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Abstract
Background: The need to improve spinal motor behaviour in chronic low back 
pain (CLBP) rehabilitation remains unclear. The objective of this study was to test 
if changes in spinal motor behaviour were associated with changes in disability 
after an interdisciplinary rehabilitation program (IRP) in patients with CLBP.
Methods: Seventy-one patients with CLBP participating in an IRP were included. 
Spinal motor behaviour was assessed with biomechanical (lumbar angular am-
plitude and velocity, erector spinae muscle activity and duration of the task), 
cognitive-emotional (task-specific fear [PRF]) and pain-related (movement-evoked 
pain [MEP]) measures during a lifting task before and after the IRP. Disability was 
measured before and after the IRP, and at 3-month and 1-year follow-ups.
Results: After adjusting for confounders, changes in disability were significantly as-
sociated with MEP changes (β adj. = 0.49, p < 0.001) and PRF changes (β adj. = 0.36, 
p = 0.008), but not with changes in any of the biomechanical measures. MEP at the 
end of IRP was also associated with disability at 3 months (β adj. = 0.37, p = 0.001) and 
1 year (β adj. = 0.42, p = 0.01). Biomechanical measures at the end of the IRP were 
not associated with disability, except for the duration of the task that was signifi-
cantly associated with reduction of disability at 3 months (β non-adj = 0.5, p < 0.001).
Conclusions: Pain-related and cognitive-emotional measures of spinal motor 
behaviour were associated with reduction in disability following an IRP. Future 
research is needed to further investigate causal relationships between spinal 
motor behaviour and disability.
Significance statement: This study supports a multidimensional understand-
ing and analysis of spinal motor behaviour, integrating the cognitive-emotional, 
pain-related and biomechanical domains. It also supports the consideration of 
spinal motor behaviour as a potentially important treatment target in chronic low 
back pain management. Moreover, it suggests that reducing movement-evoked 
pain and task-specific fear may have more influence on disability than changing 
lumbar amplitude, lumbar angular velocity or erector muscle activity, which may 
have important implications for rehabilitation.
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1   |   INTRODUCTION

Interdisciplinary rehabilitation programs (IRP), combin-
ing exercise and education, are top choice treatment for 
chronic low back pain (CLBP) (Casey et al., 2020; Kwan 
et al., 2022; Zaina et al., 2023). Nevertheless, their mech-
anisms of action remain unclear and their effects on dis-
ability are generally small (Hayden et al., 2021). Having a 
better understanding of the factors that need to change to 
improve disability is strongly needed to improve rehabili-
tation strategies (Wood et al., 2020).

A major aspect in need of clarification concerns the ne-
cessity to improve spinal motor behaviour to decrease dis-
ability (Steiger et al., 2012; Wernli, Tan, et al., 2020). This 
is particularly important, as it is one of the most frequent 
treatment targets in CLBP rehabilitation (Karayannis 
et al., 2016; Wood et al., 2021; Wun et al., 2021), despite 
the report of small or inconsistent association between 
changes in spinal motor behaviour and changes in disabil-
ity (Nzamba et al., 2023; Steiger et al., 2012; Wernli, Tan, 
et  al.,  2020). This discrepancy between clinical practice 
and research may be due to the measurement of spinal 
motor behaviour. Indeed, while the contemporary under-
standing suggest that motor adaptations to pain include 
different domains interacting with each other's (Hodges & 
Smeets, 2015), there is a lack of studies that analysed these 
different domains together.

Prior research has predominately considered spinal 
motor behaviour through the lens of biomechanical vari-
ables only (Steiger et al., 2012; Wernli, Tan, et al., 2020), 
as patients with CLBP frequently demonstrated lower spi-
nal angular amplitude and velocity of movement, higher 
trunk muscle activity and reduced overall movement per-
formance (Laird et al., 2014; Moissenet et al., 2021; Rudy 
et  al.,  2003). Yet, motor behaviour is also influenced by 
cognitive-emotional and pain-related factors (Butera 
et  al.,  2016; Christe, Crombez, et  al.,  2021; Hodges & 
Smeets, 2015; Ippersiel et al., 2022), such as task-specific 
pain-related fear and movement-evoked pain (e.g. the 
pain felt during movement) (Corbett et al., 2019; Fullwood 
et al., 2021; Vlaeyen et al., 2016). All these domains have 
been shown to be interrelated (Butera et al., 2016; Christe, 
Crombez, et  al.,  2021; Ippersiel et  al.,  2022) and can be 
all influenced by the IRP (Casey et  al.,  2020; Kamper 
et al., 2015). Therefore, assessing spinal motor behaviour 
with these three domains together, and not in isolation, 
appears critical to improve the understanding of the lon-
gitudinal association between spinal motor behaviour 
and disability and optimize CLBP rehabilitation (Butera 
et al., 2016; Hodges & Smeets, 2015).

