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Abstract Soils play an essential role in the global

cycling of carbon and understanding the stabilisation

mechanisms behind the preservation of soil organic

carbon (SOC) pools is of globally recognised signif-

icance. Until recently, research into SOC stabilisation

has predominantly focused on acidic soil environ-

ments and the interactions between SOC and alu-

minium (Al) or iron (Fe). The interactions between

SOC and calcium (Ca) have typically received less

attention, with fewer studies conducted in alkaline

soils. Although it has widely been established that

exchangeable Ca (CaExch) positively correlates with

SOC concentration and its resistance to oxidation, the

exact mechanisms behind this relationship remain

largely unidentified. This synthesis paper critically

assesses available evidence on the potential role of Ca

in the stabilisation of SOC and identifies research

topics that warrant further investigation. Contrary to

the common view of the chemistry of base cations in

soils, chemical modelling indicates that Ca2? can

readily exchange its hydration shell and create inner

sphere complexes with organic functional groups.

This review therefore argues that both inner- and

outer-sphere bridging by Ca2? can play an active role

in the stabilisation of SOC. Calcium carbonate

(CaCO3) can influence occluded SOC stability

through its role in the stabilisation of aggregates;

however, it could also play an unaccounted role in the

direct sorption and inclusion of SOC. Finally, this

review highlights the importance of pH as a potential

predictor of SOC stabilisation mechanisms mediated

by Al- or Fe- to Ca, and their respective effects on

SOC dynamics.

Keywords Calcium � Soil organic carbon
stabilisation � Sorption � Occlusion � Polyvalent cation
bridging � Organo-mineral interactions

Introduction

Soil organic carbon stabilisation

Soils are the largest actively cycling terrestrial C

reservoir and play an essential role in the global

cycling of C. Improving our understanding of this C

reservoir and modelling its dynamics are fundamental

to predicting its sensitivity to future change (Brovkin

and Goll 2015). However, current models suffer from
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Institut des Dynamiques de la Surface Terrestre (IDYST),
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large uncertainties caused by the complexities of SOC

and its physicochemical interactions with the soil

matrix (Friedlingstein et al. 2006). Models require

further mechanistic research on the variables that drive

SOC dynamics to improve their accuracy (Campbell

and Paustian 2015). Therefore, understanding the

mechanisms behind the accumulation and persistence

of SOC is of globally recognised importance.

Soil organic C stabilisation broadly refers to

mechanisms believed to impede the decomposition

of organic matter, promoting its accumulation and

persistence in soils. Conversely, decomposition refers

to the progressive oxidative transformation of organic

inputs, during which a fraction of the organic matter is

volatilised as carbon dioxide, while residues become

increasingly laden with functional groups, such as

carboxyl, phenol, or hydroxyl groups (Guggenberger

and Zech 1993; Oste et al. 2002; Peinemann et al.

2005). Sollins et al. (1996) originally proposed three

theoretical mechanisms that confer stability to SOC:

(i) an inherent recalcitrance or thermodynamic stabil-

ity of soil organic matter (SOM) and its subsequent

selective preservation by decomposers, (ii) the phys-

ical occlusion of SOC from decomposers, and (iii)

sorption of SOC to inorganic soil components result-

ing in organo-mineral or organo-cation complexes.

It was previously thought that the primary mech-

anism behind the persistence of SOC was the selective

preservation of thermodynamically stable or recalci-

trant substrates by decomposers (Aber et al. 1990;

Sollins et al. 1996), causing their accrual within the

soil matrix. However, as hypothesised by Oades

(1988), there is little evidence for the preservation of

complex cell-wall materials like lignin and suberin in

stable SOC pools (Gleixner et al. 1999, 2002; Rumpel

and Kögel-Knabner 2011; Schmidt et al. 2011).

Contrarily, recent evidence suggests that selective

preservation is only relevant at the beginning of the

SOC decomposition continuum (Dignac et al. 2005;

Gleixner et al. 1999, 2002; Lehmann and Kleber 2015;

Schmidt et al. 2011) or within organic horizons

(Lemma et al. 2007; Preston et al. 2009). The

stabilisation and maintenance of SOC in mineral soil

horizons, over medium- to long-time periods, is now

predominantly thought to be driven by specific

ecosystem properties rather than the inherent recalci-

trance of SOC (Schmidt et al. 2011).

The established paradigm: ecosystem properties

limiting SOC decomposition

Important ecosystem properties that contribute to SOC

stabilisation include:

(i) the physical separation of substrates from

decomposers over plurimetric to micrometric

scales;

(ii) interactions between SOC and cations or

minerals;

(iii) the occurrence of temperature or moisture

conditions that are incompatible with enzy-

matic reactions;

(iv) toxicity effects of metal ions like Al3?.

The first and second processes are the most wide-

spread as they occur, theoretically at least, in all soils.

The state of knowledge on these processes is briefly

synthesised below.

Physical separation

Soil organic carbon (SOC) can be stabilised by its

physical separation from decomposers, their enzymes,

and the necessary components of aerobic decomposi-

tion, such as oxygen or moisture. This physical

constrainment can occur over large spatial scales in

biologically limiting environments, like those present

in Histosols or Cryosols, where waterlogged or frozen

conditions severely limit the oxidative degradation of

organic substrates (Dörfer et al. 2013), but can also

occur at smaller spatial scales. Mechanisms for small

scale physical separation include hydrophobic inter-

actions arranging substrates into a micellar structure

(Chassin 1979), SOC inclusion within a mineral or co-

genetic mineral assemblage (Bindschedler et al.

2016), SOC intercalation within phyllosilicates

(Theng et al. 1986), and occlusion of SOC within

pedogenic aggregates (Adu and Oades 1978). Thus,

the physical constrainment of aerobic decomposition

can occur over plurimetric to micrometric scales and

stabilises SOC in nearly all soil environments.

Formation of soil aggregates is the most widespread

microscale process that leads to the physical separa-

tion of SOC, typically labelled as occluded SOC. The

relation between aggregation and the stability or

accumulation of SOC has been repeatedly demon-

strated (Denef et al. 2004; Moni et al. 2010; Monreal
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et al. 1997; Plante et al. 2002; Skjemstad et al. 1993;

Virto et al. 2008, 2010). Formation of aggregates has

conventionally been thought to involve the electro-

static flocculation of soil separates into stable domains

2–20 lm in size (Ghezzehei 2011), which are then

bound by organic or inorganic cementing agents

(Jastrow 1996; Six et al. 2004). Much emphasis has

been placed on biological mechanisms that can control

aggregation, such as the physical meshing of soil

particles by roots and fungi or the excretion of

extracellular polysaccharides/polymeric substances

by microorganisms and roots (Balesdent et al. 2000;

Chenu and Cosentino 2011; Six et al. 2002, 2004). In

the theory of biological-controlled aggregate forma-

tion (Chenu 1989; Oades and Waters 1991; Oades

1993; Tisdall 1996), fresh SOC acts as an aggregate

formation nucleus, stimulating localised activity of

microorganism communities. These microorganisms

excrete extracellular polysaccharide/polymeric sub-

stances that adhere to soil particles, which binds them

together, creating a shell around the decomposing

SOC nucleus and eventually occluding the SOC

residue within (Chenu and Cosentino 2011). When

driven by biology, soil structure is typically arranged

into a spatial hierarchy, with distinct physical classes

of aggregates that are often classified as macroaggre-

gates ([ 250 lm) or microaggregates (\ 250 lm;

Asano and Wagai 2014; Elliott 1986; Oades 1984;

Six et al. 2000, 2004; Tisdall 1996; Tisdall and Oades

1982). These aggregate classes have different proper-

ties (size, structural stability, porosity, hydrophilicity),

which confer different stabilities to the SOC occluded

within (Chenu and Cosentino 2011; Dexter 1988;

Kleber et al. 2007; Sutton et al. 2005; von Lützow et al.

