmüller (2008).
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The island model is a textbook evolutionary biology model (see, e.g., Cavalli-Sforza and 
Bodmer, 1971; Frank, 1998; Rousset, 2004; Hartl and Clark, 2007), which formally captures 
in a tractable and stylized way the fact that all natural populations, human or otherwise, are 
structured into small groups (or bands, or villages; patches for plants) connected to each other 
by limited migration (or dispersal). Limited migration causes limited genetic and/or cultural 
mixing in the population, and this results in several individuals from the same group possi-
bly having a recent common ancestor. For example, suppose that a genetically transmitted new 
trait suddenly appears in one individual. In the next generation, multiple carriers of the new 
trait may coexist in the same group. Hence, the immediate descendants of the initial mutant 
are more likely to interact with each other than are individuals sampled at random from the 
whole population. Such assortative matching, induced by limited migration, even when the mu-
tant trait is rare in the population at large, tends to favor mutant behaviors that promote the 
survival and/or reproductive success of others in their group. The reason is that such behav-
ior is more likely to benefit other mutants than it would be if all offspring always migrated 
and matching therefore would be uniformly random (Hamilton, 1964, 1971; Grafen, 1985;
Frank, 1998; Rousset, 2004). This is the so-called mechanism of kin selection in evolutionary 
biology (Maynard Smith, 1964).2 In the biology literature, assortative matching between pairs of 
individuals is usually quantified by the coefficient of relatedness–which indicates the likelihood 
that interacting individuals share a common ancestor–a quantity that depends on such features of 
the population structure as group size and migration rates.

By the same token, however, individuals who share a local common ancestor are also more 
likely to expose each other to fitness externalities, than are randomly selected individuals from 
the overall population. Indeed, through the local interactions, which occur in islands of finite size, 
related individuals may harm or enhance each other’s fitnesses (think of young siblings fighting 
over candy, or individuals teaming up to fight off a common enemy), and such externalities have 
an impact on selected traits (Hamilton, 1971; Schaffer, 1988; Frank, 1998; Rousset, 2004). As 
assortative matching and local fitness externalities can, in general, not be separated, their joint 
effects need to be taken into account in order to understand the evolutionary success of traits 
under limited dispersal, a question that has received much attention in the evolutionary biology 
literature (see e.g. Hamilton, 1967, and Taylor, 1992a, 1992b, for pioneering and paradigmatic 
examples, and Frank, 1998, and Rousset, 2004, for general theoretical treatments).

While clearly relevant for understanding the evolution of traits relevant in human social inter-
actions, the evolutionary biology literature is yet of limited direct value for economists, because 
in the bulk of these analyses: (a) the focus is on the evolution of strategies, not preferences, (b) 
predictions are derived at the level of basic fitness components, such as reproduction and survival, 
and not at the level of the material payoffs obtained in strategic interactions, (c) transmission is 
genetic instead of cultural, while cultural evolution is also relevant for the understanding of hu-
man behavior. Our model enriches the analysis in all of these dimensions.

We propose a framework in line with that of economists and game theorists, and model the 
following thought experiment that takes place in a large population over an infinite sequence 
of demographic time periods. The population is structured into a large number of groups or 
islands of equal size. Within each group or island, individuals engage in a strategic interaction 

2 A necessary and sufficient condition for kin selection to take place is that an evolving genetic (or cultural) trait tends 
to more strongly affect the survival and/or reproduction of individuals who are genetically (or culturally) related to the 
actor than under uniform random matching (Michod, 1982, p. 20). This is true whether or not relatives recognize each 
other. Our analysis will be based on the assumption that they cannot recognize each other.
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in which all individuals’ strategy choices may affect the material payoffs to all participants. The 
strategic interaction is modeled as a game in material payoffs, and the game may be arbitrarily 
complex and may take place over many stages within each demographic time period. By material 
payoff we mean a one-dimensional summary measure, like income (or calories). The expected 
material payoffs, realized in a demographic time period, in turn determine the fitness of each 
individual in the population in that demographic time period. An individual’s fitness is defined 
as the expected number of individuals in the following time period who have acquired their trait 
from him (or her). If transmission is genetic, an individual’s fitness is the number of his surviving 
offspring and the individual himself if he survives. If transmission is cultural, an individual’s 
fitness is the number of individuals in the next time period who acquired their cultural trait from 
this individual. Offspring may migrate to other groups or islands, or stay in their natal group or 
island. Many different transmission scenarios are covered by this model framework. For instance, 
generations may or may not be overlapping, islands may wage wars against each other, traits may 
be transmitted culturally from parent to child or by imitation of materially successful individuals, 
etc.

In all our scenarios, genetic and cultural, the population is initially homogeneous; all individ-
uals are ex ante identical. Suddenly, a different, mutant heritable trait spontaneously appears in 
exactly one individual. The original, resident trait is uninvadable if there exists no mutant trait, 
such that the initial mutant produces enough descendants for its trait to be maintained in the 
population in the long run.

To study preference evolution, we let the heritable traits be continuous utility functions, de-
fined over all strategy profiles that are possible in the material game that represent the interaction 
on each island. Together with the individual’s (probabilistic) belief about other group members’ 
strategy choices, an individual’s utility function guides his or her choice of strategy in the lo-
cal interaction. We evaluate a utility function’s fitness consequences for its carriers in terms of 
the expected material payoffs that result in all (Bayesian) Nash equilibria under incomplete in-
formation, that is, when each individual’s utility function is his or her private information, but 
individuals’ beliefs about each others’ strategies are consistent with some (Bayesian) Nash equi-
librium. We ask if there exist utility functions that are uninvadable in the sense that any mutant 
utility function does worse, in terms of its carriers’ fitnesses, than the residents, in all equilibria. 
Thus bridging the gap between economics and biology, we obtain links between preferences, 
material incentives, and population structure (including migration and potential group conflicts). 
The following four main results emerge from our analysis.

First, we obtain a necessary and sufficient condition for a utility function to be uninvadable. 
This characterization says that a utility function is uninvadable if and only if all strategies used in 
any Nash equilibrium among individuals with this utility function are, when viewed as heritable 
strategies, uninvadable by other strategies.

Second, we identify a class of utility functions that, for any given game in material payoffs, 
contains an uninvadable utility function. Each utility function in this class can be interpreted as 
a mix of self-interest and a Kantian concern, both expressed at the fitness level. Specifically, 
the Kantian concern, driven by kin selection, consists in evaluating one’s behavior in the light 
of what one’s own fitness would be if others in one’s group were to behave in the same way. 
This concern vanishes under unlimited migration (that is, when all offspring always migrate) and 
when groups are very large.

Third, when material payoffs only have marginal effects on fitnesses (a property which ar-
guably holds for many human interactions), uninvadable preferences generically involve a mix 
of self-interest, a Kantian concern, and also a concern for neighbors, all concerns being expressed 
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at the level of material payoffs. The weight given to the Kantian motive is then proportional to 
the coefficient of relatedness, but it also depends on fitness externalities between neighbors. The 
weight on other group members’ material payoffs may be negative (“spite”) or positive (“altru-
ism”), and it depends on the coefficient of fitness interdependence, which measures the effect on 
own fitness that an individual obtains relative to his neighbors by diminishing or enhancing their 
material payoffs.

Finally, we provide sufficient conditions for the uninvadability of preferences of a particularly 
simple form, namely, a convex combination of own material payoff and the own material payoff 
that would arise should all others choose the same behavior. Under these specific conditions, the 
weight given to the second, Kantian, component is determined by the coefficient of scaled relat-
edness, a coefficient that combines the (standard) coefficient of relatedness with the coefficient 
of fitness interdependence. This weight allows to determine whether, on balance, equilibrium be-
haviors are pro-or anti-social, in the sense that equilibrium material payoffs are higher or lower 
than under selfishness. We show that an increased risk for group conflicts make preferences less 
anti-social, and, at a critical level of the risk of group conflict, preferences are neither anti- nor 
pro-social, while at higher risk levels, preferences turn pro-social. Hence, at this intermediate 
risk of conflict, preferences have only a self-interested and a Kantian component, while at lower 
(higher) risks, a third component appears, a component that expresses envy or spite if the risk 
is low, and empathy or altruism if the risk is high. We also show that cultural transmission of 
preferences may trigger anti-sociality because of local competition for proselytes.

Compared to the existing economics literature on preference evolution in social interactions 
(see Alger and Weibull, 2019, for a recent survey), our model makes two key innovations.3 First, 
it explicitly analyzes the effects of population structure and limited dispersal upon behavior and 
preferences. While Alger and Weibull (2013, 2016) investigated the evolutionary stability of pref-
erences under incomplete information, they did so in an abstract model of assortative matching 
which did not explicitly account for the demographics and population dynamics.4 They found 
that preferences expressing a certain combination of self-interest and a Kantian concern are evo-
lutionarily stable, and that preferences that are behaviorally distinct from these are evolutionarily 
unstable. They also showed how the weight given to the Kantian concern depends on the assorta-
tivity in group formation. While assortativity in those models is treated as an abstract primitive, 
it here arises explicitly and endogenously from the population structure; group size, rates of sur-
vival, migration, and conflicts together determine the probability that rare mutants get to interact 

3 In the economics literature it has been shown that the following conditions are sufficient (and necessary except in 
knife-edge settings) for populations of self-interested individuals to resist invasion by non-self-interested individuals: 
(i) the population is very large and homogeneous (no subdivision by sex, age, size, etc.) and reproduction is clonal, (ii)
interacting individuals do not know each other’s preferences but have statistically correct beliefs, and (iii) interactions 
are uniformly random in the population, in the sense that each encounter is just as likely (see Ok and Vega-Redondo, 
2001; Dekel et al., 2007).

4 By contrast to the present model, assortativity was there modeled as an abstract function that maps the distribution 
of traits in the population to probabilities governing the matching of interacting individuals. This formalization of as-
sortativity was pioneered in economics by Bergstrom (1995, 2003), who focused on strategy evolution; see also Bowles 
and Gintis (1998), as well as Alger and Weibull (2010, 2012) for analyses of preference evolution under complete in-
formation. This formalization of assortativity, which implicitly assumes marginal effects of traits on fitness, goes back 
to Hamilton (1971); Michod and Hamilton (1980) discuss how different formalizations of assortativity are equivalent to 
each other. It should further be noted that Rogers (1994) studied the evolution of time preference in an age-structured 
population; a setting that allows for kin selection but not kin competition. Finally, alternative models of endogenous 
assortativity have been proposed by Nax and Rigos (2016), Newton (2017), and Wu (2017, 2019).
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with each other—i.e., relatedness. The present model thus contributes to this strand of literature 
by explicitly modeling the population structure and how it gives rise to assortativity.

Second, it establishes a clear distinction between preferences at the fitness level and prefer-
ences at the material payoff level. In the existing economics literature on preference evolution, 
these are taken to coincide. The model makes it clear that, when preferences are expressed at 
the level of material payoffs, relatedness must go hand in hand with local fitness interdepen-
dence, a force which does not appear in Alger and Weibull (2013, 2016). We here also show how 
relatedness and fitness interdependence can be formally traced back to group size and limited 
migration. While we already made this distinction in Lehmann et al. (2015), we then did not an-
alyze preference evolution. Instead, we asked under what conditions, if any, evolving strategies 
can be interpreted as chosen by rational individuals endowed with specific utility functions (we 
examined three candidate utility functions, two of which are described above). The value added 
of the present paper is that we here analyze preference evolution, rather than strategy evolution, 
in group-structured populations. In addition, we (a) examine other utility functions than those 
used to establish the “as if” results in Lehmann et al. (2015), (b) obtain new results concern-
ing fitness interdependence and scaled relatedness, and (c) analyze a wider class of evolutionary 
scenarios.

Apart from our previous work, the most closely related work is by Akçay and van Cleve 
(2012). They investigated the evolutionary stability of preferences parameterized by scalar traits 
(in the vein of Heifetz et al., 2007a, 2007b). In addition to focusing on complete rather than 
incomplete information, their model differs from ours in two broad respects. First, since they 
focus only on the effects of traits on reproduction under genetic transmission, they do not obtain 
results for preferences over strategy profiles or material payoffs distinct from fecundity. Second, 
they focus only on necessary first-order conditions. These conditions express how many offspring 
an individual is willing to forgo, at the margin, in order to marginally increase the number of 
offspring of other group members.

The paper is organized as follows. Section 2 describes the model and provides a characteriza-
tion of an uninvadable trait. Section 3 presents the analysis. In Section 4 we illustrate our results 
in three canonical evolutionary scenarios, including genetic and cultural evolution, as well as 
potential “wars” between groups. Section 5 concludes. Mathematical proofs are provided in an 
appendix.

2. Model

This section presents the building blocks of the analysis—the population structure and in-
dividuals’ life-cycles—and defines the evolutionary stability criterion that will be used. It also 
describes what is novel compared to the existing literature.

2.1. Population structure

Consider a countably infinite population, divided into infinitely many identical islands
(groups, locations, or villages), each of constant size n. Evolution takes place perpetually and 
stochastically over time, and time is divided into demographic time periods. Individuals are 
called children or offspring in their first demographic period, the period in which they are born, 
and grown-ups or adults in all other periods of their life. No age distinction is made between 
adults. Each demographic time period consists of two phases:
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• In Phase 1, the n adults in each island engage in a social or economic interaction with each 
other, the same on all islands and at all times. The strategies used determine each individ-
ual’s material payoff, which we take to be income (expressed, for example, in money or in 
calories). An individual’s strategy choice in the interaction is assumed to be determined by 
her preferences and her beliefs about the strategies used by her island neighbors. Preferences 
are inherited in childhood from exactly one adult, the individual’s genetic or cultural parent, 
and are fixed throughout her life.

• In Phase 2, the realized material payoffs determine each adult’s survival, and, in case there 
are exogenous random shocks to entire groups (e.g., warfare, environmental catastrophes), 
the adult’s entire group’s survival. Individual and group survival probabilities are assumed to 
be independent of age. The realized material payoffs also determine each adult’s fecundity, 
which is its number of offspring (where offspring are biological if preferences are coded 
for genetically, and cultural if they are transmitted by way of a cultural process). Following 
reproduction, offspring, and only offspring, may migrate from their native island to other 
islands (and this migration takes place in the period they are born). The migration probability 
m is the same for all offspring at all times, and is strictly positive. Moreover, migration is 
blind in the sense that any migrant picks a destination in a uniformly random fashion.5 After 
migration and competition among the offspring for securing a place on an island, there are 
exactly n adults in each island (group). Offspring who did not secure a place on an island 
die.

Phase 1 and 2 taken together determine an adult’s individual fitness. This is the expected 
number of her immediate descendants, defined as those adults in the next demographic time 
period who have inherited their preferences from her. These immediate descendants consist of 
those of the individual’s (genetic or cultural) offspring who survived, and thus became adults in 
the next demographic time period, as well as the individual herself if she survived into the next 
period. We next describe in more detail how the interactions and the ensuing individual fitness 
are formalized in the subsequent analysis.

