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Quantifying Accuracy Improvement in Sets of Pooled Judgments: Does Dialectical 

Bootstrapping work? 

 Galton (1907) first demonstrated the “wisdom of crowds” phenomenon by averaging 

independent estimates of unknown quantities given by many individuals. Herzog and Hertwig 

(2009; hereafter H&H) showed that individuals’ own estimates can be improved by asking them 

to make two estimates at separate times and averaging them.  

 H&H claimed to observe far greater improvement in accuracy when participants received 

“dialectical” instructions to consider why their first estimate might be wrong before making their 

second estimates than when they received standard instructions. We reanalyzed H&H’s data 

using measures of accuracy that are unrelated to the frequency of identical first and second 

responses and found that participants in both conditions improved their accuracy to an equal 

degree.  

Method 

Participants estimated the date of 40 historical events, R1. In the control condition, they 

made second estimates, R2, without special instructions. In the dialectical bootstrapping (DB) 

condition, they were instructed to think about why R1 might have been wrong before giving R2.  

Results 

For each participant and item, i, H&H subtracted the absolute difference between the 

average of the participant’s two responses, R̄, and the true response, T, from the absolute 

difference between R1 and T. The median of these 40 difference scores was the participant’s 

accuracy change score, Adiff: 
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Adiff = Mdni=1

i=40
R1,i − Ti − R i − Ti

R1,i − Ti
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 
         (1) 

The mean value of Adiff was significantly higher in the DB condition, 0.046 (SE = 0.008), than in 

the control condition, 0.010 (0.008), t (99) = 3.12, p = .002. 

H&H did not report a further difference between the conditions that was confounded with 

Adiff. In the DB condition, almost none of the second responses matched the participant’s first 

response to the item, P(R1=R2) = 0.7% (1.4%). In the control condition, participants’ responses 

matched 20.2% (1.3%) of the time, significantly more than in the DB condition, t (99) = 10.3, p 

< .001. When R1 equals R2 then Adiff is 0 and in fact the median Adiff in the control condition was 

0 for 29 of the 51 participants, causing the mean Adiff across all participants to be close to 0. In 

the DB condition, only two of the 50 participants had a median Adiff of 0. The confounding of 

these two measures is reflected in the significant correlation between P(R1=R2) and Adiff, r (99) = 

-.307, p = .002. 

We prefer to measure accuracy change independently of the proportion of identical 

responses. Instead of using a median value of the differences in accuracy, like Adiff, we analyzed 

a pair of median accuracy values for each participant. In addition, we used absolute measures of 

accuracy instead of relative measures because relative measures that have been used in hindsight 

bias research that have similarities to Adiff have “awkward statistical properties” (Pohl, 2007, p. 

22). 

For each participant, we took a pair of values: The median absolute error of R1 across the 

40 items, A1, and the median absolute error of R̄, Aavg: 
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A1 = Mdni=1

i=40
R1,i − Ti( )         (2) 

Aavg = Mdn i=1

i=40
R i − Ti( )         (3) 

We analyzed this data using a mixed-design ANOVA including the independent variables of 

response (R1 vs. R̄, within-subject) and condition (DB vs. control, between-subjects). R̄ was 

significantly more accurate than R1; F (1, 99) = 14.8, p < .001, M = 125.6 (4.8) and 130.7 (4.6), 

respectively. More importantly, the response by condition interaction was not significant, F (1, 

99) = 0.00, p = .98: The magnitude of the effect in the DB condition, d = 0.38, was not 

significantly different from that in the control condition, d = 0.39.  

When using these paired accuracy measures (A1 and Aavg), there is no support for the 

effectiveness of the DB instructions beyond that of the control instructions. Tellingly, the 

accuracy gain shown by these paired accuracy measures (measured as A1 - Aavg) is unrelated to 

P(R1=R2), r (99) = 0.003, p = .97. A robust Wald test showed that this correlation is significantly 

lower than that reported above between P(R1=R2) and Adiff, χ
2
(1, n=101) = 4.85, p = .03.  

[Insert Table 1 approximately here] 

The results for all of these measures are shown in Table 1. Several alternative accuracy 

measures are included in the online Supplemental Material. Every variation that is similar to Adiff 

in that the median of a set of difference scores is used (whether the value is normalized for item 

difficulty, as in Adiff, or not) is significantly correlated with P(R1=R2) and every variation that 

uses a set of paired accuracy scores for each person, similar to A1 and Aavg (again, whether the 

values are normalized or not), is not significantly correlated with P(R1=R2). Importantly, it is 
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only the accuracy measures that are correlated with P(R1=R2) that show significant differences 

between the conditions.  

Discussion 

H&H concluded that the accuracy gained by making a second response was significantly 

greater for participants in the dialectical bootstrapping than in the control condition. This 

conclusion was based on an accuracy change measure that is confounded with the proportion of 

identical first and second responses. Participants in the DB condition were instructed to "assume 

that your first estimate is off the mark ... make a second, alternative estimate" (H&H, p. 234). 

