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Chapter 0

Synthesis Report

Studying old-age population is an active field of research in actuarial science. Espe-

cially in the current context of aging population in OECD countries, the actuary has

a leading role in managing the related risks. In this thesis, the old-age challenges

are adressed considering the pension fund asset liability management (ALM) study

as well as the modelling of joint mortality. The thesis contains three chapters.

Chapter 1: Asset Liability Management for Pension Funds: A

Survey

Before examining a specific model of ALM for pension funds, it is of interest to

review the different methodologies discussed in the literature. In this chapter, the

analysis is conducted in two steps. At first, the reader is introduced to the different

features of a pension fund. The Swiss system is discussed as an example. In partic-

ular, we describe the Swiss three pillars system, emphasize the future reforms and

discuss its implications. A brief comparison with some selected OECD countries

shows that the Swiss pension funds perform quite well. Secondly, we identify two

types of risks in a pension fund: the financial risks and the demographic risks. The

ALM framework provides the theoretical background for managing these risks.

Considering some key ALM methods, the chapter analyses the advantages and

disadvantages of the models.

Chapter 2: On Integrated Chance Constraints in ALM for

Pension Funds

The goal of this chapter is to discuss a concrete ALM model using the stochastic

programming framework. In this respect, we discuss the role of integrated chance

constraints (ICC) as quantitative risk constraints in ALM for pension funds. We de-

fine two types of ICC: the one period integrated chance constraint (OICC) and the

multiperiod integrated chance constraint (MICC). As their names suggest, the OICC
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covers only one period whereas several periods are taken into account with the

MICC. A multistage stochastic linear programming model is therefore developed

for this purpose and a special mention is paid to the modeling of the MICC.

Based on a numerical example, we firstly analyse the effects of the OICC and the

MICC on the optimal decisions (asset allocation and contribution rate) of a pension

fund. By definition, the MICC is more restrictive and safer compared to the OICC.

Secondly, we quantify this MICC safety increase. The results show that although

the optimal decisions from the OICC and the MICC differ, the total costs are very

close, showing that the MICC might represent a good alternative.

Chapter 3: On Bivariate Lifetime Modeling in Life Insurance

Applications

Mortality has an important impact on the pension fund population. Chapter 3 pro-

poses a model that describes the lifetimes within a married couple. Insurance and

annuity products covering several lives require the modelling of the joint distribu-

tion of future lifetimes. In the interest of simplifying calculations, it is common in

practice to assume that the future lifetimes among a group of people are indepen-

dent. However, extensive research over the past decades suggests otherwise. In

this chapter, a copula approach is used to model the dependence between lifetimes

within a married couple using data from a large Canadian insurance company. As a

novelty, the age difference and the gender of the elder partner are introduced as an

argument of the dependence parameter. Maximum likelihood techniques are thus

implemented for the parameter estimation. Not only do the results make clear that

the correlation decreases with age difference, but also the dependence between the

lifetimes is higher when husband is older than wife. A goodness-of-fit procedure

is applied in order to assess the validity of the model. Finally, considering several

products available on the life insurance market, the paper concludes with practical

illustrations.



Chapter 1

Asset Liability Management for

Pension Funds: A Survey

1.1 Introduction

A pension scheme1 can be defined as a financial institution that collects discre-

tionary or mandatory contibutions from its members during their working period

in order to provide, to themselves or their dependants, regular incomes in some

specific situations. These different situations may include retirement, disability and

death. The amount of the benefit is defined by an objective rule. That is, the same

pension amount is given to beneficiaries having exactly the same characteristics.

Prescribed by law (e.g. national social security system) or by a convention (e.g.

occupational pension by the employer), the fund is affiliated to a sponsor (state,

private company or employer, etc.) that is the guarantor of the continuity of the

system. In addition, the members have the possibility to combine different kinds

of securities namely social security, occupational pension and individual saving in

order to maintain a certain standard of living at retirement or when death or dis-

ability occurs. That is the basic concept of the multi-pillar approach, see the report

World Bank, 1994.

Pension funds are exposed to two main types of risks namely (1) demographic risk,

and (2) financial risks. The first type includes all kind of uncertainties that affect the

structure or the size of the population of pension fund members. For instance, a

high proportion of retirees associated with a low proportion of working population

has a negative effect on the pension system. The financial risks regroup the uncer-

tainties related to investment and economical trends. These risks are essentially

related to financial assets, interest rate, inflation rate and credit. Devolder et al.,

2013 analyses the different types of pension fund risks. In this respect, the main

1In this chapter, the term pension includes public social security systems as well as private pen-
sions.
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challenge of the fund is to manage the pension contributions in order to secure the

pension payments, taking into account the financial market uncertainties. That is

the fundamental objective of an asset liability management (ALM) study.

The world of pension funds has been facing several changes over the last decade.

The life expectancy is continuously increasing as opposed to the working popula-

tion that is decreasing. The financial returns are particularly low with an abnormal

volatility of the market. In such context, the risk management is getting highly

complex, requiring the expertise of different specialists. In this respect, the aim

of this chapter is to firstly introduce the reader to the different characteristics of a

pension fund and secondly, provide a literature review on the well known ALM

methods for pension funds.

The rest of the chapter is organized as follows. Section 1.2 highlights the differ-

ent features of a pension fund. In Section 1.3, the Swiss pension fund system is

discussed and a comparison is made with some selected OECD countries. In the

following part, we perform a survey on the main risk management tools that are

discussed in the literature. In particular, Section 1.4 is dedicated to the advantages

and disadvantages of well known ALM methods for pension funds whereas Sec-

tion 1.5 is devoted to longevity risks. Section 1.6 concludes.

1.2 Pension funds features

Pension funds may differ in many aspects. Firstly, a pension plan can be classi-

fied in three broad types: the defined contribution (DC), the defined benefit (DB)

and the hybrid pension scheme which is a combination of the two firsts. In a DC

fund, the active members and the employer pay a fixed contribution (percentage of

salary) into an individual account. The contributions are invested on the financial

markets and the accumulated amount credited with interest (positive or negative)

serves to pay the benefits at retirement. It is important to notice here that the level

of benefit is based on the accumulated amount. Under the DB framework, the

pension fund promises a specified amount of benefit at retirement that is predeter-

mined by a formula based on the participant’s wage history and years of service

as well as the plan parameters rather than the accumulated amount as in the DC.

Thus, the current contribution rate is calculated basing on the projected benefits. In

a practical manner, the main difference between DB and DC lies in who is carry-

ing the risks. The retirement wealth accumulation under the DC system depends

on the allocation policy of the employee who takes the full risk whereas in a DB
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plan, the risk is partially or totally transferred to the sponsor. Bodie et al., 1988

describe the different characteristics of DB and DC with respect to the risks faced

by employers and employees. The authors examine the trade-offs involved in the

choice between DB and DC plans. DC plans are by definition fully funded whereas

solvency is one of the most important issues in DB plans. Nowadays, DC plans

are gaining more and more ground due to the complexity in the management of

DB pension funds and Bodie et al., 1988 believe that DC plans would necessarily

dominate DB plans because of the flexibility of DC plans design. Broadbent et al.,

2006 analyse the factors leading to the shift from DB to DC and its implications

regarding asset allocation and risk management. The authors exhibit the flexibility

of DC plans and explain that an employee prefering a DB framework can always

buy the appropriate life annuity products. That said, from an employee point of

view, the DB is nowadays preferable to the DC for the two following reasons: the

pension benefits are somehow guaranteed and the return on the financial markets

are low.

Secondly, pension funds (including state pension systems) can be characterized by

the way they are financed. We distinguish the pay as you go (PAYG) system and

the funded system. In the PAYG mechanism, the contributions paid one year by

the active members are directly transferred to the beneficiaries. Thus, there is no

retirement capital accumulation in such a plan and this approach is based on the

fact that the benefits for retired people are paid by the current working population.

In such mechanism, the continuity of the sponsor is of great importance because

if the system must stop at any time for any reason, there is clearly a big problem

for affiliates. Under a funded system, the retirement capital is built up by contri-

butions during the working period and that capital will serve to pay the retirement

benefits. As a remark, in the funded system, the available capital can be invested

on the financial market and probably generate higher rate of return whereas no

actual capital is accumulated under the PAYG system. Kuné, 2001 explains how

the future demographic and economic developments is anticipated under funded

system, and concludes that it provides the best way of securing pension liabilities.

However, literature is controversial regarding which one is the best. A priori, there

are substancial transition costs in switching from PAYG to funded scheme. Accord-

ing to the Aaron-condition, we can say that a funded system is better than a PAYG

system when the real rate of interest exceeds the real rate of growth of wages and

salary, see Aaron, 1966, Siebert, 1997 and Kuné, 2001. The strength of the PAYG

is that a minimum income is guaranted independently of the capital market per-

fomance while financial and inflation risks have to be considered as uninsurable
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under the funded system. From Brown, 1997, any fund that pretends to improve

the pension benefits should fullfill the following three criteria:

• it must increase gross national savings,

• those savings must be used in a manner that increases worker productivity,

• there cannot exist a better method of achieving the first two stated goals,

and these conditions can be fulfilled by any system, i.e. PAYG or funded system.

Thirdly, depending on the sponsor, pension plans are also specified by their le-

gal aspect. It can be either public, in which case it is regulated under public sector

law (e.g. state, region or public company), or private where it is regulated under

private sector law or convention. Based on the notional contribution rate, Colin et

al., 1999 analyse the differences between the two types. As the first pension funds

were PAYG and public, there is a tendancy in the literature to associate public plan

with PAYG plan. But in principle, a pension fund may indeed be public funded or

private PAYG. The discussions in favor of the privatisation of pension funds turn

around two points (see, e.g. Banks and Emmerson, 2000 and Thompson, 1998):

• private funded funds provide a higher return than public sector funded schemes,

and

• they are less sensitive to the political risk.

Finally, as it can be the case in some countries (e.g. Australia), the employee may

have the freedom to decide which pension fund he/she wants to be affiliated with.

Thus, based on its current situation and its personal retirement objectives, the em-

ployee can choose the fund that suits him best. In that case, the risk is essentially

carried by himself. A typical example is Australia which has one of the best pen-

sion systems in the world. In Europe, the application of the free choice of the pen-

sion fund has been subject to a number of criticisms. The opponents argue that

such freedom would destroy the principle of solidarity between retirees and con-

tributing employees, which is the foundation of the pension fund system in most

European countries. Hence, we may end up with some funds which only contain

disabled and retired people and no active members would join them. Such free-

dom to pension members would increase the retirement costs. That is, pension

funds would spend additional fees in trying to win new members whereas the em-

ployees would pay some fiduciaries who can advise them for choosing the best
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fund. That said, in European countries, instead of being allowed to choose the pen-

sion fund, more and more DC retirement funds are giving to their members the

possibility to choose within several risk profiles (i.e. investment strategies).

1.3 Swiss pension system: present and future

As we are in Switzerland, we are interested in the particular case of the Swiss re-

tirement plan. For this reason, in this section, we firstly introduce the Swiss three

pillars system and its features. Secondly, attention is paid to future challenges, es-

pecially by considering the project "Prévoyance 2020" and analysing its implications.

1.3.1 The Swiss three pillars

The Swiss retirement pension system comprises three parts, which together make

up the total pension system, see Figure 1.1. Its goal is to guarantee a financial

soundness to the individual survivors in old age and its survivals. We distinguish:

FIGURE 1.1: The Swiss three pillars system2

• Federal Old Age and Survivor Insurance (AVS) and Federal Disability In-

surance (AI): With a total benefit of about 41 billions in 2014, the Swiss first

pillar is composed of the old-age retirement income, the survival pension in

case of death and of the disability insurance. It aims to ensure a basic stan-

dard of living. All persons who have resided or worked in Switzerland for

a sufficient period of time are entitled to the first pillar. It works on a PAYG
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basis under which the current contributions are used to pay the current old-

age pensions. Any person living or working in Switzerland is insured and

has to pay contributions from the year in which she/he turns 21 or from age

17 if already working. Contributions are evenly split between the employer

and the employee and are directly deducted from employees’ salaries. The

benefit incomes from the first pillar are also subject to income tax.

• Occupational pension scheme: The Federal Act on Occupational Retirement,

Survivors’ and Disability Pension Plans (LPP) entered into force on January 1,

1985. As the second pillar of the Swiss retirement plan, the occupational pen-

sion complements the first pillar in order to reach, on average, an income of

60% of the last salary, allowing the retired to maintain its anterior standard of

living. Old age, death and disability are covered. It is mandatory for all work-

ers earning a yearly salary higher than CHF 21′150 (as of 2015), and optional

for self-employed persons. The financial system is based on a fully funded

approach where the employee’s monthly contributions are accumulated up

to retirement. The employer pays at least half of the yearly contribution. In

principle, the contribution is a certain proportion of the annual salary; the

insured salary is limited at CHF 84′600 (as of 2015). The contributions are

yearly accumulated at a yearly minimum rate of 1.75%, also called the mini-

mum interest rate. At retirement, the accumulated amount is converted into

pension at an annual rate called the conversion rate. The minimum level of

this conversion rate is set by the regulation and makes the Swiss second pillar

system so particular. Swiss pension funds usually provide an income which

is larger than the required minimum conversion rate. As for the first pillar,

pension incomes are subject to income tax whereas the contributions are tax

free. Entirely set up and managed by employers and employees, the pension

funds can be DB, DC (mostly), or hybrid. Notice that the Swiss defined con-

tribution plans are somehow special and are often considered as cash balance

plans (hybrid plan) according to international classification, see OECD, 2011.

• Individual or private pension: Based on a fully funded mechanism, it consti-

tutes the third pillar of the Swiss pension system and is totally optional. The

individual pension is managed by the person (employee or self employed)

itself. It may serve to close any gaps that exist in a person’s pension cover-

age and allows to cover any supplementary individual needs. It can be split

into tied pension provisions (Pillar 3a) and flexible pension provisions (Pillar

3b). The main difference is that Pillar 3a benefits from some fiscal incentives

whereas Pillar 3b does not. As one could expect, the amount of contributions

into the Pillar 3a each year is limited.
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1.3.2 Comparison with other countries

Based on both arrangements and performances, the Swiss retirement system is

known as being one of the most developed systems in the world. So is its second

pillar. As explained above, the first pillar operates under the PAYG whereas sec-

ond and third pillars are mostly fully funded. The total assets of the occupational

pension represent almost 119% of the GDP, showing that Switzerland has a mature

pension system. The occupational pension funds operate under an hybrid regime

where the plan sponsor shares the investment risk and all the assets are pooled (ac-

tually a cash balance plan). Almost all the occupational pension assets are managed

by autonomous funds. The life expectancy at 65 is 19.4 years for men and 22.4 for

women (OECD, 2013). In addition, employees are automatically enrolled to their

employer’s pension fund concerning the second pillar. Only the third pillar allows

for a free choice of the insurance company or bank.

The goal of this section is to analyse how the Swiss system perfoms compared to

other countries. A cross-country comparison of pension systems is likely to be

controversial as each country has its particular economic, social, political, cultural

and historical circumstances. However, there are certain indicators that, across the

range of systems, allow to assess the regime. In order to ease the comparison, a

sample of seven countries will be considered namely Canada, China, Denmark,

Germany, Netherland, UK and USA in addition to Switzerland. They are essen-

tially OECD countries to which we have added China as it is currently one of

the major economies in the world. The evaluation of the Swiss system is made

from three perspectives namely adequacy, sustainability and integrity. In principle,

based on those three pespectives, the Melbourne Mercer pension report (Ralston

et al., 2012) identifies more than 40 indicators in order to calculate a pension index

for each country. Based on their importance, only some of them will be discussed

here.

Firstly, the replacement rate analyses to what extent the provided benefits ensure a

certain quality of life and represents the major measurable outcome from the sys-

tem. It contributes to measure the adequacy of the system. Figure 1.2 compares

the minimum replacement rate and the net replacement rate for the different coun-

tries (OECD, 2013). The net replacement rate is computed as the ratio of the retire-

ment income from the two first pillars (mandatory) over the net average lifetime

wage. The middle red bar in Figure 1.2 represents the targeted rate suggested by

the World Bank (World Bank, 1994). Switzerland meets that condition right after

the Netherlands, Denmark and China. The targeted minimum replacement rate is
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FIGURE 1.2: Net pension replacement rate by earnings for a median
earner (OECD, 2013)

based on the intended basic pension of each country. From the figure, it can be seen

that even though Denmark has a higher replacement rate than Switzerland, the

minimum pension is more important in Switzerland. In addition, the home own-

ership rate (European Commission, 2013), displayed in Figure 1.3, is an important

factor in affecting the financial security during retirement. It has a positive impact

on the retirement income in the sense that the retiree pays no rent (if fully owned).

The figure clearly shows that Switzerland has the lowest rate.

Secondly, some indicators influence the likelihood that the current system will be

able to provide the benefits into the future, i.e. the sustainability of the system.

The total amount of pension assets gives an idea on the development of a pension

system. Figure 1.4 compares the total asset for private occupational pensions. The

amount are calculated as percentage of GDP. Switzerland appears second with a

percentage of 119% of the GDP. In Germany, Denmark and China, the total assets

are particularly low, certainly due to the importance of the public funds and/or

pension insurance contracts. The private pension coverage rate represents an other

way for assessing the maturity of pension system. It is computed as the proportion

of the working age population who are members of private pension plans. Fig-

ure 1.5 displays the value of the coverage rate for (quasi3) mandatory private pen-

sion in selected OECD countries. As mentioned in the Melbourne Mercer pension

report (Ralston et al., 2012), a higher proportion of coverage amongst the workforce

3It is mandatory only for eligible employees.
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FIGURE 1.3: Home ownership rate by countries (European Commis-
sion, 2013)

increases the likelihood that the overall retirement income system will be sustain-

able in the future as it reduces pressure on government expenditure. Some country

key indicators for retirement sustainability are reported in Table 1.1.

Finally, the integrity of system can be rated by the way of indicators related to reg-

ulation and governance, protection and communication for members, and costs.

More specifically, those indicators affect the level of confidence that the citizens

of each country have in their system. In this respect, the Melbourne Mercer pen-

sion report clearly shows that Switzerland is among the world leaders in terms of

integrity of the retirement system. However, there are also some areas for improve-

ments for the Swiss retirement system in general that have been pointed out in the

literature. The expert suggestions are essentially inciting the increase of the retire-

ment pension age over time, the increase of the home ownership and the reduction

of the access to funds before retirement.
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1.3.3 The planned pension reforms

The retirement 2020 reform project

The Swiss population of elders is growing at a faster rate, the life expectancy is

increasing and the capital market offers return rates which are increasingly low.

These are the reasons why the Federal Council, in collaboration with some Swiss

social institutions, has adopted the "Prévoyance 2020" reform project. As its name

suggests, the retirement 2020 reform project sets new guidelines for the Swiss re-

tirement system in 2020. The reform aims to:

• maintain the standard of benefits in the Swiss retirement system,

• ensure the financial stability of the two first pillars and

• adapt the system to the society changes.

The suggestions are of many kinds but, we focus on those which are relevant from

an actuarial point of view. Firstly, the notion of "retirement age" (which is currently

64 for women and 65 for men) is replaced by a "reference age" of 65 for both women

and men. In that case, the insured (man or woman) can retire at any age between

62 and 70, increasing the flexibility of the system and indirectly, encouraging peo-

ple who want to work later than 65. The reader should notice that Switzerland

has one of the highest occupational rates for people aged over 60. The reference

age is applicable to the first and the second pillar of the Swiss retirement system.

Under some conditions, it is even possible to combine a pension income with a re-

munerative activity. If a member decides to retire earlier (resp. later) than 65, the

annuity is reduced (resp. increased) relatively. Secondly, the minimum conversion

rate (which is currently of 6.8%) will be reduced by 0.2 percentage point each year

in order to reach a rate of 6% after four years. In order to maintain the level of

benefits, an increase in the second pillar contribution rate is also proposed. Thirdly,

the part of the salary which is subject to the second pillar is enlarged, extending the

number of employees which are insured under occupational insurance. This latter

is particularly interesting for workers with low salary as the minimum salary re-

quired to be part of the second pillar is reduced. Last but not least, the first pillar is

underfunded and requires the support of the Confederation; the situation is going

to be worse in the next years due to the demographic trends. In order to fund this

shortfall and to reduce the participation of the Confederation, the project proposes

to increase the VAT by two percentage points.
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Implications of the reform on risks

The project "Prévoyance 2020" aims to address the current and future problems of

the Swiss retirement pension system. The matters are of many kinds. In the follow-

ing paragraphs, we discuss the reform viability with respect to the first and second

pillars. This is without loss of generality as the influence on the third pillar is neg-

ligible.

Firstly, the first pillar, based on a PAYG, is mainly influenced by demographic

changes. Moreover, the longevity of the population and the imbalance in the age

pyramid tends to increase the old-aged dependency ratio (ADR). The ADR is the

ratio of the number of persons older than 65 to the active population (ages ranging

from 20 to 64). Figure 1.8 in Section 1.5 gives an overview of the ADR in selected

countries. The continuous increase of ADR means that the trend of increasing ex-

penses of the AVS must be supported by an ever smaller number of actives. For

example in Switzerland, in 2010, 3.64 actives were providing one pension benefit;

it will be 3 actives in 2020 and less than 2 for 2050; thus requiring an increase in

the contribution of active people to the first pillar. To avoid the rise of AVS contri-

bution rate, two solutions are proposed. As a first step, decrease the total amount

of pension expenses by giving the possibility for people to work longer than 65 in

order to reduce the proportion of inactive people, i.e. the ADR. Besides, define ad-

ditional contribution funding through a rise in VAT, for example. The advantage of

an increase in VAT is that it spreads the additional costs of the first pillar over the

entire population, and not only over the working population.

Secondly, the problems encountered in the occupational pension scheme are mostly

related to longevity and low yields on the capital markets. Longevity is the fact

that, on average, people live longer than expected. Ceteris paribus, the increase in

life expectancy at age 65 leads to a greater retirement savings needs. On average,

an increase of one year of the lifetime would lead to a 5% increase in the total ex-

penses. To address the problem of longevity, a reduction of the conversion rate is

initially proposed.

The conversion rate is the rate at which the retirement saving is converted into

pension annuity. It mainly depends on two parameters: technical interest rate and

life expectancy. The technical interest rate helps to evaluate the present value of fu-

ture pension payments and is yearly fixed by politics. In general, its value is highly

correlated to the low risk interest rate. In the literature, it is common to assume

a fix margin between the expected low risk interest rate and the technical interest
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i
n 0.5% 1.0%. 1.5% 2.0% 2.5% 3.0%. 3.5% 4.0%

15 0.067 0.070 0.073 0.076 0.079 0.082 0.085 0.088
16 0.063 0.066 0.069 0.072 0.075 0.078 0.081 0.084
17 0.060 0.062 0.065 0.068 0.071 0.074 0.077 0.080
18 0.056 0.059 0.062 0.065 0.068 0.071 0.074 0.077
19 0.053 0.056 0.059 0.062 0.065 0.068 0.071 0.074
20 0.051 0.053 0.056 0.059 0.062 0.065 0.068 0.072
21 0.048 0.051 0.054 0.057 0.060 0.063 0.066 0.069
22 0.046 0.049 0.052 0.055 0.058 0.061 0.064 0.067

TABLE 1.2: Calculated conversion rate as function of life expectancy
and technical interest rate

rate, especially due to uncertainty. For ease of understanding, the conversion rate

is approached by:

Convrate (i, n) :=
1

an̄|i
− c =

i

1− (1 + i)−n
− c (1.1)

where n is the life expectancy at retirement, i := y − r the technical interest rate, y

the expected low risk interest rate and r the fix margin. The overall computed value

is often reduced by c in order to take, dependants as well as administration fees,

into account. Table 1.2 displays the evolution of the conversion rate with respect to

n and i assuming c := 0.2% . For example, on average, either an increase of two

years in life expectancy or a decrease of one percentage point of technical interest

rate would lead to a decrease of 0.6 percentage point of the calculated conversion

rate.