2006; Zheng et al. 2016). It is largely accepted that in

this hierarchy, microaggregates are formed within

macroaggregates, which then break apart because of

their weaker binding agents and larger planes of

weakness, distributing microaggregates into the soil

matrix (Oades 1984; Six et al. 2004; Tisdall 1996).

These microaggregates are typically considered more

stable because of their stronger binding agents and

reduced macroporosity, increasing the stability of

SOC occluded within (Denef et al. 2004; Tisdall and

Oades 1982). Yet despite the recent emphasis on

biological controls on soil aggregation, it should be

noted that soil aggregation, its hierarchy, and the

occlusion of SOC is also influenced by inorganic

components of the soil matrix.

Abiotic agents, such as the composition of the

mineral soil matrix, can indeed play a dominant role in

aggregate formation and stability and therefore, influ-

ence occluded SOC. Polyvalent cations are known to

increase aggregation in soils by flocculating nega-

tively charged soil separates (Bronick and Lal 2005;

Érika et al. 2016; Grant et al. 1992). Inorganic

components can also increase the stability of aggre-

gates through cementation, with examples including

poorly crystalline minerals (Rasmussen et al. 2005),

well crystallised Fe oxides (Oades and Waters 1991;

Zhao et al. 2017), or carbonates (Falsone et al. 2010;

Fernández-Ugalde et al. 2011, 2014; Virto et al. 2011).

Inorganic components have been documented to

reinforce both macroaggregates (Fernández-Ugalde

et al. 2011; Virto et al. 2013) and microaggregates

(Falsone et al. 2010). Some authors have pointed out

that when predominantly controlled by inorganic

agents, like Fe oxides in Ferralsols (Oxisols; Oades

and Waters 1991), soil structure may not display the

hierarchical organisation commonly associated with

biology. However, when compared to biotic pro-

cesses, inorganic controls on SOC occlusion have

received relatively little attention recently.

Sorption

SOC can also be stabilised through sorptive interac-

tions. These interactions include adsorption to miner-

als, like phyllosilicate clays, Al-, Fe-, Mn-oxides,

poorly crystalline minerals, or polyvalent cations

forming bridges to mineral or other organic soil

constituents. A positive relationship between the

resistance of SOC to chemical oxidation and the

presence of specific reactive mineral species was first

described by Hosking (1932). Since then, the presence

of reactive minerals or metals has been repeatedly

shown to correlate with increased SOC stocks (Bal-

dock and Skjemstad 2000; Grand and Lavkulich 2011;

Sokoloff 1938; Torn et al. 1997) and the resistance of

SOC to microbial degradation in incubation experi-

ments (Minick et al. 2017; Rasmussen et al. 2006;

Whittinghill and Hobbie 2012). Soil organic C com-

plexed by minerals generally exhibits older 14C-

derived ages than other SOC pools (Kleber et al.

2011; Rasmussen et al. 2005; Schrumpf et al. 2013;

Spielvogel et al. 2008; Trumbore 1993); thus adsorp-

tion plays a clear role in the stabilisation of SOC over

long time periods. However, there is still some level of
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confusion within the field regarding the chemistry

involved. Therefore, the main bonding mechanisms

between organic and inorganic soil components are

discussed briefly below.

Bonding mechanisms

There is a range of bonding mechanisms that can link

organic molecules to minerals or metal cations

(Table 1). The prevalence of each bondingmechanism

will vary with soil texture, mineralogy, and concen-

tration of cations. SOC can be stabilised through either

inner- or outer-sphere interactions with minerals or

metal cations (Sposito 2008; Sutton et al. 2005). Inner

sphere complexes occur when a substance can closely

approach a mineral’s surface or metal ion, usually

resulting in direct chemisorption; see Eq. 1 for an

example. In outer sphere interactions, water molecules

prevent the direct approach or sorption of a substance

to a mineral’s surface or metal ion; instead, the charges

are countered through a diffuse charged zone (Oldham

2008). In soil, inner- and outer-sphere interactions act

in combination to stabilise SOC over medium- to long-

time periods, so that it becomes difficult, if not

impossible, to ascribe SOC stabilisation in a given

horizon to specific modes of interaction. However, a

basic understanding of the fundamental chemical

mechanisms at play is useful to inform our interpre-

tation of operationally-defined SOC pools (see section

below on sorption processes involving Ca).

�M� OH þ HO � R ! �M� O� Rþ H2Okk :

ð1Þ

Equation 1: Ligand exchange between a mineral

(M) and a hydroxyl functional group on an organic

substrate (R) that results in the direct and strong

adsorption of SOC. Equation adapted from Huang and

Schnitzer (1986).

Stabilisation by sorption

SOC can be stabilised by organo-cation or organo-

mineral interactions through several mechanisms. The

primary SOC stabilisation mechanism of adsorption

consists of the removal of SOC from solution and

transfer to a solid phase. This transfer increases the

stability of SOC by reducing the chance of diffusive

encounter with degrading enzymes. It can occur

whenever organic compounds become adsorbed to

mineral surfaces (Kaiser and Guggenberger 2000;

Kalbitz et al. 2005), but also when the concentration of

cations becomes sufficient for soluble organic poly-

mers to flocculate and precipitate (Baldock and

Skjemstad 2000). Much of the research on flocculation

thresholds has focused on acid soils dominated by Al

chemistry (Boudot 1992; Matus et al. 2006; Ras-

mussen et al. 2006). In these soils, it has been shown

that extensive flocculation and precipitation can be

expected at a C:Al ratio in the order of 10–30 or lower

(Jansen et al. 2003; Scheel et al. 2007; Skjemstad et al.

1992). The flocculation of dissolved organics by other

cations in natural soils has not been as extensively

studied.

Beyond the effect of sorption on the partition of

SOC between the liquid and solid phase, substrates can

also be stabilised by other mechanisms, such as the

toxicity effects of certain metals, the inactivation of

enzymes during sorption, or steric hindrance. It has

been proposed that environmental cytotoxicity could

result in the stabilisation of organics complexed by

somemetals such as Al (Tate and Theng 1980). Al3? is

toxic and is thought to limit decomposer activity in

acidic soil environments (Tonneijck et al. 2010),

although evidence for this can be contradictory

(Marschner and Kalbitz 2003). The extra-cellular

enzymes responsible for much of SOM decomposition

can also be rendered inactive by adsorption onto

mineral surfaces, due to structural modifications in

their conformation at the adsorption interface (Qui-

quampoix and Burns 2007). Steric hindrance is a

general mechanism involving the lack-of-fit between a

substrate and a catalyst (an enzyme) caused by

changes in tertiary structure, which is a common

consequence of sorptive interactions in soil (Qui-

quampoix and Burns 2007; Zimmerman and Ahn

2010). Therefore, the spatial arrangement of adsorbed

elements along the molecular interface plays an

important role in the stabilisation of SOC during

adsorption.