2.2. The interaction

2.2.1. The material game
The material game is formalized as a symmetric non-cooperative normal-form n-player game 

in which each player has access to the same set of strategies (which may be pure or mixed), 
X, a non-empty compact and convex set in some normed vector space. The expected material 
payoff6 accruing to any (adult) individual i ∈ {1,2, ..., n} on a given island depends on her own 
strategy, xi ∈ X, and on the vector x−i ∈ Xn−1 of strategies used by the others on i’s island, her 
neighbors. The material payoff function π : Xn → R is continuous, and π (xi,x−i ) is invariant 
under permutation of the components of the vector x−i ∈ Xn−1.7 Such permutation invariance 
holds if, for example, strategies are real numbers, and an individual’s material payoff depends 
on her own strategy and either the sum, product, maximum or minimum of her island neighbors’ 

5 Technically, we study the limit of uniform random dispersal among finitely many islands as the number of islands 
tend to infinity.

6 For simplicity, we will henceforth use “material payoff” to refer to “expected material payoff”.
7 More precisely, for any xi ∈ X and x−i ∈ Xn−1, and any bijection h : {2,3, ..., n} → {2,3, ..., n}: 

π
(
xi , xh(2), xh(3), ..., xh(n)

)= π
(
xi ,x−i

)
.
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strategies. The material game may be a simple simultaneous-move game or a multi-stage game 
in which individuals interact over many stages within the demographic time period.

2.2.2. The subjective game
Every (adult) individual in the population has (personal) preferences over strategy profiles, 

preferences that can be represented by some continuous utility function.8 More precisely, ev-
ery individual i has a complete and transitive preference ordering �i over strategy profiles 
(xi,x−i ) ∈ Xn, such that there exists a continuous function ui : Xn → R satisfying ui (xi,x−i ) ≥
ui

(
yi,y−i

)
if and only if (xi,x−i ) �i

(
yi,y−i

)
. Letting F be the set of continuous func-

tions f : Xn → R, each individual has preferences that admit representation by some function 
u ∈ � ⊆ F , where � is the subset of preference types, or simply types. Each individual of any 
given type u ∈ � chooses her strategy so as to maximize the expected value of her utility function 
under her probabilistic beliefs about her island neighbors’ strategy choices.

In order to carry out our evolutionary analysis of preferences, we need to evaluate the fitness 
consequences of preferences, and we will do so when individuals’ strategy choices constitute 
Nash equilibria in the subjective game. (Which is not to say that we assume or believe that 
interactions are always in equilibrium. We use Nash equilibrium as a systematic reference point.)

2.3. Individual fitness

An individual’s fitness may depend on (a) own material payoff, (b) the material payoffs to the 
individual’s island neighbors, and (c) the material payoffs in the population at large. Dependence 
on own material payoff is self-evident. Dependence on neighbors’ material payoffs arises as 
soon as neighbors’ survival and number of offspring influences the competition that one’s own 
offspring meet when competing for succession of deceased adults on the native island. Own 
and others’ material payoffs may also affect one’s island’s success probability in wars with other 
islands. Dependence on material payoffs in other islands has two sources; migration and potential 
wars between islands. First, an individual’s offspring face competition with offspring from other 
islands, both when competing for succession of deceased adults on her native island and on other 
islands. Second, one’s island’s success probability in wars may depend on those islands’ material 
payoffs.

The individual (or direct) fitness function w : Rn+1→R is assumed to be continuously dif-
ferentiable. We write w (πi,π−i , π

∗) for i’s fitness, where πi ∈ R is own material payoff, 
π−i ∈Rn−1, is the vector of her neighbors’ material payoffs, and π∗ ∈R is the average material 
payoff in the population at large.9 We also assume that w(πi,π−i , π

∗) is invariant under per-
mutation of the components of the vector π−i . Owing to the assumption of constant group size, 
average fitness in the population is always equal to 1. The subsequent analysis further presumes 
that an individual’s fitness is strictly increasing in her own material payoff, strictly decreasing in 
the average material payoff in the population at large, and that it may be decreasing or increas-
ing, or non-monotonic in other group members’ material payoffs, but never increase more from 

8 Continuity is inessential for much of the analysis. However, it is important for some existence results, and for our 
stability analysis since we there invoke Berge’s maximum theorem. (A form of upper semi-continuity would be sufficient 
for these results, but such a generalization does not seem to be of primary interest here.)

9 Individual fitness is thus assumed to be expressible in terms of expected material payoff only, and we therefore neglect 
effects of variance in payoff (see Appendix 6.1 and 6.2 for a justification).
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a neighbor’s increase in material payoff than from the same increase in own material payoff. 
Formally:

[M] (i) ∂w (πi,π−i , π
∗) /∂πi > 0, (ii) ∂w (πi,π−i , π

∗) /∂πj ≤ ∂w (πi,π−i , π
∗) /∂πi for 

all j 	= i, (iii) ∂w (πi,π−i , π
∗) /∂π∗ < 0.

Denote by P = 〈n,X,π,w,�〉 a population with (countably) infinitely many islands of size 
n, strategy set X, material payoff function π , fitness function w, and type set � ⊆ F . In each 
demographic time period t there is some type distribution μt ∈ � (�) in the population at large. 
The focus of the analysis is on the dynamics of this type distribution. Analysis will be restricted 
to type distributions with at most two types present in the population at any given point in time.

Our model adds two novelties to the existing island model literature. First, an individual’s 
strategy choice is guided by her preferences and beliefs about her island neighbors’ strategy 
choices. Second, we distinguish material payoffs here interpreted as income from both vital rates 
(e.g., survival and fecundity) and individual fitness (see concrete examples of fitness functions in 
section 5). Having this three-fold distinction is a novelty for the literature on preference evolution 
in economics, in which fitness is equated with material payoff, and for the evolutionary biology 
literature, in which payoff tends to be equated to fecundity.

2.4. Uninvadability in structured populations

Consider a population P which prior to some date t = 0 is homogeneous with some resident
type u. Can this population be invaded by some mutant type v 	= u that appears at time t = 0 in 
a single adult individual? By “invasion” is meant long-run survival of the mutant type, or, more 
precisely, that it does not go extinct within finite time. In our model all adults have a positive 
probability of dying in each period of their lives, and offspring migrate with positive probability, 
so for a mutant type v 	= u to be able to invade the population, it must spread beyond the is-
land where the first mutant appeared. The initial mutant’s descendants may, by way of migration, 
colonize new islands that were before inhabited exclusively by the resident type u. Such colo-
nization, as well as survival and fecundity, depends on all individuals’ material payoffs, which 
in turn depend on the strategy profiles used in the population. The analysis of a residential type’s 
invadability or uninvadability is thus an analysis of (non-linear) stochastic population processes 
involving both (global) demography and (local) strategic interactions.

In order to be able to apply results in the biology literature for stochastic evolution in struc-
tured populations to preference evolution, we impose the following homogeneity assumption
concerning individual’s equilibrium behavior in the subjective game:

[H] On all islands with the same number of mutants, and irrespective of calendar time, the 
same Nash equilibrium is played, and all residents use the same strategy (say, x ∈ X), and all 
mutants use the same strategy (say, y ∈ X).

As a consequence, on any given island with the same number of mutants and in any given 
demographic time period: all residents obtain the same fitness (which in general depends on 
their strategy, their island neighbors’ strategies, and on strategy profiles in the population at 
large), and all mutants obtain the same fitness (which likewise depends on their strategy, their 
island neighbors’ strategies, and on strategy profiles in the population at large). Under these 
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conditions, it is possible to obtain results for the long-run survival, or extinction, of mutants. We 
proceed in steps towards a definition and characterization of uninvadability.

First, in a population where all individuals are of the same type u, all individuals use the same 
strategy, to be called the resident strategy, and this strategy x̃ has to satisfy

x̃ ∈ arg max
x∈X

u
(
x, x̃(n−1)

)
, (1)

where x̃(n−1) is the (n − 1)-dimensional vector whose components all equal x̃. We write Xu for 
the set of strategies x̃ that satisfy (1).10 Condition (1) follows from the homogeneity assumption
[H] and the Nash equilibrium requirement that every individual chooses a strategy that is optimal, 
given her preferences.

Second, consider a population P initially populated by some resident type u and in which 
some strategy in Xu is played by everyone. Let some mutant type v appear in exactly one in-
dividual at time t = 0. Under assumption [H], and for any selection of Nash equilibria, one 
equilibrium for each number of mutants in a group, this defines a probability distribution over 
fitness levels in all future demographic time periods. We define the resident type u to be uninvad-
able by v if, for every Nash equilibrium selection, the mutant type v goes extinct in finite time 
with probability one.11 A type u ∈ � is uninvadable in � if it is uninvadable by all mutant types 
v ∈ �.

The notion of lineage fitness plays a key role in our characterization of uninvadability. An 
individual’s lineage consists of all of the individual’s descendants, that is, her immediate descen-
dants (her offspring and also herself if she survives), the immediate descendants of her immediate 
descendants, etc. ad infinitum. The individual’s local lineage is the subset of her lineage mem-
bers who live, as adults, in the island where she herself became an adult. Our assumption that the 
migration rate is positive and constant implies that the random time T of first extinction of any 
individual’s local lineage is finite with probability one, and that in time periods before T local 
lineage members may produce emigrants settling on other islands.12

Any selection of Nash equilibrium satisfying homogeneity assumption [H] defines a Markov 
chain that induces a unique invariant probability distribution over possible mutant local lineage 
size realizations (including the realization of the random extinction time T ), and this occurs irre-
spectively of whether an island of residents is colonized by a single or several successful mutant 
emigrants. This probability distribution in turn can be taken to determine the lineage fitness of 
the mutant type v given this equilibrium selection, defined as the average fitness of a mutant, 
the average being taken over (a) all possible local lineage size realizations (each one before the 
associated random period T ) and (b) over all possible initial conditions of a local lineage (single 
or multiple simultaneous emigrant mutants). As long as the mutant is rare in the population, the 
number of mutants is finite, so the average material payoff earned by individuals of the resident 
type u in those periods is simply π∗ = π (x, x, ..., x), where x ∈ Xu is the resident strategy in the 

10 By continuity of the utility function and compactness of the set X, the set of maximands in (1) is non-empty and 
compact (by Weierstrass’ maximum theorem). Moreover, by Berge’s maximum theorem, the set of maximands also 
defines an upper hemi-continuous correspondence. By Kakutani’s fixed-point theorem, the set Xu is therefore non-empty 
(and compact) if the function u is also quasi-concave in its first argument (the player’s own strategy).
11 Extinction is defined as the event that no individual in the population is of the mutant type.
12 Even if locally extinct, members of the individual’s lineage may still live on other islands. Moreover, some lineage 
members may later move to the mutant’s native island. However, the probability that this event occurs in finite time is 
zero.
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equilibrium in question.13 For any given selection of Nash equilibrium, under assumption [H]
the lineage fitness of a mutant type v ∈ � in an otherwise homogeneous population in which all 
individuals are of type u ∈ �, can be written in the form

W (v,u) =
n−1∑
k=0

pk (v,u) · w (π (v|k) , 〈π (v|k) ,π (u|k)〉 ,π∗) , (2)

where for each k = 0, ..., n − 1, pk (v,u) is the probability for a mutant uniformly drawn from a 
local lineage, that k = 0, 1, ..., n −1 of her neighbors are from this lineage, π (v|k) is the material 
payoff to the mutant at hand, and 〈π (v|k) ,π (u|k)〉 ∈ Rn−1 is the vector of material payoffs to 
the mutant’s n −1 island neighbors (among whom k have the mutant trait v, and the other n −1 −
k have the resident trait u). Hence, the lineage fitness of a mutant is the average individual fitness 
of a representative carrier of the mutant trait. Note that if there are multiple Nash equilibria, there 
may be several matching probability distributions p (v,u) = (p0 (v,u) , ...,pn−1 (v,u)), one for 
each selection of Nash equilibrium. Note further that the lineage fitness of the mutant type is 
well-defined if the mutant type happens to be identical with the resident type; then all individuals 
in the population have the same lineage fitness, namely W (u,u) = 1 (since population size is 
constant).

A positive probability weight pk (v,u) in the definition of W for some k > 0 means that 
descendants of the initial mutant face a positive probability of being matched with each other. 
The overall level of such assortative matching can be usefully quantified by the coefficient of 
pairwise relatedness, defined as

r (v,u) =
n−1∑
k=0

k

n − 1
· pk (v,u) . (3)

This coefficient measures, for any descendant of the initial mutant of type v, the average share 
of island neighbors who are also descendants of the initial mutant. When migration is complete 
(m = 1, see Section 2.1) or when groups are infinitely large (n → ∞), no two group members 
can be traced back to an initial common ancestor, and thus pk (v,u) = 0 for all k > 0, and 
hence r (v,u) = 0. But since real-life groups are of finite size, and owing to the cost of disper-
sal, essentially all natural populations display positive relatedness between group members, i.e., 
r (v,u) > 0. This in turn implies that pk (v,u) > 0 for at least some k > 0.14

We denote by W (v,u) the set of lineage fitness levels induced by all Nash equilibria com-
patible with types v and u in a given population P . The (potentially empty) set W (v,u) ⊆ R is 
compact. Extending the characterization in Lehmann et al. (2016) from types with unique lin-
eage fitness values to types with sets of potential lineage fitness values,15 uninvadability can be 
succinctly characterized as follows: A type u ∈ � with W (v,u) 	= ∅ is uninvadable if and only 
if

13 Note that because the analysis focuses on the fitness of rare mutants in an otherwise homogeneous population, our 
assumption that the fitness function depends on the average material payoff in the population at large, and not on the 
distribution of the material payoffs therein, is innocuous.
14 This would be true even if migration probabilities were endogenous, as long as migration entails some cost (for 
literature with endogenous dispersal decisions, see, e.g., Clobert et al., 2001; Frank, 1998, and Rousset, 2004, and Hartl 
and Clark, 2007). The model by Newton (2017) can be interpreted as having costless migration.
15 In Lehmann et al. (2015) we proved this result for scenarios where new islands can be colonized only by singleton 
mutants. Lehmann et al. (2016, eqs. (14)-(16)) extended that result to allow for scenarios in which multiple offspring 
from the same group can reproduce in the same non-natal island.
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maxW (v,u) ≤ 1 ∀v ∈ �. (4)

For each mutant type v ∈ �, this characterization compares the highest possible average lineage 
fitness of a single initial v-mutant, maxW (v,u), with the lineage fitness of any resident individ-
ual, W (u,u) = 1. An uninvadable type u thus preempts entry into the population in the sense of 
obtaining (weakly) higher average lineage fitness that any mutant type can ever obtain.