The general aim of this study was to explore the plau-
sibility of causal associations between changes in spinal 
motor behaviour and reduction in disability following an 

IRP (Kamper, 2020). Specifically, the first objective of this 
study was to test if changes in biomechanical, cognitive-
emotional and pain-related measures of spinal motor be-
haviour were associated with changes in disability during 
the IRP. The second objective was to test if these spinal 
motor behaviour measures at the end of the IRP were as-
sociated with disability at 3-month and 1-year follow-ups. 
Measures at the end of the IRP are particularly relevant, 
as they can help clinicians determine what needs to be 
achieved at the end of rehabilitation for positive future 
outcomes. For both objectives, we hypothesized that larger 
spinal amplitude and velocity of movement, lower muscle 
activity, better overall performance, lower task-specific 
pain-related fear and lower movement-evoked pain would 
be associated with lower disability (Crombez et al., 2012; 
Knox et al., 2022; Moissenet et al., 2021).

2   |   METHODS

2.1  |  Design

This study is a prospective longitudinal cohort study 
with assessments at four timepoints and is reported ac-
cording to the STROBE (Strengthening the Reporting 
of Observational Studies in Epidemiology) criteria (von 
Elm et  al.,  2007). Spinal motor behaviour and disability 
were measured in a university hospital setting with simi-
lar procedures twice, before (T1) and at the end (T2) of 
the IRP. Disability was also measured at 3 months (T3) 
and 1 year (T4) after the end of the IRP using online ques-
tionnaires. This study was registered in Clini​calTr​ials.​gov 
(NCT03499613).

2.2  |  Participants

Recruitment was performed from April 2018 to September 
2020. All the patients participating in the IRP at our 
University Hospital were contacted for recruitment if 
they met the following criteria: women and men from 18 
to 65 years old, chronic non-specific LBP with or without 
leg pain and sufficient French level to understand the 
study instructions and the questionnaires. The study team 
was not involved in the IRP, including in the selection 
of the patients for the IRP. Patients were excluded from 
the study in case of: pregnancy, signs of specific low 
back pain, important spinal deformities, previous back 
surgery limiting spinal mobility (e.g. fusion), concomitant 
condition that could compromise the evaluation of spinal 
motor behaviour (e.g. neurological disease) and a body 
mass index (BMI) above 32 kg/m2. All participants signed 
an informed consent form before enrolment in the study 
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approved by the local Ethics Committee (CER-VD 2018-
00188). Because there is no prior research with similar 
spinal motor behaviour outcomes, the sample size was 
determined based on the rule of the thumb of a minimum 
of 10 participants per independent and confounding 
variables (Steyerberg et  al.,  2000). Considering the 
inclusion of five confounding variables and a drop out of 
20%, this study aimed to include 75 patients.

2.3  |  Interdisciplinary rehabilitation 
programme (IRP)

Participants to the IRP came daily to the university hos-
pital for 3 weeks to receive a total 100 h of individual and 
group treatments, provided by an interdisciplinary team 
of medical doctors, physiotherapists, occupational thera-
pists and psychologists. The IRP included aerobic, pro-
prioceptive, mobility and strength exercises. Behavioural 
approaches and education were also included to improve 
confidence in performing movements and activities and 
decrease pain-related fear and unhelpful beliefs (see 
AppendixS1 for details).

2.4  |  Outcomes

2.4.1  |  Spinal motor behaviour measures 
(independent variables)

Primary spinal motor behaviour measures included 
biomechanical, cognitive-emotional and pain-related 
measures during a lifting task (Figure  1). This task was 
selected because measuring spinal motor behaviour 
during painful and difficult daily-life tasks has been 
recommended to allow a more representative analysis of 
motor behaviour alterations in CLBP patients (Christe, 
Aussems, et  al.,  2021; Wernli, O'Sullivan, et  al.,  2020; 
Wernli, Tan, et al., 2020). Standardized instructions were 
given with a video recording. Then, the lifting task was 

recorded three times. Procedures are described in detail in 
Christe, Aussems, et al. (2021).