Although it was previously proposed that adsorp-

tion occurred uniformly over mineral surfaces, result-

ing in a monolayer coverage (Keil et al. 1994), this has

now been challenged by empirical evidence suggest-

ing that organic loading instead occurs in distinct

reactive ‘hotspots’ (Hedges and Keil 1995; Kaiser and

Guggenberger 2003; Vogel et al. 2014). Vogel et al.

(2014) recently utilised scanning electron microscopy
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Table 1 Mechanisms of interaction between soil organic carbon substrates and minerals or metal ions

Mechanism Nature Type of

interaction

Description

Ligand exchange (Mikutta et al. 2014)

Ligand exchange is the formation of new

coordination complexes with metals

Covalent to ionic

bond

Inner sphere Strong bonding to a metal via the direct

substitution of one outgoing ligand (for

instance, a hydroxyl group) by an incoming

one (for instance, an organic molecule with a

hydroxyl, phenol, or carboxyl functional

group)—see Eq. 1. There is no change in

oxidation state at the metal centre and charge is

conserved during the reaction

Chelation (Ahmed and Holmström 2014)

Chelation is the formation of polydentate

coordination complexes with metals.

Compared to monodentate complexes, they

have a greater stability

Covalent to ionic

bond

Inner sphere A special case of ligand exchange, where the

incoming ligand (usually an organic molecule)

is polydentate and thus able to replace two or

more of the simple outgoing ligands bound to

the central metal.

Cation bridging (Iskrenova-Tchoukova et al.

2010)

Cation bridging allows for the interaction of two

negatively charged surfaces such as a

phyllosilicate and an organic anion

Direct cation bridging

Mostly ionic bond

Inner sphere A bond formed when the hydration shell of a

polyvalent cation is displaced. The organic

anion becomes directly coordinated to the

cation, as in ligand exchange

Exchangeable (water)

bridging

Van der Waals forces

(see below)

Outer sphere Here water is not displaced and the cation

interacts with the organic anion essentially

through hydrogen bonding (see below). Both

polyvalent and monovalent cations can

participate in this type of interaction. It has

sometimes been labelled ‘water bridging’,

although this term remains ambiguous, as it has

also been used to describe ligand exchange

reactions. The term ‘exchangeable bridging’,

which has been coined to describe the cation

exchange phenomenon, may be more

descriptive

Hydrophobic interactions (Spaccini et al. 2002)

These occur whenever non-polar substances

exist in a polar solvent, such as water

Entropy-driven

structure

Outer sphere Aggregation of non-polar substances caused by

the repulsion of hydrophobic molecule by

water. Hydrophobic interactions also take place

during the clustering of amphiphillic molecules

into bilayers and micelles (hydrophilic exterior

protecting a hydrophobic core)

Other ‘weak’ interactions (van der Waals)

(Israelachvili 2011)

While weak, these forces are additive meaning

that in complex substrates such as those

commonly found in SOC, many van der

Waals interactions can combine to create

apparent strong sorption

Dipole–dipole force Outer sphere The electrostatic attraction between molecules

with permanent polarity, arising from

differences in the electronegativity of their

atomic constituents

Hydrogen bonding Outer sphere Hydrogen bonding refers to a specific type of

dipole–dipole interaction, which occurs when a

hydrogen atom bonded to a strongly

electronegative atom (typically F, O, or N)

interacts with another electronegative atom.

These interactions are stronger than ordinary

dipole–dipole forces

London dispersion

(induced dipole)

force

Outer sphere Temporary and weak attractive force arising

from the unequal movement of electrons within

a molecule, turning it momentarily into a

dipole. Unlike dipole–dipole interactions, the

London dispersion force does not arise from a

difference in the electronegativity of

component atoms, but merely the correlated

movements of electrons in interacting

molecules

The references point to one recent example of study in soil science
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and NanoSIMS to observe the direct adsorption of

isotopically labelled SOM on a clay fraction during

incubation. The authors found that SOM was prefer-

entially associated with rough areas of nano-mineral

clusters, including micropores, etch pits, and cracks.

However, the preservation of organic C at these

stabilisation ‘hotspots’ is difficult to ascribe to a single

mechanism. As hypothesised by Kögel-Knabner et al.

(2008), adsorption of SOC within these rough areas

provides a twofold stabilisation of SOC, where the

accessibility of the substrate to decomposers is

reduced and the substrate is concomitantly stabilised

by the aforementioned mechanisms of sorption.

Therefore, at the molecular-scale, it seems that

stabilisation by both physical separation and adsorp-

tion simultaneously co-occur (Fig. 1) and become

indistinguishable (Chenu and Plante 2006; Kögel-

Knabner et al. 2008; Vogel et al. 2014), thus

questioning the conceptual segregation of the mech-

anisms enumerated by Sollins et al. (1996).

Ca-mediated SOC stabilisation

Ca–SOC interactions

Research into SOC stabilisation has typically focused

on acidic soil environments and the effects of Al3? or

Fe3? or their poorly crystalline forms on SOC

(Grünewald et al. 2006; Kögel-Knabner et al. 2008).

Basic soil environments, and potential interactions

between the Ca and C cycles have received compar-

atively less attention (Grünewald et al. 2006). Yet, Ca

is the most abundant alkaline earth metal in the Earth’s

crust, making up 2.94% of the upper continental crust

(Wedepohl 1995). Furthermore, calcareous or Ca-rich

Fig. 1 Occlusion and sorption co-stabilise soil organic carbon at all spatial scales, but this co-occurrence becomes more apparent at the

nano-scale where they become operationally indistinguishable
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soils cover more than 30% of the Earth’s surface

(Bertrand et al. 2007; Chen and Barak 1982) and basic

soils account for at least 12% of the world’s soil

resources (Grünewald et al. 2006). Ca2? within a soil

matrix typically originates from the weathering of

lithosphere or surficial formations (Dijkstra et al.

2003; Likens et al. 1998), decomposition of Ca2?-rich

organic materials (Ranjbar and Jalali 2012), the lateral

movement of Ca2?-rich water (Clarholm and Skyll-

berg 2013), atmospheric dust deposition (Dijkstra

et al. 2003; Pulido-Villena et al. 2006) or anthro-

pogenic inputs. Ca2? is weathered with relative ease

from both primary and secondary minerals (Likens

et al. 1998) and has therefore typically been thought to

persist or accumulate chiefly in semi-arid to arid

environments. However, Ca-rich environments also

exist within temperate regions on soils developed from

calcareous parent material, out-of-equilibrium with

climate (Slessarev et al. 2016). High Ca concentra-

tions are also commonly found in the topsoil of acid

soils derived from crystalline lithologies due to

biological cycling (Cailleau et al. 2004; Federer and

Hornbeck 1985; Grand & Lavkulich 2013; Likens

et al. 1998; Ross et al. 1991). Therefore, Ca2? is an

environmentally ubiquitous cation that could poten-

tially play an unaccounted role in the stabilisation of

SOC.