2.5. Nash equilibrium

In order to apply our characterization of uninvadability to preference evolution we need to get 
a handle on the set of Nash equilibria, which in turn depends on the informational assumptions 
about the strategic interactions on the islands. We know of three settings that are compatible 
with homogeneity assumption [H], and that admit analysis. In the first setting, each type in the 
type space � ⊂F has exactly one strategy that it will always use. This is the easiest case, and it 
can be referred to as “strategy evolution.” In the second setting, all types are permitted, � =F , 
and interactions take place under (maximally) incomplete information, i.e., each individual’s 
type is his or her private information. In the third setting, interactions take place under complete 
information, i.e., every individual knows the types of all individuals on her island. Under the 
homogeneity assumption, each of these settings is amenable to analysis. While one could argue 
that individuals are likely more knowledgeable about the type distribution in their own island than 
in the overall population, we nonetheless adopt the incomplete information assumption here, and 
leave analysis of complete information for future research. The reason is that the incomplete 
information setting is not only known to provide benchmark results to which results derived 
under complete information assumptions can be fruitfully compared (for a recent survey, see 
Alger and Weibull, 2019), but is also likely to be the default case under genetic transmission 
since information about genotype is generally incomplete (e.g., Frank, 1998, chapter 6).

It remains to define the set of Nash equilibria that will be used to calculate any mutant’s 
lineage fitness under incomplete information. We assume that individuals’ probabilistic beliefs 
about the type distribution among their neighbors are statistically correct. In particular, every 
individual of the resident type u (correctly) believes that all other individuals on his or her island 
are (with probability one) of her type, and every mutant (correctly) believes that the types of 
his or her island neighbors are drawn according to the mutant lineage’s probability distribution 
p (v,u) = (p0 (v,u) , ...,pn−1 (v,u)). For any given resident strategy x̃ ∈ Xu, all mutants are, by 
homogeneity assumption [H], assumed to use one and the same strategy, say ỹ that, moreover, 
is a best response for them, with their utility function v, and given the matching probability 
distribution that they face:

ỹ ∈ arg max
y∈X

n−1∑
k=0

pk (ỹ, x̃) · v
(
y, ỹ(k), x̃(n−k−1)

)
. (5)

Here ỹ(k) is the strategy vector whose k components all are ỹ ∈ X, and x̃(n−k−1) the strategy vec-
tor whose n − k − 1 components all are x̃, and the matching probabilities are from now on and 
throughout written directly as a function of the equilibrium strategies played. Given the resident 
and mutant types, u, v ∈ �, a strategy pair (x̃, ỹ) ∈ X2 is a (type-homogeneous) Nash equilib-
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rium if x̃ ∈ Xu and ỹ satisfies (5). Let BNE (u, v) ⊆ X2 denote the set of such Nash equilibria. 
Any such Nash equilibrium defines all remaining material payoffs π (v|k) and π (u|k) in (2).16

3. Analysis

It turns out that it is useful, as a first step, to examine preference types which induce commit-
ment to some particular strategy. To be more specific, let � ⊂ F consist of all utility functions 
u : Xn → R of the form u (xi,x−i ) ≡ ‖xi − x‖2 for some x ∈ X. All individuals with types in 
this set � each have a unique dominant strategy, and we will identify types by their dominant 
strategy; � = X. Under such strategy evolution, for a resident type x and a mutant type y, the 
set W (y, x) is a singleton, and maxW (y, x) = W (y,x), where

W (y,x) =
n−1∑
k=0

pk (y, x) · w̃
(
y,y(k),x(n−1−k), x

)
. (6)

Here w̃ = w ◦ π is the composite function which gives the fitness of any individual i who plays 
strategy xi ∈ X when the others on his or her island play x−i ∈ Xn−1, while some strategy x∗ ∈ X

is played by all individuals on all other islands:

w̃
(
xi,x−i , x

∗)= w
(
π (xi,x−i ) ,

(
π
(
xj ,x−j

))
j 	=i

, π
(
x∗, ..., x∗)) . (7)

The population size being constant over time, we note that w̃
(
x,x(n−1), x

) = 1 for all x ∈
X. A necessary and sufficient condition for a strategy x ∈ X to be uninvadable under strategy 
evolution is readily obtained by applying condition (4), resulting in:

n−1∑
k=0

pk (y, x) · w̃
(
y,y(k),x(n−1−k), x

)
≤ 1 ∀y ∈ X. (8)

Equivalently, an uninvadable strategy x can be seen as preempting entry into the population 
by earning the maximal lineage fitness that can be obtained in a population where the resident 
strategy is x; that is

x ∈ arg max
y∈X

n−1∑
k=0

pk (y, x) · w̃
(
y,y(k),x(n−1−k), x

)
. (9)

In other words, a strategy is uninvadable if and only if it is a best reply to itself in terms of lineage 
fitness. We denote by X̂ (P) the (potentially empty) set of uninvadable strategies in population 
P = 〈n,X,π,w,�〉.

As a second step we use these observations to write the condition for a type u ∈ F to be 
uninvadable, (4), in an operational form:

16 The reader may worry about model robustness at this point. For if the total population is large but finite, then the 
probability is not zero, but small and positive, that there will at least one mutant in a given resident’s island. However, 
for sufficiently large populations (with fixed island size n), the probability that a mutant is present in a resident’s island 
is so small that, by upper hemi-continuity of the best-reply correspondence of any u ∈ F , the set of Nash equilibrium 
strategies for the residents when mutants are very rare in their islands, can be kept within arbitrarily small distance from 
the set Xu.
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n−1∑
k=0

pk (y, x) · w̃
(
y,y(k),x(n−1−k), x

)
≤ 1 ∀v ∈F and ∀ (x, y) ∈ BNE (u, v) . (10)

This immediately leads to our first result.

Proposition 1. In a population P , a utility function u is uninvadable in F if and only if Xu ⊆
X̂ (P).

In other words, for a utility function to be uninvadable, it must induce resident Nash equi-
librium strategies that are all uninvadable. However, a utility function does not need to give rise 
to all uninvadable strategies in resident Nash equilibrium; any strategy in X̂ (P) that would not 
belong to Xu would simply not be played by residents, and would thus not be subject to potential 
invasion by mutants.17

The expression on the left-hand side of (10), however, shows that characterization of unin-
vadable preferences involves a major challenge, because the matching probabilities may depend 
both on the resident and mutant strategies, in all time periods when mutants are around.18 In the 
second part of the analysis below, we analyze a model in which independence of the matching 
probabilities on the strategies played arises endogenously. This model will allow us to fully char-
acterize the set of uninvadable preferences at the level of material payoffs. Prior to that, however, 
we report results on uninvadable preferences at the level of fitnesses.

3.1. Utility and fitness

In spite of the challenge posed by the dependence of the matching probabilities on the strate-
gies played by residents and mutants, we show that one particular class of utility functions stands 
out, in the sense that there always exists a utility function in this class for which some resident 
strategy is uninvadable.

3.1.1. The general case
For any given strategy x∗ ∈ X, let the utility function ux∗ : Xn → R be defined by

ux∗ (xi,x−i ) =Ep(xi ,x
∗)
[
w̃
(
xi, z̃−i , x

∗) | (xi,x−i )
] ∀(xi,x−i ) ∈ Xn, (11)

where p (xi, x
∗) = (p0 (xi, x

∗) ,p1 (xi, x
∗) , ..., pn−1 (xi, x

∗)) is the vector of matching proba-
bilities that would be induced in population P if residents played x∗ and mutants played xi . Here 
z̃−i is a random strategy-profile such that with probability pk (xi, x

∗) (for each k = 0, 1, .., n −1) 
exactly k of the n −1 components in x−i are replaced by xi , with equal probability for each such 
subset of k replaced components, while the remaining components in x−i keep their original 
value. Then:

Proposition 2. Any utility function ux̂ of the form (11) such that Xux̂
= {

x̂
}

is uninvadable in F . 
Moreover, each uninvadable strategy x̂ is also a resident strategy under the utility function ux̂ .

17 Note that the proposition implies that strategy-committed types that are uninvadable by other strategy-committed 
types, are uninvadable by all preference types. Indeed, if X̂ = {x̂}, then u ∈ F is uninvadable if and only if Xu = {

x̂
}
. 

Moreover, this is true even if the residents would have preferences that do not entail commitment to a particular strategy, 
as long as these preferences induce them to play the uninvadable strategy in residential Nash equilibrium.
18 Obtaining exact expressions for the matching probabilities is typically hard. However, their values can be approxi-
mated (see Appendix 6.7 for an approximation method).
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This proposition identifies a sufficient condition for a utility function of the form (11) to be 
uninvadable. The condition is that the utility function has a unique resident strategy. Moreover, 
if the population structure admits multiple uninvadable strategies, then there are multiple utility 
functions of the form (11) that may be uninvadable, one for each x̂ ∈ X̂ (P). Interestingly, then, 
different utility functions may arise in different populations with the same population structure. 
The reason is that the residential strategy affects the matching probabilities (which further ex-
plains why this result differs sharply from models in which the assortativity in the matching 
process is exogenous). There may of course be other uninvadable utility functions than those of 
the form (11) (see below). Nonetheless, Proposition 2 has a powerful implication: any uninvad-
able utility function must give rise to a resident strategy that is also a resident strategy under ux̂

for some x̂ ∈ X̂ (P).
An individual with the utility function ux∗ can be seen as follows a probabilistic version of 

Kant’s categorical imperative (Kant, 1785) at the fitness level; she evaluates the strategies at 
her disposal in the light of what would happen to her own fitness in the hypothetical scenario 
in which others would probabilistically use her strategy, according to the probability distribution 
p (xi, x

∗).19 For illustrative purposes, we state ux∗ explicitly for n = 2 (then calling own strategy 
xi and the opponent’s strategy xj ) and n = 3 (then calling the opponents’ strategies xj and xk):

ux∗
(
xi, xj

)= p0
(
xi, x

∗) · w̃ (xi, xj , x
∗)+ p1

(
xi, x

∗) · w̃ (xi, xi, x
∗) (12)

ux∗
(
xi, xj , xk

)= p0
(
xi, x

∗) · w̃ (xi, xj , xk, x
∗)+ p1 (xi, x

∗)
2

· w̃ (xi, xi, xk, x
∗) (13)

+ p1 (xi, x
∗)

2
· w̃ (xi, xj , xi, x

∗)+ p2
(
xi, x

∗) · w̃ (xi, xi, xi, x
∗) .

Note that the weights p (xi, x
∗) in the ux∗ utility function depend on the individual’s own 

strategy xi in the present, whereas in the lineage fitness the matching probabilities depend on the 
strategy played by mutants individuals living over several (and past) demographic time periods. 
This highlights the difference between lineage fitness, which is an objective measure, and util-
ity, which is subjective. The dependence of the weights p (xi, x

∗) on own strategy xi , however, 
questions the operational relevance of ux∗ as an analytically and conceptually useful utility func-
tion. As such, we now turn to study cases where the matching probabilities in the lineage fitness 
no longer depend on the mutants’ strategy; this will enable us to turn to utility functions with 
weights that do not depend on the individual’s strategy.

3.1.2. The differentiable case
Suppose that the following differentiability assumption holds20:
[D] (i) X = R, (ii) π : Rn → R is continuously differentiable, and (iii) pk : X2 → [0,1] is 

differentiable for all k ∈ {0, 1, ..., n − 1}.
In the next proposition, which states a necessary condition for a strategy x̂ to be uninvadable, 

r
(
x̂, x̂

)
is the coefficient of pairwise relatedness (see (3)) in a population where all individuals 

play x̂, and a subscript i on w̃ denotes the partial derivative with respect to the i-th argument.

19 These preferences are reminiscent of homo moralis preferences (Alger and Weibull, 2013, 2016). However, there are 
two important distinctions. First, here the utility function is defined for a certain reference strategy. Second, the weights 
attached to the different terms in the utility function depend on the strategy used by the individual at hand.
20 The uni-dimensionality assumption is inessential. All analysis can be carried out in terms of gradients, but with little 
gain in terms of qualitative insight. For brevity and clarity, we therefore stay with the unidimensional case.
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Proposition 3. If [D] holds and x̂ ∈ X̂ (P), then

w̃1

(
x̂, x̂(n−1), x̂

)
+ r

(
x̂, x̂

) n∑
j=2

w̃j

(
x̂, x̂(n−1), x̂

)
= 0. (14)

The first term is the marginal fitness benefit of the individual’s own strategy, while the second 
term is the sum of the marginal fitness benefits conferred by others, weighted by the coefficient 
of pairwise relatedness. This equation is nothing but the marginal version of Hamilton’s rule 
(Hamilton, 1964; Frank, 1998), which provides the necessary first-order condition for an (inte-
rior) strategy to be uninvadable (see equation (3) in Taylor and Frank, 1996, or equation (7.5) 
in Rousset, 2004).21 Such first-order conditions are standard in the biology literature, but for the 
sake of completeness we provide a proof in the appendix.

Consider the utility function defined by

ũx̂ (xi,x−i ) = [
1 − r

(
x̂, x̂

)] · w̃ (xi,x−i , x̂
) + r

(
x̂, x̂

) · w̃
(
xi,x(n−1)

i , x̂
)

, (15)

where x̂ ∈ X̂ (P), and x(n−1)
i ∈ Xn−1 is the strategy vector whose n − 1 components all equal xi . 

Clearly, Propositions 1 and 3 together imply that if x̂ is the unique resident strategy under ũx̂ , 
then this utility function is uninvadable.

An individual equipped with the utility function in (15) evaluates her strategy, xi , both in 
terms of how it affects her own fitness, given the neighbors’ strategies and the strategy played 
in the population at large, reflected in the first term, and how her strategy xi would affect her 
fitness should her neighbors, hypothetically, also use it, reflected in the second term. This is 
reminiscent of homo moralis preferences (see, in particular, Proposition 3 of Alger and Weibull, 
2016), although an important difference is that here the utility function in (15) is defined for a 
certain reference strategy.

3.2. Utility and material payoffs

We now turn to an approach in which the matching probabilities still depend on the transmis-
sion process but are independent of the strategies used. This approach, in biology called weak 
selection (see, e.g., Nagylaki, 1992, 1993), assumes that fitness effects from the interaction in 
question are small. Arguably, this approach is highly relevant for the social sciences, since it 
generates predictions regarding those preferences that guide behaviors in minor everyday inter-
actions, those with only small effects on lifetime fitness.

3.2.1. Weak selection
Formally: for each x ∈ X and y ∈ Xn−1 let an individual’s material payoff be a convex com-

bination of two terms,

π̄ (δ) (x,y) = (1 − δ) · π0 + δ · π (x,y) , (16)

21 First-order conditions like equation (14) apply more generally to traits if lineage fitness and individual fitness 
are differentiable in trait values. The aforementioned evolutionary dynamics literature focuses on the evolution of 
phenotypes—the composite of an organism’s characteristics—thus subsuming virtually any heritable trait and can be 
applied to essentially any demographic scenario (see Rousset, 2004, for general results).
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where π0 is baseline material payoff, assumed identical for all individuals, and δ ∈ (0,1) is the 
share of the material payoff that emanates from the present material game interaction. This factor 
δ is the intensity of selection. Thus, for δ ∈ (0,1) fixed, the fitness of individual i is now of the 
form

w
(
π̄i , π̄−i , π̄

∗)= w
(
(1 − δ)π0 + δπi,

(
(1 − δ)π0 + δπj

)
j 	=i

, (1 − δ)π0 + δπ∗) . (17)

Weak selection amounts to considering the limit as δ tends towards 0.22 Importantly, under 
weak selection, the matching probabilities, while still depending on the transmission process, 
do not depend on the strategies x and y (for any population P = 〈n,X,π,w,�〉 satisfying as-
sumption [M]). The probability for a randomly drawn descendant of an ancestor, be it a resident 
or mutant, to coexist in its island with k other descendants of the same ancestor is then solely 
determined by the vital rates in a population in which everybody uses the same strategy x, no 
matter which. In biology this is referred to as the neutral process. This in turn has profound im-
plications for the ability of a mutant trait to invade, since it means that the strategy played by 
residents matters only insofar as it affects the local success of mutants.