Nowadays, as the interest rates are getting low and the life expectancy is increas-

ing, it is reasonnable to decrease the conversion rate. A conversion rate of 6%,

corresponding to a 12% decrease from 6.8% and leading to a similar decrease in

total expenses, is recommended. Assuming a life expectancy at retirement n = 21

and considering a technical interest rate i ≤ 2.5%, Table 1.2 strengthens this evi-

dence. However, the problem of maintaining the pensions to, at least, the current

level arises. For this purpose, the reform recommends to increase the level of sec-

ond pillar contribution rates. That, added to the increase in average retirement age

would contribute to guarantee the financial stability of Swiss occupational pension

funds.
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1.4 Asset Liability Management

In this subsection, we will focus our attention on an occupational fund evolving

under a fully funded mechanism. Employees pay contributions to the fund during

their working period. These contributions represent the assets. At retirement, they

receive their pension incomes which constitute the liabilities of the pension fund.

Thus, the goal of an asset liability management (ALM) study is to determine the

best ways to manage the current assets and contribution rates in order to guaran-

tee, to a certain extent, the payments of future retirement pensions. Among the

different ALM methods available in the literature, there are deteministic ALMs, as-

set only, the surplus optimization, stochastic control, stochastic programming and

Monte Carlo simulation models.

1.4.1 Deterministic ALM

The use of ALM methods has a long tradition in pension funds. Even though the

cash outflows were estimated in a stochastic way, the methods were originally de-

terministic. The asset are mainly allocated into bonds, which are assumed to be

less risky. Moreover, the bonds could be either corporate or government and they

guarantee the payment of a certain amount of coupons at the end of each period.

Based on economical and actuarial assumptions, the level of benefits to be paid are

estimated. The goal of those models is to determine the adequate allocation that

protects the fund from any unexpected movements in cash flows and/or interest

rates, i.e. immunization. There are mainly two types of models.

Firstly, according to cash flow matching, bonds are chosen in such a way that, at the

end of each period of study, the total amount of coupons to be received equals the

total amount of pensions to be paid. When the forecasts of liabilities are good, the

impact of the interest rate fluctuations are reduced. However, time value of money,

reinvestment and liquidity (market) risks can cause serious issues, especially when

the projection of cash outflows appears to be far from reality. It is also difficult (if

not impossible) to find bonds that enables a perfect match for a realistic pension

fund problem (e.g. long duration).

Secondly, in the duration matching approach, the asset allocation is defined such

that the duration of asset equals the duration of liability. The duration of a financial

product that consists of fixed cash flows, for example a bond, is the weighted aver-

age of the times until those fixed cash flows are received. For a portfolio, it is the

weighted average of the individual durations. Roughly speaking, it is a measure
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in determining a bond’s sensitivity to interest rates. One can show that the dura-

tion is equivalent to minus the elasticity of the bond price with respect to one plus

its yield. In this respect, the duration matching approach is based on the inverse

relationship between the price of a coupon bond and reinvestment return on the

coupon. In principle, the variation in interest rate makes the values of assets and

liabilities change by (approximately) the same amount; that is its main advantage.

We refer the reader to Macaulay, 1938, Redington, 1952 and Koopmans, 1942 for

more details.

As a limit to this model, the approach assumes flat term structure of interest rate

and some arbitrary changes in the interest rate − not parallel to the yield curve as

it is often the case in real world − leads to a mismatch between assets and liabili-

ties and becomes difficult to manage. Large changes in interest rates are not taken

into account neither. For adaptation to pension funds, the asset portfolio should be

rebalanced dynamically and the present value of assets should equal the present

value of liabilities. A more advanced version of this method also suggests that

assets and liabilities are arranged so that the total convexity of the assets exceeds

the convexity of the liabilities. The convexity of a financial product measures its

curvature as a function of interest rate. It represents the second derivative of the

bond price whereas the duration is related to the first derivative (slope). The asset

portfolio is thus constructed by solving the three following equations:

Asset market value = Liability market value

Asset duration = Liability duration

Asset convexity ≥ Liability convexity

In some cases, it is also possible to combine the two methods defined above and that

is called the combination matching. Hiller and Schaack, 1990 examined the draw-

backs of the different deterministic ALM methods. Linear programming theory

provides the necessary framework for implementing the deterministic approaches.

As an example, the paper by Kocherlakota et al., 1990 applies the duality theory of

linear programming to provide insights for generalizing and solving the cash-flow

matching problem.

A major problem of immunization methods is that they could be costly since the

yields on bonds are low. So, the participation of financial market in the payment

of a pension is relatively small. To illustrate the effects of the asset rate of return,

consider a defined benefit pension scheme whose objective is to reach a pension
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r →
g ↓ 0.00 0.01 0.02 0.04 0.08 0.12. 0.16

0.01 0.22 0.18 0.14 0.09 0.03 0.01 0.00
0.02 0.26 0.21 0.16 0.10 0.03 0.01 0.00
0.04 0.35 0.27 0.21 0.12 0.04 0.01 0.00
0.08 0.56 0.42 0.31 0.17 0.05 0.02 0.00

TABLE 1.3: Fair contribution rate variations with respect to r and g

amount of 60% of the last salary. We consider a single person who started work-

ing at 25 and retires at 65, and whose pension account is fully funded. A certain

proportion cr of the annual salary Wt at the end of year t, 1 ≤ t ≤ 40, is paid

into the fund at the end of each year and represents the yearly contribution. Salary

increases yearly by a fixed rate g and r is the average return on assets. We have

Wt+1 = Wt (1 + g) and at retirement age 65,

Total amount of assets = Present value of future pensions,

that is

crW1

39∑
t=0

(1 + g)t (1 + r)40−t = 0.60 ·W65 · a65

where over the first year of work, W1 = 5000 and a65 is the single premium of a life

annuity of one at age 65. Assuming a65 := 12, Table 1.3 describes the evolution of

the fair contribution rate with respect to the salary growth g and the average return

on assets r. It can be seen that when g decreases or r increases, the fair contribution

rate tends to decrease. A pension fund wants to attain its objectives at the lowest

cost. Investing in riskier assets permits to increase the average return on assets and

therefore, allows to reduce the contribution rate. The difficulty in modeling such

assets and the growing uncertainty of economical, financial and actuarial parame-

ters in the pension fund make the deterministic approaches inefficient.

1.4.2 The Asset Only Framework

The asset only method is one of the oldest approaches in ALM; it is also well known

in practice. Theoretically, it should not be considered as an ALM method, but in

practice, it is one of the most widely used methods. As its name suggest, the opti-

mal asset allocation is obtained by modeling assets and liabilities separately. First

of all, based on economical and actuarial assumptions, the liability and the future

obligations are projected over the period of study. Secondly, considering the initial

level of total assets, one can determine the yearly average rate of return on assets

required in order to meet a certain proportion of the projected liability. Once this
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target is set, the pension fund hires asset managers who attempt to beat the targeted

rate of return at the lowest risk. The maximum level of risk has to be well defined

by the fund. Assuming the risk measure is the variance of the asset portfolio and

under standard conditions, the ALM problem therefore consists in a mean-variance

optimization problem whose aim is to provide, at least, the yearly rate of return

while minimizing the risk exposition, i.e. the variance. The modern portfolio the-

ory (see Markowitz, 1952, Ingersoll, 1987, Huang and Litzenberger, 1988) proposes

some powerful tools to solve such problem.

As an example, consider a pension fund with a total liability L0 = 100, which is

expecting to reach L1 = 101 at time 1. We assume that the total asset is currently at

A0 = 95. At a given time t, the funding ratio Ft is the ratio of the total assets over

the total liabilities; F0 = 0.95 for t = 0. The value Ft < 1 means that the institution

is underfunded at time t. Our goal is to reach a funding ratio of F1 = 1 at time 1,

i.e.
A1

L1
= 1⇔ A1 = L1 = 101⇒ r1 =

A1

A0
− 1 = 6.32%,

where r1 is the rate of return on asset required in order to meet the one-year pro-

jected liability. Thus, the optimization problem is

min
xi

m∑
i=1

m∑
j=1

xixjσij ,

m∑
j=1

xj = 1,

m∑
j=1

xjµj ≥ r1 = 6.32%,

xj ≥ 0 ∀j ∈ {1, · · · ,m} ,

where m is the number of asset j, xj the proportion of A0 invested in asset j, rj1 the

rate of return on asset j over the year, µj = E
[
rj1

]
the one-year expected value of

the return on asset j and σij measures the covariance between assets i and j. This

process eliminates the sources of portfolio risks that do not provide an expected

return premium for investors. The randomness of the liability is obviously not

taken into account in this model. For m = 2 classes of assets, let’s assume

µ =

(
µ1

µ2

)
=

(
0.028

0.073

)
and Σ =

(
σ11 σ12

σ21 σ22

)
=

(
0.0292 0.00176

0.00176 0.1692

)
.
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Thus, the asset allocation is optimal at

x1 = 21.87% and x2 = 78.13%

for a variance level of 1.81%. This example is simplified as in practice, the number

of assets is much larger than two. The mean variance portfolio theory was initially

set up for single-period optimization problems. In pension funds, the ALM prob-

lem is a long term problem. Applying the mean variance approach to pension fund

ALM requires a multi-period approach. Under several sets of reasonable assump-

tions, many authors (see Fama, 1970, Hakansson, 1970 and Hakansson, 1974 and

Merton, 1969) have discussed this issue. As a result, the multi-period problem can

be solved as a sequence of single-period problems.

In practice, other constraints on the asset weights can be added. They are often

risk, legal, budget, regulatory and operating constraints. These constraints can sig-

nificantly alter the efficient frontier. It is also natural to define a set of feasible

portfolios and to choose the best one based on simulations. The asset only method

has the advantage of being relatively simple to implement; the optimal allocation

problem can be solved by any financial actor able to afford the return needed to

cover liabilities. However, the dependence between total asset and total liability is

obviously not taken into account in the portfolio determination. More specifically,

a significant difference between actual and projected liabilities might cause severe

difficulties. The surplus optimization approach, discussed in the next subsection,

addresses that issue.

1.4.3 Surplus Optimization

The total liability is the discounted expected value of future payments. At a given

time, it represents the amount the fund has to own if it has to close at that time.

As future payments are random, the total liability is a random variable influenced

by many factors. The factors can be actuarial or economical. The economical risks

of the liabilities are often related to inflation, salary growth and discount rates. As

these risks also have an effect on the total amount of assets, it is important to in-

clude the random liability as part of the ALM model and not only as the target

wealth for the pension fund portfolio optimization. More clearly, the correlations

between asset and liability have to be considered in the determination of the opti-

mal portfolio. That is the main problem of the asset only approach. For example,

the assets, with higher covariance to liability, tend to reduce the risk exposition of

the pension fund, see Sharpe and Tint, 1990 and Keel and Müller, 1995. Leibowitz
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and Henriksson, 1988 showed that an asset such as cash, which should typically

reduce the riskiness of an all-asset portfolio, may actually increase the riskiness of

a portfolio that includes liability.

Including liability in the optimal asset allocation decision has a long story in fi-

nance theory. We refer the readers to Sharpe and Tint, 1990, Elton and Gruber,

1992, Leibowitz et al., 1992 among others. In what follows, we present the surplus

optimization model proposed by Sharpe and Tint, 1990 because, although liability

is taken into account, the ALM model is put in a very close relationship to the tradi-

tional mean-variance portfolio theory. As the asset only is one of the most used in

practice, it would be easy to switch from the asset only to the surplus optimization.

The surplus is the excess value of the total asset compared to the total liability.

The surplus optimization model focuses on the surplus instead of the total asset as

in the asset only model. We denote by St the surplus at time t, t ∈ {0; 1} such that

St = At − kLt,

where At and Lt are, respectively, the total amount of assets and liabilities. The

parameter k denotes the importance attached to the liability. For example, k = 1

for a full surplus optimization whereas k = 0 for an asset only optimization. The

variable t denotes the time index and especially in this model, t = 0 is the current

time whereas t = 1 is the end of the period of study (one period approach). Let RA
and RL denote, respectively, the return on asset and liability:

A1 = A0 (1 +RA) and L1 = L0 (1 +RL) . (1.2)

The return on liability (known as the liability appreciation rate) is calculated from

value changes, just as it would be for any asset. Over the period of study, the

variation of the surplus is

S1 − S0 = (A1 − kL1)− (A0 − kL0) = A0RA − kL0RL.

Following Sharpe and Tint, 1990 and Keel and Müller, 1995, this amount can be

expressed relative to the level of assets at time 0. That is

Z =
S1 − S0

A0
= RA − k

1

F0
RL; where F0 =

A0

L0
,

and F0 is the funding ratio at time 0. The variable Z is influenced by many factors.

They are:
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• random factors such as returns on assets and liabilities,

• the current situation of the fund, i.e. the initial funding ratio F0, and

• the asset allocation and the contribution rate which are the only factors that

the decision maker can influence. They are also called decision variables.

As in the mean variance approach, the surplus ALM problem consists in determin-

ing xj such that

min
xj

V ar [Z] ,

subject to
m∑
j=1

xj = 1,

E [Z] ≥ Rs,

xj ≥ 0 ∀j ∈ {1, · · · ,m} ,

(1.3)

whereRs is the targeted minimum return on Z and xj denotes the proportion ofA0

invested in asset class j. The symbol V ar [X] denotes the variance of the random

variable X . Applying the properties of expectation and variance, we obtain:

E [Z] = E

[
RA −

k

F0
RL

]
= E [RA]− k

F0
E [RL] and (1.4)

V ar [Z] = V ar

[
RA −

k

F0
RL

]
= V ar [RA] +

k2

F 2
0

V ar [RL]− 2
k

F0
coV ar (RA, RL) (1.5)

where coV ar (RA, RL) is the covariance between RA and RL. We recall that RA =∑
xiri ⇒ E [RA] =

∑
xiµi and V ar [RA] =

∑
i

∑
j xixjσij and σij , ri and µi are

defined in the previous section. In equation 1.4, controlling E [Z] is equivalent to

controlling E [RA] as the second part of the expression does not contain any deci-

sion variable, i.e. the decision maker has no influence on it. Similarly, minimizing

V ar [Z] is equivalent to minimizing V ar [RA] − 2 k
F0
coV ar (RA, RL). The surplus

problem is thus

min
xj

∑
i

∑
j

xixjσij − 2
k

F0
coV ar (RA, RL) ,

subject to
m∑
j=1

xj = 1,

∑
j

xjµji ≥ Rs,

xj ≥ 0 ∀j ∈ {1, · · · ,m} .

(1.6)
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The optimization problem formulated in (1.6) is similar to the one introduced in

the asset only approach. The only difference is the second term in the objective

function:

−2
k

F0
coV ar (RA, RL) . (1.7)

The latter expression is function of the importance to be attached to liability k,

the initial funding ratio F0 and the covariance between assets and liabilities. It

represents the part of the model that is dedicated to the hedge of liability. This is

one of the reasons why the expression (1.7) is often called liability hedging credit in

the literature, see e.g. Sharpe and Tint, 1990. When the expression (1.7) is equal to

zero, surplus optimization is equivalent to asset only. That is, using the asset only

approach in an ALM study for pension fund is equivalent to making one of the

following assumptions:

• liability is independent of asset or

• liability is non-existent in our problem.

From the system of equations (1.6), we can see that a positive covariance between

assets and liability tends to reduce the objective and thus, improves the risk expo-

sition of the pension fund.

Based on the model of Sharpe and Tint, 1990 and the Merton’s Capital Asset Pric-

ing Model (Merton, 1973), Keel and Müller, 1995 show that the efficient portfolios

can be decomposed into a minimum risk component, liability component and a re-

turn generating component. It is the essence of the liability driven investment (LDI)

method. A brief introduction is presented in Section 1.4.4. The surplus optimiza-

tion model has the advantage of being simple to implement and provides an ana-

lytical solution to the pension fund ALM problem. More specifically, this approach

by Sharpe and Tint, 1990 allows a full or partial consideration of the liability. How-

ever, it is a one period approach and as the pension fund ALM problem is a long

term problem, a dynamic model would be more appropriate. In practice, as men-

tionned in Wane et al., 2011, a serious issue may arise from the determination of the

liability return and of its covariance with the asset classes. What is the real proba-

bility distribution of liability? The papers by Kritzman, 1990 and Meder and Staub,

2006 could shed some light on this issue.

1.4.4 Stochastic Control

The stochastic control challenge is to cast the ALM problem in a continuous time

framework, attempting to take into account the issues of surplus optimization due
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to long term and dynamicity in pension funds. This method is not really accepted

in practice where it is often considered as an academic model. It is an extension

of the surplus optimization approach. The stochastic control approach is based on

optimal portfolio selection theory introduced in the intertemporal asset allocation

models of Merton, 1969, Merton, 1971 and Merton, 1973. A first application to

pension funds problem can be found in Merton, 1993 who discusses the lifetime

portfolio selection problem for a university endowment fund. Since then, the lit-

erature of stochastic control has flourished and we can cite Taylor, 2002, Brennan

et al., 1997, Brennan et al., 1998, Cairns, 2000, Cairns et al., 2006, Blake et al., 2013,

Rudolf and Ziemba, 2004, Haberman and Sung, 1994 and Menoncin and Scaillet,

2006 among others.

To start off the procedure, the analysis utilizes a system of stochastic differential

equations for modelling the stochastic parameters over time of assets and liabili-

ties models. The dynamics of each process has, firstly, to be established explicitly.

Secondly, the dynamics and the objective of the ALM problem will serve to define

the objective function. The value function can be considered as the value of the

objective function corresponding to the optimal decision. We recall that our goal

is to determine the asset allocation (and eventually the contribution rate) leading

to the value function. To solve the problem, we use the dynamic programming

approach; the idea being to connect the optimization problem with a certain differ-

ential equation known as Hamilton-Jacobi-Bellman (HJB) equation. Under some

regularity conditions, the solution of the HJB equation is the value function. The

last step consists in recovering the optimal strategy by plugging-in the value func-

tion into the HJB equation. We refer the reader to Merton, 2010 to learn more about

the resolution of general stochastic control problems. The main challenge of this ap-

proach lies in determining the solution of the HJB equation. Two main algorithms

are often used to solve a stochastic control problem: the dynamic programming

algorithm and the finite element algorithm, see Ziemba and Mulvey, 1998 and Mer-

ton, 2010. The main difference is that the dynamic programming algorithm results

in an exact analytical solution whereas the finite element algorithm uses numerical

techniques to find an approximate solution to the HJB equation. The latter is par-

ticularly useful when an analytical solution is not available. Appendix 1 proposes

an example of implementation using the first resolution approach.

The ALM problem considered in the Appendix 1 leads to a stochastic control frame-

work with a state variable Ft and one decision variable w. Considering a power

utility function, the use of the dynamic programming algorithm enables to find the
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exact optimal asset allocation. When it is not possible to determine an exact solu-

tion (e.g. Taylor, 2002), finite element algorithms (e.g. finite difference technique)

may provide a good approximation of the exact solution, see Kushner and Dupuis,

2013. The dynamics of the model allow to include the process of information being

revealed progressively through time. The portfolio allocation can be rebalanced at

any time. The stochastic process of each variable is accurately incorporated into

the ALM framework. The assets and liabilities are influenced by many sources −
common or not − of risk and the risk aversion is accommodated. Under some the-

oretical assumptions, all these together are integrated in a system that results in a

simple and tractable solution. These arguments explain the research interests for

the stochastic control.

Nonetheless, the stochastic control approach may pose some issues. Firstly, as

pointed out in Mulvey and Ziemba, 1998, it applies to problems in which the state

space can be kept manageable, i.e. with at most three or four state variables. In

the Appendix 1, the only state variable considered is the funding ratio Ft. That re-

duces considerably the problem. In a more realistic problem, stochastic processes

can be driven by more than one variable, e.g. six variables in the financial scenario

model of Ahlgrim et al., 2005 and four variables in the strategic asset allocation

model of (Brennan et al., 1998 and Brennan et al., 1997). Moreover, the generation

of confidence limits is difficult to calculate and modeling errors may arise due to

the state space approximation. Secondly, estimating the parameters of the stochas-

tic differential equation is not so simple. Especially, in contrast to the asset random

variables, the stochastic model estimation of the liability process can be difficult as

the evaluation methods often vary with regulation. Also, finding a random process

that regroups all sources of uncertainty specific to liability − economic, financial

and actuarial − as assumed in Appendix 1 can be difficult. To finish, from a prac-

tical point of view, the stochastic control seems very technical in the sense that it

requires some advanced and specific mathematical knowledge.

1.4.5 Stochastic Programming

The stochastic programming (SP) approach offers an alternative to dynamic stochas-

tic control for setting dynamic investment strategies. Often based on Monte-Carlo

simulations due to its complexity, SP gives a flexible and powerful tool for ALMs.

Even though its use in modeling complex portfolio optimization problems dates

back the early seventies, SP is relatively new as its real application to pension fund

practices only traces back to the work of Kallberg et al., 1982 and Kusy and Ziemba,

1986. Its importance lies in its ability to bring together many kinds of features in a
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FIGURE 1.6: A scenario tree with 40 scenarios and 66 nodes.

common framework. The key idea is to approach randomness via a tree structure

called scenario tree (see Figure 2.1) and optimal decision is taken at each node of the

tree considering the information available at that point. The ALM optimization is

done in several steps.

Firstly, as in the SC approach, the dynamic of each process has to be clearly defined

and its parameters accurately estimated. Secondly, the resulting process equation

will be discretized and serves to construct the scenario tree; the ALM model is for-

mulated accordingly. To illustrate this, let us consider a random vector X which

may take five possible values between time 0 and time 1, then four possibilities be-

tween 1 and 2 and finally two outcomes between 2 and 3 as displayed in Figure 2.1.

From time 0 to time 3, the branching structure is 1− 5− 4− 2− 1 leading to a total

of S = 5 × 4 × 2 = 40 paths or outcomes. We have a time horizon of T = 3 years

which has been divided into three periods of one year each. Each path from t = 0

to t = 3 is called a scenario. Different scenarios may share a common path up to

some stage and then diverge; that is the case of scenarios 1 and 2. A node (t, s) is a

possible outcome of the stochastic random variable at a given time t in a scenario s.

Each node represents an opportunity to take a decision. The total number of nodes

in the tree is determinant of the size of the stochastic program. Figure 2.1 describes

a scenario tree with 66 nodes and 40 scenarios. Let S = {1, · · · , S} be the set of

scenarios. Each scenario s has a probability ps, where ps > 0 and
∑S

s=1 p
s = 1.

We denote by Xs
t the random variable X at the node (t, s) and by wst the vector of

decision. For an ALM study for pension fund, the vector wt may contain asset allo-

cation, contribution rate, remedial contribution (see Toukourou and Dufresne, 2015
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that is also presented in Chapter 2), indexation rate of future payments, etc. Once

this event tree is built, decisions are taken at the beginning of each period (at each

node) with the full knowledge of the past and considering the remaining future

represented by the subtree rooted at (t, s). But, only time 0 values of the decision

variables are crucial to the decision maker, since, almost surely, a true realization of

the random data will be different from the set of generated scenarios. Readers must

know that the branching structure, the time horizon, the duration of each period

and the number of scenarios may vary from a model to another.

In addition, one should avoid anticipativity in the model by making one single

decision at each time t for all paths by adding explicit constraints. That is, for any

two different scenarios s1 and s2 (s1, s2 ∈ S and s1 6= s2) having the same history

up to time t, we enforce ws1t = ws2t . For example, at the empty red circle of Figure

2.1, w1
1 = w2

1 = · · · = w8
1.

Constructing a scenario tree close enough to the initial stochastic model can be

challenging. There is an entire literature on this topic and authors often use sim-

ulations. Kouwenberg, 2001 discusses different approaches for the scenario tree

generation whereas the model proposed by Høyland and Wallace, 2001 tries to fit

the conditional moments at each node. Finally, once the variables, objective and

constraints are established explicitely in a SP framework, many algorithms solve

the problem. Optimality is defined in terms of current costs plus expected future

costs. We refer the reader to Birge and Louveaux, 2011 and Shapiro et al., 2009 for

a general introduction to SP. As stated in Mulvey and Ziemba, 1998, the primary

algorithms for solving stochastic programs fall into three categories: direct solu-

tion by interior point methods, augmented Lagrangian decomposition and nested

Bender’s or regularized decomposition. The paper by Pflug and Świętanowski,

1999 has considered all these methods. Several models and advanced algorithms

for stochastic linear programs can be found in Kall and Mayer, 2011 and Kali and

Wallace, 1994.