The first investigation into the interactions between

Ca and SOC was published almost 80 years ago by

Sokoloff (1938), who provided experimental evidence

that organic matter solubility decreased upon addition

of Ca when compared to Na addition. Since then,

research in Ca-rich field environments has highlighted

a positive correlation between exchangeable Ca2?

(CaExch) and SOC concentration (see Fig. 2; Bertrand

et al. 2007; Bruckert et al. 1986; Clough and

Skjemstad 2000; Duchaufour 1982; Gaiffe et al.

1984; Oades 1988; Paul et al. 2003; Shang and

Tiessen 2003). As an example, Yang et al. (2016)

recently established that alpine grassland soils in the

Neotropics contained nearly double the concentration

of SOC (405.3 ± 41.7 t ha-1) when developed on Ca-

rich, calcareous lithology than their acidic counter-

parts (226.0 ± 5.6 t ha-1). Similarly, O’Brien et al.

(2015) and Li et al. (2017) demonstrated that CaExch
was the strongest explanatory variable for SOC

concentration of grasslands. However, identification

of the exact mechanisms responsible for this wide-

spread correlation remain elusive.

A simple case of co-occurrence?

The positive correlation between CaExch and SOC

could be explained by their simple co-occurrence, as

an increase in SOC concentration generally increases

the cation exchange capacity (CEC) of a soil (Yuan

et al. 1967). Calcium is a plant macronutrient and there

is evidence that Ca also has a localised positive effect

on net primary productivity (NPP) and SOM inputs

through above-ground and below-ground biomass

(Briedis et al. 2012b; Carmeis Filho et al. 2017;

Paradelo et al. 2015). This localised effect on NPP has

been shown to positively influence the accumulation

of SOC in limed Ferralsols (Oxisols; Briedis et al.

Fig. 2 Positive relationship

between exchangeable

calcium (centimoles of

charge per kg) and soil

organic carbon

concentration (%) in the Jura

Mountain range, adapted

from Gaiffe and Schmitt

(1980)
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2012b; Carmeis Filho et al. 2017) and could explain a

portion of the differences in SOC concentration

observed between acidic and calcareous soils. How-

ever, these explanations fail to account for the

decrease in respiration rate (per unit C) associated

with Ca prevalence and observed in multiple field

studies (Groffman et al. 2006; Hobbie et al. 2002) or

incubation experiments (Minick et al. 2017; Whit-

tinghill and Hobbie 2012). These results are at first

glance counter-intuitive since the addition of Ca2? to

an edaphic ecosystem is also linked to a change in

decomposer communities composition from fungi- to

bacterial dominance (Blagodatskaya and Anderson

1999; Rousk et al. 2009, 2010) and an improvement in

conditions for bacterial decomposition (Illmer and

Schinner 1991; Ivarson 1977; Zelles et al. 1987), at

least partially due to the buffering of soil pH to

circumneutral levels (Narendrula-Kotha and Nkon-

golo 2017). It would thus be expected that the rate of

enzymatic decomposition of SOC would increase

when Ca2? saturates the exchange complex (Ander-

sson et al. 1999; Chan and Heenan 1999; Thirukku-

maran and Morrison 1996). This could be the case in

the organic (litter) layer (Minick et al. 2017), but is

generally not observed in the mineral soil. Contrary to

hypotheses formulated in both studies, Hobbie et al.

(2002) and Groffman et al. (2006) found that microbial

respiration was actually lower in Ca-rich environ-

ments, even though physicochemical conditions for

microbial activity were improved. Furthermore, lab

experiments have shown that CaExch concentration is

correlated with a reduction in SOC leaching losses

(Minick et al. 2017), photo-oxidation (7%; Clough and

Skjemstad 2000) and respiration as CO2 during

incubation (Minick et al. 2017; Whittinghill and

Hobbie 2012). Therefore, CaExch seems to be linked

to a reduction in the propensity of C substrates for

decomposition that is not solely linked to its effects on

NPP or microbial ecology.

Consequently, this review will investigate the

potential mechanisms behind the stabilisation and

accumulation of SOC mediated by Ca and its mineral

forms, namely their influence on:

(i) aggregation and the occlusion of SOC;

(ii) inclusion of SOC within pedogenic- or bio-

genic-CaCO3;

(iii) organo-mineral and organo-cation interactions.

Mechanisms for Ca-mediated SOC stabilisation

Occlusion: Ca and aggregation

The Ca ion and aggregates

It is widely accepted that Ca2? has a significant

positive effect on aggregation and soil structural

stability and therefore, indirectly influences the accu-

mulation and occlusion of SOC. Early authors demon-

strated an influence of Ca2? on soil aggregation

(Martin et al. 1955; Peterson 1947). This dependence

was further investigated by Gaiffe et al. (1984) who

demonstrated that the removal of CaExch and its

replacement by KExch led to a disruption of aggregates.

As theorised by Edwards and Bremner (1967), one of

the main mechanisms thought to be behind this

stabilisation is the flocculation of negatively charged

separates by outer sphere interactions involving Ca2?,

which is explored further in the following section on

sorption processes. This process operates in the bulk

soil and it has also been hypothesised that Ca2? could

play a role in flocculating particles in the gut of certain

earthworm species, leading to the formation of ‘Ca

humates’ (Satchell 1967). This was supported by the

results of Shipitalo and Protz (1989) who utilised

micromorphology and chemical pre-treatments to

infer that Ca probably played a role in flocculating

particles within earthworm casts of certain species,

stabilising the microaggregates within them. Another

mechanism for the stabilisation of aggregates in Ca-

rich environments involves the formation of com-

plexes between Ca and high-molecular weight organic

compounds such as root mucilages or microbial

polysaccharides/polymeric substances. It has been

shown that these substances readily complex Ca2? and

create gel-like structures that bind aggregates

(Czarnes et al. 2000; de Kerchove and Elimelech

2007; Erktan et al. 2017; Gessa and Deiana 1992). In

particular, galacturonic acids, a common root muci-

lage, display a high affinity towards Ca, which links

polymer chains to form an adhesive matrix (de

Kerchove and Elimelech 2007). Czarnes et al. (2000)

also showed that these polygalacturonic acid gels

increase the hydrophobicity of aggregates, thereby

increasing their stability during wetting and drying

cycles. Further investigation is needed to analyse the
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role that adhesive Ca-mucilage matrices play in

aggregate stabilisation and the occlusion of SOC.

The effects of carbonate on aggregates

Interactions between Ca-bearing secondary minerals

and soil structure have been extensively covered in the

literature because of the use of liming (CaCO3

addition) in agriculture. There have been many

experiments that have documented the positive effects

of the addition of calcite/aragonite (CaCO3) or gyp-

sum (CaSO4.2H2O) on the structure of non-calcareous

soils (Armstrong and Tanton 1992; Baldock et al.

1994; Briedis et al. 2012a; Grant et al. 1992;

Grünewald et al. 2006; Inagaki et al. 2017; Kaiser

et al. 2014; Melvin et al. 2013; Muneer and Oades

1989a; Paradelo et al. 2016). Some authors have also

assessed the effects of CaCO3 removal from calcare-

ous soils on aggregate stability, finding that the

treatment reduced soil structural stability and

increased porosity (Falsone et al. 2010; Muneer and

Oades 1989c; Toutain 1974; Virto et al. 2011).