Let p0 = (
p0

0,p
0
1, ..., p

0
n−1

)
denote the vector of matching probabilities induced by the neutral 

process. Proposition 2 still holds under weak selection: individuals playing some uninvadable 
strategy x̂ ∈ X̂ (P) may be viewed as if they were striving to maximize the utility function ux̂ , 
with the matching profile now given by p0. This utility function is a sum of individual fitnesses. 
However, as is shown in the next proposition, under weak selection there is also an uninvadable 
utility function which describes preferences at the level of material payoffs, and which does not 
depend on any reference strategy. Let v0 : Xn → R be defined by

v0 (xi,x−i ) =Ep0

[
π
(
xi, z̃−i

)− λ0 · ∑
j 	=i

π
(
z̃j , z̃−j

) | (xi,x−i )

]
∀ (xi,x−i ) ∈ Xn,

(18)

where z̃−i is defined in the same way as in (11), and

λ0 = lim
δ→0

λ (x) (19)

is the coefficient of fitness interdependence under weak selection, where

λ (x) = −
⎛
⎝∑

j 	=i

∂w (πi,π−i , π
∗)

∂πj

⎞
⎠/

(
∂w (πi,π−i , π

∗)
∂πi

)
, (20)

evaluated when all individuals in the population use the same strategy x ∈ X. Hence, λ0 mea-
sures the marginal effect of neighbors’ material payoffs on own fitness, relative to the marginal 
effect of own material payoff on own fitness, in a population in which all individuals play the 
same strategy, and in the limit as δ tends to zero. A positive coefficient λ0 can be interpreted 
as there being competition for local resources: an increase in the material payoffs to neighbors 
then reduces an individual’s fitness. A negative coefficient λ0 means that there is a positive ex-
ternality at the level of material payoffs between neighbors: an increase in the material payoffs 
to neighbors then increases an individual’s fitness.

22 This formalization of weak selection corresponds to what Wild and Traulsen (2007) call w-weak selection.
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Our next result establishes that selection favors the so-defined utility function, which was used 
in the context of strategy evolution in Lehmann et al. (2015), and rejects other utility functions 
unless they induce an identical best reply to some resident equilibrium for v0:

Proposition 4. The utility function v0 is uninvadable in � = F under weak selection. A utility 
function u ∈ � is invadable under weak selection if ∃x̃ ∈ Xu such that x̃ /∈ Xv0 . Moreover, 1 −
n ≤ λ0 ≤ 1.

An individual with the utility function v0 is but that of the familiar Homo oeconomicus if 
λ0 = 0 and p0

0 = 1. By contrast, if λ0 	= 0 and p0
0 < 1, the individual evaluates any strategy profile 

(xi,x−i ) by pondering his expected material payoff advantage over his neighbors, π
(
xi, z̃−i

)−
λ0 ·∑j 	=iπ

(
z̃j , z̃−j

)
, if all, some, or none of the others in her island would use the same strategy 

as herself (drawn randomly according to p0), instead of playing their strategies, given by x−i .
To illustrate how the v0 goal function is related to preferences studied in behavioral and ex-

perimental economics, we briefly consider the two-player case. By writing the utility function 
as

v0(xi, xj ) = (1 − λ0)
(

1 − p0
1

)
π
(
xi, xj

)+ (1 − λ0)p0
1π (xi, xi) (21)

+ λ0

(
1 − p0

1

)[
π
(
xi, xj

)− π
(
xj , xi

)]
,

it can be interpreted as the sum of three terms, where the first represents “pure self-interest” 
(own material payoff), the second a Kantian concern (what is the “right thing to do if others 
in the population act like me”), and the third a “comparison with the Joneses” (the difference 
between own material payoff and that of the neighbor). Note also that a positive weight λ0 > 0
expresses a form of envy or spite; if instead λ0 < 0, then it is as if individuals care positively, or 
altruistically, about their neighbors’ material payoffs.

Remark 1. Part of the economics literature on the evolutionary stability of strategies and prefer-
ences relies on models in which rare mutants may have a positive probability of being matched 
with each other, even in the limit as the share of mutants tends to zero (Bergstrom, 2003; Alger 
and Weibull, 2013, 2016). These limit matching probabilities are taken to be independent of the 
strategies being played. Hence, they may be interpreted as the vector of matching probabilities 
p0 in the neutral process.

3.2.2. The differentiable case
We finally return to the general model, i.e., selection need not be weak, and consider settings 

where [D] holds. In a population in which all individuals play x, let κ (x) denote the coefficient 
of scaled relatedness, defined as

κ (x) = r (x, x) − 1
n−1λ (x) [1 + (n − 2) r (x, x)]

1 − λ (x) r (x, x)
. (22)

Then we obtain a result that (unlike Proposition 3) is new to the evolutionary biology literature23:

23 To be more explicit about this statement, we note that first-order conditions similar to the one in (23) appear elsewhere 
in the evolutionary biology literature, but then under the form f1

(
x̂, x̂(n−1)

)
+ κ̃

(
x̂
) ·∑n fj

(
x̂, x̂(n−1)

)
= 0, where 
j 	=1
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Proposition 5. If [D] holds and x̂ ∈ X̂ (P), then

[
1 − κ

(
x̂
)] · π1

(
x̂, x̂(n−1)

)
+ κ

(
x̂
) ·

n∑
j=1

πj

(
x̂, x̂(n−1)

)
= 0. (23)

Like r(x̂, x̂), the coefficient κ
(
x̂
)

can be interpreted as a marginal substitution rate: it gives the 
number of units of own material payoff that any given individual is willing to forgo to increase 
the material payoff of each neighbor by one unit. Absent any fitness interdependence, i.e., if 
λ 
(
x̂
)= 0, κ

(
x̂
)

would simply equal relatedness r
(
x̂, x̂

)
. To see exactly how κ

(
x̂
)

accounts for 
fitness interdependence, consider first the case when there is but one neighbor, that is n = 2. 
A payoff transfer to this neighbor increases competition from the neighbor at rate λ 

(
x̂
)

(since 
λ 
(
x̂
)

measures the relative increase in competition in the neighborhood of an individual when its 
payoff is varied, see (20)). The fitness benefit to the donor from giving the transfer to the neighbor 
is thus reduced by λ 

(
x̂
)
, so that the numerator in (22) becomes r

(
x̂, x̂

) − λ 
(
x̂
)
. Moreover, a 

transfer of resources to the neighbor alleviates the competition that the neighbor experiences, 
and the neighbor is related to the donor according to coefficient r

(
x̂, x̂

)
. Hence, the cost of the 

transfer is reduced by λ 
(
x̂
)
r
(
x̂, x̂

)
, which explains the denominator in (22).

When there are multiple neighbors, n > 2, a transfer given to one neighbor enhances the 
competition by λ 

(
x̂
)
/ (n − 1), but also for the (n − 2) other neighbors, each of which is related 

to the donor according to coefficient r
(
x̂, x̂

)
. Therefore, the fitness benefit of the transfer to the 

donor is reduced by λ 
(
x̂
)
/ (n − 1) times the term in square brackets in the numerator; which 

explains the numerator of κ
(
x̂
)
. In the denominator, the cost of the transfer is still reduced by 

λ 
(
x̂
)
r
(
x̂, x̂

)
, which is the expected alleviation of competition that the transfer induces for the 

individual’s neighbors (recall that λ 
(
x̂
)

accounts for all neighbors through the term (n − 1)).
In view of the necessary first-order condition (23), it may be of interest to consider the utility 

functions vx̂ ∈ F defined by

vx̂ (xi,x−i ) = [
1 − κ

(
x̂
)] · π (xi,x−i ) + κ

(
x̂
) · π

(
xi,x(n−1)

−i

)
, (24)

where x̂ ∈ X̂ (P). Since (23) implies that x̂ satisfies the necessary first-order condition for an 
interior symmetric Nash equilibrium of the n-player game in which all players have utility func-
tion vx̂ , Proposition 1 implies that vx̂ is an uninvadable utility function if x̂ is the unique resident 
strategy under vx̂ .

In sum, in a population in which all individuals play some interior uninvadable strategy x̂, 
these individuals may (under some conditions) be perceived as having a Kantian concern at the 
fitness level as well as at the material payoff level. Importantly, the strength of the Kantian (or 
other-regarding) concern at the fitness level, measured by r

(
x̂, x̂

)
, typically differs from the 

f is the fecundity of an individual (see Lehmann and Rousset, 2010; Akçay and van Cleve, 2012; Van Cleve, 2015;
Dos Santos and Peña, 2017). We would obtain the exact same expression if in our model fitness depended solely on 
fecundity, since then derivatives of fecundity with respect to material payoffs would cancel from first-order conditions 
(to see this, set survival to zero in the fitness function in (26) in Section 4). Our model generalizes previous models, 
since Proposition 5 applies regardless of whether fitness depends only on fecundity, or also on individual and/or group 
survival (see Section 4 for examples of fitness functions), and it makes explicit the role of the coefficient of fitness 
interdependence. Further, it demonstrates that even if r

(
x̂, x̂

)= 0, the substitution rate κ
(
x̂
)

can be substantial depending 
on the scenario (see, in particular, the examples in Section 4.2). As such, our results unify and extend previous ones of 
the evolutionary biology literature.



20 I. Alger et al. / Journal of Economic Theory 185 (2020) 104951
strength of the Kantian (or other-regarding) concern at the material payoff level, measured by 
κ
(
x̂
)
, as shown next:

Proposition 6. Suppose that [D] holds and that vx̂ is uninvadable. The weight κ
(
x̂
)

attached 
to the neighbors’ material payoffs in the function vx̂ lies in the interval [−1,1]. Furthermore, 
κ
(
x̂
)
> r

(
x̂, x̂

)
if and only if λ 

(
x̂
)
< 0.

We note that a necessary and sufficient condition for λ 
(
x̂
)

to be negative is that in a population 
where everybody plays x̂, ∂w (πi,π−i , π

∗) /∂πj is positive (this partial derivative being the 
same for all j 	= i). We finally note that under weak selection (22) becomes:

κ0 = r0 − 1
n−1λ0 [1 + (n − 2) r0]

1 − λ0r0
, (25)

where λ0 is defined in (19) and r0 = limδ→0 r (x, x).

4. Three canonical scenarios

We have reported general theoretical results on how fitness consequences of material payoffs 
may be expected to affect preferences over material payoff outcomes. In this section we apply 
these general results by examining three canonical evolutionary scenarios. For each scenario 
we calculate the associated coefficients of relatedness r , fitness interdependence λ, and scaled 
relatedness κ (all the calculations can be found in the appendix). Once these coefficients have 
been identified, equations (15), (18) and (24) provide closed-form representations of the relevant 
utility functions, expressed in terms of the material payoff function that represents the strategic 
interaction at hand. We note that these coefficients are independent of the material payoff function 
in question, so the obtained utility representations can be carried over from one material game 
to any other material game. Also, for all these scenarios the approximate explicit expression for 
the matching probabilities can be applied (see equation (78) in the Appendix), so the preferences 
can be fully evaluated in terms of the aforementioned coefficients.

4.1. Scenario A: genes

If types are genetically determined, a possible fitness function is:

w
(
πi,π−i , π

∗) = s (πi) + m · [1 − s
(
π∗)]n · f (πi)

nf (π∗)
(26)

+ (1 − m) ·
⎛
⎝n −

n∑
j=1

s
(
πj

)⎞⎠ · f (πi)

(1 − m)
∑n

j=1 f
(
πj

)+ nmf (π∗)
,

where s (πi) ∈ [0,1] is the probability that i survives to the next demographic time period, 
f (πi) > 0 is i’s expected number of offspring (who will have inherited i’s type), and 0 < m ≤ 1
is the probability for each offspring to migrate to another island. These vital events—survival, 
reproduction and migration—are assumed to be statistically independent. In each island the de-
ceased adults, if any, are replaced by (uniformly) randomly drawn aspiring offspring, native and 
immigrant. The fortunate ones settle and become adults while the unfortunate ones die. The third 
term is thus the expected number of i’s offspring who manage to secure a “breeding spot” on the 
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natal island. It is the product of three factors: (a) the probability for not migrating, (1 − m); (b) 
the number of available spots on the island; and, for each available spot, (c) the competition for 
the spot, among native and migrating offspring from other islands, where f (π∗) is the fecundity 
in the population at large. The second term is the expected number of i’s offspring who migrate 
and manage to secure a breeding spot on another island: each offspring who migrates to another 
island competes against nf (π∗) other individuals for the n available spots.

Remark 2. For a more detailed derivation of an equation like (26) from the random variables 
that underlie survival and reproduction, see Lehmann and Balloux (2007). In particular, since 
the total number of islands is infinite, the probability is zero for the event that more than one 
of i’s offspring happen to migrate to the same island. Moreover, when the expected number of 
offspring is large, as we here assume, then the event that there are fewer aspiring offspring than 
there are available slots in an island is negligible, and the ratios between the expected numbers 
of offspring, in (26), equal the expectations of the ratios of the underlying random numbers of 
offspring.

Considering the case where the survival probability is constant, s (πi) = s0, the coefficient of 
relatedness equals

r (x, x) = (1 − m)2 + s0
(
1 − m2

)
n − (n − 1) (1 − m)2 + s0

[
1 + (n − 1)m2

] , (27)

and the coefficient of fitness interdependence equals

λ (x) = (n − 1) (1 − m)2

n − (1 − m)2 . (28)

Both coefficients turn out to be independent of the reference strategy x. Hence, the utility func-
tions ũx and vx , defined in equations (15) and (24), are independent of what strategy x is used in 
the population at large and can, in this evolutionary scenario, be explicitly parametrized in terms 
of the migration rate m, group size n, and survival probability s0. Both r (x, x) and λ (x) are 
strictly positive for all n, all m ∈ (0,1), and all s0 ∈ (0,1). By contrast, if m = 1, the probability 
of interacting with an individual from the same lineage is nil, r (x, x) = 0, and, moreover, there 
is no fitness benefit from out-competing neighbors materially, λ (x) = 0. Moreover, both coeffi-
cients are decreasing in m, and r (x, x) is increasing in s0. Substituting (27) and (28) into (22), 
we obtain:

κ (x) = 2 (1 − m)s0

2 (1 − m)s0 + n [2 − m(1 − s0)]
, (29)

which is strictly positive for any m ∈ (0,1) and s0 > 0, but nil for m = 1 and for s0 = 0. In other 
words, in this evolutionary scenario, when s0 = 0 but m ∈ (0,1), any uninvadable utility function 
must be as if individuals are pro-social at the level of fitnesses (r (x, x) > 0), but are purely 
selfish at the level of material payoffs (κ (x) = 0). Furthermore, a positive survival probability 
s0 > 0 induces pro-sociality (κ (x) > 0). However, note that κ (x) is decreasing in island size 
n and in migration rate m. In fact, it vanishes as n becomes infinitely large. Fig. 1 shows how 
κ (x) depends on m when s0 = 1/n, for n = 2 (black solid) and n = 10 (black dashed), and when 
s0 = 0.8 for n = 2 (blue) and n = 10 (blue dashed), as well as s0 = 0 (pink).