The biomechanical domain included both specific and 
general measures. Based on the literature recommending 
multi-segment models (Christe, Aussems, et  al.,  2021; 
Moissenet et al., 2021; Papi et al., 2018), specific measures 
of lumbar angular amplitude, lumbar angular velocity and 
erector spinae muscle activity were used for fine quantifi-
cation of spinal biomechanics. Briefly, sagittal-plane an-
gular amplitude and velocity were measured at the lower 
and upper lumbar spine (LLS and ULS respectively) using 
a marker-based motion capture system (Vicon, Oxford 
Metrics, Oxford, United Kingdom) and a previously de-
fined multi-segments model (Christe et  al.,  2016, 2017, 
2020; Christe, Aussems, et al., 2021). The LLS angle was 
defined as the angle between the segment composed of L3, 
L5 and the in-between lateral markers and the pelvis seg-
ment, with markers at the posterior superior iliac spines, 
anterior superior iliac spines and iliac crest tips. The ULS 
angle was defined as the angle between the segment with 
the L3-L5 markers and the segment composed of L1, L3 
and their lateral markers (Figure  2). Angular velocity 
curves were obtained by numerical differentiation of the 
angle curves. Erector spinae activity was collected syn-
chronously with angular data as described in a previous 
study (Christe, Aussems, et al., 2021) using two pairs of 
electrodes (Myon, Schwarzenberg, CH) placed bilaterally 
parallel to the erector spinae fibres at the L3 level, follow-
ing protocols from previous studies (Dupeyron et al., 2013; 
Wong et al., 2016). Electrodes were not placed at the L5 
level, as the proximity with the L5 and PSIS markers could 
have perturbed the recording of the markers' trajectory. 
The minimal amplitude of the electromyography signals 
recorded throughout the entire session was identified 
and subtracted from the signals, effectively establishing 
a zero-value (0%) reference point for the electromyogra-
phy data. Subsequently, to standardize the signals for both 
muscles, the amplitudes recorded at the beginning of each 
session during a submaximal voluntary contraction in the 
crook lying position were considered as 100%. The choice 

F I G U R E  1   Spinal motor behaviour 
measures during the lifting task. LLS, 
lower lumbar spine; ULS, upper lumbar 
spine.
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of submaximal contraction for normalization was moti-
vated by its demonstrated superior reliability compared to 
maximal contraction in individuals with chronic low back 
pain (Dankaerts et al., 2004). Following prior studies sug-
gesting relevant discrete variables to characterize spinal 
biomechanics in the study of CLBP (Christe et al., 2016, 
2017, 2020; Christe, Aussems, et al., 2021), the maximum 
flexion angle at the LLS (LLSa) and ULS (ULSa); the max-
imum flexion angular velocity at the LLS (LLSv) and ULS 
(ULSv) and the maximum left or right erector spinae nor-
malized muscle activity during the descending phase of 
lifting (EMG) were considered as primary specific spinal 
biomechanical measures. All the measures were averaged 
over the three repetitions to have only one value per par-
ticipant and timepoint. Between-day reliability of these 
biomechanical measures (ICC 2.1) was found to be mod-
erate to excellent (Christe et  al.,  2022). A more general 
biomechanical measure related to the overall movement 
performance was obtained through the duration of the 
movement (duration, in seconds) (Rudy et al., 2003). Data 
processing and extraction have been described in detail 
elsewhere (Christe, Aussems, et al., 2021).

The cognitive-emotional domain of spinal motor be-
haviour included a task-specific measure of pain-related 
fear (PRF) assessed after visualizing the task to accom-
plish but before accomplishing it. This timing was selected 
because pain-related fear is thought to be influenced by 
the perceived harmfulness of the task (Christe, Crombez, 
et  al.,  2021; Ippersiel et  al.,  2022; Matheve et  al.,  2019). 
Participants rated on a 0–10 scale how much they think 
the lifting task was harmful for the back (0: not harmful; 

10: extremely harmful) (Christe, Aussems, et  al.,  2021; 
Demoulin et al., 2013).

The pain-related domain of spinal motor behaviour 
included a measure of movement-evoked pain (MEP) 
assessed with the Numeric Pain Rating Scale (NPRS) (0: 
no pain at all; 10: worst imaginable pain) immediately 
after the accomplishment of the task (Butera et al., 2016; 
Corbett et  al.,  2019; Leemans et  al.,  2022). Measuring 
MEP and not only general measures of pain intensity 
has been recommended to better understand motor be-
haviour (Butera et al., 2016; Corbett et al., 2019; Fullwood 
et al., 2021; Leemans et al., 2022; Sullivan et al., 2009).