Furthermore and reminiscent of the work of Oades

and Waters (1991) on Fe oxides in Ferralsols (Ox-

isols), Fernández-Ugalde et al. (2011) demonstrated

that the hierarchical model of aggregation was

partially disrupted by carbonate. In the semi-arid

Mediterranean soils of their study, the authors showed

that the abundance of CaCO3 controlled macroaggre-

gate turnover and increased their stability, to the extent

that the usual disruption of macroaggregates, leading

to the release of constituent microaggregates, was

prevented (Fernández-Ugalde et al. 2011; Oades

1984).

There are several mechanisms by which CaCO3

could positively affect aggregate stability and the

occlusion of SOC. CaCO3 is easily weathered and acts

as an abundant source of Ca2?, thus encouraging the

flocculation of soil separates and aggregation through

the mechanisms listed above (Baldock and Skjemstad

2000; Clough and Skjemstad 2000; Wuddivira and

Camps-Roach 2007). Carbonate ions are also capable

of reprecipitation with Ca2? under the right environ-

mental conditions, forming secondary CaCO3 crystals

(from micrite to sparite) that cement aggregates

(Fernández-Ugalde et al. 2011, 2014; Shang and

Tiessen 2003; Virto et al. 2013). This mechanism was

analysed in detail by Falsone et al. (2010), who utilised

N2 adsorption and Hg porosimetry to demonstrate that

this formation of secondary CaCO3 crystals decreased

aggregate porosity in the 2–50 nm range and thus,

decreased the accessibility of intra-microaggregate

SOC to decomposers. Certain earthworm species have

also been shown to cement particles that pass through

their gut with a mixture of poorly crystalline biogenic

carbonates (calcite, vaterite, aragonite) excreted from

their calciferous glands (Brinza et al. 2014; Edwards

and Bohlen 1995). The cementing effect of carbonates

on aggregates is well-documented in arid soils in

which large concentrations of pedogenic carbonates

are found (Fernández-Ugalde et al. 2011, 2014; Virto

et al. 2013). However, it may also play a role in humid

or sub-humid environments where carbonate-rich

parent materials are continually getting dissolved

and locally reprecipitated, but this still needs to be

investigated further.

Although it is widely accepted that the occurrence

of CaCO3 positively affects soil structure and offers

favourable conditions for the stabilisation of SOC by

occlusion, its actual consequence on occluded SOC

stocks is less clear. In a recent review, Paradelo et al.

(2015) concluded that while CaCO3 addition had a

clear positive effect on soil structure, its effect on

occluded SOC stocks was uncertain. Positive (Egan

et al. 2018; Muneer and Oades 1989a, b), non-existent

(Paradelo et al. 2016) or negative effects (Chan and

Heenan 1999) of CaCO3-amendment on occluded

SOC have indeed been reported. In some instances, it

may be difficult to disentangle the integrative effects

of agricultural management from the simple effects of

CaCO3 additions. In natural, unamended soils, Fer-

nández-Ugalde et al. (2014) showed that carbonates

had a positive effect on occluded SOC stocks. This

finding needs to be replicated in a range of natural

soils, as differences in initial conditions (e.g. texture,

mineralogy, organic inputs and their distribution)

could reasonably result in different outcomes.

Inclusion

Inclusion is defined as the envelopment of SOC within

a mineral or cogenetic mineral assemblage that leads

to its physical protection (Babel 1975). Stabilisation of

SOC by inclusion works through a similar mechanism

to intercalation or occlusion, by physically separating

a substrate from decomposers. SOC may be trapped

within any form of pedogenic carbonates, but its

inclusion may not be quantitatively important when
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carbonate formation chiefly occurs through abiotic

processes. Diaz et al. (2016) recently dated small

concentrations of SOC (0.1–0.5%) included within

pedogenic carbonate nodules in Cameroon with C14

measurement, recording ages ranging between 8000

and 13,000 years. This highlights the potential of this

mechanism to stabilise SOC over long time periods,

but probably only in small concentrations.

Calcium carbonate is one of the most abundant

biominerals on Earth and can be synthesised by a wide

range of terrestrial organisms (Skinner and Jahren

2007). Biomineralisation of CaCO3 can either be

induced within cells, mediated by biological activity

that stimulates physicochemical precipitation, or ini-

tiated by the presence of an existing biological matrix

that initiates crystal nucleation and growth in the

extracellular environment (Bindschedler et al. 2016).

During each of these forms of biomineralisation, SOC

can become included and encapsulated within the

crystal structure (Verrecchia et al. 1995). A few

specific examples of biogenic carbonate forms include

calcified root cells, fungal filaments and rhizoliths

(calcified roots; e.g. Becze-Deàk et al. 1997; Jaillard

et al. 1991; Monger et al. 1991), calcified earthworm

biospheriods (Barta 2011), and the mineralisation of

bacterial or fungal organic templates (Bindschedler

et al. 2014; Cailleau et al. 2009). Another mechanism

for the inclusion of SOC could be biomineralisation

pathways such as the oxalate-carbonate pathway

(Verrecchia 1990). The oxalate-carbonate pathway

involves biomineralisation of CaCO3 during the

bacterial catabolism of calcium oxalate-rich SOC

produced by plants or fungi. It thus intimately links

SOC to the nucleation site of CaCO3 biomineralisation

and could allow its inclusion within the crystal matrix

in both acidic (Cailleau et al. 2004, 2005; Verrecchia

et al. 2006) and calcareous soils (Rowley et al. 2016).

However, there has been very little direct quantifica-

tion of the concentrations or 14C ages of SOC included

within biogenic carbonate forms, which could poten-

tially contain much higher SOC concentrations than

abiotically-formed pedogenic carbonates. Therefore,

further investigation is now needed to quantify the

inclusion of SOC within biogenic carbonate and its

role in SOC dynamics.

Sorption: Ca, minerals and organics

Organo-mineral interactions with calcite

Lithogenic and pedogenic CaCO3 could also play a

key role in the stabilisation of SOC via adsorption.

Most of the research into direct organo-calcite inter-

actions has focused on the interactions between DOC

and calcite in sorption experiments. Earlier work by

Suess (1970) and Carter (1978) showed that DOC

could be directly adsorbed onto CaCO3, while Suzuki

(2002) more recently showed that CaCO3 was an

effective adsorbant of DOC from black tea solutions,

possibly due to its high point of zero charge (9.5;

Grünewald et al. 2006). Thomas et al. (1993b) more

specifically studied the affinity of different synthetic

carbonates for common organic functional groups and

demonstrated that calcite, dolomite, and magnesite all

sorbed a wide range of organic compounds, which

included carboxylic acids, alcohols, sulphates, sul-

fonates, amines, amino acids and carboxylated poly-

mers. Interestingly, interaction with DOC has been

shown to modify carbonate precipitation equilibria, by

inhibiting either further crystal precipitation (Inskeep

and Bloom 1986; Reddy et al. 1990; Reynolds 1978)

or the dissolution of sorbent minerals (Thomas et al.