The SP approach was firstly adopted by Bradley and Crane, 1972 with their ap-

plication to a fixed income security portfolio problem. Kusy and Ziemba, 1986

show, based on a five-year period application to the Vancouver City Saving Credit

Union, that SLP is theoretically and operationally superior to a corresponding de-

terministic linear programming model. The authors have proved that the effort

required for the implementation of ALM and its computational requirements are
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comparable to those of the deterministic model. For a Japanese insurance com-

pany, Carino et al., 1994 developed a model that enables the decision makers to in-

clude risk management tools as well as including the complex regulations imposed

by the Japanese insurance laws and practices. Over the two years of experiment,

the resulting investment strategy has been fruitful as it has yielded extra income

of 42 basis points (US$ 79 million). More recently, considering a Finnish pension

company, Hilli et al., 2007 focus on the modeling of the stochastic factors and anal-

yse the obtained numerical solution. Dert, 1995 pioneered the inclusion of chance

constraints in multistage recourse models for pension funds. Chance constrained

programs often lead to integer programming for which, it may be difficult to deter-

mine a tractable solution. As an alternative to chance constraints, Haneveld et al.,

2010 proposed the integrated chance constraints, whose feasibility set is more han-

dleable as it does not require integers. Toukourou and Dufresne, 2015 analyse the

effect of integrated chance constraints as quantitative risk constraints in ALM for

pension funds and introduce the multiperiod integrated chance constraints. The

literature of SP in ALM also includes Consigli and Dempster, 1998, Bogentoft et al.,

2001, Drijver, 2005, Faleh, 2011, Aro and Pennanen, 2013 among others.

On a practical point of view, the SP approach is among the best ALM approaches as

it includes more of the essential elements of the real problem faced by the pension

plan than the alternative approaches cited above. In general, most of the practical

features of a realistic pension fund can be taken into account; that is, operational

or regulatory restrictions and policy requirements can be modeled as a set of con-

straints in an optimization program, whose objective describes the pension fund

goal.

A practical application of the SP approach is discussed in Chapter 2. The success

of the model for institutional application also demonstrates the practicability of the

approach. Many reasons justify its interest. The uncertainty of assets and liabil-

ities is modeled through a discrete distribution which integrates the dependence

between financial and demographic risks. The framework has a long time hori-

zon split into subperiods allowing for dynamic optimal decisions. Uncertainty is

incorporated in the decision process and the revealed informations are included

dynamically. All these can be incorporated in a single and consistent structure; a

simple linear program is sometime sufficient. As an example of current applica-

tion of stochastic linear programming, Geyer and Ziemba, 2008 have developped a

linear ALM model − InnoALM − for the Siemens pension fund. In use since 2000,
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this model has become the only consistently implemented and fully integrated pro-

prietary tool for assessing pension allocation issues within Siemens AG worldwide.

Despite the undeniable applicability of SP, some difficulties are still to raise. Firstly,

according to SP framework, the future is described by the scenario tree and deter-

mining a discrete distribution that represents the continuous uncertainty − well

enough − is challenging. Secondly, implementing some realistic constraints in

the model may cause infeasibility or untractability when the feasibility set is non-

convex. For example, the value-at-risk constraint (VaR) also known as chance con-

straint requires the use of integer variables and may lead to untractability; see Dert,

1995 for a successful application. Binaries are also used in Drijver, 2005 where re-

medial actions are taken only when the funding ratio falls short in two consecutive

years. In many cases, the SP solution algorithm requires advanced optimization

knowledge that could make the model hardly implementable.

1.4.6 Simulation methods

Actuaries have to analyse the long-term viability of the pension fund with respect

to future contributions, pay-outs to beneficiaries and other uncertainties. As its

name suggests, this approach uses Monte-Carlo simulations to evaluate the feasi-

ble decisions from which, it draws the best ones. That is done in three steps. In

order to ease understanding, we consider a pension fund that wants to determine

the asset allocation that maximizes its terminal funding ratio over a certain period

of study.

As for the other approaches, the first step is inevitably to define clearly the probabil-

ity distribution followed by the stochastic variables of the model: financial and de-

mographic. Secondly, based on these distributions, the simulation model or frame-

work is defined. The simulation model serves to forecast the possible future paths

of the variables of interest: assets, liabilities and then, funding ratio in our case. The

future paths of assets and liabilities are obviously influenced by the current deci-

sions taken on the strategic asset allocation. This last one is set depending on the

fund’s objectives. Finally, the procedure for choosing the best allocations is simple.

For each possible asset allocation, a certain number of possible outcomes (simula-

tions) of the terminal funding ratio will be generated. Considering the performance

of each allocation, the three or five best decisions are submitted to the pension fund

board of trustees. The performance is measured in terms of average return and risk

measures, e.g.: VaR, CVaR, volatility, probability of underfunding, etc.
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FIGURE 1.7: The cascade structure of the Wilkie model

The simulation approach is the most used in pension fund consulting nowadays,

and research is still progressing. However, there are models that have particularly

marked the literature. We can cite Wilkie, 1984, revisited in Wilkie, 1995 and Cairns

et al., 2008, Ahlgrim et al., 2005 for modelling financial economic scenarios and the

models of Møller and Steffensen, 2007 for the liability simulations.

The Wilkie investment model − from the name of its author Professor A. David

Wilkie, 1984− is described in Appendix 2. It is a financial asset model that seeks to

describe the behavior of inflation and various economics factors over time. Origi-

nally based on data for the United Kingdom from 1919 to 1982, the Wilkie model

is formulated as a system of autoregressive processes where each one characterizes

an economic variable. Basically, the variables are the retail price index (inflation),

the share yield, the share dividends and the consols yield (long term interest rate),

interconnected by a cascade structure as shown in Figure 1.7. The wage inflation

and the short term interest rate has been added in a later version of the model, see

Wilkie, 1995. The main factor of the model which influences all asset prices is the

retail price index (price inflation); it essentially drives the composite model.

As one would expect, there have been a lot of discussions in the literature. Daykin

and Hey, 1990 have pointed out that the model tends to generate negative inflation

with a probability that is higher than what observations actually show. From the

Financial Management Group (FIMAG, UK) working group on the Wilkie model,

Geoghegan et al., 1992 concluded that the model should be estimated using post-

1945 data, including as recent data as are available, this in order to integrate the

fundamental changes that had affected the process generating the data after the
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Second World War. The constant variance of the model has also been questioned.

Ludvik, 1993 has noticed that the model tends to underestimate the correlation

between the UK stocks and the fixed interest rate security. The author also sum-

marises the reasons why the short term behaviour of stochastic asset models is

relevant in asset/liability studies for pension funds. An updated version of the

Wilkie model is published in Wilkie, 1995 where the variables wages index, short

term interest rate and property rentals are added to the model, and the framework

exploits the cointegrated models and ARCH models. Huber, 1997 noted that cer-

tain economic theories and the constancy of the model’s parameter values did not

appear to have been specifically considered. In Whitten and Thomas, 1999, the

application of non-linear modelling to investment series is explored, considering

both ARCH techniques and threshold modelling. The authors suggest a threshold

autoregressive system as a useful progression of the Wilkie model. In Cairns et al.,

2008, the model parameters are updated to 2007 and the authors conclude that the

model is still satisfactory even though the estimated parameter are not stable. The

stability of the model parameters is discussed in Wilkie et al., 2011. Based on the

Wilkie model, Şahin, 2010 introduces the yield-macro model which is also an in-

vestment model for actuarial use in the UK. More recently in Şahin et al., 2014, the

yield-macro model is compared to Wilkie based on updated UK data (up to the

year 2009).

Many applications of the hierarchy structural modeling method are done late on.

Thomson, 1996 has applied an adjusted version of the Wilkie model to the case of

South Africa. The ALM investment model introduced in Yakoubov et al., 1999 uses

earnings rather than dividends to generate price returns and the equity return is

divided into three components: dividend yield, earnings growth, and change in

market rating. An overview of eight stochastic asset models is provided in Lee

and Wilkie, 2000. The literature on asset simulation models is very generous. We

can also cite the financial scenario simulation model of Ahlgrim et al., 2005, the

Towers Perin (Mulvey and Thorlacius, 1998) model with a cascade structure us-

ing stochastic differential equations, the Falcon Asset model (Dempster et al., 1998)

developped by Falcon Asset Management, among others.

1.5 Demographic risks

By definition, the pension scheme is an institution covering a specific population.

Therefore, the demographic risks regroup all the uncertainties that arise from the

possible future changes in the pension fund population, i.e. active and inactive
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FIGURE 1.8: Evolution of the old age dependency ratio in selected
OECD countries (OECD, 2015)

members of the fund. The changes can be either quantitative − related to the size

of the population − or qualitative concerning the structure of the population, e.g.

proportion of actives or non-actives. Among the risks affecting the population of a

pension fund, we have the longevity risk, the renewal risk and the lapse risk, see

Devolder et al., 2013.

As mentioned above, longevity leads to an (unexpected) increase of the propor-

tion of retirees in the pension population. The increase is essentially due to the

developments in mortality and life expectancy. The Figure 1.8 displays the evo-

lution since 1990 of the old age dependency ratio in selected OECD countries. It

can be seen that the trend line is up for all the selected countries showing that the

longevity is expected to continue increasing in the coming years. Since 2000, Ger-

many is having the highest ADR with an increase of more than seven years over

the fourteen-year period. In Switzerland, the change from 2000 to 2014 is about

four years for a value of 26% in 2014. More details on the situation in Switzerland

are given in Subsection 1.3.3.

The augmentation of the life expectancy has a serious drawback on a pension fund

liabilities. A pension fund can either include mortality changes in its actuarial mod-

els and/or cede the risk to a third party, i.e. insurer, reinsurer or an other financial

institution. For the first approach, there are several models that include the mor-

tality improvements in the literature. These models use the prospective mortality
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table that follows different cohorts over time. The starting point in this field is the

Lee and Carter, 1992 method in which mortality is determined by two components

namely the age and the time. The theory is based on the time series analysis for

which the mortality rate µa is given by

lnµa (t) = αa + βaκt + εat

where αa, βa and κt are parameters to be estimated and εat is a set of random

disturbances. The index a indicates the age group (or the age) whereas t is the time

index. For estimation purposes, the following contraints have been added to the

model ∑
a

βa = 1 and
∑
t

κt = 0.

The ordinary least squares provide the theoretical background for estimating the

parameters α, β and κ, i.e. by minimizing the squared errors. That is

(
α̂, β̂, κ̂

)
= arg min

(α,β,κ)

amax∑
a=amin

tmax∑
t=tmin

(ln µ̂a (t)− αa − βaκt)2 .

We refer the reader to Lee and Carter, 1992 and Bell, 1997 for a complete descrip-

tion of the model. Lee, 2000, Lee, 2003 and Delwarde and Denuit, 2005 introduce

actuaries to the concept with several extensions and applications. It must however

be noted that the model does not allow for the inclusion of expert judgments con-

cerning the future advances in mortality. Thus, no information other than previous

history can be introduced. The reader is referred to Gutterman and Vanderhoof,

1998 for a complete discussion on the question.

For a pension fund, an other way for managing the longevity risk consists in trans-

fering this risk to insurers or reinsurers, e.g. by buying life annuities from insurance

companies that then pay the pensions. In this respect, longevity linked securities

are getting popular nowadays on the financial market, see e.g. Barrieu and Alber-

tini, 2010 (Sections 20 and 21).

In addition, the renewal risk is related to the decrease in the new members en-

tering the fund, leading to a reduction of the total contribution while the lapse risk

arises from members who leave the pension fund before retirement (e.g. disability,

dismissal, etc.).
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1.6 Conclusion

This chapter provides a literature review of the asset liability management (ALM)

methodologies in pension funds. Before describing the different models, it is of in-

terest to explain the particular features of pension schemes. In order to emphasize

those caracteristics, the Swiss pension system is described and compared to some

other OECD countries. It can be seen from the observations that the Swiss system

performs quite well.

Two types of risks have been identified for pension funds: the demographic risks

and the financial risks. The ALM framework provides the theoretical background

for managing the financial risks. Several approaches including deterministic ALM,

asset only, surplus optimization, stochastic control, stochastic programming and

Monte Carlo simulations are discussed. The pros and cons of each model are also

analysed. It can be seen that the deterministic ALM does not allow to take ad-

vantage of the financial market. The liabilities of the pension fund are not taken

into account in the asset only framework whereas the surplus optimization and the

stochastic control models are difficult to implement in practice. Among the differ-

ent ALM approaches discussed, only the stochastic programming and the simula-

tion methods allow for the integration of the main features of a pension fund in a

single model. Chapter 2 discusses the role of integrated chance constraints as part

of a stochastic program in ALM for pension funds.

Concerning the demographic risks, longevity is the most important and a brief

introduction to the Lee and Carter model is given. Another source of demographic

risk is the mortality. Chapter 3 combines the copula models and the Gompertz

mortality law to model the bivariate lifetime of married couples.
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1.7 Appendices

1.7.1 Appendix 1: Stochastic control: a case study

As an example, we discuss the case of a pension fund whose goal is to determine

the best investment policy w := (wt)t≥0 that maximizes the expected utility of the

terminal funding ratio. We consider the Merton portfolio allocation problem with

liability such as presented in Martinelli, 2007. We consider a financial market in

which n + 1 assets are traded continuously within the time horizon [0, T ]. There

are n risky assets and one risk-free asset. The process of the risk-free asset value P 0
t

satisfies the following differential equation:

dP 0
t = P 0

t rdt (1.8)

with P 0
0 = p0 > 0 and r is the risk free rate. The price process of each risky asset i

is P it , i ∈ {1, · · · , n} and satisfies the following differential equation:

dP it = P it

µidt+

n∑
j=1

σijdW
j
t

 (1.9)

where Wt =
(
W 1
t , · · · ,Wn

t

)
is a standard Ft≥0−adapted n−dimensional Wiener

process which is described through a standard probability space (Ω, A, P ); F∞ ⊂ A
and F0 is trivial. We set P i0 = pi, i ∈ {1, · · · , n}. The vector µ = (µi)

′

i=1,··· ,n and

the matrix σ = (σij)i,j=1,··· ,n are, respectively, the expected return vector and the

asset return variance-covariance matrix. Besides, σ, µ and r are progressively mea-

surable and uniformly bounded processes in [0, T ] with σ a non singular matrix. In

principle, the variables σ, µ and r are function of time and a state variable X which

regroups various sources of uncertainty influencing the value of assets and liability.

Here, for sake of simplicity, we assume they are constant. The liability process is

dLt = Lt

µLdt+

n∑
j=1

σL,jdW
j
t + σL,εdW ε

t

 (1.10)

where W ε
t is a standard brownian motion uncorrelated to W and µL the apprecia-

tion rate of the value of total liability. The variable W ε
t incorporates all the sources

of uncertainty specific to liability risk such as salary growth, inflation and actuarial

risks.

Now, we consider an investor that invests her initial wealth A0 into the financial

market subject to liability with an initial value L0. At any time t, the total asset At
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is invested into the n risky assets and the risk-free asset. Let W be the set of ad-

missible strategies. The investment policy w =
(
w
′
t = (w1t, · · · , wnt)

)
t≥0

, w ∈ W,

is predictable and describes, at each time t, which proportion to allocate into each

asset. Thus, the total asset process Aw
t , describing the wealth at time t under the

strategy w, satisfies the following differential equation:

dAw
t

Aw
t

=
(

1− w′t1
) dP 0

t

P 0
t

+ w
′
t

dPt
Pt

=
(
r + w

′
t (µ− r1)

)
dt+ w

′
tσdWt

⇒ dAw
t = Aw

t

[(
r + w

′
t (µ− r1)

)
dt+ w

′
tσdWt

]
where 1 is the n−dimensional vector of ones. The process Aw

t is therefore a geo-

metric brownian motion with a drift
(
r + w

′
t (µ− r1)

)
and a volatility

(
w
′
tσ
)

. We

recall the objective of the pension fund which is to maximize the expected utility of

the terminal funding ratio:

max
w∈W

E0,F0 [U (Fw
T )] (1.11)

with Fw
T =

Aw
T

LT
, U (•) the utility function and Et,Ft [•] the conditional expectation at

time t for an initial funding ratio F0. A simple application of Ito’s Lemma implies

that the instantaneous funding ratio stochastic process under strategy w is given

by

dFw
t = d

(
Aw
t

Lt

)
=

1

Lt
dAw

t −
Aw
t

L2
t

dLt −
1

L2
t

dAw
t dLt +

Aw
t

L3
t

(dLt)2

and can be rewritten as

dFw
t

Fw
t

=
((
r − µL + σ

′
LσL + σ2

L,ε

)
+ w

′
t ((µ− r1)− σσL)

)
dt

+
(
w
′
tσ − σ

′
L

)
dWt − σL,εdW ε

t . (1.12)

Let us define the mean return and the volatility of the funding ratio portfolio such

that

µF (wt) ≡
(
r − µL + σ

′
LσL + σ2

L,ε

)
+ w

′
t ((µ− r1)− σσL)

σF (wt) ≡
((

w
′
tσ − σ

′
L

)′ (
w
′
tσ − σ

′
L

)
+ σ2

L,ε

) 1
2

and we consider the derived associated value function:

V (t, Ft) = max
w∈W

V w (t, Ft)
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where the objective V w (t, Ft) is defined by:

V w (t, Ft) = Et,Ft [U (Fw
T )] .

The process Ft known, at time t, plays the role of state variable (see Merton, 2010

and Chapter 3 of Touzi, 2012). We define by C1,2 a set of function one time dif-

ferentiable in t and twice differentiable in Ft. For a function ϕ (t, Ft) ∈ C1,2 and

assuming a constant strategy w, the infinitesimal generator L applied to function ψ

leads to

Lwϕ (t, Ft) = ϕt + FϕFµ
w
F +

1

2
F 2ϕFF (σwF )2

where ϕt and ϕF are respectively the first derivative with respect to t and F respec-

tively. The symbol ϕFF denotes the second derivative of function ϕ with respect to

F . This equation is derived using the Ito lemma. In our problem, the HJB equation

associated is given by

sup
w∈W

{LwV (t, Ft)} = 0 subject to V w (T, FT ) = U (FT ) . (1.13)

Assuming that there exists a maximizer w∗ and the function V ∈ C1,2, the opti-

mization of (1.13) with respect to w leads to the following differential equation

FVF
∂µwF
∂w

(w∗) +
1

2
VFF

∂ (µwF )2

∂w
(w∗) = 0

⇔ FVF ((µ− r1)− σσL) +
1

2
VFF

(
w∗
′
σσ
′ − σσL

)
= 0.

The optimal asset allocation obtained from this equation is

w∗ = w∗ (t, Ft) = −
(
σσ
′
)−1

((µ− r1)− σσL)
VF (t, Ft)

FVFF (t, Ft)
+
(
σσ
′
)−1

σσL

= −
(
σσ
′
)−1

(µ− r1)
VF (t, Ft)

FVFF (t, Ft)
+

(
1 +

VF (t, Ft)

FVFF (t, Ft)

)(
σ
′
)−1

σL,

highlighting the three funds separation theorem. That is, the proportion wM =(
σσ
′)−1

(µ−r1)

1(σσ′)
−1

(µ−r1)
called the performance seeking portfolio (PSP) serves, in a first hand, to

generate high returns on the market and is similar to the standard mean variance

efficient portfolio. Secondly, the proportion wL =

(
σ
′)−1

σL

1(σ′)
−1
σL

called the liability hedg-

ing portfolio (LHP) helps to control the variability of the pension fund liabilities.

Finally, the rest is invested in risk-free asset. We refer the reader to Martinelli, 2007

for further details concerning this example.

The obtained solution is subject to the following assumptions:
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• the value function V ∈ C1,2 (not allways fullfilled) and

• a maximizer exists.

For the special case of a risk averse power utility function of the type:

U (FT ) =
(FT )1−γ

1− γ
(1.14)

where γ is the risk aversion parameter, U ∈ C1,2, the ratio VF
FVFF

= 1
γ (also called

the Arrow-Pratt coefficient of risk tolerance) and the optimal strategy w∗ is given

by

w∗ =
(
σσ
′
)−1

(µ− r1)
1

γ
+

(
1− 1

γ

)(
σ
′
)−1

σL.

The existence of a unique solution can be checked by the way of the verification

theorem, see Schmidli, 2007.

We are aware that many pension fund particularities are not taken into account

in the ALM SC model treated in our example. In a first hand, the cash flows dy-

namics − pension benefits and yearly contributions − are not brought out. On the

other hand, there is no pension fund realistic restrictions such as portfolio, legal,

budget, risk, regulatory and operating constraints. That said, the problem has been

simplified in order to ease understandings. More realistic ALM problems for pen-

sion funds using SC approaches and explanations can be found in Cairns, 2000 and

Devolder et al., 2013 (Chapters 7 and 8).

1.7.2 Appendix 2: The Wilkie investment model

Let∇ denote the backwards difference operator where

∇X (t) = X (t)−X (t− 1) .

Considering the consumer price indexQ (t) at time t,∇ lnQ (t) = lnQ (t)−lnQ (t− 1)

measures the force of inflation over (t− 1, t). The variable I (t) := ∇ lnQ (t) follows

an autoregressive process of order 1 (AR1) such that

I (t) = ∇ lnQ (t) ∼ AR1 (QMU, QA, QSD)

⇔ I (t) = QMU +QA (I (t− 1)−QMU) +QSD ×QZ (t) (1.15)

and we can derive

Q (t) = Q (t− 1)× exp {I (t)}.
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Here, the expression QSD × QZ (t) is a zero-mean white noise with a standard

deviation QSD whereas QMU and QA are respectively the fixed mean and the pa-

rameter of the AR1 model. The equation (1.15) assumes that the force of inflation

only depends on its previous value. As specified in Geoghegan et al., 1992, the pa-

rameter estimation will show that retail price inflation has a normal distribution,

with constant mean and standard deviation increasing at a decreasing rate over

time toward an upper limit.

As shown in Figure 1.7, the price index directly influences the other variables of

the model. The share yield process Y (t) is directly dependent of the current level

of the force of inflation I (t) and its previous values contained in Y N (t). That is

given by

lnY (t) = YW × I (t) + Y N (t)

where YW is an inflation factor and Y N (t) is a first order autoregressive process

such that

Y N (t) ∼ AR1 (lnYMU, Y A, Y SD)

⇔ Y N (t) = lnYMU + Y A (Y N (t− 1)− lnYMU) + Y SD × Y Z (t)

In the process Y N (t), Y SD × Y Z (t) is the zero-mean white noise with a standard

deviation Y SD, lnYMU is the mean and Y A is the parameter of the AR1 model.

The model estimation is made using historical data and similar from the Financial

Times Actuaries All share index from 1919 to 1982.

The current level of the share dividend D (t) is dependent of itself at time t − 1

contained in DM (t), the white noise of the share yield Y SD×Y Z (t) and the price

inflation I (t), and is given by

∇ lnD (t) = DW ×DM (t) +DX × I (t) +DMU

+DY × Y SD × Y Z (t− 1) +DB ×DSD ×DZ (t− 1) +DSD ×DZ (t)

where

DM (t) = DD × I (t) + (1−DD)DM (t− 1) , (1.16)

DSD × DZ (t) is a zero-mean white noise with a standard deviation DSD and,

DW,DX,DD,DMU ,DB andDY are the model parameters. The effect of inflation

can be identified through the expressionDW ×DM (t)+DX×I (t). Once we have

the dividend yield and share yield models, the share price at time t can be obtained
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by

P (t) =
D (t)

Y (t)
or lnP (t) = lnD (t)− lnY (t) .

We can next calculate the value of the share index PR (t)

PR (t) = PR (t− 1)

(
P (t) +D (t) (1− tax A)

P (t− 1)

)
where tax A is the rate of tax on share dividends and the dividends, net of tax, are

reinvested in shares.

The last variable of the model is the consols yield and it can be considered as the

long term rate of return over bond. According to Wilkie, this variable is formed by

the inflation rate and a real part term CN (t). That is

C (t) = CW × CM (t) + CMU × exp {CN (t)}

where the influence of the inflation rate is expressed through

CM (t) = CD × I (t) + (1− CD)CM (t− 1)

and the process CN (t) is defined by a three order autoregressive model given by

CN (t) = CA1 × CN (t− 1) + CA2 × CN (t− 2) + CA3 × CN (t− 3)

+ CY × Y SD × Y Z (t) + CSD × CZ (t) .