Remark 3. In the biology literature, the island model has become a work-horse model to 
analyze conditions favoring pro- and anti-sociality at the level of survival and reproduction 
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Fig. 1. The value of κ (x) as a function of the migration rate m. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

in spatially structured populations. This literature has a well-known result known as Tay-
lor’s cancellation result, a useful yardstick for understanding how changes in the transmission 
scenario can tip the balance either in the direction of pro-sociality or anti-sociality. Our re-
sult that κ (x) = 0 for s0 = 0 is in line with this result. When s0 = 0, (14) boils down to 
n2m (2 − m)f ′ (π (x̂)) = 0, which implies that f ′ (π (x̂)) = 0: in spite of a positive related-
ness, uninvadability requires simple maximization of own fecundity. This holds true even if 
fecundity depends directly on the underlying trait, the standard assumption in the biology lit-
erature (see also Footnote 23), without being a function of some material payoff. It is this 
observation which is known as Taylor’s cancellation result, noticed initially in agent-based 
simulations by Wilson et al. (1992), proven formally by Taylor (1992a) for the island model, 
and then shown to hold for arbitrary migration patterns between groups (e.g., Taylor, 1992b;
Rousset, 2004, and Ohtsuki, 2012). To see that it is in line with our result that κ (x) = 0 for 
s0 = 0, note that since f is strictly increasing in π , f ′ (π (x̂)) = 0 in turn implies that x̂
maximizes π , i.e., π ′ (x̂) = 0. Finally, we note that the same expression as that in the right 
hand side of (29) was first obtained by Taylor and Irwin (2000, their eq. A.10), as a marginal 
cost to benefit ratio at the level of fecundity (see also Akçay and van Cleve, 2012). There is 
by now an extensive theoretical literature seeking to delineate how the assumptions pertain-
ing to demography, life-history, the environment, and the modes of transmission, tip the bal-
ance in favor of pro- or anti-sociality at the survival or fecundity level (see, e.g., Eshel, 1972;
Aoki, 1982; Gardner and West, 2006; Johnstone and Cant, 2008; Lehmann et al., 2008;
Lion and Gandon, 2010; Bao and Wild, 2012, and Micheletti et al., 2017, for a some repre-
sentative case studies, and Lehmann and Rousset, 2010, for a review).

4.2. Scenario B: guns

Take the biological scenario A with non-overlapping generations (set s (π) = 0 for all π ), and 
augment it by introducing wars between groups. Following play of the material game in a demo-
graphic time period, but before reproduction, death of the adults, and migration by the offspring, 
islands are randomly engaged in pairwise wars, under exogenous uniform random matching. In 
each war, one island wins and the other loses. All individuals in the losing island thus die before 
they reproduce; the winning island takes over all reproductive resources of the other island and 
thus doubles its members’ fecundity. Technically, the double-sized pool of offspring of the win-
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ning island will split in two halves, one for each of the two islands, that they will treat as their 
“home” island. Let 0 ≤ ρ ≤ 1 denote the probability that any given island is drawn into war, the 
war risk, and let g (π,π∗) denote the conditional probability that an island with material payoff 
profile π ∈ Rn wins a war when the average payoff in the rest of the population is π∗, condi-
tional on being drawn into war. Here g is assumed to be increasing and permutation invariant 
with respect to the material payoffs earned by the inhabitants of the island in question. In other 
words, for π∗ fixed, g has the properties of standard welfare functions. In this scenario the fitness 
function is

w
(
πi,π−i , π

∗)= [
(1 − ρ) + 2ρg

(
π,π∗)] · [m · f (πi)

f (π∗)
+ (30)

(1 − m)n · f (πi)

(1 − m)
∑n

j=1 f
(
πj

)+ nmf (π∗)

]
.

The difference with the baseline scenario is the first factor, which contains two terms: the proba-
bility that the individual’s island will not go to war (1 −ρ), and the probability that the island will 
go to war and win times two (2ρg (π ,π∗)), where the factor two comes from the assumption that 
a winning island doubles its fecundity and spreads its offspring uniformly over the two islands it 
now possesses. To see why the second factor is the same as the right-hand side of (26), note that 
migrants who arrive at any island, irrespective of whether this island has been involved in war 
or not, come with probability 1 − ρ from an island that was not in war, and (recalling that the 
average probability of winning a war is 1/2) with probability ρ/2 from an island that won a war. 
Moreover, victorious islands send out twice as many migrants as islands that did not go to war. 
Hence, the expected number of migrants who compete for the breeding spots in any given island 
is m (1 − ρ + 2ρ/2) · f (π∗) = mf (π∗), the same as in the absence of wars.

The coefficient of relatedness turns out to coincide with that in the preceding scenario (for 
s0 = 0). This is because the only event in which a randomly drawn individual can belong to the 
same local lineage as a randomly drawn neighbor, is when both belong to an island which did 
not lose a war, and both stayed in their natal island. Since the risk of losing a war applies to the 
whole island, while the migration probability applies to the individual, only the latter matters for 
relatedness. The coefficient of fitness interdependence equals

λ (x) = −
(n − 1)

[
2ρgn (π∗,π∗) − (1−m)2f ′(π∗)

nf (π∗)

]
2ρgn (π∗,π∗) − [

n − (1 − m)2
] f ′(π∗)

nf (π∗)
, (31)

where π∗ is the n-dimensional vector whose components all equal π∗ and gn denotes the partial 
derivative of g with respect to the n-th argument (since g is evaluated in a homogeneous popula-
tion here, and since g is invariant under permutation of the n first arguments, gn simply captures 
the marginal effect of an increase in the material payoff of any island member on the probability 
of winning a war). While the expression is involved, it can readily be seen (by considering a 
scenario in which f ′ (π∗) = 0, for instance) that the effect of material payoffs on the strength 
in wars can make λ (x) negative, while in the scenario without wars studied above, it is always 
positive. In other words, conflicts between groups reduces spite, and may even reduce it so much 
that it turns into altruism, i.e., a positive weight is attached to the neighbors’ material payoffs. 
Indeed, by substituting (27) (for s0 = 0) and (31) into (22), we obtain:

κ (x) = ρ

ρ + (2−m)m
∗ ∗

f ′(π∗)
∗

, (32)

2gn(π ,π ) f (π )
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which is increasing in the marginal effect gn on the probability of winning wars.
We next turn to weak selection in order to obtain more explicit results on the effects of wars 

on fitness interdependence and scaled relatedness. Recalling the notation under weak selection 
(see (16)), let each individual’s fecundity be exponentially increasing in the individual’s material 
payoff,

f (π̄i) = f0 · exp
((

1 − δf

) · π0 + δf · πi

)
, (33)

where f0 > 0 is baseline fecundity and δf > 0 represents the intensity of selection with respect to 
fecundity. Furthermore, assume that the probability of winning a war depends on the two islands’ 
aggregate material payoffs according to

g
(
π̄, π̄∗)= exp (V (π̄))

exp (V (π̄)) + exp
(
V
(
π̄∗)) , (34)

where π̄ = (1 − δν)π0 + δvπ and π̄∗ = (1 − δν)π0 + δvπ
∗ (where π0 is the n-dimensional vec-

tor whose components all equal π0) and V : Rn → R is a strictly increasing symmetric function 
(like any standard welfare function). Its values V (π̄) and V

(
π̄∗) represent the “strengths” of 

the two islands. This is a logistic version of the Tullock contest function (Tullock, 1980), see 
Skaperdas (1996). It spans a continuum of cases, from all islands having the same chance to win 
any war, if the intensity of selection with respect to wars be nil, to the case in which the materially 
wealthiest island is almost sure to win any war (is the intensity of selection is infinitely large). 
Letting δf = σf · δ in equation (33) and δv = σv · δ, for non-negative parameters σf ≥ 0, σv ≥ 0, 
and δ > 0, we can let both sensitivity parameters tend to zero at proportional rates by focusing 
on the limit as δ → 0. Below, however, we let σv = σf , and thus write δ for δv .

Many scenarios can be imagined, of which we consider two. First, if an island’s strength is 
proportional to its total material payoff, i.e., if V (π̄) = (1 − δ)nπ0 + δ

∑n

i=1
πi , then fitness 

interdependence takes the following form (see the appendix):

λ0 = (n − 1) (1 − m)2 − ρ (n − 1) n/2

n − (1 − m)2 + ρn/2
. (35)

This changes sign when the risk of war is ρ∗ = 2 (1 − m)2 /n; it is positive at lower risks of war 
and negative at higher risk levels for war. Since in the baseline scenario with non-overlapping 
generations uninvadability under weak selection requires individuals to be selfish on balance 
(see Section 3.2), the reduction in fitness interdependence that the war risk entails, leads to pro-
sociality on balance; indeed, for any ρ > 0 we obtain κ0 > 0:

κ0 = ρ

ρ + 2m(2 − m)
. (36)

Moreover, the threat of war (ρ > 0) nourishes pro-sociality: κ0 is increasing in the risk of war, ρ, 
and is independent of group size, n.24 Fig. 2 shows κ0 as a function of the migration rate m, for 
war risk ρ = 0 (the pink curve), ρ = 0.4 (the orange curve), and ρ = 0.8 (the blue curve).25

24 In the early evolutionary biology literature, which considered traits affecting environmentally induced group extinc-
tion (e.g., Eshel, 1972; Aoki, 1982), pro-sociality at the fecundity level (the equivalent of κ̃ referred to in Footnote 23) is 
usually a decreasing function of n (see also Lehmann and Rousset, 2010).
25 The analytical models of Bowles (2006, 2009) for the evolution of “parochial altruism” are also close to our scenario 
with wars; in particular, the expected number of groups 

[
1 − ρ + 2ρν

(
π , π̄∗)] to which a focal group has access for 

reproduction after warfare also appears in Bowles’s formalization. However, since in his model there are no explicit 
assumptions that allow to close the lifecycle, it is impossible to derive the explicit values of λ0, r0, and κ0 for his model.



I. Alger et al. / Journal of Economic Theory 185 (2020) 104951 25
Fig. 2. The value of κ0 as a function of the migration rate m.

Second, while it is arguably a natural benchmark case to assume that the probability of win-
ning a war depends on the group’s total material payoff, sometimes the success or failure in 
conflicts depends on the strongest or the weakest member of one’s group.26 A general case, that 
allows for intermediate cases between dependence on the group’s total material payoff and its 
minimal payoff, is obtained by using a CES-functional form. Let

V (π̄) =
[
(1 − δ) · nπc

0 + δ ·
∑n

i=1
πc

i

]1/c

(37)

for some c 	= 0. For c = 1 we obtain the previous case, and as c → −∞, V (π̄) →
mini {(1 − δ) · π0 + δ · πi} (Leontieff production function). Hence, when c is negative and large 
in absolute terms, an increase in the poorest group member’s material payoff will increase the 
winning probability, and hence have a positive effect on others’ fitness. This suggests a Rawl-
sian, rather than a Benthamite concern for other group members’ material well-being. Individuals 
with medium or high material payoffs may then behave as if they had a particular concern for 
individuals with low payoff.

4.3. Scenario C: culture

Suppose now that types are carried over from one generation to the next by cultural transmis-
sion. In every demographic time period, each adult dies and is replaced by exactly one child, who 
searches for a type to emulate, from its deceased (single) parent, another adult in its island, or an 
adult in another island. With probability s (πi) ∈ [0,1], the loyalty of i’s child, the (unique) child 
of individual i, emulates its parent’s type. With probability 1 − m a non-loyal child searches for 
a type to emulate among the (now dead) grown-ups in its natal island (including its own parent). 
With the complementary probability, m > 0, such a child draws a sample of n grown-ups from 
the population at large, and emulates the type of one of them. The probability that an adult on 
any island is chosen as role model, when compared to others in her island (by a non-loyal child), 
depends on her type’s attractiveness relative to the attractiveness of the other grown-ups’ types in 
her island. Likewise, the probability that a child who searches outside its native island will pick 

26 A host of other hypotheses about group strength could be explored, see, e.g., Konrad (2014) and the references 
therein.
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a certain island, when looking for a “role model”, is assumed to be proportional to the island’s 
relative attractiveness in the world at large. Fitness w(πi,π−i , π

∗) is then the expected number 
of children who emulate their type from an individual with material payoff πi when the other 
island members earn the material payoff vector π−i , and individuals in all other islands earn 
material payoff π∗:

w
(
πi,π−i , π

∗)= s (πi) + m · [1 − s
(
π∗)] · f (πi)

f (π∗)
(38)

+ (1 − m) ·
⎛
⎝n −

n∑
j=1

s
(
πj

)⎞⎠ · f (πi)∑n
j=1 f

(
πj

) ,
where, for any individual j in i’s island, f

(
πj

)
> 0 is the attractiveness of the type used by j . 

The first term in (38) is the probability that i’s child loyally emulates its parent’s type, without 
comparison with other adults’ types.27 The second term concerns the event that children from 
other islands emulate their type from one of the parents on i’s island. Written more explicitly, 
this term can be spelled out as

mn
[
1 − s

(
π∗)] ·

∑n
j=1 f

(
πj

)
n · f (π∗)

· f (πi)∑n
j=1 f

(
πj

) , (39)

where the first factor is the expected number of children who search outside their native islands, 
the second factor is the probability for each such child to decide for i’s island, and the third is the 
conditional probability that it will then choose i as role model. The third term in (38) concerns 
the event that some or all the children in i’s island emulate their type from one among the par-
ents on the island. The product of the first two factors in this term is the expected number of such 
children and the third factor is the probability, for each such child, that it will choose to imitate 
individual i. Note that, comparing this scenario to the biological scenario with overlapping gen-
erations, loyalty plays a similar role to survival, and attractiveness to fecundity. Moreover, the 
cultural import propensity m plays a similar role to migration. (These observations motivated the 
notation.)