1993a). Jin and Zimmerman (2010) established that

CaCO3 obtained from aquifers preferentially adsorbed

dissolved organic matter with a high molecular

weight, which the authors attributed to a form of outer

sphere interaction. It has been theorised that the

kinetics of DOC adsorption by carbonates may be

biphasic, occurring through an initial rapid phase of

outer sphere interactions, which is then followed by a

slower phase of inner sphere and hydrophobic inter-

actions that in turn protect the carbonate surface from

dissolution (Jin and Zimmerman 2010; Lee et al. 2005;

Thomas et al. 1993b). While these DOC adsorption

experiments have provided interesting insight into

potential CaCO3–SOC interactions, there has been

relatively little direct research on the adsorption of

SOC by different forms of calcite/aragonite in soils.

Measurements of soil carbonate content commonly

differentiate between a reactive and a total pool (Pansu

and Gautheyrou 2006), but there is little evidence for

the role of these operationally-defined pools in

adsorption of SOC. Further research should focus on

the effects of the supposedly reactive, poorly
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crystalline or amorphous CaCO3 pool on the adsorp-

tion of SOC in natural environments.

Outer sphere processes

Irrespective of their carbonate content, many soils

have significant concentrations of free Ca2? which

may also contribute to the stabilisation of SOC. The

widely observed correlation between CaExch and SOC

has led to the implicit assumption that Ca2? predom-

inantly affects SOC through weak outer sphere

interactions (von Lützow et al. 2006), such as those

contributing to the retention of exchangeable cations

(Table 1). This form of cation bridging by Ca2? has

been highlighted as an important component of SOC

stabilisation by many authors and is well-documented

(Clough and Skjemstad 2000; Edwards and Bremner

1967; Oades 1988). As illustrated in the lyotropic

series, cations’ outer sphere (exchangeable) behaviour

is related to the size of their hydration shell and

valence. This is confirmed by chemical modelling,

which indicates that exchangeable bridges by Ca2?

typically have a larger residence time than those of

monovalent cations, like Na?, because the charge-to-

hydration radius ratio of Na? prevents it from

efficiently countering the repulsion between nega-

tively-charged surfaces (Iskrenova-Tchoukova et al.

2010; Sutton et al. 2005). Thus, Ca2? is a fundamental

flocculating agent of natural systems because of its

ability to form efficient outer sphere bridge units.

However, it is interesting to note that Al3? and H?

rate higher than Ca2? on the lyotropic series and

should thus cause similar or higher levels of apparent

flocculation in soils in which they are abundant, such

as most acid soils. Yet, it is widely observed that

colloidal mobility is enhanced in acidic environments

where Al3? and H? dominate and there is little or no

Ca2? present, such as those associated with the

formation of Luvisols (Lavkulich and Arocena

2011). It is also worth considering that the innate

reversibility of outer sphere interactions should mean

that exchangeable Ca bridges would not be inherently

persistent in natural soils. These considerations lead us

to explore the possibility that interactions between Ca

and SOC are not solely attributable to outer sphere

(exchangeable) processes and that, despite its correl-

ative association with SOC, CaExch may not be solely

responsible for the bulk of SOC stabilisation in Ca-

rich soils.

Inner sphere processes

It is generally observed that each cation has a different

range of interactions in soils. For instance, trivalent Fe

is seldom found in large amounts as a free ion in soil,

as it very readily hydrolyses to form insoluble

precipitates under most environmentally-relevant con-

ditions. Al3? also hydrolyses into insoluble hydrox-

ides at slightly acidic to basic pH, while in acidic soils,

it is found to participate both in outer sphere, cation

exchange and inner sphere, ligand exchange reactions.

Ca2? is thought to retain its hydration shell and behave

strictly like an exchangeable cation, as are other ‘base’

cations such as Mg2?, K? and Na? (Essington 2004).

However in soil science, the fundamental controls on

the propensity of each cation to form inner sphere

complexes with SOM are not as well understood as the

affinity of cations for non-specific exchange sites.

One of the reasons for this is that there are many

factors that can influence inner sphere complexation of

SOM by ions in the soil matrix, including character-

istics of cations (ionic potential, electronegativity,

polarisability of their electron cloud, hydrated radii,

propensity to retain their hydration shell), of ligands

(amount and type of organic functional groups) and of

the environment (pH, ionic strength, solution compo-

sition, metal-to-ligand ratio, pressure and temperature

conditions; Essington 2004). Cations can be broadly

split into three classes (Class A, B, and intermediate/

C) based upon the polarisability of their electron

cloud, which in turn, indicates how likely they are to

form inner sphere complexes with specific ligands

(Ahrland et al. 1958; Pearson 1963; Schwarzenbach

1961). Class A cations are weakly polarisable and tend

to form complexes with O-containing ligands, such as

carboxylate functional groups through ionic bonding.

On the other hand, Class B cations have a labile

electron cloud and tend to form complexes with N- or

S-bearing ligands through more covalent bonding

(Langmuir 1997; Sposito 2008). Al3? and the base

cations, including Ca2?, are considered group A

cations, indicating that they may theoretically form

inner sphere complexes with widely-occurring

O-bearing ligands such as carboxylate groups (Sposito

2008). However, each cation’s actual behaviour in soil

cannot be predicted from one or a couple of first-

principles only, as it results from the interaction of

several factors. For instance, Na is not generally seen

to engage in inner sphere complexation in soils, while
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K only does so in the interlayer of specific phyllosil-

icates. Advanced chemical modelling can offer insight

into these issues.

Authors have modelled the interactions between

dissolved organic C (DOC) and Ca2? in an attempt to

investigate their molecular-scale interactions (Aris-

tilde and Sposito 2008; Benedetti et al. 1995). These

models suggest that Ca2? can bind to SOC through

both inner sphere and outer sphere processes (Bogatko

et al. 2013; Iskrenova-Tchoukova et al. 2010;

Kalinichev and Kirkpatrick 2007; Sutton et al.

2005). Sutton et al. (2005) modelled the complexation

of deprotonated carboxyl groups by Ca2? and found

that their interactions were predominantly inner

sphere (75%). The model of Kalinichev and Kirk-

patrick (2007) also confirmed that Ca2? could form

direct cation bridges with carboxylate and to a lesser

extent, phenolic and other –OH functional groups,

unlike Mg2?, whose hydration water is more tightly

held (Dontsova and Norton 2002; Kalinichev and

Kirkpatrick 2007; Tipping 2005). Chemical modelling

thus indicates that Ca2? can interact with SOC through

inner- and outer-sphere processes, thereby potentially

increasing SOC stability against decomposition or

leaching (Minick et al. 2017).

Building empirical evidence for Ca–SOC interactions

While models predict that Ca2? can form both inner-

and outer-sphere bridges with SOC, empirical evi-

dence of these associations in natural environments

remains scarce. Density fractionation, which separates

free, occluded and mineral-associated SOC (Golchin

et al. 1994) has the potential to offer insight. When

performed sequentially (Sollins et al. 2009), density

fractionation can separate SOC fractions associated

with different minerals; furthermore, because the

method uses extremely concentrated salt solutions

(usually Na polytungstate), outer sphere associations

are not expected to survive the treatment, meaning that

only strong (inner sphere) association with minerals

are considered. Wen et al. (2017) recently showed that

there was more SOC associated with calcite-rich than

with dolomite-rich heavy fractions, possibly corrob-

orating modelling predictions of stronger SOC asso-

ciation with Ca than Mg (Kalinichev and Kirkpatrick

2007). The occluded fraction was however not sepa-

rated from the mineral-associated fraction, so that the

results remain somewhat equivocal. Further density

fractionation studies analysing the relative role of

occlusion and sorption for SOC accumulation in Ca-

rich soils would undoubtedly prove informative.