The expression CSD×CZ (t) is a zero-mean white noise with a standard deviation

CSD and the parameters of the model are CA1, CA2, CA3, CY,CW and CD. The

consols index is derived from the process C (t) by

CR (t) = CR (t− 1)

(
1

C (t)
+ 1

)
C (t− 1) .

The model has come to be widely used in actuarial work (mainly in the UK) and is

hence a benchmark for future development. The fact that some parameter values

are proposed is interesting in application: e.g. QMU = 0.05, QA = 0.6 and QSD =

0.05 in the UK; see Wilkie, 1984 for all parameter values. The model can be used

for simulations of possible future extending for many years ahead.





Chapter 2

On Integrated Chance Constraints

in ALM for Pension Funds

This chapter is based on the preprint paper Toukourou and Dufresne, 2015. The

latter has been awarded as best paper by the International Actuarial Association

at its annual colloquium in Oslo, April 2015.

2.1 Introduction

A pension fund is any plan, fund or scheme, established by a company, governmen-

tal institution or labour union, which provides retirement incomes. The actuarial

present value of current and future payments constitutes the total liability of the

fund. The pension fund receives contributions from its active members and/or the

employer. This money (considered as the total wealth or total asset) is invested in

a wide range of assets. The asset allocation is made in such a way that it guaran-

tees, to a certain extent, the payments of future obligations. That is not so trivial:

assets yield random returns and future benefits are not known with certainty. An

asset liability management study (ALM) provides a rich theoretical background to

address that issue. Its goal is to determine the adequate asset allocations and con-

tribution rates in order to guarantee the payment of current and future pensions.

The use of ALM methods has a long tradition in pension funds. At the begin-

ning, it has started with deterministic methods, whose goal is to determine the ad-

equate allocation that protects the fund from any unexpected movements in cash

flows and/or interest rate. The future cash flows are estimated and assumed to

be certain; the wealth is mainly allocated to bonds considered as risk free and the

assets are deterministic. Bonds are chosen in such a way that their related incomes

correspond to yearly pension payments. The models are essentially based on im-

munization and cash-flow matching; see, for example, Koopmans, 1942 and Red-

ington, 1952. The drawbacks of different deterministic methods are examined in



44 Chapter 2. On Integrated Chance Constraints in ALM for Pension Funds

Hiller and Schaack, 1990. Two key points should be emphasized here. Firstly, it is

difficult (if not impossible) to find bonds that enable a perfect match for a realistic

pension fund problem. Secondly, these models could be costly since the yields on

bonds are low.

A possible way to reduce the cost of the pension fund is to invest in riskier assets.

The mean-variance portfolio of Harry Markowitz, 1952 provides a good compro-

mise between the high yield and the pension funds level of risk. In this respect,

the liability is evaluated deterministically and the decision maker has to determine

the lowest risk portfolios in order to meet the estimated liability. This approach is

known as the asset only method. The integration of the liability in the traditional

mean-variance problem has led to the surplus optimization theory. The surplus is

generally defined as the total asset minus the total liability. As interest rate and

future payments are random, the total liability is a random variable influenced by

many factors. The factors can be actuarial or economic. The economic risks are

often related to inflation, salary growth and discount rates. As these risks also have

an effect on the total amount of asset, it is important to include the random liability

as part of the ALM model and not only as the target wealth for the pension fund

portfolio optimization. More specifically, the correlations between assets and liabil-

ities are thus considered in the determination of the optimal portfolio. For example,

the assets, with higher covariance to liabilities, tend to reduce the risk exposition of

the pension fund, see Sharpe and Tint, 1990 and Keel and Müller, 1995. Leibowitz

and Henriksson, 1988 showed that an asset such as cash, which should typically

reduce the riskiness of an all-asset portfolio, may actually increase the riskiness of

a portfolio that includes liabilities. Including liabilities in the optimal asset allo-

cation decision has a long story in finance theory. We refer the readers to Sharpe

and Tint, 1990, Elton and Gruber, 1992, Leibowitz et al., 1992 among others. The

multi-period ALM case has been discussed in Fama, 1970, Hakansson, 1970 and

Hakansson, 1974 and Merton, 1969).

The pension fund problem is a long term problem with a horizon span of many

decades. Hence, its model should be dynamic. Furthermore, regulations often

impose many types of constraints. Those matters are hardly taken into account by

surplus optimization methods. In practice, Monte Carlo methods are commonly used

due to their ability to incorporate the above issues. Initially, they consist on defin-

ing a set of feasible allocations and contribution rates, and chosing the best one

in some sense. The choice is based on the simulation of the future paths. Due to

the technical innovations, these methods have significantly evolved with the work
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of Wilkie, 1995 and Ahlgrim et al., 2005 concerning economic scenario generation.

Møller and Steffensen, 2007 provide different tools for valuing the pension fund li-

abilities. Recent years have also seen the emergence of methods known as stochastic

programming (SP).

Based on a scenario approach, SP gives a flexible and powerful tool for ALMs.

Its importance lies in its ability to easily incorporate various types of constraints,

Zenios and Bertola, 2006. Moreover, assets and liabilities are all influenced by many

sources of risk and the risk aversion is accommodated; the framework has a long

time horizon split into subperiods (multistage); the portfolio can be rebalanced dy-

namically at the beginning of each subperiod; all these are incorporated in a single

and consistent structure while satisfying operational or regulatory restrictions and

policy requirements. SP for ALM is rooted with the work of Kusy and Ziemba,

1986 who showed, based on a five-year period application to the Vancouver City

Saving Credit Union, that SLP is theoretically and operationally superior to a corre-

sponding deterministic linear programming (LP) model. The authors have proved

that the effort required for the implementation of ALM and its computational re-

quirements are comparable to those of the deterministic model. For a Japanese in-

surance company, Carino et al., 1994 developed a model that enables the decision

makers to include risk management tools as well as including the complex regula-

tions imposed by the Japanese insurance laws and practices. Over the two years

of experiment, the resulting investment strategy has been fruitful as it has yielded

extra income of 42 basis points (US$79 million). More recently, Geyer and Ziemba,

2008 − for the Austrian pension fund of the electronics firm Siemens − has imple-

mented a model that allows specific features such as state-dependent correlation

matrices and fat-tailed asset return distributions. Considering a Finnish pension

company, Hilli et al., 2007 focuses on the modeling of the stochastic factors and

analyses the obtained numerical solution. Dert, 1995 pioneered the inclusion of

chance constraints (CC) in multistage recourse models for pension funds. Chance

constrained programs often lead to integer programming for which, it may be dif-

ficult to determine a tractable solution. As an alternative to chance constraints,

Haneveld et al., 2010 proposed the integrated chance constraints (ICC), whose fea-

sibility set is more handleable as it does not require integer programming. The

literature of SP in ALM also includes Consigli and Dempster, 1998, Bogentoft et al.,

2001, Drijver, 2005, Faleh, 2011, Aro and Pennanen, 2013 among others.

The ALM model in this paper is a MSP, for which, we minimize the total funding
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cost under risk, legal, budget, regulatory and operating constraints. The total fund-

ing cost is composed of regular and remedial contributions. Regular contribution

constitutes a certain proportion (contribution rate) of the total salary whereas reme-

dial contribution is an additional financial support provided by the employer (or a

sponsor) whenever the solvency target is in question. More specifically, we focus on

the risk constraints, which are of ICC type in this work. The ICC is computationaly

of great interest; in particular when a quantitative risk measure is preferable. We

define the funding ratio as the ratio of total assets over total liabilities. Our goal is

to meet a certain funding ratio, called here target funding ratio, at the end of each

subperiod. For a predefined target funding ratio, the ICC put an upper bound on

the expected shortfall, i.e. the expected amount by which the goal is not attained.

Haneveld et al., 2010 and Drijver, 2005 pionnered the application of ICC in ALM

for pension fund. However, the risk parameter considered in their models is nei-

ther scale free, nor time dependent. Our model is close to Haneveld et al., 2010

with the particularity that the risk parameter is a linear function of total liabilities.

Then, it becomes unvariant with respect to the size of the fund as well as time de-

pendent. We define two types of ICC: the one period integrated chance constraint

(OICC) and the multiperiod integrated chance constraint (MICC). As their names

suggest, the OICC covers only one period whereas several periods are taken into

account with the MICC. A multistage stochastic linear program is therefore devel-

oped for this purpose and a special mention is paid to the modeling of the MICC.

We also measure how conservative is MICC comparing to the one period approach

and the results strenghthen the evidence that MICC is a good alternative to OICC.

The rest of the paper is organized as follows. In Section 2.2, the theoretical back-

ground, the dynamics and the ALM optimization problem are extensively detailed.

Section 2.3 defines the risk contraints and shows how CC leads to ICC. Moreover,

OICC and MICC are introduced and their stochastic linear program reformulations

are derived as well. In Section 2.4, a numerical example is examined from the per-

spective of a defined benefit fund that invests in stocks, real estate, bonds, deposits

and cash. All numerical results are implemented using the solver CPLEX in the

mathematical programming language AMPL. We first analyse the effect of the risk

parameter on the optimal decisions. This section finishes by a brief comparison of

the two ICCs.
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2.2 Settings

2.2.1 Multistage recourse models

In this section, we describe the classical architecture of the multiperiod decision

framework. The model’s setup presented here ressembles mostly to Haneveld et

al., 2010.

Since we aim for strategic decisions, we model the ALM process over a number

of years and one set of decisions is taken each year. We discretize time accordingly

so that the model has a (finite) number of one-year time periods. Consequently, we

assume that the ALM model has a horizon of T years from the beginning, split in T

subperiods of one year each. The resulting years are denoted by an index t, where

time t = 0 is the current time. By year t (t = 1, · · · , T ), we mean the span of time

[t− 1, t). We define

Tt := {t, t+ 1, · · · , T} .

We assume that uncertain parameters (e.g. asset returns) can be modeled as ran-

dom variables with known distributions. At each time t ∈ T0, the pension fund

is allowed to make decisions (corresponding to yearly corrections), based on the

actual knowledge of parameters. During each one-year period, a realization of the

corresponding random parameters becomes known (e.g. assets return during that

year). That is, the concept underlying our model is the following sequence of deci-

sions and observations:

decide observe decide observe decide observe
X0  ω1  X1  · · ·  ωT−1  XT−1  ωT

where Xt is the vector of decision variables at time t ∈ T0, and vector ωt, t ∈ T1

models all economic events which are the source of uncertainty and risk for the

pension fund management, which, in our case, are asset returns as well as random

contributions and liability streams. Time t is assumed to be the end of the financial

year t. We assume that a financial year coincides with a calendar year. At time

t ∈ T0, decisions Xt are taken with full knowledge of the past [0, t] but with only

probabilistic informations about the future (t, T ].

Uncertainty in the model is expressed through a finite number S of sample paths

spanning from t = 0 until t = T called scenarios. That is, we assume the ran-

dom variable follows a discrete distribution with S possible outcomes. Each sce-

nario represents a sequence of possible realizations of all uncertain parameters in

the model. As explained above, ωt is the stochastic vector process whose values

are revealed in year t. Then, the set of all scenarios is the set of all realizations
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FIGURE 2.1: A scenario tree with 40 scenarios and 66 nodes.

ωs := (ωs1, · · · , ωsT ) , s ∈ S := {1, · · · , S} of ω := (ω1, · · · , ωT ). Scenario s has a

probability ps, where ps > 0 and
∑S

s=1 p
s = 1. It represents a description of pos-

sible future, starting just after t = 0. If we assume that we can observe the "state

of the world" at time t, (0 < t < T ), then there is a unique history of realizations of

(ω1, · · · , ωt−1) leading to that state, but the future as seen from time t may unfold

in several ways. That is, there are several distinct scenarios which share a com-

mon history up to time t. A suitable representation of the set of scenarios is given

by a scenario tree (see Figure 2.1). In respect to Figure 2.1, we define the node as

the possible outcome of the stochastic vector ωt at a given time t ∈ T0. Each path

of ωt from t = 0 to t = 3 represents one scenario; each node of the scenario tree

has multiple sucessors, in order to model the process of information being revealed

progressively through time. By convention, the scenarios are numbered top-down

by their end node. The arcs in the tree denote realizations in one time period. We

assume here that, for a specific decision time t ∈ T0, the numbers of realizations in

one time period descending from the current nodes are identical.

For example in Figure 2.1, we have a 3-year horizon scenario tree with 40 scenarios.

Over the first period starting from time 0 to time 1, there are five possible realiza-

tions. From each of these realisations, we have four possible outcomes over the

second year; each of them is a conditionnal realisation as it depends on the preced-

ing node. Over the third period, each of the second period observations can lead

to two possible outcomes. All this gives a branching structure of 1− 5− 4− 2 and

leading to a total of S = 5× 4× 2 = 40 possible scenarios.
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A multistage recourse model is an optimization problem defined on such a sce-

nario tree. Considering the remaining future represented by the subtree rooted at

(t, s), optimal decisions are taken for each node (t, s) of the event tree, given the

informations available at that point. Optimality is defined in terms of current costs

plus expected future costs, which are computed with respect to the appropriate

conditional distributions, Vlerk et al., 2003.

Ideally, one would like to make different decisions for every path at every t ∈ T0,

but this would lead to undesirable anticipativity in the model. The simplest way

to avoid this is to make one single decision at each time t for all paths by adding

explicit constraints. That is, for any two different scenarios s1 and s2 (s1, s2 ∈ S
and s1 6= s2) having the same history up to time t ∈ T0, we enforce Xs1

t = Xs2
t ,

where Xs
t is the decision Xt under scenario s. For example, at the empty circle of

Figure 2.1, X1
1 = X2

1 = · · · = X8
1 .

2.2.2 Dynamics

Assets

In this chapter, we are considering a dynamic asset allocation model applied to a

DB plan in which one seeks to minimize the expected cost of funding. In this re-

spect, dynamics for both assets and liabilities should clearly be specified.

At initial time t = 0, the exact levels of wealth and liability are available to the

decision maker who has to decide, each period, how to rearrange his portfolio in

order to cover liabilities and, at the same time, to achieve high returns on the fi-

nancial market. The higher the returns are, the lower the contribution rate could

be. Let denote At the total amount of wealth at time t ∈ T0. The total wealth is

allocated into d classes of assets and in cash. Let k ∈ K := {1, ..., d} denote the asset

class index. At each decision time t ∈ T0, a specified amount of Hk,t is allocated to

asset k and Ct is the cash amount. We can write

At =
d∑

k=1

Hk,t + Ct.

Through buying and selling, the investor restructures his portfolio at each time t.

Once the tth stage decision is made, the holdings Hk,t can be calculated. The shares

in the portfolio are then kept constant till the next decision time. The value of Hk,t

is affected by the returns on the market. Let define ξk,t := 1 + rk,t where rk,t is the

random rate of return on asset class k over year t.
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Over year t, the pension fund pays benefits to its non-active members and receives

contributions from its active members or/and the employer (also called the spon-

sor). Benefits regroup pensions which are paid to retirees, disability and death an-

nuities or lump sum, whereas contributions are composed of yearly payments from

all the active members and/or sponsor to the plan. When it appears that the plan

is unfunded according to its solvency target, the sponsor may finance the deficit.

As in Vlerk et al., 2003, we name this funding here as remedial contribution. We

then assume that whenever the solvency target is not fulfilled, a remedial contribu-

tion in cash can be obtained from the sponsor. In practice, it does not really work

that way. For example in Vlerk et al., 2003, the remedial is only provided after two

consecutive periods of underfunding. We will see in the model description that the

parameters are set such that the remedial contribution variable is non-zero only un-

der some conditions. In general for DB plans, future benefits and liabilities depend

on company policy regulation and can be estimated whereas yearly contribution is

defined as a certain proportion of the yearly salary. Asset allocation and contribu-

tion rate are defined with respect to the level of future benefits and liabilities (e.g.

Switzerland). Kim, 2008 provides a rich source of informations concerning differ-

ent types of pension plans and features. During year t, let Bent and Wt denote,

respectively, the total amount of benefits paid and the level of salary. The variable

crt is the decided contribution rate for year t + 1. For returns and cash-flow vari-

ables, index t means that payments occur over year t but cash-flows are accounted

at the end of year. Accordingly, the total asset dynamic is modeled as

At =

d∑
k=1

Hk,t−1ξk,t + Ct−1 (1 + rf ) + crt−1Wt − Bent + Zt =

d∑
k=1

Hk,t + Ct, (2.1)

for t ∈ T1, where rf is the risk free interest rate and Zt is the remedial contribution

at time t. Before receiving the remedial contribution at time t, the total wealth is

defined as A∗t and one can write

A∗t =
d∑

k=1

Hk,t−1ξk,t + Ct−1 (1 + rf ) + crt−1Wt − Bent = At − Zt. (2.2)

Asset returns (ξt)
T
t=1 :=

(
ξ1,t · · · ξk,t · · · ξd,t

)T
t=1

, pension payments Bent and

salaryWt are modeled as stochastic processes on a filtered probability space
(

Ω,F , (F)Tt=1,P
)

.

Obviously, at each decision time, At is a random variable whose distribution de-

pends, on a first hand, on ξt, Wt and Bent, and on the second hand, on asset alloca-

tions before t. At a specific date t, the variable At is known as it can be observed.
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The initial wealth is defined by Ā0 and known at initial time t = 0. According

to (2.1), total wealth At−1 at time t − 1 is allocated into the d classes of assets and

cash. Each asset k generates a return ξk,t over period [t− 1, t]. The initial wealth

plus accumulated interest at the end of period will be augmented by the balance

of external flows: contributions minus pension payments. This latter can be either

positive or negative depending on the difference between contributions and ben-

efits paid. A negative balance could be due to the fact that a company is no more

hiring new employees. This may happen for various reasons: runoff, economic dif-

ficulties, etc. Obviously, the total contributions crt−1Wt will decrease considerably

as the total salaries decrease whereas Bent will tend to increase as people leave the

fund. When at time t the total asset can not fulfill the pension fund solvency target,

it may obtain a remedial contribution Zt.

In order to be as close as possible to the reality on the financial market, one has

to consider costs of trading activities. Therefore, we include proportional trans-

action costs c̄B :=
(
c̄B1 . . . c̄Bk . . . c̄Bd

)
and c̄S :=

(
c̄S1 . . . c̄Sk . . . c̄Sd

)
for

purchases and sales, respectively. Inclusion of transaction costs will lead to some

changes in asset dynamics. Thus, (2.1) is then replaced by

AT =

d∑
k=1

Hk,T−1ξk,T + CT−1 (1 + rf ) + crT−1WT − BenT = A∗T (2.3)

over period [T − 1, T ] and when t ∈ T1 \ {T},

At =

d∑
k=1

Hk,t−1ξk,t + Ct−1 (1 + rf ) + crt−1Wt − Bent + Zt −
d∑

k=1

(
c̄Bk Bk,t + c̄SkSk,t

)
= ξtHt−1 + Ct−1 (1 + rf ) + crt−1Wt − Bent + Zt −

(
c̄BBt + c̄SSt

)
= A∗t + Zt −

(
c̄BBt + c̄SSt

)
= e ·Ht + Ct

(2.4)

where e :=
(

1 1 · · · 1
)

is a (1× d) vector. The vectors

Ht :=
(
H1,t · · · Hk,t · · · Hd,t

)>
,

Bt :=
(
B1,t · · · Bk,t · · · Bd,t

)>
and

St :=
(
S1,t · · · Sk,t · · · Sd,t

)>
of dimension (d× 1) each, are, respectively,

amount of asset hold, bought and sold at each decision time t ∈ T0. In fact, (2.4) is

obtained by substracting transaction costs in the first equality of (2.1). At time T , no

more asset is bought or sold: BT = ST = 0; the value of the portfolio is determined



52 Chapter 2. On Integrated Chance Constraints in ALM for Pension Funds

by adding all values of assets including the last period returns and external flows.

This justifies why there is no transaction cost in (2.3). The reader should notice that

variables crt, Zt, Bt, St and Ht are all decision variables. We denote by H̄k, the ini-

tial holding in asset k, k ∈ K and H̄ :=
(
H̄1 · · · H̄k · · · H̄d

)>
is a d× 1 vector.

C̄0 is the initial cash amount. The first stage asset allocation is determined by

H0 = H̄ +B0 − S0

with total asset

A0 = e · H̄ + C̄0 + Z0 −
(
c̄BB0 + c̄SS0

)
= Ā0 + Z0 −

(
c̄BB0 + c̄SS0

)
= e ·H0 + C0.

For t ≥ 1,

Ht = ξtHt−1 +Bt − St

defines the dynamic of holding assets between two consecutive decision times. For

any given (k, t), whenever Sk,t > 0, Bk,t = 0 and vice-versa. Transaction costs also

influence the cash dynamics. Buying an amount xk of asset k requires xk
(
1 + c̄Bk

)
of

cash and selling the same amount of asset k results in xk
(
1− c̄Sk

)
of cash. Initially,

C0 = C̄0 + Z0 −
(
e + c̄B

)
B0 +

(
e− c̄S

)
S0

and for t ≥ 1,

Ct = Ct−1 (1 + rf ) + crt−1Wt − Bent + Zt −
(
e + c̄Bk

)
Bt +

(
e− c̄Sk

)
St

where we assume that crt−1Wt, Bent and Zt come in cash.

Liability and external flows

As we consider a DB plan, total liabilities are the discounted expected value of fu-

ture pre-defined payments. At a given time t, they represent the amount the fund

has to own if it has to close at that time. This value has to be estimated with appro-

priate rules taking into account actuarial risks, pension fund provisions, and other

relevant factors for the employer’s line of business. Let Lt denote the total amount

of liabilities at time t.

All quantitative models considered in this chapter will be applied to the planning

problem of a large and stable pension fund. We can then assume that the fund

keeps the same structure and number of members over the study period. Liability,

contributions and benefits are therefore invariant with respect to actuarial risk over
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the period under study. Actuarial risks regroup the random events that affect the

number of members into the fund. However, those variables are yearly indexed

with the general increase of wages wt. For t ∈ T1, we have:

Lt = Lt−1 (1 + wt) ; Wt = Wt−1 (1 + wt) and Bent = Bent−1 (1 + κwt) (2.5)

and their initial values L0,W0 and Ben0 known at t = 0; κ ≥ 0 is a model parameter.

In practice, the pension payments Bent are often indexed with a certain rate which

is a function of the inflation rate. In order to reduce the complexity of our model,

we assume that this indexation rate is a certain proportion of the salary increase

as this latter is highly positively correlated to the inflation. From the above defi-

nitions, uncertainty, represented by vector
(

(1 + wt) , ξt

)T
t=1

, affects boths assets

and liabilities. As often in the literature (e.g. Kouwenberg, 2001), we use a vector

auto-regressive model (VAR model) such that:

ht = c+ Ωht−1 + εt, εt ∼ N (0,Σ) ,

ht : =
(

ln (1 + wt) ln (ξ1t) · · · ln (ξkt) · · · ln (ξdt)
)>

,

t ∈ T1

(2.6)

where ht is a {(d+ 1)× 1} vector of continuously compounded rate, c the {(d+ 1)× 1}
vector of coefficients, Ω the {(d+ 1)× (d+ 1)}matrix of coefficients, εt the {(d+ 1)× 1}
vector of error term and Σ the {(d+ 1)× (d+ 1)} covariance matrix. The parameter

estimation of this model requires time series analysis. For example in Kouwenberg,

2001, annual observations of the total asset returns and the general wage increase

from 1956 to 1994 are used to estimate the coefficients of the VAR model. The re-

sulting estimates will serve in constructing the scenario tree which constitutes the

workhorse of multistage stochastic programs.

2.2.3 The ALM problem

The total cost of funding is the sum of regular (
∑
crt−1Wt) and remedial (

∑
Zt)

contributions over the studied period. In this study, we are looking for the invest-

ment stragtegyHt, contribution rate crt and remedial contribution Zt for which the

total expected cost of funding is minimized. The optimization is made under risk,

legal, budget, regulatory and operating constraints. The constraints and objective

of the ALM study will be presented in this section.

We denote by symbol Et (x) the conditional expectation of random variable x with

respect to the natural filtration Ft whereas P {E} denotes the occurence probability
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of event E. At each decision time t, the optimization problem consists in mini-

mizing the total expected costs under the constraints considered in the following

subsections. To simplify the notation, we omit the scenario index s.