Observing a difference between the conditions when using a measure that is confounded with the 

difference in the proportion of identical responses therefore only serves as a manipulation check.  

Using measures that are independent of each other is important in many fields of 

research. In hindsight bias research, measures of the percentage of perfect recall must be 

separated from measures of retrieval bias (Pohl, 2007). 

When using measures of accuracy that are uncorrelated with the proportion of identical 

first and second responses the difference between the conditions disappears. People may have 

some awareness of when they cannot improve upon their first response and in these cases they 

will only change their response if explicitly instructed to do so. There is no evidence in H&H's 

data that encouraging people to alter their responses more often than they would do without 

special instructions yields more accurate average responses. Dialectical instructions are not 

needed to achieve the wisdom of many in one mind. 
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Table 1. Descriptive and Inferential Statistics for Various Dependent Measures. 

_____________________________________________________________________________________ 

Condition / Type of Analysis                                         Measure 

                                                                 ____________________________________________________ 

     A1           Aavg          A1 - Aavg               Adiff                 P(R1=R2) 

_____________________________________________________________________________________ 

Dialectical bootstrapping condition, M    130.9       125.8            5.1                   0.046      .007 

Control condition, M                                130.5       125.4            5.1                   0.010      .202 

Response x condition, F (1,99)     0.00, p = .98   

Condition, t (99)                3.12, p = .002     10.3, p < .001 

Correlation with P(R1=R2), r (99)                                -.003, p = .97                              -.307, p < .001 

_____________________________________________________________________________________ 

Note: R1 = first response; R2 = second response; R̄ = average of R1 and R2; A1 = median absolute 

error of R1; Aavg = median absolute error of R̄; Adiff = median relative difference between 

accuracy of R1 and R̄; P(R1=R2) = proportion of items for which R1 and R2 were identical. Refer 

to online Supplemental Material for results from one more control condition and additional 

accuracy measures.  
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To test the robustness of the conclusions in our commentary, we present a more 

complete set of analyses as Supplemental Material. We include five different accuracy 

measures (instead of two) and the data from all three of Herzog and Hertwig’s (2009; hereafter 

referred to as H&H) experimental conditions (instead of two).  

Measures 

In the equations below, R1,p,i is participant p's first response to item i. R̄,p,i is participant 

p's mean response to item i, and Ti is the correct value for item i.  

In our commentary, we referred to H&H's main measure of accuracy improvement as 

Adiff. It is a median Difference score and each value is Normalized using a measure of item 

difficulty that is specific to that Individual. Because of the number of similar accuracy 

measures presented in this Supplemental Material, we must alter the labeling system, and so 

we refer to this accuracy measure as Diff-Norm-Ind or A
DNI

: 

Ap

DNI
= Mdn i=1

i=40
R1,p,i − Ti − R p ,i − Ti

R1,p,i − Ti

 

 

 
 

 

 

 
 
      

(S1) 

We referred to the other main accuracy measure in the commentary as the pair of 

values A1 and Aavg. It is a Paired value with each value being Non-Normalized, and so we refer 

to it as Prd-Non-Norm, or A
PNN

:  

Ap,1

PNN
= Mdni=1

i=40 R1,p,i − Ti( )        
(S2a) 

Ap,1& 2

PNN
= Mdn i=1

i=40
R p ,i − Ti( )

        
(S2b) 

Diff-Norm-Ind not only differs from Prd-Non-Norm because Diff-Norm-Ind is based on 

difference scores instead of paired accuracy scores, but also because the values are 

normalized. To investigate whether normalization was important, we used a variation of Prd-

Non-Norm in which the values were normalized. 

To normalize the values, Diff-Norm-Ind uses the absolute error observed in the 

individual's first response, |R1,p,i-T|, which we refer to as Dp,i. It does not make sense to use Dp,i 

when normalizing the paired accuracy data because the first value in the pair would always be 

1 and the second value would only differ from Diff-Norm-Ind by a constant. We therefore used 

a more stable measure of item difficulty for each item i, which was the median (across all 

participants, p) of the absolute difference between each participant's average response and the 



true score for that item. We refer to this as the median item difficulty or Dmdn,i, the formal 

definition is: 

Dmdn,i = Mdn p =1

p =n
R1,i,p + R2,i,p

2
− Ti

 

 
 

 

 
 

      

 (S3) 

We call the accuracy measure obtained by taking the Paired accuracy data and 

Normalizing using the Median item difficulty value the Prd-Norm-Mdn or A
PNM

:  

Ap,1

PNM
= Mdni=1

i=40
R1,p,i − Ti

Dmdn,i

 
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 
 

 

 

 
         (S4a) 

Ap,1& 2

PNM
= Mdn i=1

i=40
R p,i − Ti

Dmdn,i
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 
         (S4b)

 

To determine whether it changes the results substantially when different measures of 

item difficulty are used, we also analyzed a variation in which a Difference score was 

Normalized using the Median item difficulty, we refer to this measure as Diff-Norm-Mdn or 

A
DNM

. This measure is very analogous to Prd-Norm-Mdn.  