2.4.2  |  Disability (dependent variable)

Disability was the dependent variable and was measured 
with the French version of the Oswestry Disability Index 
(ODI, 0–100 scale) (Fairbank & Pynsent,  2000; Vogler 
et al., 2008). The ODI is a reliable and valid measure of 
disability and has been recommended as a core outcome 
for LBP trials (Chiarotto et al., 2017).

2.4.3  |  Confounding variables

Confounding variables need to have at least a possible 
causal influence on the dependent variable (disability) 
and be associated with the independent variable (spi-
nal motor behaviour) (McNamee,  2003). Therefore, we 
included five confounding variables possibly associ-
ated with both spinal motor behaviour and disability 
to adjust the analyses (Chou & Shekelle,  2010; Christe, 
Crombez, et  al.,  2021; Zale et  al.,  2013). They included 
a general measure of pain-related fear, measured with 
the French version of the Tampa Scale of Kinesiophobia 
(TSK) (Vlaeyen et  al.,  1995), the mean back pain inten-
sity during the previous week (BPI) measured with the 
NPRS (Downie et  al.,  1978), the French version of the 
Pain Catastrophizing Scale (PCS) (French et  al.,  2005; 
Sullivan, 1995), age and gender. BPI and TSK were par-
ticularly important to include to determine the specific 
effect of PRF and MEP, while adjusting for general meas-
ures of pain-related fear and pain intensity.

2.5  |  Statistical analysis

Changes in spinal motor behaviour and confounding 
variables during the IRP (T2–T1) were tested with paired 
t-tests, whereas one-way repeated ANOVA and post hoc t-
tests were conducted to compare the changes in disability 
between T1 and all follow-up timepoints (T2, T3 and T4). 

F I G U R E  2   Biomechanical model. LASIS, left anterior superior 
iliac spine; LIC, left iliac crest; LLS, lower lumbar spine; LPSIS, left 
posterior superior iliac spine; RASIS, right anterior superior iliac 
spine; RIC, right iliac crest; RPSIS, right posterior superior iliac 
spine; ULS, upper lumbar spine.
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To test the relationships between changes in spinal motor 
behaviour and changes in disability after the IRP, linear 
regression analyses were conducted with the change in 
each spinal motor behaviour measure as the independ-
ent variable and the change in disability as the depend-
ent variable. In addition, we performed linear regression 
analyses with each spinal motor behaviour measure at 
T2 as the independent variable and disability at T3 or T4 
as the dependent variable. Additional analyses for all the 
models were conducted when adjusting for confounders, 
as recommended for cohort study of aetiology and inves-
tigations of potential causal associations (Herbert,  2014; 
McNamee, 2003, 2005). Assumptions for linear regression 
were tested and extreme outliers identified in boxplots 
with SPSS (3 box-lengths away) were discarded from the 
analyses. Data analysis was performed with SPSS (Version 
25, IBM, NY, USA), using a significance level at α < 0.05. 
This study included diverse spinal motor behaviour meas-
ures based on prior recommendations. In accordance 
with the exploratory nature of the study, no correction 
for multiple analyses was applied, but results, particularly 
isolated statistically significant relationships, were inter-
preted critically.

3   |   RESULTS

Eligibility assessment included 125 individuals, of which 
71 were included in the study. Inclusion had to be stopped 
because of the Covid-19 pandemics. Sixty-two patients 
had data available at T1 and T2, 56 at T3 and 51 at T4 
(Appendix S2). At T1, 63% of participants were male, with 
a mean ± SD age of 40.9 ± 10.6 years old, LBP duration of 
77.0 ± 75.3 months and ODI score of 35.0 ± 10.5 (see also 
Table 1). There were no statistically significant differences 
in T1 or T2 disability or spinal motor behaviour measures 
between the participants who answered or not the ques-
tionnaires at T3 and T4 (Appendix S3).