In this scenario,

r (x, x) = (1 − m)2 + s (π (x))
(
1 − m2

)
n − (n − 1) (1 − m)2 + s (π (x))

[
1 + (n − 1)m2

] , (40)

where x = (x, ..., x) ∈ Xn, and

λ (x) = (n − 1) (1 − m)

n − 1 + m
, (41)

27 In the economics literature on cultural transmission of traits, a commonly used model is that of Bisin and Verdier
(2001). Like in our model, in Bisin and Verdier (2001) each grown-up has exactly one child, and each child inherits its 
parent’s trait with some probability, and otherwise it inherits the trait of another grown-up in the population. By contrast 
to our model, the population is not structured into islands, and there is no strategic interaction between individuals. 
Furthermore, in their model a parent cares about whether her child has the same trait as her, but not about whether 
the child inherited this trait from the parent or from someone else. Denoting by qθ the population share of individuals 
with trait θ in the population, and by s (qθ ) the probability that a child inherits its trait vertically from its parent, their 
equation (1) says that the unique child of a parent with trait θ acquires trait θ with probability s (qθ ) + [

1 − s (qθ )
] · qθ . 

Thus, in their model it is only the frequency of the trait that determines the transmission probability; in our model the 
attractiveness of a trait also plays a role.
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Fig. 3. The value of κ (x) as a function of the cultural import rate m, for different degrees of background loyalty of 
offspring towards parents.

which leads to

κ (x) = − (1 − m) [1 − s (π (x))]

2n − [m(n − 1) + 1] [1 − s (π (x))]
. (42)

Comparison with the biological scenario with overlapping generations reveals that the co-
efficients of relatedness are the same, but that for any m < 1 the coefficient of fitness in-
terdependence is larger under cultural transmission. The enhanced competitiveness is strong 
enough to lead to anti-sociality, since κ (x) < 0 obtains if and only if (1 − m) [1 − s (π (x))] <

(2 − m [1 − s (π (x))]) · n, an inequality which holds for all parameter values.28 In this example, 
cultural transmission thus leads to anti-sociality, and anti-sociality is stronger at low values of 
m. This is because a low cultural import rate enhances fitness interdependence. Note that al-
though genetic and cultural transmission here lead to opposite predictions regarding sociality, 
one qualitative similarity that appears is that like survival under genetic transmission, loyalty un-
der cultural transmission has a positive effect on sociality, κ (x). We also note that the negative 
pro-sociality vanishes as groups tend to become infinitely large: κ (x) → 0 as n → ∞.

To illustrate this, Fig. 3 shows that κ (x) is strictly negative for all m < 1, for different loyalty 
rates and different island sizes: for s0 = 0 and n = 2 (the pink curve), s0 = 0.4 and n = 2 (the 
orange curve), s0 = 0.8 and n = 2 (the blue curve), s0 = 0 and n = 10 (the pink dashed curve), 
s0 = 0.4 and n = 10 (the orange dashed curve), s0 = 0.8 and n = 10 (the blue dashed curve).

5. Conclusion

By combining non-cooperative game theory and evolutionary biology, we have derived several 
novel insights on the evolutionary viability of preferences in social interactions. In particular, 
our model enables analysis of how the tendency of individuals to interact in fairly small groups, 
between which there is limited migration, and between which there may be conflicts, affects such 
preferences. A key strength of the model is that it makes a distinction between material payoffs, 
which typically is the level at which data analysis by economists is conducted, and individual 

28 In evolutionary biology, the same expression as the right hand side of (42) was obtained for the case of no cultural 
loyalty as a marginal attractiveness cost to benefit threshold ratio under which the mutant is favored in a public good 
game (eq. 26 of Lehmann et al., 2008).
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fitness. Our results clearly show that the qualitative nature of evolutionarily viable preferences 
is typically different at the material payoff than at the individual fitness level. Furthermore, our 
results provide an evolutionary justification for preferences as drivers of choice, by connecting 
stability at the strategy level with equilibrium behavior under certain preferences. Our results 
thus address a criticism of the literature on preference evolution, according to which it conflates 
revealed preferences with preferences that drive choice, see, e.g. Newton (2018).

The cognitive assumption we make is that individuals understand what interaction is at hand, 
but they need not know the material payoffs to others or the preferences of others. Moreover, 
our formalization allows for the possibility that in fact there are (finitely) many interactions 
going on simultaneously, or that are randomly selected, and even that each interaction involves 
only a subset of the inhabitants in an island. What is required is symmetry in the sense that all 
individuals face the same probabilities of being involved in any one of the interactions and that 
the interaction at hand is aggregative and symmetric.

However, if individuals also understand the mapping from strategies to material payoffs, a 
remarkable result emerges from our analysis. Under weak selection the nature of the derived 
preferences is independent of the nature of the strategic interaction within islands. This is be-
cause the matching profiles then depend only on the population structure, without any reference 
to material payoffs. Hence, the utility function v0 (see (18)) would remain uninvadable even if 
the mapping from material payoffs to fitness and/or the mapping from strategies to material pay-
offs were to change over time, as long as these changes do not affect the matching probabilities, 
and as long as individuals understand the mapping from strategies to material payoffs and adjust 
the material payoff terms in v0 accordingly.29 Such robustness, however, presumes that Nash 
equilibrium play under the adjusted v0 would be reached. Furthermore, the utility function at 
the fitness level would generally not remain uninvadable. Given that the aforementioned map-
pings have certainly changed over the course of human history, future research should lift the 
assumption of time-invariant mappings.

While our model is general in the sense that we allow for essentially any type of interac-
tions within groups, it also has several limitations. Perhaps the strongest is that we only analyze 
type-homogeneous play and homogeneous populations subject to a single mutant. More realis-
tic models, with heterogeneous individuals, heterogeneous islands and resident populations with 
multiple types are called for. Our hope is that the model proposed here can be fruitfully used to 
this end.

6. Appendix

6.1. Fitness and randomness

We here give details about how we justify the expression of individual direct fitness 
w (πi,π−i , π

∗) in our model. First, we note that, generically in the infinite island model, lin-
eage fitness of a mutant trait τ in a resident population with trait θ is defined as

W (τ, θ) =
n−1∑
k=0

pk (τ, θ) · w̄ (τ, θ, k) , (43)

29 To be more specific, and using Scenario A to illustrate this point, if the mappings f and s in (26) change, while the 
migration probability m as well as the function w remain unchanged, then the weights attached to the components in v0

remain unchanged.
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where w̄ (τ, θ, k) is the expected number of settled offspring in the next demographic time period 
that descend from a given adult mutant with trait τ in a group with exactly k other mutants, and 
thus n − k − 1 individuals with trait θ . More formally, w̄ : �2 ×N0 → R+ is defined as the ex-
pectation of the random number Wτ ∈N0 of settled offspring descending from the given mutant 
(including herself through survival), conditional on the event that in the parental demographic 
time period her island is in state s = (τ, θ, k), that is, with k other mutants (with trait τ ) and the 
other n − k − 1 individuals with trait θ . The stochasticity in the random variable Wτ is due to 
within-generation variability.

Let � = (�1, �2, ..., �n, �∗) be the random payoff vector on an island, where �i is the ran-
dom material payoff obtained by individual i = 1, ..., n at the end of phase one of a demographic 
time period, and �∗ is the random payoff earned by a representative individual in an island where 
all individuals have trait θ . According to our decomposition of a demographic time period into 
two phases (see section 2.1):

w̄ (τ, θ, k) =E [Wτ | k] =E1 [E2 [Wτ | �] | k] , (44)

where E1 is the expectation over all stochastic events occurring during phase 1 of the demo-
graphic time period (potential randomness in the actions taken by individuals, and hence in 
payoffs obtained), while E2 is the expectation over all stochastic events occurring during phase 
2 of the demographic time period (randomness in reproduction, survival, and/or sampling among 
competing offspring).

We note that three sources of within-generation variability can be distinguished in our model: 
(i) within-island trait variability (randomness in the number of other mutants), (ii) within-island 
interaction and payoff variability (for given number of mutants, randomness in the payoff vec-
tor), (iii) within-individual variability (for given number of mutants and payoffs, randomness in 
survival and number of surviving offspring). Hence, equation (43) can be viewed as a three-level 
iterated expectation:

W (τ, θ) =E0 [E1 [E2 [Wτ | �] | k]] . (45)

This is the grand expectation of the random number Wτ of settled offspring descending from 
a mutant randomly sampled from the local lineage of the initial mutant, sampled during the 
random time interval until the first extinction of the local lineage, a time interval that is finite 
with probability one.

We are now in a position to introduce the continuously differentiable individual fitness func-
tion w : Rn+1→ R that maps realized material payoff vectors to the expected number of off-
spring, conditional to the island state s = (τ, θ, k):

w(�τ , 〈�τ ,�θ 〉k ,�∗) =E2 [Wτ | �, τ, θ, k] , (46)

where 〈�τ ,�θ 〉k is the random vector of the island neighbors’ payoffs, when k neighbors (of 
the given mutant) are mutants and the others are residents. We note that in a homogeneous pop-
ulation, that is, where all individuals carry the same trait, irrespective what that trait is, and 
all individuals use the same strategy, the random payoffs are identically and independently 

distributed, and hence, for τ = θ : w(�τ , 〈�τ ,�θ 〉k , �∗) = w(�̃, 
〈
�̃, �̃

〉
, �̃) = 1, due to the 

constancy of the population in our model. Hence,

w̄ (τ, θ, k) =E1
[
w(�τ , 〈�τ ,�θ 〉k ,�∗) | τ, θ, k

]
. (47)
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6.2. Functions and randomness

So far, we imposed no restrictions on the effect of within-generation uncertainty. A key as-
sumption we make in the analysis in the main text is that

E1
[
w(�τ , 〈�τ ,�θ 〉k ,�∗) | τ, θ, k

]= w
(
π (τ |k) , 〈π (τ |k) ,π (θ |k)〉 ,π∗ (θ)

)
, (48)

where π (τ |k) = E1 [�τ | τ, θ, k], π (θ |k) = E1 [�θ | τ, θ, k], π∗ = E1 [�θ | θ, θ, k]. Hence, we 
replace the expectation of a function by the function of the expectation for uncertainty in phase 
1 (type (ii) uncertainty above), which is a substantial assumption, except when all functions are 
affine.

When the game under consideration is but one source for individuals’ fitness and there is 
variance in payoff, equation (48) is less restrictive under weak selection than may first be thought. 
To see this, suppose that the total random payoff to an individual i (who may have trait θ or τ ) 
is the convex combination of two random variables, one exogenous random background payoff 
(from other interactions, say), �b , and the random payoff �̃i from the material game under 
consideration in our model:

�i = (1 − δ)�b + δ�̃i (49)

where δ ∈ (0,1) is small. Then, by way of a Taylor expansion with respect to δ at δ = 0, and 
using the zero-sum property of effects on individuals’ fitnesses, we get (with subscripts on the 
function w denoting partial derivatives):

w(�i,�−i ,�
∗) = 1+ δ ·w1(�b) · �̃i + δ ·

n∑
j=2

wj(�b) · �̃j + δ ·wn+1(�b) · �̃∗ +O(δ2).

(50)

Suppose further that the random baseline payoff �b is statistically independent from that of 
the specific game, which for an mutant individual i denote �̃τ . Then

E1
[
w(�i,�−i ,�

∗)
] = 1 + δ ·E1 [w1(�b)] ·E1

[
�̃i

]

+ δ ·
n∑

j=2

E1
[
wj(�b)

] ·E1

[
�̃j

]
+ δ ·E1

[
wn+1 (�b)

] ·E1
[
�∗] + O(δ2), (51)

which leads to the same results as obtained by eq. (68) here below, but with partial derivatives 
wj(�b) replaced by their expectation.

6.3. Proof of Proposition 1

We show first that Xu ⊆ X̂ (P) is a sufficient condition for u to be uninvadable. Suppose that 
Xu ⊆ X̂ (P). Then for each x̃ ∈ Xu, (8) is satisfied for any strategy y ∈ X played by mutants. 
In other words, there exists no v ∈ F for which some (x, y) ∈ BNE (u, v) does not satisfy the 
inequality in (10). Hence, the condition (10) for u to be uninvadable in � =F is satisfied.

We now show that Xu ⊆ X̂ (P) is a necessary condition for u is uninvadable. Suppose to 
the contrary that u is uninvadable and that there exists some x̃ ∈ Xu such that x̃ /∈ X̂ (P). Then 
there exists some ỹ ∈ X for which the inequality in (10) is not satisfied for (x̃, ỹ). Consider 
the mutant utility function v (xi,x−i ) ≡ ‖xi − ỹ‖2; it induces mutants to play the strategy ỹ
whichever strategy the residents play. Hence, there exists (x, y) ∈ BNE (u, v) for which (10) is 
not satisfied. Since v ∈F , this means that u is invadable in � =F .
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6.4. Proof of Proposition 2

Consider some uninvadable strategy x̂ ∈ X̂ (P). Then

x̂ ∈ arg max
y∈X

n−1∑
k=0

pk

(
y, x̂

) · w̃
(
y,y(k), x̂(n−1−k), x̂

)
. (52)

Suppose now that ux̂ is the resident utility function. To see that x̂ is then a resident strategy, 
note that given that an individual i’s opponents in the group play x̂, ux̂ writes:

ux̂,p
(
xi ,x̂

) (xi, x̂(n−1)
)

=
n−1∑
k=0

pk

(
xi, x̂

) · w̃
(
xi,x(k)

i , x̂(n−1−k), x̂
)

, (53)

so that x̂ is a resident strategy iff

x̂ ∈ arg max
xi∈X

n−1∑
k=0

pk

(
xi, x̂

) · w̃
(
xi,x(k)

i , x̂(n−1−k), x̂
)

, (54)

which is true (to see this, compare this expression to (52)).
However, even if x̂ is the unique strategy satisfying (52), there may exist other resident strate-

gies under ux̂ . Indeed, consider some strategy x̃. This is a resident strategy if

x̃ ∈ arg max
xi∈X

n−1∑
k=0

pk

(
xi, x̂

) · w̃
(
xi,x(k)

i , x̃(n−1−k), x̂
)

. (55)

Lastly, if x̂ is the unique resident strategy under ux̂ , then the set of resident strategies under 
ux̂ is a subset of X̂ (P). This together with Proposition 1 implies that ux̂ is then uninvadable in 
F .

6.5. Proof of Proposition 3

For x to be uninvadable it must be that, given x, y = x is a local maximum of

W(y,x) =
n−1∑
k=0

pk(y, x) w̃
(
y,y(k),x(n−1−k), x

)
, (56)

where y(k) is the k-dimensional vector whose components all equal y, and x(n−1−k) is the 

(n − 1 − k)-dimensional vector whose components all equal x, or ∂W(y,x)
∂y

∣∣∣
y=x

= 0. To evaluate 

this first-order condition, we follow the same calculations as in Lehmann et al. (2015) Appendix 
B. In particular, writing w̃j for the partial derivative of w̃ with respect to its j -th argument,

∂W(y, x)

∂y
=

n−1∑
k=0

[
∂pk(y, x)

∂y
w̃
(
y,y(k),x(n−1−k), x

)]
+ (57)

n−1∑
k=0

⎡
⎣pk(y, x)

k+1∑
j=1

w̃j

(
y,y(k),x(n−1−k), x

)⎤⎦ .



