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ABSTRACT Bacterial community composition is largely influenced by environmental
factors, and this applies to the Arctic region. However, little is known about the role
of spatial factors in structuring such communities. In this study, we evaluated the
influence of spatial scale on bacterial community structure across an Arctic land-
scape. Our results showed that spatial factors accounted for approximately 10% of
the variation at the landscape scale, equivalent to observations across the whole
Arctic region, suggesting that while the role and magnitude of other processes
involved in community structure may vary, the role of dispersal may be stable globally
in the region. We assessed dispersal limitation by identifying the spatial autocorrela-
tion distance which would be required in order to obtain fully independent samples
as approximately 60 m, and this may inform future sampling strategies in the region.
Finally, indicator taxa with strong statistical correlations with environmental variables
were identified. However, we showed that these strong taxon-environment associa-
tions may not always be reflected in the geographical distribution of these taxa.

IMPORTANCE The significance of this study is 3-fold. It investigated the influence of
spatial scale on the soil bacterial community composition across a typical Arctic
landscape and demonstrated that conclusions reached when examining the influence
of specific environmental variables on bacterial community composition are depend-
ent upon the spatial scales over which they are investigated. This study identified a
dispersal limitation (spatial autocorrelation) distance of approximately 60 m, required
to obtain samples with fully independent bacterial communities and, therefore, should
serve to inform future sampling strategies in the region and potentially elsewhere.
The work also showed that strong taxon-environment statistical associations may not
be reflected in the observed landscape distribution of the indicator taxa.

KEYWORDS Arctic soil, autocorrelation distance, bacterial diversity, biogeography,
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Significant spatial structuring of soil microorganisms has been demonstrated at
micro (micrometers to millimeters) (1), plot (centimeters to a few meters) (1), land-

scape (hundreds of meters) (2), regional (kilometers) (3), national (4, 5), continental (6),
and global (7–9) scales. Hence, the scale of investigation is a key parameter to take
into account in studies of bacterial biogeography. Martiny et al. (10) further demon-
strated the importance of spatial scale for environmental factors identified as influenc-
ing community composition in temperate soils. They found key environmental drivers
differed across spatial scales—ammonia-oxidizing bacterial (AOB) community composi-
tion was dependent on distance, moisture, and vegetation cover at the plot scale; how-
ever, at the regional scale, diversity was mainly influenced by water temperature, air
temperature, and moisture, while nitrate concentration and air temperature were pre-
dominant at the continental scale. Finally, when all scales were considered together,
overall key drivers were geographic distance, sediment moisture, air temperature, and
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vegetation cover. However, most biogeographical studies investigate communities at
only one spatial scale (see references 4, 7, and 9 for further examples). The landscape
scale (a few hundred meters to a few kilometers) is considered highly relevant for stud-
ies of bacterial distribution patterns, as it is the scale of human activities (at which agri-
cultural practices and land management are integrated). Hence, the majority of studies
at that scale investigate human-impacted landscapes (see references 2, 3, 11, 12, and
13 for further examples), with only a few studies describing Arctic communities from a
few meters to 3 km (14–16).

The first aim of this study was to evaluate the influence of the spatial scale on bac-
terial community structure (see Fig. S1 in the supplemental material) across an Arctic
landscape (Fig. 1). Indeed, while the role of environmental parameters such as pH (17,
18), total organic content (TOC) (19), moisture content (20), and C/N ratio (21) in com-
munity composition in the Arctic has been demonstrated, much less is known about
the influence of spatial parameters (19). However, determining the influence of envi-
ronmental factors on communities remains an essential step to avoid overestimating
the role of the spatial scale. In addition to providing a better understanding of the
environmental factors influencing community structure, investigating multiple scales
provides better knowledge of the spatial structure, which facilitates the development
of sampling strategies where samples are collected beyond the spatial autocorrelation
distance and are, therefore, truly independent (22). As autocorrelation distances have
been identified from micrometers to kilometers (22–25), with the potential of nested
scales of variability (26) and site-to-site variation, no standardized protocol exists for
soil sampling for metabarcoding studies (27, 28). Therefore, the second aim was to
determine the minimum distance required to obtain independent soil samples in the
region (Fig. S1), which may inform future sampling strategies in the Arctic. Finally, the
last aim was to identify indicator taxa which were closely associated with environmen-
tal variables and map their spatial distribution across the landscape (Fig. S1). Previous
studies have attempted to identify indicator taxa that could be used for environmental
monitoring (for example, see references 29 and 30 [rivers] and 31 [soils]). As indicator

FIG 1 (A) Map of sampling sites in Svalbard, created using Arcmap version 10.7. (B) Sampling design in 8 transects in Adventdalen. (C)
Smaller scale samples on transect 6. (D) View of Adventdalen.
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taxa (32) highlight operational taxonomic units (OTUs) with strong environmental asso-
ciations that may respond to ecological change, we expected their distribution to
closely follow that of environmental parameters.