Density fractionation is however a costly and time-

consuming technique (Poeplau et al. In review) and

may be difficult to use in calcareous soils, since

polytungstate left in contact with free Ca for extended

periods can precipitate as insoluble Ca-metatungstate.

Methods applicable to the bulk soil would constitute

useful complements to fractionation approaches.

Selective extractions on bulk soil have typically

been used to analyse the effects of cation pools on

SOC stocks. As indicated in Fig. 2, the operationally

defined CaExch pool, extracted by salt solutions,

represents a reactive and abundant pool of Ca2? that

is regularly correlated with SOC concentration

(Bruckert et al. 1986; Gaiffe and Schmitt 1980; Li

et al. 2017; O’Brien et al. 2015), thus highlighting its

potential as an indicator variable for the measurement

of Ca2? interacting with SOC. However, by definition,

CaExch only represents Ca2? engaged in outer sphere

interactions. The selective chemical extraction of the

inner sphere Ca pool, corresponding to pyrophosphate

extractions for Al and Fe in acidic soil environments

(Bascomb 1968; Parfitt and Childs 1988; Rasmussen

et al. 2006), is challenging due to the insolubility of

most chelating agents once complexed by Ca (e.g., Ca-

pyrophosphate or Ca-oxalate). In a recent study, van

der Heijden et al. (2017) isolated a ‘‘non-crystalline

pool of Ca’’ in acidic, base-poor soils, which may have

included a significant contribution of Ca complexed

by SOM, but the extract (dilute oxalic ? nitric acid)

was not specific to organic complexes. Extraction with

other chelating agents that remain soluble in their Ca

form (e.g. ethylenediaminetetraacetic acid, EDTA;

Bélanger et al. 2008) or with salts of strong cation

complexants (e.g. copper chloride; Barra et al. 2001;

Juo and Kamprath 1979) may be informative; how-

ever, these extractants could also attack the mineral

CaCO3 pool, making their use difficult in calcareous

soils.

Alternatively, X-ray absorption spectroscopy

(XAS) could eventually be used to investigate the

coordination environment of Ca2?–SOC complexes

under different environmental conditions. As an

example, Martin-Diaconescu et al. (2015) have

recently successfully probed the coordination envi-

ronment of synthetic Ca complexes. While powerful,

these direct spectroscopic techniques require the use
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of synchrotron light source and can only be applied to

small amounts of samples with limited compositional

complexity. We are still lacking a method that allows

for the routine assessment of inner sphere Ca–SOM

complexes and their relative importance in different

soils, which constitutes a significant research gap

given the potential for inner sphere interactions to

stabilise SOMwith increased efficiency (Mikutta et al.

2007), and perhaps through ecosystem disturbance

events (Basile-Doelsch et al. 2009; Grand and

Lavkulich 2012).

Implications for conceptual models of SOC cycling

Despite the growing body of evidence supporting a

major role for specific soil minerals and cations in

SOC stabilisation (Doetterl et al. 2015), soil mineral-

ogy and geochemistry are largely absent from leading

models of SOC cycling. The following section will

discuss a few processes that have the potential to

improve representations of SOC stabilisation, with

particular emphasis on Ca-rich soils.

Digressing from the expected profile-scale depth

distributions

In addition to their influence on the total amount of

SOC retained in soil, polyvalent cations are suspected

to influence its vertical distribution in soil profiles.

Current pedometric approaches to mapping soil C

acknowledge the importance of accounting for soil

type when estimating the vertical distribution of SOC

(Kempen et al. 2011; Wiese et al. 2016). Polyvalent

cations can indeed cause departures from the generally

assumed exponential decline of SOC concentration

with depth (Hilinski 2001). A classical example

involves Podzols characterised by the effective

translocation of Al–SOC complexes to deep soil

horizons (Ferro-Vázquez et al. 2014; Grand and

Lavkulich 2011). Contrastingly, Calcisols have an

accumulation of Ca-saturated SOC in surface horizons

(Yang et al. 2016). This accumulation of Ca-saturated

SOC is likely caused by the complexation, floccula-

tion, and precipitation of organic acids and clays in the

presence of Ca, precluding their translocation to

subsoil horizons. Two of the most common low

molecular weight organic acids (oxalic and citric

acids) in soil notably form sparingly soluble salts in

the presence of Ca (calcium oxalate Ksp & 10-8.5;

Certini et al. 2000), preventing their translocation,

whereas their Al and Fe counterparts are highly

soluble (Gadd 1999). The fundamental differences in

how polyvalent cations modulate SOC inputs, stability

and depth distributions highlight the critical impor-

tance of accounting for geochemical factors when

modelling SOC dynamics.

Preferential sorption

Integrating a geochemical dimension into conceptual

models of SOM dynamics is also important because

the formation of organo-mineral complexes appears to

be a preferential process, with selectivity exhibited by

both the organic and mineral component (Spielvogel

et al. 2008). Very little is actually known about the

preferential nature of organo-mineral interactions in

soils. To date, there is some evidence within the

literature that specific organic compounds such as

N-rich microbial metabolites, microbial cell-wall

fragments, and possibly pyrogenic C may be selec-

tively sorbed by soil minerals (Brodowski et al. 2007;

Jin and Zimmerman 2010; Miltner et al. 2012; Scheel

et al. 2008; Schurig et al. 2013; Spielvogel et al. 2008).

Furthermore, it has been suggested that some reactive

mineral surfaces, such as those of Al and Fe phases,

may be disproportionally involved in the sorption of

specific classes of organics, such as proteins, lignin,

and phenolic compounds (Heckman et al. 2013;

Kögel-Knabner et al. 2008; Xiao et al. 2015). How-

ever, there have been very few studies looking at the

potential preferential sorption of organic compounds

in Ca-rich edaphic environments.

If molecular scale stabilisation of SOC by Ca2?

predominantly occurs through inner- or outer-sphere

cation bridging, then it should preferentially target

functional groups such as carboxyls and phenols.

Römkens and Dolfing (1998) and Kaiser (1998)

accordingly demonstrated that Ca2? preferentially

flocculated and precipitated high molecular weight

DOC compounds, which contained higher proportions

of carboxylic and phenolic functional groups. There is

also evidence for the preferential adsorption of

negatively charged products of lignin degradation

(syringyl units; Grünewald et al. 2006) and DOC (Jin

and Zimmerman 2010; Jin et al. 2014) by calcite. The

implications of this hypothesis for our understanding

of SOC dynamics could be profound. It could
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potentially provide a mechanism to bridge the two

competing hypotheses of SOC persistence, i.e. bio-

chemical recalcitrance vs. mineral association, since

organic compounds with different compositions could

have different probabilities for sorptive preservation.

This perspective is highly relevant to SOC modelling.

As an example, the CENTURY model assumes

universal preservation of lignin in stable SOC pools

(Parton 1996; Parton et al. 2015), which has been

questioned by experimental evidence (Gleixner et al.