Risk constraints

The pension fund wants to guarantee the participants a certain amount of pension.

But the members also depend on the pension fund to actually provide for their

needs in the future. Therefore, the safety of the portfolio is of paramount concern.

This safety is translated into risk constraints.

A pension fund has long term obligations, up to decades, and therefore, its plan-

ning horizon is large, too. The main goal of an ALM is to find acceptable allocations

which guarantee the solvency of the fund during the planning horizon. In general,

solvency is measured by the funding ratio Ft (also called cover ratio) that we define

for a given time t by

Ft :=
A∗t
Lt
.

Underfunding occurs when the funding ratio is less than one. The assertion Ft ≤ 1

is equivalent to saying that the surplus at time t, i.e. A∗t −Lt, is negative. When this

occurs, the shortfall could be provided by the fund’s sponsor or any other external

contribution. That is the remedial contribution as in Haneveld et al., 2010. De-

pending on how the random vector ωt :=
(

(1 + wt) , ξt

)
, t ∈ T1, behaves, Ft may

change over time. Therefore, the pension fund rebalances its assets portfolio and

redefines its contribution rate in order to control the funding ratio. The higher Ft,

the healthier the fund. However, the decision maker would like to avoid as much

as possible the changes in contribution rates. We will see in the model description

that the parameters can be set in order to limit those variations.

The long term objective of the pension fund consists in fullfilling both long and

short (one year) term constraints. We define two types of funding ratio risk con-

straints in this paper. Their goal is to constrain the funding ratio to be larger, on

average, than a predefined minimum γ, γ ≥ 0. Namely, the expected shortfall

Eh−1 (A∗h − γLh)− , h > t, is required to be less than a certain amount βt known

at time t. Here, (a)− := max {−a, 0} is the negative part of a ∈ R. Also in or-

der to simplify understanding, the expression expected shortfall is used to name

Eh−1 (A∗h − γLh)−. That is slightly different from its definition in actuarial science
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where γ is equal to one. The one period risk constraint (OICC1) is expressed by

Et
(
A∗t+1 − γLt+1

)− ≤ βt, t ∈ T0 \ {T} (2.7)

and for the multiperiod (MICC) approach,

Eh−1 (A∗h − γLh)− ≤ βt, h ∈ Tt+1 and t ∈ T0 \ {T} , (2.8)

where βt and γ are parameters defined by the pension fund. According to the short

term approach (2.7), at each decision time t, the expected shortfall over the follow-

ing period should be smaller than a certain amount βt. Notice that, at time t, the

short term risk only controls the expected shortfall of
(
A∗t+1 − γLt+1

)− over the fol-

lowing one-year period.

When we want to control the expected shortfall over the whole remaining period

up to maturity, the risk constraint (2.8) is a good measure of long term risk (multi-

period). That is, at time t, equation (2.8) means that the one period expected short-

fall Eh−1 (Ah − γLh)− should be smaller than βt at any future node with h ∈ Tt+1.

Equation (2.8) can be rewritten as

max
h∈Tt+1

Eh−1 (A∗h − γLh)− ≤ βt, t ∈ T0 \ {T} , (2.9)

meaning at time t, that, the highest one year expected shortfall, over the remaining

periods to maturity, has to be smaller than the amount βt. Parameter βt is set by the

pension fund at time t as a function of the total assets and liabilities at that time;

e.g. βt := f (At, Lt) = αAt, 0 ≤ α ≤ 1. Readers should notice that when T = 1,

(2.7) is equivalent to (2.8).

In stochastic programming, constraints such as (2.7) and (2.8), i.e. bounding an

expected shortfall, are named integrated chance constraints (ICC). They were pro-

posed by Haneveld, 1986 as a quantitative alternative for chance constraints (CC).

In Section 2.3, both ICC and CC will be discussed more specifically. Successful ap-

plications of the ICC in ALM for pension fund can be found in Drijver, 2005 and

Haneveld et al., 2010. The authors assume that βt := β is unchanged over the

studying period and in their numerical illustrations, the ICC is only applied to the

first stage. In such case, one can prove that the OICC and the MICC are equivalent.

1OICC (resp. MICC) stands for One period Integrated Chance Constraint (resp. Multiperiod
Integrated Chance Constraint) which will be more clearly defined in Section 2.3.2.
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Instead, we remove that assumption in our work. Therefore, we define:

βt := αLt (2.10)

where α, 0 ≤ α ≤ 1, denotes a scale free risk parameter. Obviously, the feasible set

of the MICC formulation is contained in the feasible set of the OICC formulation.

The two constraints cannot be implemented in the same model at the same time.

There, comes the other particularity of this paper: we analyse the multiperiod risk

constraint and then measure how conservative it is comparing to the one period

approach.

Other constraints

Risk constraints are important, but institutional and legal rules regarding pension

fund operations in general are also relevant. As stated in Pflug and Swietanowski,

1998, institutional and legal rules are designed to restrict the risk of losses which

would adversely affect pensionners. Hence, the following restrictions are inte-

grated to the model.

Firstly, the fund is not allowed to sell an asset that is not owned. This is the not

short selling assets constraints and can be expressed by

Hk,t ≥ 0,

Bk,t ≥ 0,

Sk,t ≥ 0 for k ∈ K and t ∈ T0.

The no short selling constraint goes with the not borrowing cash constraint expressed

by

Ct ≥ 0, t ∈ T0.

Secondly, at any time, the fund should dispose a minimum amount in cash in order

to pay possible claims such as death benefits or pensions. This can be called liquidity

constraint and is formulated in our model as

Ct (1 + rf ) + Et (crtWt+1 −Bent+1) ≥ 0

which means that, on average, the cash allocation Ct at time t should be sufficient

to cover the possible negative value of the cash flow balance over period [t, t+ 1].

Notice that the term liquidity constraint used here may have a different meaning in

another context, e.g Fonseca et al., 2007 in a macroeconomic framework.
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Thirdly, the fund is subject to portfolio constraints imposed by the legislator in or-

der to keep a minimum control on its risk exposure. It consists on bounding the

holding in asset k by setting upper and lower bounds, uk and lk respectively, on

Hk,t. That is

lkAt ≤ Hk,t ≤ ukAt, k ∈ K, t ∈ T0 \ {T} . (2.11)

For example in Switzerland2, the amount allocated to stocks should not exceed fifty

percent of total wealth. In such case, lstocks = 0 and ustocks = 0.5At and constraint

(2.11) is equivalent to

0 ≤ Hstocks,t ≤ 0.5At, t ∈ T0 \ {T} .

These bounds are also applicable to cash Ct and we obtain

lcAt ≤ Ct ≤ ucAt, t ∈ T0 \ {T} . (2.12)

Notice that, in equations (2.11) and (2.12), upper and lower bounds can also be time

dependent.

Finally in an asset allocation problem, dynamics and budget constraints, already

defined in section 2.2.2 are inavoidable. If they were left out, the optimization pro-

gram would be unbounded. The constraints presented in this subsection are com-

mon in any ALM stochastic programming implemention; see for e.g. Kusy and

Ziemba, 1986, Carino et al., 1994, Consigli and Dempster, 1998, Bogentoft et al.,

2001 and Dert, 1995 among others.

The optimization problem

As we are considering a DB fund, it is natural to assume that the aim of the fund

is to minimize its costs while controlling the risk. Thus, the ALM model is a dy-

namic decision making optimization tool to minimize the total expected cost under

risk and operating constraints. Decisions are taken at the beginning of each one-

year period. Accordingly, the ALM model is developped as a multiperiod decision

problem, for which, we are asked to come up with an optimal asset allocation, con-

tribution rate and remedial contribution at the beginning of each year. Moreover,

penalty costs are assigned to the undesirable events: remedial contributions, and

2OPP2 of April 18th, 1984, Art 55-b, (As of January 1st, 2012)
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yearly absolute variation of contribution rates. All these components together con-

stitute the objective function:

min
H,cr,Z

E0

[
T−1∑
t=0

vt+1 (crtWt+1 + λzZt+1) +
T−2∑
t=0

vt+1λ∆cr∆crtWt+1

]
(2.13)

where ∆crt := | crt+1 − crt | is the absolute variation of contribution rate from

year t to t + 1, vt is the discount factor for a cash flow in year t, λz and λ∆cr are,

respectively, penalty parameters for remedial contribution and absolute variation

of contribution rate. The variables crt and ∆crt are bounded:

crl ≤ crt ≤ cru and ∆cr ≤ ∆crt ≤ ∆̄cr, t ∈ T0 \ {T}

where crl, ∆cr are the lower bounds and cru, ∆̄cr the upper bounds of crt, ∆crt ,

respectively. The optimal decisions have to lead to a funding ratio greater than a

certain minimum F̄ (sometimes called target funding ratio) at the end of period of

study T :

FT =
AT
LT
≥ F̄.

The entire ALM model, with objective and constraints, can be found in Appendix 1.

An optimization program such as (2.13) is often referred to as a here and now prob-

lem. Uncertainty, characterized by ωt =
(

(1 + wt) , ξt

)
, t ∈ T1, is approached by

scenarios. Therefore, we define ω̃ with a finite number S of possible realizations

ω̃s := (ω̃s1, · · · , ω̃sT ) , s ∈ S := {1, ..., S}, from t = 0 to t = T with relative probability

ps.

The objective (2.13) is obviously linear as it can be rewritten as a linear combination

of decision variables. We can also notice that dynamics and constraints (except risk

constraints which have to be rewritten in a linear form for the stochastic program)

presented in sections 2.2.2 and 2.2.3 are all linear in decision variables. If the risk

constraints OICC (2.7) and MICC (2.8) were written in a linear form, the ALM prob-

lem would be a stochastic linear program (SLP), theoretically solvable by any SLP

software depending on its size. In the next section, we will show how they can be

turned into linear programs. The books Kall and Mayer, 2011, Shapiro et al., 2009

and Birge and Louveaux, 2011 provide good ressources to deal with such problems.

When the size is big, resolution may require heuristic methods. Size is big means

that number of asset classes is large or/and time horizon is long or/and number of

scenarios is large. Decisions variables are Ht, Bt, St, Ct, crt and Zt for t ∈ T0; but

only first stage values H0, B0, S0, C0, cr0 and Z0 are crucial to the decision maker,

since, almost surely, a true realization of the random data will be different from the
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set of generated scenarios.

By definition, the pension fund risk problem is often a shortfall problem. In such

models, the relevant measure of risk for the firm is the expected amount (if any) by

which goals are not met, Carino et al., 1994. The model considered in this paper has

a general DB ALM structure such as explored in Haneveld et al., 2010 and Ziemba

and Mulvey, 1998. Its main particularity consists in the integration of ICC by the

way of OICC (2.7) and MICC (2.8). A successful implementation of constraints (2.7)

in ALM for a DB fund can be found in Vlerk et al., 2003 and Haneveld et al., 2010.

In their works, the optimization problem is solved assuming that the parameter βt
is constant: βt = β. Furthermore, remedial contribution are provided only when

funding ratio falls short in two consecutive years. Implementing this latter condi-

tion has lead to the use of binary variables. The authors propose a heuristic solution

to the problem.

As we will explain in section 2.3.2, the parameter β is not scale free. A certain

value of β does not have an equivalent meaning for two different pension funds. It

can be too low for a certain fund whereas too high for an other one. In addition,

the pension fund actual situation should be taken into account. Our paper is an

extension of Haneveld et al., 2010. As a novelty, we assume that the risk parameter

βt varies with respect to time t and is defined as a proportion α of the actual level

of liability at time t, see Equation (2.10). Roughly speaking, on average, the total

asset should cover a proportion of magnitude (1− α) of liability at any time. In

our model, remedial contributions can however be provided at anytime where sol-

vency is in question, avoiding the use of binary variables, and indirectly, the need

of heuristics. The penalty parameter λz punishes the abuse of remedial contribu-

tions.

The main features of this study turn around the following points:

• As in Haneveld et al., 2010 where optimal decision is analysed for different

values of their risk parameter β, we first measure the effect of our risk pa-

rameter α on the decisions H0, cr0 and Z0; this with respect to the OICC. In

addition, for a fixed value α, the influence of the initial funding ratio is also

explored.

• Secondly, as a safer alternative to the OICC, we propose the MICC (constraint

(2.8)) and we then measure how constraining it is, compared to the OICC. In

constraint (2.8), index h is a decision time index and we are not aware of any

implementation of such constraint in ALM. The OICC considered in the first
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item is actually extended to a multiperiod risk constraint, reinforcing the long

term aspect of the pension fund’s ALM.

In the rest of this paper, OICC (resp. MICC) will stand for the one period (resp.

multiperiod) ICC itself as well as the ALM model with the OICC (resp. MICC).

2.3 Framework of the risk constraints

The most important constraints, of course, deal with the goal of the pension fund:

in all circumstances keep a certain control on the funding ratio. This latter is ex-

pressed in terms of shortfall constraints which are of ICC type in this paper. Pro-

posed by Haneveld, 1986, the ICC’s formulation directly results from CC’s. That

is why, in this chapter, we firstly introduce CC and how it leads to ICC. Secondly,

ICC is discussed and we show how constraints (2.7) and (2.8) are related to it. We

finish this section by proposing simple linear reformulations of (2.7) and (2.8).

For the sake of clarity, we define the generic linear function G : Rd × Ξ → Rm

such that

G (X,ω) := BX −D

where X ∈ X is an d-vector of decision variables, X ⊂ Rd is a polyhedral and

closed set and ω := (B,D) : Ω → Rm × Rd × Rm is a random parameter on the

probability space (Ω,F ,P). The support of ω is defined as the smallest closed set

Ξ ⊂ Rm × Rd × Rm having the property P (ω ∈ Ξ) = 1. For i ∈ I := {1, · · · ,m},

the vector B is of dimension Rm × Rd such as B :=
(
B1 · · ·Bi · · · Bm

)>
with

Bi ∈ Rd whereas D :=
(
D1 · · ·Di · · · Dm

)>
with Di ∈ R. As supposed in our

SP model, we assume that ω = (B,D) has a finite number S of possible realizations

ωs = (Bs, Ds) , s ∈ S = {1, ..., S}with respective probability ps.

2.3.1 Chance constraints

Chance constraints (CC) models serve as tool for modeling risk and risk aversion in

SPs. Let 0 be am-dimensional vector of zeroes. Satisfying the constraintG (X,ω) ≥
0 could lead to high costs or unfeasibility. This equation refers to a finite system

of m inequalities. Instead, if the distribution of ω is known, one can formulate the

condition that the probability of G (X,ω) ≥ 0 is sufficiently high, i.e. close enough

to 1. That is

P {G (X,ω) ≥ 0} ≥ 1− ε (2.14)
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where the fixed parameter (1− ε) ∈ [0, 1] is called probability level and is chosen

by the decision maker in order to model the safety requirements. Equation (2.14) is

the general form of chance (probabilistic) constraints and can be viewed as a com-

promise with the requirement of enforcing the constraintG (X,ω) ≥ 0 for all values

ω ∈ Ξ of the uncertain data matrix.

When m = 1, G (X,ω) := g (X,ω) is a scalar and equation (2.14) leads to

P {g (X,ω) ≥ 0} ≥ 1− ε (2.15)

with g : Rd × Ξ → R. Equation (2.15) is known as individual CC. For m > 1, we

obtain

P {gi (X,ω) ≥ 0, i ∈ I} ≥ 1− ε, (2.16)

called joint CC. Chance-constrained programs have been pionnered by Charnes et

al., 1958 in production planning. Since then, they have been extensively studied

and have also been applied in many other areas such as telecommunication, fi-

nance, chemical processing and water ressources management. Despite important

theoretical progress and practical importance, there could be major problems with

numerical processing of CCs, see Ahmed and Shapiro, 2008 and Nemirovski and

Shapiro, 2006.

Especially when ω has a discrete distribution, Raike, 1970 introduces a mixed-

integer reformulation of CC. Assuming m = 1, equation (2.15) is equivalent to

S∑
s=1

ps · 1(g(X,ωs)≥0)(s) ≥ 1− ε

where 1(g(X,ωs)≥0)(s) = 1 if g (X,ωs) ≥ 0 and 0 otherwise. Now, we are able to write

inequalities (2.15) in a mixed-integer program (MIP) formulation. We introduce

binary variables δs, s ∈ S . They play the role of indicator function: δs = 1 in

scenario s if it holds that g (X,ωs) < 0 and equals 0 otherwise. In terms of these

additional decision variables, the CC can be written as linear inequalities

gs (X,ωs) + δsM ≥ 0, s ∈ S, (2.17)
S∑
s=1

psδs ≤ ε, s ∈ S, (2.18)

x ∈ X, δs ∈ {0, 1} , s ∈ S, (2.19)

where M is a sufficiently large number. If δs = 0, then the constraint g (X,ωs) ≥ 0

corresponding to the realization s in the sample is enforced. On the other hand,
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if δs = 1, the constraint is satisfied for any candidate solution. The probability

weighted average of these binary variables equals the risk of not meeting the con-

dition g (X,ωs) ≤ 0 with the decision X , which should be at most ε.

This formulation is well known in SP and has first been applied to ALM for pen-

sion funds by Dert, 1995. It also holds for the joint CC case where m > 1. In fact,

{gi (X,ω) ≥ 0, i ∈ I } is equivalent to

min
i∈I
{gi (X,ω)} ≥ 0

and can also be writen as linear inequalities

gsi (X,ωs) + δsiM ≥ 0, i ∈ I , s ∈ S, (2.20)

∆s ≥ δsi , i ∈ I , s ∈ S, (2.21)
S∑
s=1

ps∆s ≤ ε, s ∈ S, (2.22)

x ∈ X, ∆s, δsi ∈ {0, 1} , i ∈ I , s ∈ S. (2.23)

Even with these linear settings (2.17)− (2.19) and (2.20)− (2.23), implementing this

constraint with a reasonnable number of scenarios can be computationally chal-

lenging as the feasible set is obviously not linear, neither convex. That is due to

the increase in complexity from MIP that arises from the introduction of at least

one binary variable per each of the S scenarios. Efficient solution algorithms are

proposed in chapter 4 of Kall and Mayer, 2011, Luedtke, 2014, Luedtke et al., 2010,

Tanner and Ntaimo, 2010, Prékopa et al., 1998 and Ruszczyński, 2002.

Note that the CC, as described above, only considers the qualitative aspect of the

risk, i.e. attention is only paid to whether the integrand is satisfied or not. A better

approach can be to control the quantitative aspect of the fail, i.e the size of nega-

tive values of Gs. That is often the case for pension funds where sponsors want

to know approximatively how much they are willing to contribute in the follow-

ing periods. Due to an idea of Haneveld, 1986, binaries δs are dropped and the

integrated chance constraint has been proposed.

2.3.2 Integrated Chance Constraint

The MIP constraints (2.20) to (2.23) are hardly implementable due to the integrality

conditions in (2.23). For problems involving binary (or general integer) decision

variables, a natural approach is to relax the integrality and solve the resulting re-

laxation, see Vlerk et al., 2003. If we relax the integrality constraints and substitute
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ys := δsM and β := αM , we obtain

BsX + ys ≥ Ds, s ∈ S (2.24)
S∑
s=1

psys ≤ β, (2.25)

ys ≥ 0, s ∈ S (2.26)

X ∈ X , (2.27)

where the parameter β is non-negative. By (2.24), for each s, the non-negative

variable ys is not less than the shortfall (Bsx−Ds)−, where (a)− := max {−a, 0} is

the negative part of a ∈ R. The inequality (2.25) therefore puts an upper bound β

on the expected shortfall. That is, the system (2.24)− (2.27) is equivalent to

E (BX −D)− =

S∑
s=1

ps (BsX −Ds)− ≤ β. (2.28)

Such constraint is called integrated chance constraint (ICC) and has been intro-

duced by Haneveld, 1986 as an alternative to CC. However, Haneveld et al., 2010,

Vlerk et al., 2003 and Drijver, 2005 have pionnered its application to ALM for pen-

sion funds and since then, it has been implemented in practice.

By definition, the feasible set, defined by linear inequalities (2.24)−(2.27) is a polye-

dron (convex) as it contains only continuous decision variables, see Haneveld and

Vlerk, 2002. Thus, it can usually be solved efficiently using an appropriate soft-

ware. Constraints (2.24) − (2.27) are very attractive from an algorithm point of

view. Haneveld and Vlerk, 2002 propose a faster algorithm for big size problems.

ICC is a good alternative to CC from different perspectives:

• Firstly, CC only measures the probability of shortage whereas ICC uses the

probability distribution to measure the expected magnitude of the shortage.

We can say that ICC takes into account both quantitative and qualitative as-

pects of the shortage whereas CC only considers its qualitative side. CC says

only if there is underfunding or not and especially in practice, it could be im-

portant to limit the amount of remedial contributions the sponsor is willing

to provide in years after.

• Secondly, ICC and CC somehow ressemble, respectively, to the so-called con-

ditional value-at-risk (CVaR) and value-at-risk (VaR). Conversely to CVaR which

is known as coherent ( Rockafellar and Uryasev, 2002), it is well known that
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VaR is not a coherent risk measure as it does not fulfill the subadditivity con-

dition. Therefore, ICC possesses more attractive risk properties than CC. To

learn more about coherent risk measures, see Artzner et al., 1999.

• We should also add that, if the risk aversion parameter is changed, the feasible

region in case of ICC changes smoothly, while this region changes in a rough

way in case of CC, Drijver, 2005.

• Finally, we should admit that the parameter ε of CCs is scale free, and corre-

sponds to risk notion which is more familiar to pension fund managers. It is

not the case for ICC. Our solution to this problem is to set β as a proportion α

of liability.

From now, and without loss of generality, we assume m > 1. Therefore, equation

(2.28) can be rewritten as

E
{

(BiX −Di)
− , i ∈ I

}
≤ β

which is the joint form of ICC, see Haneveld and Vlerk, 2002. When index i is a

decision stage index with conditional expectation at stage i, we obtain a multistage

program and variableX becomes stage dependent (Xi). That is, at stage j ∈ I \{m}:

Ei (Bi+1Xi −Di+1)− ≤ βj , i ∈ {j, j + 1, · · · ,m− 1} (2.29)

which is equivalent to the MICC (2.8) for I = T0 and Bh+1Xh − Dh+1 = Ah+1 −
γLh+1. At time t, that is:

Eh
(
A∗h+1 − γLh+1

)− ≤ βt, h ∈ Tt \ {T} . (2.30)

The parameter βt is then set at time t and will remain applicable until T . As decision

is taken at each stage, the MICC inequality (2.8) shows a collection of inequality

(2.30) going from t = 0 to t = T − 1. Similarly, when m = 1, one can proove that

equation (2.28) leads to the OICC (2.7).

2.3.3 OICC and MICC: Scenario tree interpretation

Section 2.2.1 briefly explains our scenario tree model. We recall that the node (t, s)

corresponds to a certain scenario s at decision time t. To avoid anticipativity, we

have to consider that many pairs (t, s) might correspond to the same node on the

scenario tree picture. For example in Figure 2.1, the nodes (1, 1) , (1, 2) , · · · , (1, 8)

correspond graphically to the empty red cercle. At each node (t, s), the fund’s

manager has to rebalance the asset portfolio and fix the contribution rate. These
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decisions are taken considering the actual scenario and possible future paths as

well as the risk constraints.

OICC

In principle, considering a certain node (t, s), the OICC constraint (2.7) would be

implemented as follows:

Et,s
(
A∗st+1 − γLst+1

)−
:=
∑
s′∈S

ps
′

t,s

(
A∗s

′

t+1 − γLs
′

t+1

)−
≤ αLst (2.31)

where ps
′

t,s stands for the conditional probability to reach node
(
t+ 1, s

′
)

going

from (t, s) and ps
′

t,s = 0 for any scenario s
′

of t + 1 not descending from (t, s). As

in Vlerk et al., 2003, we include the linear inequality (2.31) in every subproblem

(t, s) , t < T of our multistage recourse model. At (t, s), they reflect the short-term

risk constraint, stating that the expected funding shortfall over the following period

(t+ 1) is at most αLst . In other words, on average, the pension fund should be able

to cover the proportion (1− α) of its total liability. The increase of α will relax the

feasibility set of the optimization problem.