Ap

DNM
= Mdn i=1

i=40
R1,p,i − Ti − R p ,i − Ti

Dmdn,i

 

 

 
 

 

 

 
 
      

(S5) 

Finally, we also analyzed a Difference score that was Non-Normalized, which we refer 

to as Diff-Non-Norm or A
DNN

. This measure is very analogous to Prd-Non-Norm. 

A
DNN

= Mdn i=1

i=40
R1,p,i − Ti − R p ,i − Ti( )      (S6) 

One might expect that if the difference was taken between any two values in the paired 

data, then the result should be the same as the difference score, and this would mean that some 

of the accuracy measures are redundant. However, this is only true if all the values are based 

on means, but because medians are used, none of these measures are redundant. It is necessary 

to use the median(s) to summarize an individual's data in this dataset because of the skewed 

distributions and extreme outliers that would make the mean values a poor measure of central 

tendency. 

Results and Discussion 

The results are shown in Table S1. We present the mean values in each condition, 

which is either a pair of scores or a single difference score. For the paired scores, we report the 



result of the inferential test for the interaction of response type (R1 vs. R̄) and condition (DB 

vs. control). For the difference scores, we present the result of the main effect of condition. 

The first inferential test listed, with 1 and 99 degrees of freedom, involves the DB and main 

control condition. H&H also conducted a second control condition, which is explained in the 

original manuscript. There are two ways to include the second control condition – either treat 

the factor of condition as having three levels, or maintain just two levels and combine the data 

from the two control conditions to increase the power of the test. We present the results using 

both methods, with the former having 2 and 148 degrees of freedom and the latter method 

having 1 and 149.  

As shown in the table, the results are consistent across all versions of the analyses. The 

response by condition interaction is not statistically significant for any of the paired accuracy 

measures, but the effect of condition is statistically significant for all of the difference 

measures. The conclusions that we present in our commentary therefore do not depend on 

which version of the analysis is considered most appropriate. 

We also correlated the proportion of identical first and second responses, P(R1=R2), 

with each accuracy measure, and the results are given in the bottom row of the table. For the 

paired accuracy scores, we computed a difference score for each participant based on their 

paired values; the means of these values in each condition are shown in the columns labeled R1 

- R̄. The correlations all include the data from all participants in all three conditions. Once 

again, the conclusions do not depend on the exact version of the accuracy measure used – 

there is always a significant correlation between the difference scores and the proportion of 

identical responses, and no significant correlation between the difference in the paired 

accuracy measures and the proportion of identical responses. 

It is the combination of the use of difference scores, the need to take median values, 

and the distribution of values within each participant that caused H&H's main measure of 

accuracy change to be correlated with the proportion of identical first and second responses. 

This is true for all measures that are based on median difference scores. It is not true for any 

that yield a pair of median accuracy values.



Table S1. Means and Inferential Statistical using Five Different Accuracy Measures. 

______________________________________________________________________________________________________________________________________ 

            Measure    

 ______________________________________________________________________________________________________ 

      Prd-Non-Norm      Prd-Norm-Mdn Diff-Non-Norm   Diff-Norm-Mdn    Diff-Norm-Ind
            

P (R1=R2) 

 _________________ __________________ 

   R1          R̄       R1 - R̄    R1          R̄       R1 - R̄  

______________________________________________________________________________________________________________________________________ 

Dialectical bootstrapping condition 130.9    125.8     5.1 1.077    1.028     0.049         7.36            0.051          0.046                 .007 

Original control condition 130.5    125.4     5.1 1.035    1.009     0.026         1.34            0.010          0.010                 .202 

Second control condition  112.5    107.4     5.1 0.953    0.908     0.045         1.78            0.018           0.022                 .170 

Response x condition, F (1,99)  0.00, p = .98  2.16, p = .15 

Response x condition, F (2,148)  0.00, p = 1.0 1.11, p = .33 

Response x condition, F (1,149)  0.00, p = .99 1.02, p = .31 

Condition, F (1,99)    15.2, p < .001     13.7, p < .001    9.90, p = .002      105, p < .001 

Condition, F (2,148)    13.3, p < .001     10.0, p < .001    6.38, p = .002      50.3, p < .001 

Condition, F (1,149)    26.6, p < .001     19.4, p < .001    11.6, p = .001      97.2, p < .001 

Correlation with P(R1=R2), r (149)                -.097, p = .24                  -.133, p = .10 -.368, p < .001   - .373, p < .001    -.354, p < .001 

______________________________________________________________________________________________________________________________________ 

Note. See text for explanation of measures and analyses. 

 

 

 