Disability statistically significantly decreased after the 
IRP (F (2.565, 120.546) = 40.42, p < 0.001). Compared to 
T1, there was a reduction in disability at T2 of 12.4 units 
(95% CI 9.9–14.9), at T3 of 11.2 units (95% CI 8.3–14.2) and 
at T4 of 12.0 units (95% CI 8.6–15.4) (Figure  3). No sta-
tistically significant change was observed during the IRP 
(T2–T1) in angular amplitude, angular velocity and mus-
cle activity, except for ULSv. Conversely, the duration to 
perform the task, MEP, PRF, TSK and BPI all significantly 
improved during the IRP (Table 1).

@T1 @T2 Changes (Δ = T2–T1)

Mean (SD) Mean (SD) Mean (95% CI) p-value

Spinal motor behavior measures

MEP, range: 0–10 4.5 (2.8) 2.2 (2.4) −2.3 (1.6 to 3.0) <0.001

PRF, range: 0–10 6.2 (3.2) 1.4 (2.3) −4.8 (3.9 to 5.7) <0.001

Duration, s 4.1 (1.3) 3.2 (0.6) −0.9 (0.6 to 1.2) <0.001

LLSa, ° −8.6 (4.3) −7.4 (4.9) 1.2 (−2.6 to 0.2) 0.09

ULSa, ° −19.8 (8.1) −20.9 (7.6) −1.1 (−0.7 to 2.9) 0.21

LLSv, °/s −15.1 (7.8) −17.3 (8.5) −2.3 (−0.5 to 5.0) 0.10

ULSv, °/s −28.5 (11.4) −36.6 (13.7) −8.0 (4.5 to 11.5) <0.001

EMG, % 67.7 (32.6) 75.2 (34.3) 7.5 (−17.1 to 2.2) 0.13

Confounding variables

TSK, range: 17–68 44.5 (8.0) 30.3 (7.4) −14.0 (12.2 to 15.9) <0.001

BPI, range: 0–10 5.7 (2.1) 3.3 (2.1) −2.5 (1.9 to 3.1) <0.001

PCS, range: 0–52 25.1 (11.6) 11.2 (9.9) −13.9 (11.6 to 16.2) <0.001

Age 40.9 (10.6)

Gender (% male) 63

Note: T1 (baseline) and T2 (end of the IRP) data are reported as mean (standard deviation, SD), and 
changes as mean changes (95% confidence interval, 95% CI). Statistically significant changes are reported 
in bold (p < 0.05).
Abbreviations: BPI, mean back pain intensity during the previous week; Duration, duration of the task; 
EMG, maximum erector spinae normalized muscle activity; LLSa, maximum flexion angle at the lower 
lumbar spine; LLSv, maximum flexion angular velocity at the lower lumbar spine; MEP, movement-
evoked pain; PCS, Pain Catastrophizing Scale; PRF, task-specific measure of pain-related fear; TSK, 
Tampa Scale of Kinesiophobia; ULSa, maximum flexion angle at the upper lumbar spine; ULSv, 
maximum flexion angular velocity at the upper lumbar spine.

T A B L E  1   Spinal motor behavior and 
confounding measures before (T1) and at 
the end (T2) of the IRP, as well as their 
changes after the IRP (Δ = T2−T1).
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The change in ODI after the IRP was significantly as-
sociated with MEP changes (β = 0.57 and β adj. = 0.51, 
p < 0.001) and PRF changes (β = 0.42, p < 0.001 and β 
adj. = 0.36, p = 0.003), but not with biomechanical mea-
sures changes (Table  2). Furthermore, MEP and PRF 
at T2 were associated with disability at T3 (β = 0.63, 
p < 0.001 and β = 0.27, p = 0.04 respectively) and T4 
(β = 0.55, p < 0.001 and β = 0.29, p = 0.04 respectively) 
(Table  3). When adjusted for TSK and BPI, only MEP 
remained statistically significantly associated with dis-
ability at T3 (β adj. = 0.33, p = 0.01) and T4 (β adj. = 0.36, 
p = 0.02). Biomechanical measures at T2 were not asso-
ciated with disability at T3 or T4, except for the duration 
of the task that was significantly associated with disabil-
ity at T3 (β = 0.5, p < 0.001).

4   |   DISCUSSION

This longitudinal cohort study showed that improvements 
in all three domains of spinal motor behaviour were as-
sociated with reduction in disability, suggesting that spi-
nal motor behaviour may be a relevant treatment target in 
CLBP rehabilitation. Specifically, this study showed that 
changes in overall movement performance, movement-
evoked pain or task-specific pain-related fear, but not 
changes in specific spinal biomechanical measures, were 
associated with improvement in disability.