32 I. Alger et al. / Journal of Economic Theory 185 (2020) 104951
Noting that for y = x, w̃
(
y,y(k),x(n−1−k), x

)= w̃
(
x,x(n−1), x

)= 1, which is independent of k
so that it can be factored out in the first term, and that

n−1∑
k=0

(
∂pk(y, x)

∂y

∣∣∣∣
y=x

)
= ∂

∂y

(
n−1∑
k=0

pk(y, x)

)∣∣∣∣∣
y=x

= ∂

∂y
(1)

∣∣∣∣
y=x

= 0, (58)

the expression simplifies to

∂W(y, x)

∂y

∣∣∣∣
y=x

=
n−1∑
k=0

⎡
⎣pk(y, x)

k+1∑
j=1

w̃j

(
y,y(k),x(n−1−k), x

)⎤⎦
∣∣∣∣∣∣
y=x

. (59)

Permutation invariance further implies that for any j ≥ 2, w̃j

(
x,x(n−1), x

) = w̃n

(
x,x(n−1), x

)
(it’s as if the individual whose marginal type change is under consideration were system-
atically labeled to appear as the last component in the vector x(n−1)). Noticing also that ∑n−1

k=0

[
pk(y, x)w̃1

(
y,y(k),x(n−1−k), x

)]∣∣
y=x

= w̃1
(
x,x(n−1), x

)
, we can write:

∂W(y, x)

∂y

∣∣∣∣
y=x

= w̃1

(
x,x(n−1), x

)
+

n−1∑
k=1

⎡
⎣pk(y, x)

k+1∑
j=2

w̃j

(
y,y(k),x(n−1−k), x

)⎤⎦
∣∣∣∣∣∣
y=x

(60)

= w̃1

(
x,x(n−1), x

)
+

n−1∑
k=1

[
pk(x, x)kw̃n

(
x,x(n−1), x

)]

= w̃1

(
x,x(n−1), x

)
+ (n − 1) w̃n

(
x,x(n−1), x

) n−1∑
k=1

[
kpk(x, x)

(n − 1)

]

= w̃1

(
x,x(n−1), x

)
+ r(x, x)w̃n

(
x,x(n−1), x

)
,

which owing to permutation invariance can also be written

∂W(y, x)

∂y

∣∣∣∣
y=x

= w̃1

(
x,x(n−1), x

)
+ r(x, x)

n∑
j=2

w̃j

(
x,x(n−1), x

)
. (61)

6.6. Proof of Proposition 4

The proof begins by deriving a lemma under strategy evolution, which is a generalization of 
Appendix B of Lehmann et al. (2015), and will be a stepping stone towards the result on prefer-
ence evolution stated in the proposition. For this purpose, we define the lineage payoff-advantage
of a mutant strategy y ∈ X in a population of residents using strategy x ∈ X as

�(y,x) =
n−1∑
k=0

p0
k · π̃ (k) (y, x) , (62)

where π̃ (k) (y, x) is the mutant’s payoff advantage when there are k other mutants in her or his 
island, defined by
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π̃ (k) (y, x) = π (y|k) − λ0 ·
[

k

n − 1
π (y|k) + n − 1 − k

n − 1
π (x|k)

]
. (63)

The first term in (63) is the payoff of a descendant of the initial mutant who finds herself in an 
island with k other such descendants. The term in square brackets is the average material payoff 
earned by the other members in the island.

Lemma 1. A strategy x̂ ∈ X is uninvadable under weak selection if and only if

�(y, x̂) ≤ �(x̂, x̂) ∀y ∈ X. (64)

Moreover, 1 − n ≤ λ0 ≤ 1.

Proof of Lemma 1: Let w : Rn+1 → R be any continuously differentiable fitness function, 
let b ∈R, and let b denote the vector in Rn+1 that has all components equal to b. Then, by virtue 
of (86),

w1 (b) +
n∑

j=2

wj (b) + wn+1 (b) = 0, (65)

where an index k = 1, ..., n + 1 stands for the partial derivative of w with respect to its k-th 
argument.

Recalling the definition of π̄ (see (16)), and omitting for notational simplicity the term 
(1 − δ)π0, for any given payoff vector (πi,π−i , π

∗) ∈ Rn+1 a first-order Taylor expansion of 
w with respect to δ evaluated at δ0 writes

w
(
δπi, δπ−i , δπ

∗)= w
(
δ0πi, δ0π−i , δ0π

∗)+ (δ − δ0) · w1
(
δ0πi, δ0π−i , δ0π

∗) · πi (66)

+ (δ − δ0) ·
n∑

j=2

[
wj

(
δ0πi, δ0π−i , δ0π

∗) · πj

]
+ (δ − δ0) · wn+1

(
δ0πi, δ0π−i , δ0π

∗) · π∗ +O(δ2).

Evaluated at δ0 = 0, this expression writes

w
(
δπi, δπ−i , δπ

∗)= w (π0) + δ · w1 (π0) · πi + δ ·
n∑

j=2

wj (π0) · πj

+ δ · wn+1 (π0) · π∗ +O(δ2), (67)

where w (π0) = 1, and π0 is the vector in Rn+1 whose components all equal π0. By permutation 
invariance of w(πi,π−i , π

∗) with respect to the components of π−i , we may for each j =
2, ..., n write wn (π0) instead of wj (π0). Letting β = w1 (π0) and γ = − (n − 1)wn (π0), using 
(65), and rearranging terms, (67) can thus be written

w
(
δπi, δπ−i , δπ

∗)= 1 + δ ·
⎡
⎣β · (πi − π∗)− γ

n − 1

∑
j 	=i

(
πj − π∗)

⎤
⎦+O(δ2). (68)

Letting

λ0 = γ = − (n − 1)wn (π0)
, (69)
β w1 (π0)
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and factoring out β > 0 from (68), and simply omitting to write the factor δ in the fitness function, 
we conclude that for small δ > 0,

w
(
δπi, δπ−i , δπ

∗)= 1 + δ · β
⎡
⎣πi − λ0

∑
j 	=i

πj

n − 1
− (1 − λ0)π

∗
⎤
⎦+O(δ2). (70)

This shows that λ0 quantifies fitness interdependence among patch members (Lehmann et al., 
2015; see also Frank, 1998, and Gardner and West, 2004, for a description, but without a formal 
derivation, of λ0).

The next step of the proof consists in obtaining an expression for local linage fitness under 
weak selection. Under weak selection the evolutionary process is what in biology is called neutral
(Crow and Kimura, 1970; Ewens, 2004; Gillespie, 2004, and, for an explicit example, Rousset, 
2004). Formally, this means that we can write

pk(y, x̂) = p0
k +O(δ) ∀k, (71)

where O(δ) accounts for the deviation (relative to the neutral process) of the strategy-profile 
distribution induced by selection (i.e., δ > 0) that is at most of order δ, where p0

k is strategy-
independent. Second, recalling the definition of w̃ (see (7)) and letting x̂ denote the resident 
strategy, (70) can be written

w̃
(
y,
(

y(k), x̂
)

, x̂
)

= 1 + δβ ·
[
π̃ (k)

(
y, x̂

)− (1 − λ0)π(x̂)
]
+O(δ2), (72)

where 
(
y(k), x̂

)
is the (n − 1)-dimensional vector with k components equal to y and the remaining 

components equal to x̂, and (see equation (63))

π̃ (k)
(
y, x̂

)= π (y|k) − λ0

[
k

n − 1
π (y|k) + n − 1 − k

n − 1
π
(
x̂|k)] . (73)

Using (71) and (72), local lineage fitness (see (2)) writes

W(y, x̂) =
n−1∑
k=0

pk(y, x̂) · w̃
(
y,
(

y(k), x̂
))

(74)

= 1 + δβ ·
n−1∑
k=0

p0
k ·
[
π̃ (k)

(
y, x̂

)− (1 − λ0)π(x̂)
]
+O(δ2).

Recalling the definition of lineage payoff-advantage �(y, x̂) (see (62)), this can be written as

W(y, x̂) = 1 + δβ · [� (
y, x̂

)− (1 − λ0)π(x̂)
]+O(δ2). (75)

Neglecting higher order terms in δ in this equation, the condition for uninvadability [W(y, x̂) ≤
W
(
x̂, x̂

)
for all y ∈ X] under weak selection is equivalent to the condition �(y, x̂) ≤ �(x̂, x̂)

for all y ∈ X.
Finally, we determine the implications of Assumption [M] for the bounds on λ0 = − (n − 1) ·

wn (π0) /w1 (π0), focusing on the non-trivial case wn (π0) 	= 0. Part (ii) of the assumption implies 
− (n − 1) ≤ λ0. Moreover, recalling (65) we obtain λ0 ≤ 1, with strict inequality when either 
wn+1 (π0) < 0 or wn+1 (π0) = 0 and n > 2. Q.E.D.

We are now in a position to complete the proof of the proposition. To establish the first claim of 
the proposition, we note that Lemma 1 implies that Xv0 = X̂. The second claim follows by noting 
that any utility function u ∈F for which some x ∈ Xu is not an element of Xv0 , is invadable.
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6.7. Approximation of the neutral distribution

Standard populations genetics results (see e.g., Lessard, 2007, and references therein) show 
that the neutral distribution of types in an island model with constant group size, and with popu-
lation share of mutants ε > 0, is well approximated by way of the hypergeometric distribution

φj (ε) =
(

j + ωε − 1

j

)(
n − j + ω(1 − ε) − 1

n − j

)
/

(
n + ω − 1

n

)
, (76)

where φj (ε) is the probability that there are j = 0, 1, .., n mutants in any given group, and ω =
r0/(1 − r0) (see Lessard, 2007, equation (7)). Since p0 = (

p0
0, ..., p

0
n−1

)
is the limit distribution 

when ε → 0 of the number of other mutants in a given mutant’s group, we have

p0
k = lim

ε→0
(k + 1)φk+1(ε)/

⎛
⎝ n∑

j=1

jφj (ε)

⎞
⎠ , (77)

for k = 0, 1, ..., n − 1. Upon rearrangements, this produces

p0
k =

(
n

k + 1

)
· (k + 1)ω

n
· �(k + 1)�(ω + n − k − 1)

�(ω + n)
, (78)

where � is the gamma function. This distribution depends only on group size n and pairwise 
relatedness r0.

Numerical comparison between this approximation for the above evolutionary scenarios (that 
can all be subsumed under the relatedness in (40)) and the exact distribution shows that the 
average total variation between the approximate and exact distributions is quite small. Sampling 
randomly 10 000 values of s and m when n = 5 gives an average total variation of 0.005, a 
variation that should diminish with n. It can also be shown that in the special case of a Moran 
process (s (πi) = 1/n) the approximation is in fact exact. (Indeed it can be verified that the 
expression in (78) then reduces to equation D.6 in Lehmann et al., 2015.)

6.8. Proof of Proposition 5

Recalling that

w̃(xi,x−i , x) = w
(
π (xi,x−i ) ,

(
π
(
xj ,x−j

))
j 	=i

, π∗ (x)
)

, (79)

we obtain

w̃1

(
x,
(

y(0),x
)

, x
)

(80)

= w1

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)
· π1

(
x,
(

y(0),x
))

+ (n − 1) · wn

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)
· πn

(
x,
(

y(0),x
))

,

where 
(
π
(
x,
(
y(0),x

)))(n−1)
denotes the (n − 1)-dimensional vector whose components all 

equal π
(
x,
(
y(0),x

))
, and
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w̃n

(
x,
(

y(0),x
)

, x
)

(81)

= w1

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)
· πn

(
x,
(

y(0),x
))

+ (n − 2) · wn

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)
· πn

(
x,
(

y(0),x
))

+wn

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)
· π1

(
x,
(

y(0),x
))

.

Substituting the last two equations into the last line of (60) produces

0 = w1

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)
· π1

(
x,
(

y(0),x
))

(82)

+ (n − 1) · wn

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)

·πn

(
x,
(

y(0),x
))

+ r (x, x) (n − 1)w1

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)

·πn

(
x,
(

y(0),x
))

+ r (x, x) (n − 1) (n − 2) · wn

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)

·πn

(
x,
(

y(0),x
))

+ r (x, x) (n − 1)wn

(
π
(
x,
(

y(0),x
))

,
(
π
(
x,
(

y(0),x
)))(n−1)

, π∗ (x)

)

·π1

(
x,
(

y(0),x
))

.

Noting that with the notation used in this proof, λ (x) writes

λ (x) = −
(n − 1)wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

) , (83)

(82) can be written

π1

(
x,
(

y(0),x
))

+ (n − 1) ·
r (x, x) − λ (x)

[
1

n−1 + r (x, x) n−2
n−1

]
1 − λ (x) r (x, x)

· πn

(
x,
(

y(0),x
))

= 0,

(84)

or

[1 − κ (x)] · π1

(
x,
(

y(0),x
))

+ κ (x) ·
n∑

k=1
πk

(
x,
(

y(0),x
))

= 0. (85)
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6.9. Proof of Proposition 6

To show that κ (x) ∈ [−1,1], we begin by studying λ (x). Note that the terms that define λ (x)

are partial derivatives evaluated in a homogeneous population. Furthermore, since population size 
is constant in a homogeneous population, each individual’s fitness would remain at 1 following 
a marginal change in the material payoff of all the individuals in the population. Formally:

∂w (πi,π−i , π
∗)

∂πi

∣∣∣∣
πi=πj =π∗

+
∑n

j=2

∂w (πi,π−i , π
∗)

∂πj

∣∣∣∣
πi=πj =π∗

(86)

+ ∂w (πi,π−i , π
∗)

∂π∗

∣∣∣∣
πi=πj =π∗

= 0.

By permutation invariance, and using a more compact notation, this writes w1 (·)+ (n − 1)wn (·)
+ wn+1 (·) = 0. Using this and the assumption w1 (·) > 0,

λ (x) < 1 ⇔ − (n − 1)wn (·) < w1 (·) (87)

⇔ w1 (·) + wπ∗ (·) < w1 (·) ,

which is true by Assumption [M] (iii).
Since r (x, x) ∈ [0,1] for all x this implies that λ (x) r (x, x) < 1, and hence

κ (x) ≤ 1 ⇔ r (x, x) − λ (x)

[
1

n − 1
+ r (x, x)

n − 2

n − 1

]
≤ 1 − λ (x) r (x, x) (88)

⇔ λ (x)

[
r (x, x) − 1

n − 1
− r (x, x)

n − 2

n − 1

]
≤ 1 − r (x, x)

⇔ λ (x)

[
r (x, x) − 1

n − 1

]
≤ 1 − r (x, x)

⇔ λ (x) ≥ − (n − 1)

⇔ − (n − 1)wn (·)
w1 (·) ≥ − (n − 1)

⇔ wn (·) ≤ w1 (·) ,

which is true by virtue of Assumption [M] (ii).
We now show that κ (x) ≥ −1. For any λ (x) < 1, κ (x) is increasing in r (x, x). Indeed, the 

partial derivative of the expression for κ (x) with respect to r (x, x) has the same sign as (in this 
expression r ≡ r (x, x) and λ ≡ λ (x))

[(n − 1) (1 − λ) + λ] (n − 1) (1 − λr) + λ (n − 1) [r (n − 1) (1 − λ) − λ (1 − r)] (89)

= (n − 1) (1 − λ) (n − 1 + λ) .