MICC

Considering the node (t, s), the MICC constraint can be formulated in the following

way:

Eh−1,s (A∗sh − γLsh)− ≤ αLst , h ∈ Tt+1 and t ∈ T0 \ {T} (2.32)

with

Eh−1,s (A∗sh − γLsh)− =
∑
s′∈S

ps
′

h−1,s

(
A∗s

′

h − γLs
′

h

)−
.

Under (2.32), at each node (t, s), decisions are taken such that the descending nodes’s

one-period expected shorfall are smaller than αLst (defined at current node). Such

constraint permits to have a certain control of the cover ratio over the whole re-

maining periods: [t+ 1, T ]; whereas (2.31) only covers one period: [t, t+ 1]. For

example, at initial time t = 0, the minimum cost is determined under the condition

that the expected shortfall at any node in the tree (as descendant of the initial node)

is smaller than β0 = αLs0 as in Haneveld et al., 2010:

∑
s′∈S

ps
′

t,s

(
A∗s

′

t+1 − γLs
′

t+1

)−
≤ β0, t ∈ T0 \ {T} , s ∈ S.
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Futhermore, at each node (t, s) , t ∈ T1 \ {T} , s ∈ S, we add the restriction:

∑
s′∈S

ps
′

t,s

(
A∗s

′

t+1 − γLs
′

t+1

)−
≤ αLst .

That is how we implement (2.32) at initial node. If we repeat the same procedure

at each node of the tree, we can then propose a simpler SP reformulation:

Proposition 2.3.1. Constraint (2.32) is equivalent to the following statement:

At each node (t, s) , t < T, s ∈ S

∑
s′∈S

ps
′

t,s

(
A∗s

′

t+1 − γLs
′

t+1

)−
≤ min

0≤t′≤t
αLst′ . (2.33)

That is, at a given node (t, s) , t < T, s ∈ S , the expected shortfall over the

next period should be less or equal to the smallest value of αLst′ calculated over

the preceding nodes (t′, s) , t′ ≤ t. This is based on the fact that, in the multiperiod

framework, the decision taken at node (t, s) is influenced by the history of ωst up to

time t, in particular βst at preceding nodes. Inequality (2.33) is linear and describes

a polyhedral set. The proof of proposition 2.3.1 is straightforward when we go

backward in time starting from nodes (T − 1, s), see Appendix 2 for an example

based sketch of proof. At each node (t, s), as we know the history of βst up to time

t, one can determine the smallest βst′ , t
′ ≤ t. Therefore, implementation of MICC

consists in including the linear constraint (2.33) at each node (t, s).

2.4 Numerical illustrations

This section contains computational results for the SP model. Let’s recall that we

are dealing with a DB pension fund whose objective is to minimize the total ex-

pected costs under constraints. The study will focus on risk constraints which are

of ICC type. Firstly, based on the OICC, the effects of risk parameter and cover ratio

on the optimal decisions are analysed. Prima facie, the MICC appears to be a safer

and more restrictive than OICC. Based on the same analysis as before, the cost of

conservativeness is subsequently measured.

For this study, consider a hypothetical large pension fund which may invest into

d = 4 classes of asset ordered by level of risk:

1. Deposits,

2. Bonds,

3. Real estate,
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TABLE 2.1: Data on the asset classes

Asset classes k lk uk c̄ Initial Investments %

Cash − 0 1 0 4′950 4.5
Deposits 1 0 0.7 0.00150 16′500 15
Bonds 2 0.1 1 0.00150 38′500 35
Real estate 3 0 0.30 0.00425 17′600 16
Stocks 4 0 0.50 0.00425 32′450 29.5

TABLE 2.2: Values of the other deterministic parameters

λZ = 350 λ∆cr = 1 rf = 0.008 vt = (1 + rf )−t

∆cr = −0.08 crl = −0.08 ∆̄cr = 0.05 cru = 0.3
Ā0 = 110′000 γ = 1.05 F̄ = 1.05

4. Stocks.

We are aware of the fact that the number of assets is often much larger in practice.

That said, only four classes of assets are considered here in order to reduce the com-

plexity of the model. After investing in these asset classes, the rest is held in cash.

The deterministic properties of asset classes are described in Table 2.1. Investment

limits are defined with respect to practical rules of liquidity and diversification;

transaction costs are taken from Haneveld et al., 2010 with c̄S = c̄B = c̄, whereas

the initial investments are defined considering general statistics of pension fund’s

assets allocation in Switzerland, see Towers Watson, 2013 (where we assume that

"real estate" corresponds to "other assets"). The portfolio constraints are defined in

term of proportion and all amounts are assumed to be in thousands of Swiss francs.

The values of the other deterministic parameters are shown in Table 2.2

The time horizon T = 5 years is split into five periods of one year each. Conse-

quently, the considered ALM model has five stages, allowing for decisions at t = 0

(now) up to time t = 4. The random vector ωt follows a VAR process, approximated

in our case by a multistage scenario tree. In the following considerations, we first

present the descriptive statistics of our model. Then, we discuss the numerical re-

sults obtained from our study.

2.4.1 Scenarios

The implementation of the scenario tree requires a careful specification of the VAR

process. For this purpose, we use the estimation results obtained in Kouwenberg,

2001. More specifically, the author estimates this process based on annual obser-

vations of the total asset returns and the general wage increase from 1956 to 1994.

Table 3.1 displays descriptive statistics of the time series whereas Table 2.4 shows
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TABLE 2.3: Statistics, time series 1956-1994, Kouwenberg, 2001

Statistics
Assets Mean S.D. Skewness Kurtosis
Wages 0.061 0.044 0.434 2.169
Deposits 0.055 0.025 0.286 2.430
Bonds 0.061 0.063 0.247 3.131
Real estate 0.081 0.112 −0.492 7.027
Stocks 0.102 0.170 0.096 2.492

TABLE 2.4: Residual correlations of VAR-model, Kouwenberg, 2001

Assets Wages Deposits Bonds Real estate Stocks
Wages 1
Deposits 0.227 1
Bonds −0.152 −0.268 1
Real estate −0.008 −0.179 0.343 1
Stocks −0.389 −0.516 0.383 0.331 1

the estimated correlation matrix of the residuals. Future returns for financial plan-

ning models can be constructed by sampling from the error distribution of the VAR

model and applying the estimated equations of Table 2.5. We refer to Kouwenberg,

2001 for further details on this model estimation and for building the tree as well.

For this purpose, we specify a branching structure of 1 − 10 − 6 − 6 − 4 − 4. This

scenario tree has one initial node at time 0 and 10 succeeding nodes at time 1, · · · ,
resulting in 10 × 6 × 6 × 4 × 4 = S = 5760 path from 0 to 5, each with probability

ps = 1
5760 .

2.4.2 Numerical results

This section presents the outputs of our study. All numerical results were im-

plemented using the solver CPLEX in the mathematical programming language

AMPL. The ALM models are formulated as large LP-problems with 616′321 vari-

ables. In the model with the OICC, there are 995′347 constraints and 3′041′032

nonzeros in the constraint matrix whereas they are respectively 1′002′317 and 3′105′602

in the MICC. On average, the solution times are 381 seconds and 448 seconds, re-

spectively, for OICC and MICC.

As a result of the ALM analysis, we are supposed to provide the first stage opti-

mal decisions: a contribution rate, a remedial contribution and asset allocation that

minimize the total cost. In the first part of this section, we analyse the effects of

the risk parameter α and the initial funding ratio F0 on the optimal decision. The

optimization is made with respect to OICC. The values of α ranges from 0 to 0.085

whereas the initial funding ratio F0 = Ā0
L0

vary from 0.5 to 1.5. In order to vary F0,
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TABLE 2.5: Coefficient of the VAR model, Kouwenberg, 2001

ln
(
1 + wagest

)
= 0.018 + 0.693 ln

(
1 + wagest−1

)
+ e1t σ1,t = 0.030

(2.058) (5.789)

ln
(
1 + depositst

)
= 0.020 + 0.644 ln

(
1 + depositst−1

)
+ e2t σ2,t = 0.017

(2.865) (5.448)

ln (1 + bondst) = 0.058 + e3t σ3,t = 0.060
(6.241)

ln (1 + real estatet) = 0.072 + e5t σ5,t = 0.112
(4.146)

ln (1 + stockst) = 0.086 + e6t σ6,t = 0.159
(3.454)

we change the initial liability L0 accordingly, as Ā0 is specified from Table 2.2. In

the second part, we compare the OICC to the MICC.

One-period Integrated Chance Constraint

In order to analyse the impact of the risk parameter α, we fix the value of the initial

cover ratio. That is:

L0 := 120′000⇒ F0 =
Ā0

L0
= 0.9166,⇒ under covered.

In what follows, the letter O at the top of a symbol stands for OICC whereas M is

related to MICC. Figure 2.2 shows the evolution of the contribution rate cr0. The

value of cr0 is particularly high as the institution is underfunded. We observe that

when α ≤ αO∗ := 0.025 (O at the top stands for OICC.), the contribution rate is at

its maximum: cru = 0.3 as specified in Table 2.2. From 0.025, cr0 decreases linearly

until it reaches the value 0.27 at α = ᾱO := 0.04, and remains unchanged thereafter.

According to the objective (2.13), the total cost is composed of the total contribution

and of the total remedial contribution, these, over the period under study. Reme-

dial contribution should be seen as an external financial support which may come

from the sponsor of the pension fund. Figure 2.3 displays the allocation of the total

costs into the two types of contribution. The proportion of remedial contribution

linealy decreases from 9% at α = 0 to reach 0% at αO∗ = 0.025 and stays constant

for α ≥ αO∗ . Indeed, Figures 2.2 and 2.3 help understand how the ALM model pa-

rameters have been defined. It is conventional to assume that, from a certain level

of risk and for a fix cover ratio, the sponsor will no more provide any financial sup-

port to the fund. In this model, the penalty parameter λz has been set such that the



70 Chapter 2. On Integrated Chance Constraints in ALM for Pension Funds

total remedial contribution is zero for α ≥ αO∗ . Consequently, cr0 decreases from

α = αO∗ . It remains equal to 0.27 for α ≥ ᾱO due to the target cover ratio at matu-

rity: F5 ≥ F̄ = 1.05.

FIGURE 2.2: OICC: Contribution rate as function of α

FIGURE 2.3: OICC: Initial cost allocation in function of α

Figure 2.4 describes the optimal asset allocation for different values of α. Assets

are ordered with respect to their level of risk. For small values of the risk parame-

ter, the proportion of riskier assets (stocks and real estate) tends to increase with an

increase of α. When it approaches αO∗ , as the remedial contribution is already low,

the decision maker starts reducing the risk exposition of its portfolio. However, the

proportion of bonds is increased in order to improve the performance of the asset

portfolio. The risk exposition is then progressively reduced until α = ᾱO, from
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FIGURE 2.4: OICC: Asset allocation in function of α

which, it remains unchanged thereafter. The value ᾱO can be seen as the smallest

value of α, above what, the OICC influence is no more significant, i.e. contribution

rate, remedial contribution and asset allocation stay constant.

FIGURE 2.5: OICC: Contribution rate in function of F0

Next we consider the effect of the initial funding ratio on the first stage optimal

decision. We vary the value of L0 so that the initial funding ratio F0 lies between

0.5 and 1.5, and we assume α = 0.035. Figure 2.5 displays the evolution of the con-

tribution rate cr0 whereas Figure 2.6 shows how the total cost is distributed into

regular and remedial contributions. As explained earlier, it is conventional to as-

sume that, above a certain funding ratio FO
∗

0 , the remedial contribution is zero and
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FIGURE 2.6: OICC: Initial cost allocation in function of F0

FIGURE 2.7: OICC: Asset allocation in function of F0

contribution rate decreases as well. From Figures 2.5 and 2.6, it can be seen that the

ALM model is set such that FO
∗

0 := 0.9.

Figure 2.7 describes the behaviour of the first stage optimal asset allocation with

respect to F0. When F0 < FO
∗

0 , the optimal asset allocation is stable: approxima-

tively 30% in riskier assets. From F0 = FO
∗

0 , the cover ratio is high enough to no

more obtain remedial contribution and to reduce the contribution rate. However,

the decision maker has to act in a riskier way in order to meet pension fund liabili-

ties. As a result, the risk exposition increases up to 50% at F0 = 1.275. An important

target of our model is to guarantee a funding ratio F5 ≥ F̄ by minimizing the total
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cost and risk level. For larger values of F0, with a higher chance to fulfill the condi-

tion F5 ≥ F̄ , the contribution rate and the risk exposition (i.e. proportion of higher

risk assets) decrease. We recall that the objective is not to maximize the wealth, but

to minimize the total cost. Thus, the wealthier the fund is, the more prudent the

allocation will be.

Multiperiod Integrated Chance Constraint

In this section, we firstly present the results of the ALM model with the MICC,

and secondly, we compare with the OICC. For the MICC analysis, assumptions are

similar to the ones made for the model with OICC. Figures 2.8 to 2.13 display the

results of the analysis. The effect of the risk parameter α is measured in Figures 2.8,

2.9 and 2.10 whereas Figures 2.11, 2.12 and 2.13 analyse the initial funding ratio im-

pact. Although the first stage optimal decisions are different, they behave similarly.

The parameters αM∗ , ᾱM and FM
∗

0 (respectively αO∗ , ᾱO and FO
∗

0 for OICC) slightly

differ:

αM∗ := 0.027; ᾱM := 0.07; FM
∗

0 := 0.9.

FIGURE 2.8: MICC: Contribution rate in function of α

The feasible set of the MICC formulation is contained in the feasible set of the OICC

formulation. That is why the above parameters are greater or equal to their ana-

logues in OICC. Notice that, according to Figures 2.4 and 2.10 and for α ≥ ᾱO in

OICC and α ≥ ᾱM in MICC, the asset allocations are the same; showing that when

α is above ᾱO (resp. ᾱM ), the OICC (resp. MICC) has no influence on the ini-

tial ALM model. In general, the optimal decisions obtained from OICC and MICC

slightly differ. For example, when α = 0.05 and F0 = 0.9166, the first stage optimal
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FIGURE 2.9: MICC: Initial cost allocation in function of α

FIGURE 2.10: MICC: Asset allocation in function of α

decision of the MICC is:

H0 :=
(

0.41 0.59 0 0
)>

; cr0 = 0.279 and Z0 = 0

whereas for the OICC:

H0 :=
(

0.26 0.66 0.08 0
)>

; cr0 = 0.270; and Z0 = 0.

Asset allocations are calculated as percentage of the total asset. According to the

above example, the decisions related to the OICC approach are riskier than the

ones of MICC, especially regarding the asset allocation. In what follows, we will

try to quantify the cost of this risk reduction. For a pension fund, this can be done
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FIGURE 2.11: MICC: Contribution rate in function of F0

FIGURE 2.12: MICC: Initial cost allocation in function of F0

by measuring the difference in term of the total cost (regular contribution + reme-

dial contribution). Hence, Figure 2.14 compares the total costs of OICC and MICC

whereas Figure 2.15 displays the contribution rate difference, all this with respect

to α. When α ≤ αO∗ = 0.025 or α ≥ ᾱM = 0.07, the contribution rate and total

cost are equal for both models. For αO∗ ≤ α ≤ ᾱM , OICC and MICC slightly differ,

i.e. MICC costs more for a maximum variation of 2′000 (less than 2% of total asset)

and 1.5%, respectively, for the total cost and the contribution rate. Consequently,

although being more conservative, the MICC has to be considered as a serious con-

tender for optimal ALM for the two following reasons:

• it is safer, and

• the cost of this safety is less than 2% of total asset.
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FIGURE 2.13: MICC: Asset allocation in function of F0

FIGURE 2.14: Comparison of OICC and MICC in function of α: Total
cost

Figures 2.16 and 2.17, which compare the effect of F0 on the OICC and on the MICC,

confirm that result. However, it would be interesting to analyse the impact of the

first stage decisions on the other stages in order to conclude which approach is

better.

2.5 Appendices

2.5.1 Appendix 1: The ALM program description

We start this section by defining indices, variables and parameters of the model.

Secondly, the ALM model with the objective and the constraints are also displayed.
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FIGURE 2.15: Comparison of OICC and MICC in function of α: Con-
tribution rate cr0

FIGURE 2.16: Comparison of OICC and MICC in function of F0:
Total cost

Indices

t time index, t = 0, 1, · · · , T

s scenarios index, s = 1, · · · , S

k index of asset classes, k = 1, · · · , d
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FIGURE 2.17: Comparison of OICC and MICC in function of F0:
Contribution rate cr0

Decision variables

Zst remedial contribution by the sponsor at time t in scenario s

Cst total cash amount at the beginning of year t in scenario s

Hs
k,t value of the investments hold in asset class k, at the beginning of year t

and in scenario s

Bs
k,t value of the asset class k, bought at the beginning of year t and in scenario s

Ssk,t value of the asset class k, sold at the beginning of year t and in scenario s

crst contribution rate for year t+ 1 in scenario s

Ast total asset value at time t in scenario s

A∗st total asset value just before the asset allocation and the remedial

contribution at time t in scenario s

∆s
crt variation (increase or decrease) of contribution rate from year t

to t+ 1 in scenario s
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Random parameters

rsk,t random rate of return on asset class k over year t in scenario

s and ξk,t := 1 + rk,t

W s
t random total wages of active participants in year t in scenario s

Lst random value of liabilities at time t in scenario s

Benst random total benefit payments to active participants in year t

in scenario s

Deterministic parameters

T time horizon

S number of scenarios

d number of asset classes

α risk parameter defined by either the sponsor or the regulator

c̄Bk proportional transaction cost for purchasing an asset class k

c̄Sk proportional transaction cost for purchasing an asset class k

lk lower bound on the proportion of asset class kin the total asset portfolio

uk upper bound on the proportion of asset class kin the total asset portfolio

lc lower bound on the proportion of cash kin the total asset portfolio

uc upper bound on the proportion of cash kin the total asset portfolio

crl lower bound on the contribution rate

cru upper bound on the contribution rate

∆cr lower bound on the yearly absolute variation of the contribution rate

∆̄cr upper bound on the yearly absolute variation of the contribution rate

F̄ target funding ratio

γ lower bound on the funding ratio

rf risk free interest rate

λz penalty parameter for remedial contribution

λ∆cr penalty parameter for absolute variation of contribution rate

H̄k,0 value of the initial allocation in asset class k

C̄0 initial cash amount

Objective

The objective of the model is to determine the asset allocation, contribution rate
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and remedial contributions that minimize the total cost defined as follows

min
H,cr,Z

E0

[
T−1∑
t=0

vt+1 (crtWt+1 + λzZt+1) +

T−2∑
t=0

vt+1λ∆cr∆crtWt+1

]

under the following constraints. In the model description, anytime we use indices

s and/or k is equivalent to saying for any s = 1, · · · , S and/or for any k = 1, · · · , d.

Budget constraints and total value of the assets

A0 =
d∑

k=1

H̄k,0 + C̄0 + Z0 −
d∑

k=1

(
c̄Bk Bk,0 + c̄SkSk,0

)
=

d∑
k=1

Hk,0 + C0

AsT =
d∑

k=1

Hs
T−1,kξ

s
T,k + CsT−1 (1 + rf ) + crsT−1W

s
T − BensT = A∗sT

Ast =

d∑
k=1

Hs
k,t−1ξ

s
k,t + Cst−1 (1 + rf ) + crst−1W

s
t − Benst + Zst −

d∑
k=1

(
c̄Bk B

s
k,t + c̄SkS

s
k,t

)
;

t = 1, · · · , T − 1

Ast = A∗st + Zst −
d∑

k=1

(
c̄Bk B

s
k,t + c̄SkS

s
k,t

)
=

d∑
k=1

Hs
k,t + Cst ; t = 1, · · · , T − 1

Asset classes dynamics

Hk,0 = H̄k,0 +Bk,0 − Sk,0

Hs
k,t = ξsk,tH

s
k,t−1 +Bs

k,t − Ssk,t ; t = 1, · · · , T

Cash dynamics

C0 = C̄0 + Z0 −
d∑

k=1

(
1 + c̄Bk

)
Bk,0 +

d∑
k=1

(
1− c̄Sk

)
Sk,0

Cst = Cst−1 (1 + rf ) + crst−1W
s
t − Benst + Zst −

d∑
k=1

(
1 + c̄Bk

)
Bs
k,t +

d∑
k=1

(
1− c̄Sk

)
Ssk,t ;

t = 1, · · · , T
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Not short selling assets and not borrowing cash constraints

Hs
k,t ≥ 0 ; Bs

k,t ≥ 0 ; Ssk,t ≥ 0 ; Cst ≥ 0 ; t = 0, · · · , T

Liquidity constraints

Cst (1 + rf ) + Et,s (crstWt+1 −Bent+1) ≥ 0 ; t = 0, · · · , T − 1

Portfolio constraints

lkA
s
t ≤ Hs

k,t ≤ ukAst ; t = 0, · · · , T − 1

lcA
s
t ≤ Cst ≤ ucAst ; t = 0, · · · , T − 1

Constraints on contribution rates

crl ≤ crst ≤ cru and ∆cr ≤ ∆s
crt ≤ ∆̄cr ; t = 0, · · · , T − 1

The decision variables are subject to the non-anticipativity constraints. The in-

tegrated chance constraints defined in Section 2.2.3 control the risk-level of the

model. They also have to be included in the model as explained in section 2.3.3.

2.5.2 Appendix 2: Proposition 2.3.1, an example based sketch of proof

We consider the event tree of Figure 2.18 with a time horizon T = 3 and a branching

structure of 1 − 5 − 4 − 2, leading to S = 5 × 4 × 2 = 40 scenarios. A node

is a possible outcome of the stochastic event at a given time. The starting and

ending nodes of the tree are round whereas the others are rectangular. At each

t ∈ {2, 3}, the rectangular nodes are named according to time and following a top-

down alphabetic order. For example, the rectangle (1, a) describe the outcome at

the first node at time 1. At each node, the economical values such as total asset,

total liability and expected shortfall can be determined. For the sake of clarity,

we recall that, due to non-anticipativity, the node (1, a) is equivalent to the node

(1, s′) , s′ ∈ {1, · · · , 8} as described before, the node (1, b) is equivalent to the node

(1, s′) , s′ ∈ {9, · · · , 16} and so on for the other nodes. The other notations used

here are similar to the ones in the paper. We define
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t = 0 event t = 1 event t = 2 event t = 3

FIGURE 2.18: A scenario tree with 40 scenarios and 66 nodes.

Λ(t,s) :=
∑
s′∈S

ps
′

t,s

(
A∗s

′

t+1 − γLs
′

t+1

)−

where ps
′

t,s stands for the conditional probability to reach node
(
t+ 1, s

′
)

going

from (t, s) and ps
′

t,s = 0 for any scenario s
′

of t + 1 not descending from (t, s). The

MICC defined in equation (2.32) is then

{Λh−1,s, h ∈ Tt+1} ≤ βt,s, t ∈ {0, 1, 2} .

The value βt,s := αLst is the ICC upper limit computed at time t in scenario s. Ac-

cording to this set of constraints,

From initial node at t := 0

h ∈ {1, 2, 3} ⇒ Λ0,s ≤ β0, Λ1,s ≤ β0, and Λ2,s ≤ β0, s ∈ S. (2.34)

At t := 1,

from node (1, a), h ∈ {2, 3} ⇒ Λ1,s ≤ β1,s, and Λ2,s ≤ β1,s, s ∈ {1, 2, · · · , 8}

from node (1, b), h ∈ {2, 3} ⇒ Λ1,s ≤ β1,s, and Λ2,s ≤ β1,s, s ∈ {9, 10, · · · , 16}
...

...
...

...

from node (1, e), h ∈ {2, 3} ⇒ Λ1,s ≤ β1,s, and Λ2,s ≤ β1,s, s ∈ {33, 34, · · · , 40} .
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At t := 2

from node (2, a), h = 3⇒ and Λ2,s ≤ β2,s, s ∈ {1, 2}

from node (2, b), h = 3⇒ and Λ2,s ≤ β2,s, s ∈ {3, 4}
...

...
...

...

from node (2, t), h = 3⇒ and Λ2,s ≤ β2,s, s ∈ {39, 40} .