This study particularly supports the importance of con-
sidering movement-evoked pain as a relevant treatment 
target. It showed that movement-evoked pain at the end 
of rehabilitation was moderately associated with future 
disability, even when controlled by average pain intensity 
over the past week and other potential confounders. Given 
the effect sizes, it supports the plausibility of a causal asso-
ciation between reduction in movement-evoked pain and 
reduction in disability that would need to be further tested 
in future studies. It also encourages the measurement of 
movement-evoked pain in future studies, as prior CLBP 
studies mostly measured pain intensity with static mea-
sures (Corbett et al., 2019; Leemans et al., 2022). Moreover, 
this study showed that improvement in movement-evoked 
pain is possible without changes in spinal angular ampli-
tude, angular velocity or trunk muscle activity, suggest-
ing that movement-evoked pain may be reduced without 
changes in these specific spinal biomechanical variables.

By stressing the need to decrease pain-related fear 
of lifting, this study extended prior knowledge on the 

F I G U R E  3   Disability at the four timepoints. The mean 
values and the 95% CI (vertical bars) are reported. Stars (*) indicate 
statistically significant differences with disability at T1 (p < 0.001).

∆ODI

β (95% CI) p-value β adj. (95% CI) p-value

∆MEP 0.57 (0.36 to 0.78) <0.001 0.49 (0.27 to 0.72) <0.001

∆PRF 0.42 (0.19 to 0.66) 0.001 0.36 (0.09 to 0.58) 0.008

∆Duration 0.16 (−0.1 to 0.41) 0.23 0.11 (−0.14 to 0.35) 0.4

∆LLSa 0.15 (−0.11 to 0.39) 0.26 0.08 (−0.17 to 0.31) 0.56

∆ULSa 0.12 (−0.14 to 0.37) 0.36 0.15 (−0.1 to 0.39) 0.23

∆LLSv 0.09 (−0.18 to 0.35) 0.52 0.03 (−0.29 to 0.24) 0.85

∆ULSv −0.03 (−0.29 to 0.22) 0.81 −0.07 (−0.31 to 0.17) 0.58

∆EMG 0.01 (−0.25 to 0.27) 0.94 0 (−0.25 to 0.25) 0.99

Note: β: models including only the change in spinal motor behavior measure as independent variable. β 
adj.: models adjusted for changes (Δ = T2–T1) in TSK, BPI, PCS, age and gender. Statistically significant 
relationships are reported in bold (p < 0.05).
Abbreviations: Duration, duration of the task; EMG, maximum erector spinae normalized muscle activity; 
LLSa, maximum flexion angle at the lower lumbar spine; LLSv, maximum flexion angular velocity at the 
lower lumbar spine; MEP, movement-evoked pain; PRF, task-specific measure of pain-related fear; ULSa, 
maximum flexion angle at the upper lumbar spine; ULSv, maximum flexion angular velocity at the upper 
lumbar spine.

T A B L E  2   Standardized beta 
coefficients (95% confidence interval, 95% 
CI) for the association between the change 
(Δ = T2−T1) in spinal motor behavior 
measures and the change (Δ = T2−T1) in 
disability after the IRP.
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importance to target fear in specific functional tasks 
in the treatment of CLBP (Caneiro et  al.,  2022; Lee 
et  al.,  2015; Wertli, Rasmussen-Barr, Held, et  al.,  2014; 
Wertli, Rasmussen-Barr, Weiser, et al., 2014). Importantly, 
the association between changes in task-specific pain-
related fear and changes in movement-evoked pain 
reported in prior research showed that improvement 
in one of these factors may be related to improvement 
in the other (Christe et  al.,  2023), suggesting these two 
factors may need to be approached together in clinical 
practice. Recent mediation analyses of clinical trials also 
supported the importance of improving pain-related fear, 
catastrophizing or self-efficacy in CLBP rehabilitation 
(Cashin et al., 2023; Wood et al., 2023). In one study in-
vestigating the effect of education and graded sensorimo-
tor retraining, improvement in psychological factors had 
larger mediating effects than improvement in physical 
factors (Cashin et al., 2023).