For the inequality κ (x) ≥ −1 to hold, it is thus sufficient that κ (x) ≥ −1 for r (x, x) = 0, a 
condition which reduces to

−λ (x) ≥ − (n − 1) , (90)

which is true for any n ≥ 2 since λ (x) < 1.
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Finally,

κ (x) ≤ r (x, x) ⇔
r (x, x) − λ (x)

[
1

n−1 + r (x, x) n−2
n−1

]
1 − λ (x) r (x, x)

≤ r (x, x) (91)

⇔ r (x, x) − λ (x)

[
1

n − 1
+ r (x, x)

n − 2

n − 1

]
≤ r (x, x) [1 − λ (x) r (x, x)]

⇔ λ (x) [r (x, x)]2 ≤ λ (x)

[
1

n − 1
+ r (x, x)

n − 2

n − 1

]
⇔ λ (x) r (x, x) [1 − [1 − r (x, x)] (n − 1)] ≤ λ (x) .

This inequality is true if and only if λ (x) ≥ 0 by virtue of the fact that for all r (x, x) ∈ [0, 1) we 
have r (x, x) [1 − [1 − r (x, x)] (n − 1)] ≤ 1. Likewise, it is clear that κ (x) > r (x, x) if and only 
if λ (x) < 0.

Finally, the last result stated in the proposition is implied by (20) together with Assumption
[M] (i).

6.10. Calculating the coefficients of fitness interdependence and pairwise relatedness

6.10.1. Scenario A: genes
To calculate λ (x) we begin by calculating the partial derivatives needed for this purpose. 

Here, from the individual fitness function (26):

∂w (πi,π−i , π
∗)

∂πj

= −∂s
(
πj

)
∂πj

· (1 − m)f (πi)

(1 − m)
∑n

j=1 f
(
πj

)+ nmf (π∗)
(92)

−
⎛
⎝n −

n∑
j=1

s
(
πj

)⎞⎠ · (1 − m)2 f (πi)
[
∂f
(
πj

)
/∂πj

]
[
(1 − m)

∑n
j=1 f

(
πj

)+ nmf (π∗)
]2

and

∂w (πi,π−i , π
∗)

∂πi

= ∂s (πi)

∂πi

− ∂s (πi)

∂πi

· (1 − m)f (πi)

(1 − m)
∑n

j=1 f
(
πj

)+ nmf (π∗)
(93)

+
⎛
⎝n −

n∑
j=1

s
(
πj

)⎞⎠ · (1 − m) [∂f (πi) /∂πi]

(1 − m)
∑n

j=1 f
(
πj

)+ nmf (π∗)

−
⎛
⎝n −

n∑
j=1

s
(
πj

)⎞⎠ · (1 − m)2 f (πi)
[
∂f
(
πj

)
/∂πj

]
[
(1 − m)

∑n
j=1 f

(
πj

)+ nmf (π∗)
]2

+ [
1 − s

(
π∗)] · m [∂f (πi) /∂πi]

f (π∗)

Writing s′ (π∗) for 
∂s
(
πj

)
∂πj

∣∣∣
πj =π∗ and f ′ (π∗) for 

∂f
(
πj

)
∂πj

∣∣∣
πj =π∗ , we obtain (upon simplification)

∂w (πi,π−i , π
∗)

∂πj

∣∣∣∣ ∗
= −s′ (π∗) · 1 − m

n
− [

1 − s
(
π∗)] · (1 − m)2 f ′ (π∗)

nf (π∗)
(94)
πi=πj =π
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and

∂w (πi,π−i , π
∗)

∂πi

∣∣∣∣
πi=πj =π∗

(95)

= 1

n
(n + m − 1) s′ (π∗)+ [

1 − s
(
π∗)] f ′ (π∗)

nf (π∗)

[
n − (1 − m)2

]
.

Upon simplification, we thus obtain

λ (x) =
(n − 1) (1 − m)

{
(1 − m)

[
1 − s (π∗)

] f ′(π∗)
f (π∗) + s′ (π∗)

}
[
n − (1 − m)2] [1 − s (π∗)] f ′(π∗)

f (π∗) + (n + m − 1) s′ (π∗)
. (96)

The expression in (28) obtains by setting s′ (π∗) = 0.
To calculate r (x, x), one uses a recursion equation (this is a standard technique for calculating 

probabilities of identity by descent; see Nagylaki, 1992, and Rousset, 2004, for a background). 
In the scenario at hand, this equation writes

r (x, x) = [
s
(
π∗)]2 r (x, x) + 2s

(
π∗) [1 − s

(
π∗)] (1 − m)

[
1

n
+ n − 1

n
r (x, x)

]
(97)

+ [
1 − s

(
π∗)]2 (1 − m)2

[
1

n
+ n − 1

n
r (x, x)

]
.

The left-hand side is the probability that, in a monomorphic population in which all individuals 
play x, the neighbor of a randomly drawn member of a certain local lineage is also a member of 
this local lineage. The terms on the right-hand side details the events in which this happens. The 
first term on the right hand side corresponds to the event that both the individual at hand and the 
randomly drawn neighbor survived from the previous period. The second term on the right hand 
side corresponds to the two events in which either the individual at hand or the randomly drawn 
neighbor survived from the previous period while the other didn’t, and the one who didn’t survive 
from the previous period did not migrate in from another island. In this case, there is a probability 
1/n that one is the offspring of the other, in which case they are both members of the same local 
lineage with certainty; with the complementary probability, they are not parent and child, in 
which case the probability that they are both members of the same local lineage equals r (x, x). 
The third term on the right hand side corresponds to the event in which neither the individual at 
hand nor the randomly drawn neighbor survived from the previous period, and neither of them 
migrated in from another island. In this case, there is a probability 1/n that they have the same 
parent, in which case they are both members of the same local lineage with certainty; with the 
complementary probability, they have different parents, in which case the probability that they 
are both members of the same local lineage equals r (x, x). Solving (97) for r (x, x) yields

r (x, x) = (1 − m)2 + (
1 − m2

)
s (π∗)

n − (n − 1) (1 − m)2 + [
1 + (n − 1)m2

]
s (π∗)

. (98)

The expression in (27) obtains by replacing s (π∗) by s0.

6.10.2. Scenario B: guns
In the biological scenario with wars, we obtain from the individual fitness function (30):

∂w (πi,π−i , π
∗)

(99)

∂πj
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= 2ρ
[
∂g
(
π ,π∗)/∂πj

] · [m · f (πi)

f (π∗)
+

(1 − m)n · f (πi)

(1 − m)
∑n

j=1 f
(
πj

)+ nmf (π∗)

]

− [(1 − ρ) + 2ρg
(
π ,π∗)] · (1 − m)n · (1 − m)f (πi)

[
∂f
(
πj

)
/∂πj

]
[
(1 − m)

∑n
j=1 f

(
πj

)+ nmf (π∗)
]2

and

∂w (πi,π−i , π
∗)

∂πi

(100)

= 2ρ
[
∂g
(
π ,π∗)/∂πi

] · [m · f (πi)

f (π∗)
+

(1 − m)n · f (πi)

(1 − m)
∑n

j=1 f
(
πj

)+ nmf (π∗)

]

+ [(1 − ρ) + 2ρg
(
π ,π∗)] · (1 − m)n ·

·
[
(1 − m)

∑n
j=1 f

(
πj

)+ nmf (π∗)
]
∂f (πi) /∂πi − (1 − m)f (πi)

[
∂f
(
πj

)
/∂πj

]
[
(1 − m)

∑n
j=1 f

(
πj

)+ nmf (π∗)
]2

+m
∂f (πi) /∂πi

f (π∗)
. (101)

By permutation invariance of g, write gn (π∗,π∗) for 
∂g
(
π,π∗)
∂πj

∣∣∣
πj =π∗ for all j = 1, ..., n. Since, 

moreover, g (π ,π∗) = 1/2, upon simplification we obtain:

∂w (πi,π−i , π
∗)

∂πj

∣∣∣∣
πi=πj =π∗

= 2ρgn

(
π∗,π∗)− (1 − m)2 f ′ (π∗)

nf (π∗)
(102)

and

∂w (πi,π−i , π
∗)

∂πi

∣∣∣∣
πi=πj =π∗

= 2ρgn

(
π∗,π∗)− (1 − m)2 f ′ (π∗)

nf (π∗)
+ f ′ (π∗)

f (π∗)
, (103)

so that

λ (x) = −
(n − 1)

[
2ρgn (π∗,π∗) − (1−m)2f ′(π∗)

nf (π∗)

]
2ρgn (π∗,π∗) + [

n − (1 − m)2
] f ′(π∗)

nf (π∗)
. (104)

The recursion equation to calculate r (x, x) writes

r (x, x) = (1 − m)2
[

1

n
+ n − 1

n
r (x, x)

]
. (105)

In this scenario, the only event in which a randomly drawn individual can belong to the same local 
lineage as a randomly drawn neighbor, is when both stayed in their natal island. In this case, there 
is a probability 1/n that they have the same parent, in which case they belong to the same local 
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lineage with certainty; with the complementary probability, they have different parents, in which 
case the probability that they belong to the same local lineage is r (x, x). Solving for r (x, x)

yields

r (x, x) = (1 − m)2

n − (n − 1) (1 − m)2 . (106)

6.10.3. Scenario B: wars (weak selection)
Recall that under weak selection we write the individual fitness of individual i as

w (π̄i, π̄−i , π̄
∗), where (π̄i , π̄−i , π̄

∗) = ((1 − δ)π0 + δπi, (1 − δ)π0 + δπ−i , (1 − δ)π0 + δπ∗)
(here π0 is the (n − 1)-dimensional vector whose components all equal π0) and δ ≥ 0 represents 
the intensity of selection (see (16)). From (69) in the proof of Proposition 5, we have

λ0 = −
∑

j 	=i
∂w (π̄i , π̄−i , π̄

∗) /∂π̄j

∣∣
δ=0

∂w (π̄i, π̄−i , π̄∗) /∂π̄i |δ=0
. (107)

Since, for δ = 0, π̄i = π̄j = π̄∗, we obtain from (102) and (103) that

∂w (π̄i, π̄−i , π̄
∗)

∂π̄j

∣∣∣∣
δ=0

= 2ρgn

(
π̄∗, π̄∗)− (1 − m)2 f ′ (π̄∗)

nf (π̄∗)
(108)

and

∂w (π̄i, π̄−i , π̄
∗)

∂π̄i

∣∣∣∣
δ=0

= 2ρgn

(
π̄∗, π̄∗)− (1 − m)2 f ′ (π̄∗)

nf (π̄∗)
+ f ′ (π̄∗)

f (π̄∗)
. (109)

With the expressions for f and g given in (33) and (34), and the assumption that V (π̄i, π̄−i ) =
(1 − δ)nπ0 + δ

(
πi +∑

j 	=i πj

)
(note that we assume that the intensity of selection is the same 

for fecundity and for the probability of winning wars; one can also allow for different selection 
intensities), we have:

f ′ (π̄∗)
f (π̄∗)

= 1 (110)

and

gn

(
π̄∗, π̄∗)= 1

4
. (111)

Hence, we get

λ0 = −
(n − 1)

[
ρ/2 − (1−m)2

n

]
ρ/2 − (1−m)2

n
+ 1

, (112)

which upon simplification gives the expression in (35). It can then be verified that, together with 
the fact that r0 is given by (106), this gives the expression for κ0 in (36).

6.10.4. Scenario C: culture
In the cultural scenario, we have from (38):

∂w (πi,π−i , π
∗)

∂πj

= −∂s
(
πj

)
∂πj

· (1 − m)f (πi)∑n
f
(
π
) (113)
j=1 j
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−
⎛
⎝n −

n∑
j=1

s
(
πj

)⎞⎠ · (1 − m)f (πi)
[
∂f
(
πj

)
/∂πj

]
[∑n

j=1 f
(
πj

)]2

and

∂w (πi,π−i , π
∗)

∂πi

= ∂s (πi)

∂πi

− ∂s (πi)

∂πi

· (1 − m)f (πi)∑n
j=1 f

(
πj

) (114)

+ (1 − m)

⎛
⎝n −

n∑
j=1

s
(
πj

)⎞⎠ ·
[∂f (πi) /∂πi]

[∑
j 	=i f

(
πj

)]
[∑n

j=1 f
(
πj

)]2

+ [
1 − s

(
π∗)] · m [∂f (πi) /∂πi]

f (π∗)
.

Upon simplification, we obtain:

∂w (πi,π−i , π
∗)

∂πj

∣∣∣∣
πi=πj =π∗

= − (1 − m)

n

[
s′ (π∗)+ [

1 − s
(
π∗)] · f ′ (π∗)

f (π∗)

]
(115)

and

∂w (πi,π−i , π
∗)

∂πi

∣∣∣∣
πi=πj =π∗

=
(

n − 1 + m

n

)[
s′ (π∗)+ [

1 − s
(
π∗)] · f ′ (π∗)

f (π∗)

]
.

(116)

Hence:

λ (x) = (n − 1) (1 − m)

n − 1 + m
. (117)

For r (x, x) the recursion equation writes

r (x, x) = [
s
(
π∗)]2 r (x, x) + 2 (1 − m)s

(
π∗) [1 − s

(
π∗)][1

n
+ n − 1

n
r (x, x)

]
(118)

+ (1 − m)2 [1 − s
(
π∗)]2 ·

[
1

n
+ n − 1

n
r (x, x)

]
.

The first term on the right-hand side corresponds to the event that both the individual at hand 
and the randomly drawn neighbor have been loyal to their parents, where the neighbor’s parent 
belongs to the individual’s lineage with probability r (x, x). The second term on the right hand 
side corresponds to the event that either the individual at hand was loyal to its parent but the 
randomly drawn neighbor was not loyal to its parent, or the other way around. In this case, there is 
a probability 1/n that the non-loyal child acquired its trait from the loyal child’s parent, in which 
case they both belong to the same local lineage with certainty, while with the complementary 
probability this did not happen, in which case the probability that the randomly neighbor belongs 
to the same local lineage is r (x, x). The third term on the right hand side corresponds to the 
event that neither the individual at hand nor the randomly drawn neighbor were loyal to their 
parents but both of them acquired their trait from someone in the island. In this case, there is 
a probability 1/n that they acquired their type from the same adult, in which case they belong 
to the same local lineage with certainty; with the complementary probability they have different 
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cultural parents, in which case the probability that the randomly drawn neighbor belongs to the 
same local lineage as the individual at hand is r (x, x). We note that the equation simplifies to

r (x, x) = [
s
(
π∗)]2 r (x, x) + 2s

(
π∗) [1 − s

(
π∗)] (1 − m)

[
1

n
+ n − 1

n
r (x, x)

]
(119)

+ [
1 − s

(
π∗)]2 (1 − m)2

[
1

n
+ n − 1

n
r (x, x)

]
.

The expression in the text obtains upon observing that this equation is identical to the one in 
(97).
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