1999, 2002). Accruing evidence on selective sorption

of specific compounds to minerals or cations, includ-

ing lignin derivatives, could speak in favour of

considering SOC biochemical composition as a pre-

dictor of residence time, but the parametrisation would

have to be adjusted for different geochemical

environments.

Conversely, Minick et al. (2017) demonstrated that

high additions of Ca at the Hubbard Brook experi-

mental forest specifically reduced the mineralisation

of 13C-depleted SOC, which should represent a

relatively fresh pool, little affected by oxidative

transformation (Rumpel and Kögel-Knabner 2011),

thus contradicting the hypothesis that Ca2? preferen-

tially stabilises oxidised SOC. Yet stabilisation of 13C-

depleted SOC could simply imply that occlusion was

the predominant mechanism of SOC stabilisation at

the Hubbard Brook forest. SOC occlusion could limit

the mineralisation of 13C-depleted sources because

aggregates occlude a heterogeneous mixture of both
13C-enriched, decomposed and relatively fresh, 13C-

depleted particulate-organic matter (Poeplau et al. In

review). However, this still requires further evidence.

Future investigation should specifically focus on the

relative importance of occlusion and adsorption for

SOC stabilisation, as influenced by the geochemical

environment (dominant free cation) and the composi-

tion of organic components (esp. prevalence of

functional groups).

Fig. 3 The shifting role of polyvalent cations in the stabilisa-

tion of SOC with increasing pH. A ‘window of opportunity’ for

microbial decomposition is highlighted in green according to the

proposition of (Clarholm and Skyllberg 2013). Thresholds are

based on values available in the literature and it is expected that

adjustments will occur as more results become available. Al–Fe

oxides refer to true oxides as well as oxyhydroxides and their

poorly crystalline forms. OCP oxalate-carbonate pathway
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pH: the master variable for SOC stabilisation

mechanisms?

As pH shifts from acidic to basic conditions, so does

the importance of SOC stabilisation by different

polyvalent cations and their mineral forms, moving

from Al3? or Fe3? to Ca2?, respectively (Tipping

2005). The prevalence of each cation is indeed largely

linked to soil pH due to the buffering capacity of

primary and secondary minerals, notably calcite and

Al oxides (Oste et al. 2002; Slessarev et al. 2016). As

each cation is associated with different SOC stabili-

sation mechanisms (Fig. 3), this shift in pH could

arguably be used to predict the concentration and types

of SOC being stabilised in each environment. There-

fore, we propose the following conceptual model: in

acidic environments, complexation of organic ligands

by free Al3? and Fe3? as well as their mineral forms

(Kalbitz and Kaiser 2008; Scheel et al. 2008) and the

cementation of aggregates by Fe oxides (Oades and

Waters 1991; Zhao et al. 2017) are likely to control

SOC stabilisation. There could also be a localised

effect of Ca in the topsoil of these acidic environments

caused by biological cycling and resulting accumula-

tion of Ca (Clarholm and Skyllberg 2013). As soil pH

increases above 6, Ca2? becomes more prevalent and

consequently, there should be increased evidence of

SOC stabilisation by inner- and outer-sphere Ca2?

bridging or Ca-mediated aggregation (Kayler et al.

2011). As soil pH increases further to pH[ 8.3,

excess Ca2? will begin to precipitate as CaCO3,

reducing the stabilisation by free Ca2? at the expense

of CaCO3-mediated mechanisms (Lindsay 1979).

When soil pH starts to increase beyond pH 9.5, soils

will become increasingly sodic and dominated by

Na?, which tends to disperse soil separates, reducing

occlusion (Wong et al. 2010) and sorption of SOC

(Iskrenova-Tchoukova et al. 2010; Sutton et al. 2005),

and consequently weaken SOC stabilisation.

As indicated by Fig. 3, stabilisation of SOC by

polyvalent cations is expected to be weakest at near-

neutral levels of pH, which also coincides with

optimum conditions for bacterial mineralisation

(Groffman et al. 2006; Illmer and Schinner 1991;

Ivarson 1977; Whittinghill and Hobbie 2012; Zelles

et al. 1987). This was suggested previously by

Clarholm and Skyllberg (2013) as a ‘‘window of

opportunity’’ (highlighted in green; Fig. 3) for C

mineralisation. Taking this reasoning a step further,

we hypothesize that low and high pH environments

will afford different capacities for SOC stabilisation.

Given the documented efficiency of sorption by Al and

Fe forms and of aggregation by Ca, we postulate that

adsorption by Al–Fe oxides generally dominates SOC

stabilisation at low pH, stabilising SOC for long time

periods; but as the pH increases beyond the ‘‘window

of opportunity’’, it could be expected that the domi-

nant stabilisation mechanism would be occlusion

within aggregates, potentially involving larger

amounts of SOC but for shorter durations. However,

due to the relatively limited body of work on Ca-

mediated SOC stabilisation mechanisms, these

hypotheses currently remain speculative; the domi-

nant SOC stabilisation mechanisms associated with

each cation, the amount of SOC they can affect and the

relative strength of the conferred protection still

require confirmation. Nonetheless, pH has the poten-

tial to act as a fundamental indicator of the mecha-

nisms controlling SOC stabilisation. Therefore, this

review suggests that SOC models should consider

incorporating pH as a master variable to represent the

effects of different stabilisation mechanisms by poly-

valent cations and their mineral forms on the accu-

mulation and persistence of SOC.

Conclusions

Although an addition of Ca2? generally improves

microbial conditions for decomposition by increasing

pH and reducing stress from H?, it can counter-

intuitively reduce respiration rates through the stabil-

isation of SOC. The main mechanisms behind Ca-

mediated SOC stabilisation are likely linked to the

ability of Ca2? to bridge negatively charged surfaces.

Chemical modelling indicates that Ca2? can bridge

SOC and minerals through both inner- and outer-

sphere interactions, but this still requires empirical

confirmation. When scaled up, Ca bridging also

positively affects soil structure; yet surprisingly little

is known about the implication for the amount and

stability of occluded SOC. The relative prevalence of

occlusion and adsorption for SOC stabilisation in Ca-

influenced soils needs to be determined, as it could

have important consequences for the stabilisation of

SOC in terms of its maximum amount, mean residence

time but also composition. Indeed, there is some

evidence that adsorption could preferentially involve
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some classes of organic compounds whereas occlusion

may be relatively indiscriminate, at least at the

macroscopic level. Soil pH could also play a funda-

mental role in predicting the occurrence of these

stabilisation mechanisms and should be considered for

inclusion in current SOC models. In order to better

represent interactions between the C and Ca cycle in

conceptual and numerical models of SOC cycling, we

suggest that further mechanistic investigation should

focus on the quantification of the relative prevalence

and strength of each stabilisation mechanism and their

variation across pH thresholds.
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Érika AdS, Geraldo CdO, Carla EC, José MdL, Laura BBdM,
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Virto I, Barré P, Enrique A, Poch RM, Fernández-Ugalde O,

Imaz MJ, Bescansa P (2013) Micromorphological analysis

on the influence of the soil mineral composition on short-

term aggregation in semi-arid Mediterranean soils. Span J

Soil Sci 3(2):116–129

Vogel C, Mueller CW, Hoeschen C, Buegger F, Heister K,
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