Therefore, we obtain for any s ∈ S that

at time 0, Λ0,s ≤ β0 ⇔ Λ0,s ≤ β0

at time 1, Λ1,s ≤ β0, Λ1,s ≤ β1,s ⇔ Λ1,s ≤ min {β0, β1,s}

at time 2, Λ2,s ≤ β0, Λ2,s ≤ β1,s, Λ2,s ≤ β1,s ⇔ Λ2,s ≤ min {β0, β1,s, β2,s} .

The obtained result leads obviously to the proposition 2.3.1 in the paper. Consid-

ering such an example is therefore without loss of generality. For another event

tree with different time horizon and branching structure, the proposition can be

prooved using the same procedure.





Chapter 3

On Bivariate Lifetime Modeling in

Life Insurance Applications

This chapter is based on the preprint paper Toukourou et al., 2016.

3.1 Introduction

Insurance and annuity products covering several lives require the modelling of the

joint distribution of future lifetimes. Commonly in actuarial practice, the future

lifetimes among a group of people are assumed to be independent. This simpli-

fying assumption is not supported by real insurance data as demonstrated by nu-

merous investigations. Joint life annuities issued to married couples offer a very

good illustration of this fact. It is well known that husband and wife tend to be ex-

posed to similar risks as they are likely to have the same living habits. For example,

Parkes et al., 1969 and Ward, 1976 have brought to light the increased mortality of

widowers, often called the broken heart syndrome. Many contributions have shown

that there could be a significant difference between risk-related quantities, such as

risk premiums, evaluated according to dependence or independence assumptions.

Denuit and Cornet, 1999 have measured the effect of lifetime dependencies on the

present value of a widow pension benefit. Based on the data collected in ceme-

teries, not only do their estimation results confirm that the mortality risk depends

on the marital status, but also show that the amounts of premium are reduced ap-

proximately by 10 per cent compared to model which assumes independence. Ac-

cording to data from a large Canadian insurance company, Frees et al., 1995 have

demonstrated that there is a strong positive dependence between joint lives. Their

estimation results indicate that annuity values are reduced by approximately 5 per

cent compared to a model with independence.

Introduced by Sklar, 1959, copulas have been widely used to model the dependence

structure of random vectors. In the particular case of bivariate lifetimes, frailty
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models can be used to describe the common risk factors between husband and

wife. Oakes, 1989 has shown that the bivariate distributions generated by frailty

models are a subclass of Archimedean copulas. This makes this particular copula

family very attractive for modelling bivariate lifetimes. We refer to Nelsen, 2007 for

a general introduction to copulas and Albrecher et al., 2011; Constantinescu et al.,

2011, for applications of Archimedean copula in risk theory. The Archimedean cop-

ula family has been proved valuable in numerous life insurance applications, see

e.g., Frees et al., 1995; Brown and Poterba, 1999; Carriere, 2000. In Luciano et al.,

2008, the marginal distributions and the copula are fitted separately and, the results

show that the dependence increases with age.

It is known that the level of association between variables is characterized by the

value of the dependence parameter. In this paper, a special attention is paid to this

dependence parameter. Youn and Shemyakin, 1999 have introduced the age differ-

ence between spouses as an argument of the dependence parameter of the copula.

In addition, the sign of the age difference is of great interest in our model. More

precisely, we presume that the gender of the older member of the couple has an

influence on the level of dependence between lifetimes. In order to confirm our

hypothesis, four families of Archimedean copulas are discussed namely, Gumbel,

Frank, Clayton and Joe copulas, all these under a Gompertz distribution assump-

tion for marginals. The parameter estimations are based on the maximum likeli-

hood approach using data from a large Canadian insurance company, the same set

of data used by Frees et al., 1995. Following Joe and Xu, 1996 and Oakes, 1989, a

two-step technique, where marginals and copula are estimated separately, is ap-

plied. The results make clear that the dependence is higher when husband is older

than wife.

Once the marginal and copula parameters are estimated, one needs to assess the

goodness of fit of the model. For example, the likelihood ratio test is used in Car-

riere, 2000 whereas the model of Youn and Shemyakin, 1999 is based on the Akaike

Information Criterion (AIC). In this paper, following Gribkova and Lopez, 2015

and Lawless, 2011, we implement a whole goodness of fit procedure to validate

the model. Based on the Cramèr-von Mises statistics, the Gumbel copula, whose

dependence parameter is a function of the age difference and its sign gives the best

fit.

The rest of the paper is organized as follows. Section 3.2 discusses the main char-

acteristics of the dataset and provides some key facts that motivate our study. Sec-

tion 3.3 describes the maximum likelihood procedure used to estimate the marginal
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distributions. The dependence models are examined in Section 3.4. In a first hand,

we describe the copula models whose parameter are estimated. Secondly, a boot-

strap algorithm is proposed for assessing the goodness of fit of the model. Consid-

ering several products available on the life insurance market, numerical applica-

tions with real data, including best estimate of liabilities, risk capital and stop loss

premiums are presented in Section 3.5. Section 3.6 concludes the paper.

3.2 Motivation

As already shown in Maeder, 1996, being in a married couple can significantly in-

fluence the mortality. Moreover, the remaining lifetimes of male and female in the

couple are dependent, see e.g., Carriere, 2000; Frees et al., 1995. In this contribution,

we aim at modelling the dependence between the lifetimes of a man and a woman

within a married couple. Common dependence measures, which will be used in

our study, are: the Pearson’s correlation coefficient r, the Kendall’s Tau τ , and the

Spearman’s Rho ρ. In order to develop these aspects, data1 from a large Canadian

life insurance company are used. The dataset contains information from policies

that were in force during the observation period, i.e. from December 29, 1988 to

December 31, 1993. Thus, we have 14′947 contracts among which 14′889 couples

(one male and one female) and the remaining 58 are contracts where annuitants

are both male (22 pairs) or both female (36 pairs). The same dataset has been anal-

ysed in Frees et al., 1995; Carriere, 2000; Youn and Shemyakin, 1999; Gribkova and

Lopez, 2015 among others, also in the framework of modelling bivariate lifetime.

Since we are interested in the dependence within the couple, we focus our attention

on the male-female contracts.

We refer the readers to Frees et al., 1995 for the data processing procedure. The

dataset is left truncated as the annuitant informations are recorded only from the

date they enter the study; this means that insured who have died before the be-

ginning of the observation period were not taken into account in the study. The

dataset is also right censored in the sense that most of the insured were alive at the

end of the study. Considering our sample as described above, some couples hav-

ing several contracts could appear many times. By considering each couple only

once, our dataset consists of 12′856 different couples for which, we can draw the

following informations:

• the entry ages xm and xf for male and female, respectively,

1 We wish to thank the Society of Actuaries, through the courtesy of Edward (Jed) Frees and
Emiliano Valdez, for allowing the use of the data in this paper.
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• the lifetimes under the observation period tm and tf for male and female,

respectively, and

• the binary right censoring indicator δm and δf for male and female, respec-

tively,

• the couple’s benefit in Canadian Dollar (CAD) amount within a last survivor

contract.

The entry age is the age at which, the annuitant enters the study. The lifetime at

entry age corresponds to the lapse of time during which the individual was alive

over the period of study. Therefore, for a male (resp. female) aged xm (resp. xf )

at entry and whose data is not censored i.e. δm = 0 (resp. δf = 0), xm + tm (resp.

xf + tf ) is the age at death. When the data is right censored i.e. δm = 1 (resp.

δf = 1), the number xm + tm (resp. xf + tf ) is the age at the end of the period of

study (December 31, 1993). The lifetime is usually equal to 5.055 years correspond-

ing to the duration of the study period; but it is sometimes less as some people may

entry later or die before the end of study. Benefit is paid each year until the death

of the last survivor. Its value will be used as an input for the applications of the

model to insurance products in Section 3.5.2. Some summary statistics of the age

distribution of our dataset are displayed in Table 3.1. It can be seen that the average

Males age Females age
Statistics Entry Death Entry Death
Number 12′856 1′349 12′856 484

Mean 67.9 74.41 64.95 73.76
Std. dev. 6.38 7.18 7.26 7.87
Median 67.68 74.18 65.27 73.09
10thpercentile 60.34 66.00 55.92 64.24
90thpercentile 75.41 83.21 73.42 83.92

TABLE 3.1: Summary of the univariate distribution statistics.

entry age is 66.4 for the entire population, 67.9 for males and 64.9 for female; 90%

of annuitants are older than 57.9 at entry and males are older than females by 3

years on average. Among the 12′856 couples considered, there are 1349 males and

484 females who die during the study period. In addition, there are 11’228 couples

where both annuitants are alive at the end of the observation while both spouses

are dead for 205 couples. Based on these 205 couples, the empirical dependence

measures are displayed in the last row of Table 3.2. The values show that the ages

at death of spouses are positively correlated.
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Dependence measures

Number r ρ τ

xm > xf 154 0.90 0.88 0.72

xm < xf 51 0.88 0.86 0.69

Total 205 0.82 0.80 0.62

TABLE 3.2: Empirical dependence measures with respect to the gen-
der of the elder partner.

From the existing literature, see e.g., Denuit and Cornet, 1999; Youn and She-

myakin, 1999; Denuit et al., 2001, the dependence within a couple is often influ-

enced by three factors:

• the common lifestyle that husband and wife follow, for example their eating

habits,

• the common disaster that affects simultaneously the husband and his wife,

as they are likely to be in the same area when a catastrophic event occurs,

• the broken-heart factor where the death of one would precipitate the death

of the partner, often due to the vacuum caused by the passing away of the

companion.

Based on the common disaster and the broken-heart, Youn and Shemyakin, 1999

have introduced the age difference between spouses. Their results show that the model

captures some additional association between lifetime of the spouses that would

not be reflected in a model without age difference. It is also observed that, the

higher the age difference is, the lower is the dependence. Referring to the same

dataset, Table 3.3 confirms their results, with |d| the absolute value of d and d =

xm − xf .

Dependence measures

Number r ρ τ

0 ≤ |d| < 2 83 0.97 0.96 0.84

2 ≤ |d| < 4 50 0.94 0.94 0.82

|d| ≥ 4 72 0.72 0.63 0.50

TABLE 3.3: Empirical dependence measures with respect to the age
difference.

Our study follows the same lines of idea as these authors. In addition to the age

difference, we believe that the gender of the elder partner may have an impact on
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their lifetimes dependencies. Indeed, the fact that the husband is older than the

wife may influence their relationship, and indirectly, the dependence factors cited

above. The results displayed in Table 3.2 clearly show that the spouse lifetime de-

pendencies are higher when d is positive, i.e. when husband is older than wife. The

variable gender of the elder member is measured through the sign of the age difference

d. Table 3.4 displays the empirical Kendall’s τ with respect to the age difference and

to the gender of the elder partner. One can notice that the coefficients can vary for

more than 30% depending on who is the older member of the couple.

τ Total 0 ≤ |d| < 2 2 ≤ |d| < 4 |d| ≥ 4

xm ≥ xf 0.72 0.89 0.89 0.55

No. of (xm ≥ xf ) 154 53 41 60

xm < xf 0.69 0.86 0.86 0.74

No. of (xm < xf ) 51 30 9 12

TABLE 3.4: Kendal’Tau correlation coefficients by age and gender
of the elder partner.

In what follows, a bivariate lifetime model will verify our hypothesis. To do this,

marginal distributions for each of the male and female lifetimes are firstly defined

and secondly the copula models are introduced. The estimation methods will be

detailed in the Section 3.3 and Section 3.4.

3.3 Marginal distributions

3.3.1 Background

The lifetime of a newborn shall be modelled by a positive continuous random vari-

able, say X with distribution function (df) F and survival function S. The symbol

(x) will be used to denote a live aged x and T (x) = (X − x)|X > x is the remain-

ing lifetime of (x). The actuarial symbols tpx and tqx are, respectively, the survival

function and the df of T (x). Indeed, the probability, for a live (x), to remain alive

t more years is given by

tpx = P (X > x+ t | X > x) =
P (X > x+ t)

P (X > x)
=
S (x+ t)

S (x)
.

When X has a probability density function f , then T (x) has a probability density

function given by

fx (t) = tpx µ (x+ t) .
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where µ(.) is the hasard rate function, also called force of mortality.

Several parametric mortality laws such as De Moivre, constant force of mortal-

ity, Gompertz, Inverse-Gompertz, Makeham, Gamma, Lognormal and Weibull are

used in the literature; see Bowers et al., 1986. The choice of a specific mortality

model is determined mainly by the caracteristics of the available data and the objec-

tive of the study. It is well known that the De Moivre law and the constant force of

mortality assumptions are interesting for theoretical purposes whereas Gompertz

and Weibull are more appropriate for fitting real data, especially for population of

age over 30. The data set exploited in this paper regroups essentially policyhold-

ers who are at least middle-aged. That is why, in our study, the interest is on the

Gompertz law whose caracteristics are defined as follows

µ (x) = Bcx and S (x) = exp

(
− B

ln c
(cx − 1)

)
with B > 0, c > 1, x ≥ 0. In addition, Frees et al., 1995 and Carriere, 2000 have

shown that the Gompertz mortality law fits our dataset very well, see Figure 3.1.

For estimation purposes, the Gompertz law has been reparametrized as follows

(see Carriere, 1994)

e−m/σ =
B

ln c
and e1/σ = c

from which we obtain

µ (x+ t) =
1

σ
exp

(
x+ t−m

σ

)
,

tpx = exp
(
e
x−m
σ

(
1− e

t
σ

))
,

fx(t) = exp
(
e
x−m
σ

(
1− e

t
σ

)) 1

σ
exp

(
x+ t−m

σ

)
,

Fx(t) = 1− exp
(
e
x−m
σ

(
1− e

t
σ

))
, (3.1)

where the modem > 0 and the dispersion parameter σ > 0 are the new parameters

of the distribution.

3.3.2 Maximum likelihood procedure

In what follows, we will use the following notation:

• The index j indicates the gender of the individual, i.e. j = m for male and

j = f for female.
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• θj = (mj , σj) denotes the vector of unknown Gompertz parameters for a

given gender j.

• n is the total number of couples in our data set. Hereafter, a couple means

a group of two persons of opposite gender that have signed an insurance

contract and i is the couple index with 1 ≤ i ≤ n.

• For a couple i, tij is the remaining lifetime observed in the collected data.

Indeed, for an individual of gender j aged xj , the remaining lifetime T ij (x) is

a random variable such that

T ij (xj) = min
(
tij , B

i
j

)
and δij = 1{tij≥Bij},

where Bi
j is a random censoring point of the individual of gender j in the

couple i.

Consider a couple i where the male and female were, respectively, aged xm and

xf at contract initiation date. For each gender j = m, f , the contribution to the

likelihood is given by

Lij (θj) =
[
Bij
pxj (θj)

]δij [
f ixj
(
tij , θj

)]1−δij
. (3.2)

We recall that the dataset is left truncated that is why likelihood function in (3.2)

has therefore to be conditional on survival to the entry age xj , see e.g. Carriere,

2000. Therefore, the overall likelihood function can be written as follows

Lj (θj) =
n∏
i=1

Lij (θj) , j = m, f. (3.3)

By maximizing the likelihood function in (3.3) using our dataset, the MLE estimates

of the Gompertz df are displayed in Table 3.5. Standard errors are relatively low

and estimation shows that the modal age at death is larger for females than for

males. This latter can be explained by the fact that women have a longer life ex-

pectency than men. A good way to analyse how well the model performs is to com-

pare with the Kaplan-Meier (KM) product-limit estimator of the dataset. We recall that

the KM technique is an approach which consists in estimating non-parametrically

the survival function from the empirical data.
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θ̂ Estimate Std. error

m̂m 86.378 0.289

m̂f 92.175 0.527

σ̂m 9.833 0.415

σ̂f 8.114 0.392

TABLE 3.5: Gompertz parameter estimates.

Figure 3.1 compares, for the female group, the KM estimator of the survival func-

tion to the one obtained from the Gompertz distribution estimated above. Since

almost all the annuitants are older than 40 at entry, all the distributions are con-

ditional on survival to age 40. The survival functions are plotted as a function of

age x (from x = 40 to x = 110). The Gompertz curve is smooth whereas the KM

is jagged. The figures clearly show that the estimated Gompertz model is a valid

choice for approximating the KM curve.
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FIGURE 3.1: Gompertz and Kaplan-Meier fitted female distribution
functions

3.4 Dependence Models

3.4.1 Background

Copula models were introduced by Sklar, 1959 in order to specify the joint df of

a random vector by separating the behavior of the marginals and the dependence
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structure. Without loss of generality, we focus on the bivariate case. We denote by

T (xm) and T (xf ) the future lifetime respectively for man and woman. If T (xm) and

T (xf ) are positive and continuous, there exists a unique copula C : [0, 1]2 → [0, 1]

which specifies the joint df of the bivariate random vector (T (xm), T (xf )) as follows

P(T (xm) ≤ t1, T (xf ) ≤ t2) = C (P (T (xm) ≤ t1) ,P (T (xf ) ≤ t2)) = C(t1qxm , t2qxf ).

Similarly, the survival function of (T (xm), T (xf )) is written in terms of copulas and

marginal survival functions. This is given by

P(T (xm) > t1, T (xf ) > t2) = C̃(t1pxm , t2pxf )

= t1pxm + t2pxf − 1 + C(t1qxm , t2qxf ). (3.4)

A broad range of parametric copulas has been developed in the literature. We refer

to Nelsen, 2007 for a review of the existing copula families. The Archimedean

copula family is very popular in life insurance applications, especially due to its

flexibility in modelling dependent random lifetimes, see e.g. Frees et al., 1995;

Youn and Shemyakin, 1999 . If φ is a convex and twice-differentiable strictly de-

creasing function, the df of an Archimedean copula is given by

Cφ(u, v) = φ−1(φ(u) + φ(v)),

where φ : [0, 1] → [0,∞] is the generator of the copula satisfying φ(1) = 0 with

u, v ∈ [0, 1]. In this paper, four well known copulas are discussed. Firstly, the

Gumbel copula generated by

φ(t) = (− ln(t))−α, α > 1,

which yields the copula

Cα(u, v) = exp{−[(− ln(u))α + (− ln(v))α]1/α}, α > 1. (3.5)

Secondly, we have the Frank copula

Cα(u, v) = − 1

α
ln

(
1 +

(e−αu − 1)(e−αv − 1)

(e−α − 1)

)
, α 6= 0, (3.6)

with generator

φ(t) = − ln

(
e−αt − 1

e−α − 1

)
, α 6= 0.
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Thirdly, the Clayton copula is associated to the generator

φ(t) = t−α − 1, α > 0

and is given by

Cα(u, v) = (u−α + v−α − 1)−1/α, α > 0. (3.7)

Finally, for the Joe copula, α > 1 and

Cα(u, v) = 1−
(

(1− u)α + (1− v)α − (1− u)α(1− v)α
)1/α

, (3.8)

with the generator φ(t) = − ln(1− (1− t)−α), α > 1.

Clearly, the parameter α in (3.5)-(3.8) determines the dependence level between

the two marginal distributions. In our case, that would be the lifetimes of wife and

husband. Youn and Shemyakin, 1999 have utilized a Gumbel copula where the

association parameter α depends on d as follows

α(d) = 1 +
β0

1 + β2d2
, β0, β2 ∈ R (3.9)

where d = xm − xf with xm and xf the ages for male and female, respectively.

In our model for α, in addition to this specification, the gender of the elder part-

ner, represented by the sign of d, is also taken into account. This latter is captured

through the second term of the denominator β1d in equations (3.10) and (3.11).

Thus, for our model the copula association parameter for the Frank and the Clay-

ton is expressed by

α(d) =
β0

1 + β1d+ β2|d|
, β0, β1, β2 ∈ R. (3.10)

Since the copula parameter α in the Gumbel and Joe copulas is restricted to be

greater than 1, the corresponding dependence parameter in (3.11) is allowed to

have an intercept of 1 and we write

α(d) = 1 +
β0

1 + β1d+ β2|d|
, β0, β1, β2 ∈ R. (3.11)

It can be seen that if β1 < 0, the dependence parameter is lower when husband is

younger than wife, i.e. d < 0. Also when d tends to infinity, the dependence pa-

rameter goes to 0 for Frank and Clayton and 1 for the Gumbel copula, thus tending
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towards the independence assumption. Note in passing that instead of taking d2

as in equation (3.9), we use |d| in both (3.10) and (3.11) for the representation of the

absolute age difference.

3.4.2 Estimation of Parameters

The maximum likelihood procedure has been widely used to fit lifetime data to

copula models, see e.g., Lawless, 2011; Shih and Louis, 1995; Carriere, 2000. A

priori, this method consists in estimating jointly the marginal and copula param-

eters at once. However, given the huge number of parameters to be estimated at

the same time, this approach is computationally intensive. Therefore, we adopt a

procedure that allows the determination of marginal and copula parameters, sepa-

rately. In this respect, Joe and Xu, 1996 have proposed a two step technique which,

firstly estimates the marginal parameters θj , j = m, f, and the copula parameter

α(d) in the second step. This is referred to as the inference functions for margins

(IFM) method. Specifically, the survival function of each lifetime is evaluated by

maximazing the likelihood function in (3.3). For each couple i with xim and xif , let

ui := tim
pxim(θ̂m) and vi := tif

pxif
(θ̂f ) be the resulting marginal survival functions for

male and female, respectively. Considering the right-censoring feature of the two

lifetimes as indicated by δim and δif , the estimates α̂(d) of the copula parameters are

obtained by maximizing the likelihood function

L(α(d)) := L(α) =
n∏
i=1

[
∂2C̃α(ui, vi)

∂ui∂vi

](1−δim)(1−δif)
[
∂C̃α(ui, vi)

−∂ui

](1−δim)δif

×

[
∂C̃α(ui, vi)

−∂vi

]δim(1−δif)
[
C̃α(ui, vi)

]δimδif
. (3.12)

A similar two-step technique, known as the Omnibus semi-parametric procedure or

the pseudo-maximum likelihood, was also introduced by Oakes, 1989. In this proce-

dure, the marginal distributions are considered as nuisance parameters of the cop-

ula model. The first step consists in estimating the two marginals survival functions

non-parametrically using the KM method. After rescaling the resulting estimates

by n
n+1 , we obtain the pseudo-observations (Ui,n, Vi,n) where

Ui,n =
Ŝm(xim + tim)

Ŝm(xim)
and Vi,n =

Ŝf (xif + tif )

Ŝf (xif )
.
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In the second step, the copula estimation is achieved by maximizing the following

function

L(α(d)) := L(α) =
n∏
i=1

[
∂2C̃α(Ui,n, Vi,n)

∂Ui,n∂Vi,n

](1−δim)(1−δif)
[
∂C̃α(Ui,n, Vi,n)

−∂Ui,n

](1−δim)δif

×

[
∂C̃α(Ui,n, Vi,n)

−∂Vi,n

]δim(1−δif)
[
C̃α(Ui,n, Vi,n)

]δimδif
. (3.13)

Genest et al., 1995 and Shih and Louis, 1995 have shown that the stemmed esti-

mators of the copula parameters are consistent and asymptotically normally dis-

tributed. Due to their computational advantages, the IFM and the Omnibus ap-

proaches are used in our estimations. By comparing the results stemming from the

two techniques, we can analyse to which extent a certain copula is a reliable model

for bivariate lifetimes within a couple. Table 3.6 and Table 3.7 display the copula

estimations based on our dataset.

Copula parameters
α(d) α

β̂0 β̂1 β̂2 α̂(−2) α̂(0) α̂(2) α̂

Gumbel 1.027 -0.024 0.036 1.917 2.027 2.003 1.993

Frank 7.359 -0.017 0.023 6.813 7.359 7.272 7.065

Clayton 2.461 -0.302 0.464 0.972 2.461 1.857 1.960

Joe 1.488 -0.063 0.063 2.189 2.488 2.488 2.389

TABLE 3.6: IFM method: copula parameters estimate α(d) and α.

Copula parameters
α(d) α

β̂0 β̂1 β̂2 α̂(−2) α̂(0) α̂(2) α̂

Gumbel 0.976 -0.022 0.030 1.884 1.976 1.960 1.924

Frank 7.294 -0.016 0.021 6.791 7.294 7.223 6.828

Clayton 1.924 -0.169 0.296 0.997 1.924 1.534 1.117

Joe 1.409 -0.0505 0.0581 2.158 2.409 2.388 2.352

TABLE 3.7: Omnibus approach: copula parameters estimate α(d)
and α.