Regarding the biomechanical domain, this work 
brought important clarifications with respect to previous 
research by measuring lumbar biomechanics with state-
of-the-art measures during a painful and feared func-
tional task. Even though the methodology used in this 
study was expected to be more sensitive, the results were 
comparable to prior works using global spinal measures 
(e.g. fingertip-to-floor test or global trunk flexion) or an-
alysing spinal motor behaviour in non-functional tasks 
(Wernli, O'Sullivan, et al., 2020; Wernli, Tan, et al., 2020). 
Consequently, the current body of evidence agrees on at 
most small associations between changes in lumbar an-
gular amplitude, angular velocity or muscle activity and 
changes in disability (Wernli, Tan, et al., 2020). A recent 
meta-analysis showed that increased spinal angular am-
plitude, mainly increased spinal flexion, is associated with 
reduction in disability with small effect sizes (Nzamba 
et al., 2023). In this study, a higher overall performance of 
the task was associated with lower disability at 3 months 
after the IRP. Therefore, it is possible that global measures 
are more sensitive to change than specific lumbar biome-
chanical ones (Nordstoga et al., 2019; Wernli, O'Sullivan, 
et al., 2020), and that having the capacity to perform a task 
quicker may be a relevant outcome for LBP rehabilitation 
(instead of having spinal mobility as an outcome). It is 
also possible that global measures are less impacted by the 
particularity of each patient and thus more prone to report 
inter-patient associations with disability.

Altogether these findings support the idea that helping 
patients with CLBP to move in functional activities with 
less pain and reduced fear seems important to reduce dis-
ability following rehabilitation. Changing biomechanics 
can be one way, among others, to decrease movement-
evoked pain and fear (Caneiro et al., 2022; Lehman, 2018; 
Nzamba et al., 2023). Furthermore, these results support T
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that the biomechanical objectives of rehabilitation could 
be addressed more globally in order to improve the per-
formance of the task, without the common target to in-
crease spinal amplitude (Karayannis et  al.,  2016; Wood 
et  al.,  2021; Wun et  al.,  2021). These findings may help 
understand why movement-based interventions showed 
reduction in disability even in the absence of consis-
tent changes in angular amplitude, angular velocity and 
trunk muscle activity (Steiger et  al.,  2012; Wernli, Tan, 
et al., 2020).

The first limitation of this study is related to the IRP, 
which is a combination of specific education, exercise 
and behavioural interventions. Therefore, it is not possi-
ble to determine which components were responsible for 
the improvements observed following the intervention. 
Moreover, only patients participating in this particular 
IRP were included, potentially limiting the external va-
lidity of the findings. Yet, the IRP was perfectly suited 
for this research questions as it showed clinically signif-
icant effects on disability that lasted at 1-year follow-up 
in patients with high levels of disability. Second, while 
the observational design was adapted to the objectives of 
the study, it cannot demonstrate a causal effect between 
changes in spinal motor behaviour and changes in dis-
ability. Furthermore, no correction for multiple analyses 
was performed. Yet, given the lack of knowledge on the 
variables associated with spinal motor behaviour, it was 
particularly important to first get insights into which spi-
nal motor behaviour domains/measures were associated 
with disability. Now that it has been done, clinical trials 
that specifically target overall movement performance, 
movement-evoked pain and/or task-specific pain-related 
fear and using mediation analyses will be necessary to 
determine if the effect of the intervention on disability 
is mediated by improvement in these domains/measures 
(Lee et al., 2017). Including other possible confounders, 
such as self-efficacy, depression and proprioceptive accu-
racy, in future research is advised to further strengthen 
our understanding. Third, the drop out rate was relatively 
high, suggesting an attrition risk of bias. This may have 
impacted the power of the multiple statistical analyses, 
potentially causing type II errors. Finally, while we mea-
sured spinal biomechanics with state-of-the-art methods, 
it is possible that other biomechanical measures could 
have reported associations with disability. The limited 
and small changes observed in spinal biomechanics fol-
lowing the IRP may be also a reason for the lack of asso-
ciation with disability. In fact, it cannot be excluded that 
more specific interventions targeting spinal biomechan-
ics during functional tasks may be necessary to improve 
spinal biomechanics, which may then influence the asso-
ciation with disability.

5   |   CONCLUSION

This study demonstrated that, when adjusted for con-
founders, changes in movement-evoked pain and in task-
specific pain-related fear, but not in spinal biomechanical 
measures, were associated with reduction in disability 
in patients with CLBP following an interdisciplinary re-
habilitation programme. Given that spinal biomechanics 
features are among the most frequent targets of exercise, 
these findings may have important implications for CLBP 
rehabilitation. Future research should further investigate 
the causal effects of improving spinal motor behaviour to 
reduce disability.
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