The estimated values from the IFM and the omnibus estimations are quite close for

the Gumbel, the Frank and the Joe copulas. The important difference observed in

the Clayton case indicates that this copula is probably not appropriate for mod-

elling the bivariate lifetimes in our dataset. The negative sign of β̂1 in all cases

demonstrates that if husband is older than wife (i.e. d > 0), their lifetimes are more

likely to be correlated. The positive sign of β̂2 suggests that the higher the age dif-

ference is, the lesser is the level of dependence between lifetimes. The parameters
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β̂1 and β̂2 have opposing effects on α̂ (d). That is why the maximum level of depen-

dence is attained when d = 0, i.e. when wife and husband have exactly the same

age. Our estimate of α(d) under the Gumbel copula is quite similar to the results in

the model of Youn and Shemyakin, 1999 where β̂0 = 1.018, β̂1 = 0 and β̂2 = 0.021.

Column 8 contains the estimation output when the dependence parameter α does

not depend on d. When d = 0, α (0) = β0 (or 1 + β0 for Gumbel and Joe) and

that is equivalent to the case where the dependence parameter is not in function of

the age difference. By comparing the sixth and the eighth columns, it can be seen

that the model without age difference underestimates the lifetime dependence level

between spouses.

3.4.3 Goodness of fit

A goodness of fit procedure is performed in order to assess the robustness of our

model. For this purpose, the model, including age difference and gender of the el-

der member within the couple with α (d), is compared to two other types, namely

the one where the copula parameter does not depend on d and the model of Youn

and Shemyakin, 1999. Many approaches for testing the goodness of fit of copula

models are proposed in the litterature, see e.g., Genest et al., 2009; Berg, 2009. We re-

fer to Genest et al., 2009 for an overview of the existing methods. There are several

contributions highlighting the properties of the empirical copula, especially when

the data are right censored, the contributions Dabrowska, 1988; Prentice et al., 2004;

Gribkova and Lopez, 2015 are some examples. In our framework, the goodness of

fit approach is based on the non parametric copula introduced by Gribkova and

Lopez, 2015 as follows

Cn(u1, u2) =
1

n

n∑
i=1

(1− δim)(1− δif )Win1{T (xim)≤F̂−1
m,n(u1),T (xif )≤F̂−1

f,n(u2)}, (3.14)

where Win = 1
SBm (max(T im,T

i
f−εi)−)

and SBm is the survival function of the right

censored random variable Bm that is estimated using KM approach; εi = Bi
f −

Bi
m. The term F̂−1

j,n is the KM estimator of the quantile function of T (xij), j = m, f .

The particularity of equation (3.14) is that, the uncensored observations are twice

weighted (with 1/n and Win) unlikely to the original empirical copula where the

same weight 1/n is assigned to each observation. The weight Win is devoted to

compensate right censoring. Based on the p-value, the goodness of fit test indicates

to which extent a certain parametric copula is close to the empirical copula Cn. We

adopt the Cramèr-von Mises statistic to assess the adequacy of the hypothetical
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copula to the empirical one, namely

Vn =

∫
[0,1]2

Kn(v)dKn(v), (3.15)

where Kn(v) =
√
n(Cn(v)−Cα̂(d)(v)) is the empirical copula process. Genest et al.,

2009 have proposed an empirical version of equation (3.15) which is given by

V̂n =
n∑
i=1

(Cn(u1i, u2i)− Cα̂(d)(u1i, u2i))
2. (3.16)

The assertion, the bivariate lifetime within the couple is described by the studied

copula, is then tested under the null hypothesis H0. Since the Cramèr-von Mises

statistic ̂̂Vn does not possess an explicit df, we implement a bootstrap procedure

to evaluate the p-value as presented in the following pseudo-algorithm. For some

large integer K, the following steps are repeated for every k = 1, . . . ,K:

• Step 1: Generate lifetimes from the hypothetical copula, i.e. (U bi , V
b
i ), i =

1, . . . , n is generated from Cα̂(d). If the IFM method is used to determine α̂(d),

then the two lifetimes are produced from the Gompertz distribution

(tb,im = F−1
xm (U bi , θ̂m), tb,if = F−1

xf
(V b
i , θ̂f )),

where θ̂j , j = m, f are taken from Table 3.5, while, for the omnibus, the

corresponding lifetimes are generated with the KM estimators of the quantile

functions of T (xj) , j = m, f

(tb,im = F̂−1
m,n(U bi ), tb,if = F̂−1

f,n(V b
i )).

• Step 2: Generate the censored variables Bb,i
m and Bb,i

f , i = 1, . . . , n from the

empirical distribution of Bm and Bf respectively.

• Step 3: Considering the same data as used for the estimation, replicate the in-

surance portfolio by calculating T b(xim) = min(tb,im , B
b,i
m ), δb,im = 1{tb,im ≥Bb,im }

,

T b(xif ) = min(tb,if , B
b,i
f ), δb,if = 1{tb,if ≥B

b,i
f }

for each couple i of ages xim and

xif .

• Step 4: If the IFM approach is chosen in Step 1, the parameters of the marginals

and the hypothetical copula parameters are estimated from the bootstrapped

data (T b(xim), T b(xif ), δb,im , δ
b,i
f ) by maximizing (3.2) and (3.12) whereas un-

der the omnibus approach, the hypothetical copula parameters are estimated

from the bootstrapped data as well by maximizing equation (3.13).
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• Step 5: Compute the Cramèr-von Mises statistics V̂bn,k using (3.16).

• Step 6: Evaluate the estimate of the p-value as follows

p̂ =
1

K + 1

K∑
k=1

1{V̂bn,k≥V̂n}
.

Based on 1000 bootstrap samples, the results of the goodness of fit is summarized

in Table 3.8. It can be seen that for both IFM and Omnibus, our model have a

greater p-value than the model without age difference, showing that age difference

between spouses is an important dependence factor of their joint lifetime. Under

the Gumbel model in Youn and Shemyakin, 1999 where β1 = 0, the p-value is

evaluated at 0.678. For the Gumbel copula in Table 3.8, the p-value in the model

with α (d) is slightly higher, strenghthening the evidence that the sign of d captures

some additional association between spouses.

IFM Omnibus

Copula parameters α α(d) α α(d)

Gumbel 0.647 0.679 0.639 0.670

Frank 0.518 0.525 0.521 0.530

Clayton 0.111 0.163 0.120 0.158

Joe 0.321 0.338 0.318 0.329

TABLE 3.8: Goodness of fit test: p-value of each copula model.

At a critical level of 5%, the three copula families are accepted, even though the

Clayton copula performs inadequately. Actually, as pointed out in the work of

Gribkova and Lopez, 2015, the important percentage of censored data in the sample

results in a huge loss of any GoF test. Therefore, these results can not efficiently

assess the lifetime dependence within a couple. Nevertheless, the calculated p-

values may give an idea about which direction to go. In this regards, since the

Gumbel and Frank copulas have the highest p-value, they are good candidates

for addressing the dependence of the future lifetimes of husband and wife in this

Canadian life insurer portfolio.

3.5 Insurance applications

3.5.1 Joint life insurance contracts

Multiple life actuarial calculations is common in the insurance practice. Hereafter,

(x) stands for the husband aged x whereas (y) is the wife. Considering a couple

(xy), T (xy) describes the remaining time until the first death between (x) and (y)
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and, it is known as the joint-life status. Conversely, T (xy) is the time until death of

the last survivor. The variables T (xy) and T (xy) are random and we can write

T (xy) = min (T (x) , T (y)) whereas T (xy) = max (T (x) , T (y)) .

As in the single life model, the survival probabilities are given by

tpxy = P (T (xy) > t) and tpxy = P (T (xy) > t) . (3.17)

Clearly, if T (x) and T (y) are independent, then

tpxy = tpx tpy and tpxy = 1− tqx tqy.

The curtate life expectancies, for T (xy) and T (xy) respectively, are given by

exy = E (T (xy)) =

∞∑
t=1

tpxy and exy = E (T (xy)) =
∞∑
t=1

tpxy,

with the following relationship

exy = ex + ey − exy.

Figures 3.2 and 3.3 compare the evolution of exy as a function of the age difference

d = x− y, under the following models:

• Model A: T (x) and T (y) are independent;

• Model B: T (x) and T (y) are dependent with a constant copula parameter

α = α0;

• Model C: T (x) and T (y) are dependent with a copula parameter α (d) as

described in (3.10) and (3.11).

On the left (resp. right), the graphs were constructed under the assumption of x =

65 (resp. y = 65) for the husband (resp. wife) and the age difference d ranges from

−20 to 20 as more than 99% of our portfolio belongs to this interval. The fixed age

is set to 65 because this is the retirement age in many countries. The analysis was

made under the four families of copula described in Section 3.4. In general, it can be

seen that the life expectancy of the last survivor exy increases when exy = e65:65−d

whereas it decreases when exy = e65+d:65. This result strengthens the evidence that

the sign of d has an effect on annuity values. For example, when |d| = 10 under the

Gumbel copula,

e65:55 = 32.62 ≥ e55:65 = 28.82.
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FIGURE 3.2: Comparison of exy under model A, B and C: Gumbel
and Frank copulas
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(A) Clayton copula: x = 65
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(C) Joe copula: x = 65
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FIGURE 3.3: Comparison of exy under model A, B and C: Clayton
and Joe copulas

When comparing the models A, B and C, it can be seen that the life expectancy

exy is clearly overvalued under the model A of independence assumption, thus

confirming the results obtained in Frees et al., 1995; Youn and Shemyakin, 1999;

Denuit and Cornet, 1999. Now, let us focus our attention on models B and C con-

sidering only Gumbel, Frank and Joe copulas as it has been shown in the previous

section that the Clayton copula might not be appropriate for the Canadian insurer’s

data. In all graphs, the life expectancy is always lower or equal under model B and

the rate of decreases may exceed 2%. The largest decrease is observed when d < 0,

i.e. when husband is younger than wife.
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In order to illustrate the importance of these differences, we consider four types

of multiple life insurance products. Firstly, Product 1 is the joint life annuity which

pays benefits until the death of the first of the two annuitants. For a husband (x)

and his wife (y) who receive continuously a rate of 1, the present value of future

obligations and its expectation are given by

āT (xy) =
1− exp (−δT (xy))

δ
and āxy = E

(
āT (xy)

)
where δ is the constant instantaneous interest rate (also called force of interest).

The variable āT (xy) can be seen as the insurer liability regarding (xy). Product 2 is

the last survivor annuity which pays a certain amount until the time of the second

death T (xy). In that case, the present value of future annuities and its expectation

are given by

āT (xy) =
1− exp (−δT (xy))

δ
and āxy = E

(
āT (xy)

)
.

In practice, payments often start at a higher level when both beneficiaries are alive.

It drops at a lower level on the death of either and continues until the death of

the survivor. This case is emphasized by product 3 where the rate is 1 when both

annuitant are alive and reduces to 2
3 after the first death. Product 3 is actually a

combination of the two first annuities. Thus, the insurer liabilities and its expecta-

tion are given by

V (xy) =
1

3
āT (xy) +

2

3
āT (xy) and E (V (xy)) = Vxy =

1

3
āxy +

2

3
āxy

where E
(
āT (xy)

)
= āxy.

Fourthly, imagine a family or couple whose income is mainly funded by the hus-

band. The family may want to guarantee its source of income for the eventual death

of the husband. For this purpose, the couple may buy the so called reversionary an-

nuity for which the payments start right after the death of (x) until the death of

(y). No payment is made if (y) dies before (x). As for Product 3, the reversionary

annuity (Product 4) is also a combination of some specific annuity policies and the

total obligations of the insurer and its expectation are computed as follows

āT (x)|T (y) = āT (y) − āT (xy) and āx|y = E
(
āT (x)|T (y)

)
= āy − āxy. (3.18)

In what follows, considering each of the insurance products 1, 2, 3 and 4, compari-

son of models A, B and C will be discussed. The analysis will include the valuation
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of the best estimate (BE) of the aggregate liability of the insurer as well as the quan-

tification of risk capital and stop loss premiums.

3.5.2 Risk Capital & Stop-Loss Premium

In the enterprise risk management framework, insurers are required to hold a cer-

tain capital. This amount, known as the risk capital, is used as a buffer against

unexpected large losses. The value of this capital is quantified in a way that the

insurer is able to cover its liabilities with a high probability. For instance, under

Solvency II, it is the Value-at-Risk (VaR) at a tolerance level of 99.5% of the insurer

total liability, while for the Swiss Solvency Test (SST), it is the Expected Shortfall (ES)

at 99%. Let L be the aggregate liability of the insurer. At a confidence level α, the

VaR is given by

V aRL(α) = inf {l ∈ R : P (L ≤ l) ≥ α} ,

whilst the ES is

ESL(α) = E (L|L > V aRL(α)) .

These risk measures will serve to compare models A, B and C for each type of

product. As the insurance portfolio is made of n policyholders, we define

L =

n∑
i=1

Li,

where Li represents the total amount due to a couple i of (xi) and (yi). The dataset

used in the calculations is the same as those used for the model estimations and

described in Section 3.2. In principle, the couple i receives the amount bi at the

beginning of each year until the death of the last survivor. However, in our appli-

cations, bi will be the continuous benefit rate in CAD for each type of product. For

example, in the particular case of Product 3,

Li = biV (xiyi) = bi

(
1

3
āT (xi,yi)

+
2

3
āT (xi,yi)

)
.

Since there is no explicit form for the distribution of L, a simulation approach will

serve to evaluate the insurer aggregate liability. The pseudo-algorithm used for

simulations is presented in the following steps:

• Step 1: For each couple i, generate (Ui, Vi) from the the copula model (model

A or model B or model C).
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• Step 2: For each couple iwith xi and yi, generate the future lifetime T (xi), T (yi)

from the Gompertz distribution as follows

T (xi) = F−1
xi (Ui, θ̂m) and T (yi) = F−1

yi (Vi, θ̂f ), (3.19)

where θ̂j , j = m, f are taken from Table 3.5.

• Step 3: Evaluate the liability Li for each couple i = 1, . . . , n.

• Step 4: Evaluate the aggregate liability of the insurer L =
∑n

i=1 Li.

Due to its goodness of fit performance, the Gumbel copula will be used in the cal-

culations for Models B and C. Mortality risk is assumed to be the only source of

uncertainty and we consider a constant force of interest of δ = 5%.

For each product described in Subsection 3.5.1, Step 1-4 are repeated 1000 times

in order to generate the distribution of L. In addition to the risk capital measured

as under the Solvency II and the SST framework, the BE of the aggregate liability

of the insurer (i.e. BE = E (L)), the Coefficient of Variation (CoV) and the Stop-

Loss premium SL = E((L − ζ)+) are also evaluated, where ζ is the deductible.

For the portfolio of Product 1, Product 2, Product 3 and Product 4, the amount of

ζ in millions CAD are respectively 4, 4.5, 4.2, 1.7. Results are presented in Table

3.9− 3.12 according to each product. For the ease of understanding all values have

been converted to a per Model A basis (the corresponding amounts are presented

in Appendix 3.7.1).

As we could expect, the Model A with independent lifetime assumption misjudges

the total liability of the insurer. The highest differences are observable with Prod-

uct 4 where it reaches 20% for the BE, 30% for the risk capitals and 71% for the

stop loss premiums. By comparing Model B and Model C, the findings tell minor

differences. The variation noticed in Figure 3.2 (when d < 0) are practically non-

existent in the aggregate values for most of the products under investigation. In

other words, while the effects of the age difference and its sign are noticeable on

the individual liability (see Subsection 3.5.1), the effects on the aggregate liability

are merely small. This is due to the law of large number and to the high proportion

of couple with d > 0 in our portfolio (70%). Actually, the compensation of the pos-

itive and negative effects of the age difference on the lifetimes dependency in the

whole portfolio mitigates its effects on the aggregate liability. However, it should

be noted that the relative difference exceeds 1.4% for the V aRL(0.95) in Table 3.12.
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Product 1 BE CoV SL V aRL(99.5%) ESL(99%)

Model A 1.0000 0.6497 1.0000 1.0000 1.0000

Model B 1.0708 0.6279 1.4072 1.0235 1.0223

Model C 1.0721 0.6276 1.4157 1.0240 1.0228

TABLE 3.9: Relative BE and risk capital for the joint life annuity
(Product 1) portfolio.

Product 2 BE CoV SL V aRL(99.5%) ESL(99%)

Model A 1.0000 0.5039 1.0000 1.0000 1.0000

Model B 0.9518 0.5251 0.9220 0.9988 0.9991

Model C 0.9510 0.5257 0.9204 0.9989 0.9991

TABLE 3.10: Relative BE and risk capital for the last survivor annu-
ity (Product 2) portfolio.

Product 3 BE CoV SL V aRL(99.5%) ESL(99%)

Model A 1.0000 0.5039 1.0000 1.0000 1.0000

Model B 0.9820 0.5425 1.2148 1.0154 1.0146

Model C 0.9818 0.5431 1.2191 1.0159 1.0150

TABLE 3.11: Relative BE and risk capital for the last survivor annu-
ity (Product 3) portfolio.

Product 4 BE CoV SL V aRL(99.5%) ESL(99%)

Model A 1.0000 0.5039 1.0000 1.0000 1.0000

Model B 0.8072 1.0692 0.2877 0.7077 0.7222

Model C 0.8039 1.0586 0.2731 0.6978 0.7135

TABLE 3.12: Relative BE and risk capital for the contingent annuity
(Product 4) portfolio.

3.6 Conclusion

In this paper, we propose both parametric and semi-parametric techniques to model

bivariate lifetimes commonly seen in the joint life insurance practice. The depen-

dence factors between lifetimes are examined namely the age difference between

spouses and the gender of the elder partner in the couple. Using real insurance

data, we develop an appropriate estimator of the joint distribution of the lifetimes

of spouses with copula models in which the association parameters have been al-

lowed to incorporate the aforementioned dependence factors. A goodness of fit

procedure clearly shows that the introduced models outperform the models with-

out age factors. The results of our illustrations, focusing on valuation of joint
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life insurance products, suggest that lifetimes dependence factors should be taken

into account when evaluating the best estimate of the annuity products involving

spouses.

3.7 Appendix

3.7.1 Risk measures for the aggregate liability of the insurer

Product 1 Mean CoV SL V aRL(99.5%) ESL(99%)

Model A 1’815’490 0.649 31’393 5’031’430 5’083’090

Model B 1’944’105 0.628 44’177 5’149’873 5’196’529

Model C 1’946’400 0.627 44’443 5’152’233 5’199’015

TABLE 3.13: Risk capital for the joint life annuity (Product 1) port-
folio in CAD.

Product 2 Mean CoV SL V aRL(99.5%) ESL(99%)

Model A 2’663’056 0.487 61’826 5’557’880 5’590’822

Model B 2’534’628 0.525 57’007 5’551’368 5’585’636

Model C 2’532’504 0.526 56’906 5’551’814 5’585’818

TABLE 3.14: Risk capital for the last survivor annuity (Product 2)
portfolio in CAD.

Product 3 Mean CoV SL V aRL(99.5%) ESL(99%)

Model A 2’380’534 0.504 50’205 5’275’035 5’316’415

Model B 2’337’787 0.543 60’990 5’356’069 5’394’256

Model C 2’337’136 0.543 61’206 5’358’722 5’396’062

TABLE 3.15: Risk capital for the last survivor annuity (Product 3)
portfolio in CAD.
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Product 4 Mean CoV SL V aRL(99.5%) ESL(99%)

Model A 667’479 1.248 93’413 4’123’250 4’200’646

Model B 538’811 1.069 26’871 2’918’125 3’033’624

Model C 536’592 1.059 25’514 2’877’347 2’997’130

TABLE 3.16: Risk capital for the life contingent annuity (Product 4)
portfolio in CAD.
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Pflug, G. and A. Świętanowski (1999). “Dynamic asset allocation under uncertainty

for pension fund management”. In: Control and Cybernetics 28.4, pp. 755–777.

Pflug, G. C. and A. Swietanowski (1998). “Dynamic asset allocation under uncer-

tainty for pension fund management”. In: Control and Cybernetics 28, pp. 755–

777.

Prékopa, A., B. Vizvari, and T. Badics (1998). Programming under probabilistic con-

straint with discrete random variable. Springer.

Prentice, R. L., F. Zoe Moodie, and J. Wu (2004). “Hazard-based nonparametric sur-

vivor function estimation”. In: Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology) 66.2, pp. 305–319.

Raike, W. M. (1970). “Dissection methods for solutions in chance constrained pro-

gramming problems under discrete distributions”. In: Management Science 16.11,

pp. 708–715.

Ralston, D., J. Rogers, and C. Philippe (2012). “Melbourne Mercer Global Pension

Index”. In: Policy 17.

Redington, F. M. (1952). “Review of the principles of life-office valuations”. In: Jour-

nal of the Institute of Actuaries 78.3, pp. 286–340.

Rockafellar, R. T. and S. Uryasev (2002). “Conditional value-at-risk for general loss

distributions”. In: Journal of Banking & Finance 26.7, pp. 1443–1471.

Rudolf, M. and W. T. Ziemba (2004). “Intertemporal surplus management”. In: Jour-

nal of Economic Dynamics and Control 28.5, pp. 975–990.
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Şahin, Ş. (2010). “Stochastic investment models for actuarial use in the UK”. PhD

thesis. Heriot-Watt University.
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Shapiro, A., D. Dentcheva, and A. Ruszczyński (2009). Lectures on stochastic program-

ming: modeling and theory. Vol. 9. SIAM.



BIBLIOGRAPHY 119

Sharpe, W. F. and L. G. Tint (1990). “Liabilities: a new approach”. In: The Journal of

Portfolio Management 16.2, pp. 5–10.

Shih, J. H. and T. A. Louis (1995). “Inferences on the association parameter in copula

models for bivariate survival data”. In: Biometrics 51, pp. 1384–1399.

Siebert, H. (1997). Pay-as-you-go versus capital funded pension systems: the issues. Tech.

rep. 816. Kiel Working Papers.

Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Université

Paris 8.

Tanner, M. W. and L. Ntaimo (2010). “IIS branch-and-cut for joint chance-constrained

stochastic programs and application to optimal vaccine allocation”. In: European

Journal of Operational Research 207.1, pp. 290–296.

Taylor, G. (2002). “Stochastic control of funding systems”. In: Insurance: Mathematics

and Economics 30.3, pp. 323–350.

Thompson, L. H. (1998). “Individual uncertainty in retirement income planning un-

der different public pension regimes”. In: Framing the Social Security Debate: Val-

ues, Politics and Economics, Washington DC : Brookings Institution Press, pp. 113–

137.

Thomson, R. J. (1996). “Stochastic investment modelling: the case of South Africa”.

In: British Actuarial Journal 2.3, pp. 765–801.

Toukourou, Y. A. F. and F. Dufresne (2015). “On Integrated Chance Constraints in

ALM for Pension Funds”. In: arXiv preprint 1503.05343.

Toukourou, Y. A. F., G. Ratovomirija, E. Hashorva, and F. Dufresne (2016). “On

bivariate lifetime modelling in life insurance applications”. In: arXiv Preprint

:1601.04351.

Touzi, N. (2012). Optimal stochastic control, stochastic target problems, and backward

SDE. Springer Science & Business Media.

Towers Watson, Publishing (2013). Global Pensions Asset Study. Towers Watson.

Vlerk, M. H. van der, W. K. K. Haneveld, and M. H. Streutker (2003). Integrated

chance constraints in an ALM model for pension funds. Humboldt-Universität zu

Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathe-

matik.

Wane, A. D., J. A. Monnier, and M. J. Raemy (2011). “Asset Liability Management

for pension funds: Assessment of common practices”. In: Arxiv Preprint.

Ward, A. W. (1976). “Mortality of bereavement”. In: British Medical Journal 1.6011,

pp. 700–702.

Whitten, S. P. and R. G. Thomas (1999). “A non-linear stochastic asset model for

actuarial use”. In: British Actuarial Journal 5.5, pp. 919–953.



120 BIBLIOGRAPHY

Wilkie, A. D. (1984). “A Stochastic Investment Model for Actuarial Use”. In: Trans-

actions of the Faculty of Actuaries 39.5, pp. 341–403.

— (1995). “More on a stochastic asset model for actuarial use”. In: British Actuarial

Journal 1.5, pp. 777–964.
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