RESULTS
Environmental factors. Results showed that all 35 environmental variables had a

significant impact on bacterial community structure, with approximately 73% of the
variance explained by environmental factors (Table 1). Overall, five key factors (TOC,
pH, conductivity, aluminum levels, and arsenic levels) had the most influence on bacte-
rial community dissimilarity, explaining 30% of variation in total. While all other envi-
ronmental factors individually explained between 0.9% and 2.4% of the variation, the
combined soil elemental composition (excluding pH, conductivity, and TOC) accounted
for 51.5% of the total variation in bacterial community composition.

Variation partitioning. A total of 9 distance-based Moran’s eigenvector map
(dbMEM) vectors were built using (x,y) geographic coordinates, and after forward selec-
tion, five dbMEMs were identified as significantly impacting bacterial community diver-
sity and used in subsequent analyses. The variation partitioning analysis differentiated
the effect of environmental factors, linear trend, and spatial vectors on community
composition (Fig. 2). The environmental fraction X1 explained 73% of the variance

TABLE 1 Relative influence of environmental factors on bacterial community structurea

Variable R2 Pr(>F)
TOC 0.089 0.001***
pH 0.070 0.001***
Cond 0.059 0.001***
Al 0.041 0.001***
As 0.041 0.001***
Br 0.024 0.001***
La 0.022 0.001***
Y 0.021 0.002**
Ca 0.018 0.003**
Cl 0.018 0.001***
Cs 0.018 0.001***
Pb 0.018 0.001***
Sr 0.018 0.002**
S 0.016 0.001***
Cu 0.015 0.001***
Te 0.015 0.002**
Ba 0.014 0.003**
In 0.014 0.002**
Nb 0.014 0.004**
Nd 0.014 0.008**
Si 0.014 0.004**
Fe 0.013 0.002**
I 0.013 0.006**
Mn 0.013 0.009**
Th 0.013 0.005**
Ag 0.012 0.007**
Mo 0.012 0.013*
Sb 0.012 0.010**
Cd 0.011 0.023*
Ta 0.011 0.016*
Tl 0.011 0.021*
Zr 0.011 0.012*
Zn 0.010 0.031*
Ge 0.009 0.046*
Sn 0.009 0.036*
Residuals 0.269 NA
aCalculated by PERMANOVA using the adonis function. Pr(.F), P value of ANOVA (output via R); NA, not
applicable.
*, 0.05. P. 0.01; **, 0.01. P. 0.001; ***, P, 0.001.
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(Table S1), equal to the finding by the adonis function and confirming the success of
the variation partitioning analysis. Using the adjusted R2 values only as they accounted
for the number of variables in the model, environmental factors explained 54% of the
variance, of which 38% were not spatially structured (fraction a). The spatial compo-
nent (X21X3) explained 25.6% of the variation, of which 16.3% could be explained by
induced spatial dependence. This was illustrated by fractions d, f, and g, which repre-
sented spatially structured environmental variables where the spatial structure of these
environmental variables induced a similar spatial structure in the response data, high-
lighting the need to evaluate the influence of the environment on communities. The
remaining 9.3% of the spatial component represented spatial autocorrelation. The
linear trend accounted for 3.8% of the variance (fraction b), while spatial vectors
explained 5.5% of the variation. Fraction e had a negative R2 and could be considered
null, as prescribed in reference 33. Each fraction (X1, X2, and X3) was tested individually
and was significant (analysis of variance [ANOVA]; P, 0.001). In total, 62.8% of the bac-
terial community dissimilarity could be explained by environmental and spatial factors,
while the remaining 37.2% of the variance could not be explained by the variables
measured in this study.

Spatial scale and autocorrelation. The distance-decay curve illustrated the
increase in community dissimilarity with increasing distance (Fig. 3A). The power
model was better fitted (R2 = 0.2261; P=0.005) than the linear regression (R2 = 0.1844;
P, 2.2� 10216). Spatial autocorrelation was visualized on the distance-decay curve
(Fig. 3), where geographically close communities were more similar up to 60 m. This
was illustrated with the power model on the distance-decay curve, where the blue
curve begins to plateau (Fig. 3A). To further characterize the spatial autocorrelation dis-
tance, a Mantel correlogram was used (Fig. 3B) to compute the Mantel statistic
between the geographic distance and bacterial community dissimilarity distance (Bray-
Curtis). The spatial autocorrelation was positive for the first distance class of 21 m, indicat-
ing that the bacterial communities were more similar than expected by chance. The sec-
ond distance class of 63 m displayed no spatial autocorrelation, indicating random

FIG 2 Venn diagram illustrating the results of the variation partitioning analysis on the influence of environmental
variables and spatial factors on bacterial community composition. Results of each partition can be multiplied by 100
for the percentage of variation explained and are detailed in Table S2.
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distribution beyond 63 m. Other distance classes presented negative autocorrelations, indi-
cating that these bacterial communities were more different than expected by chance.

Geography also had some influence on environmental conditions, with sites closer
together being more similar. The spatial autocorrelation of environmental variables
was first visualized in Fig. 3C, where geographically close sites were geochemically sim-
ilar within 25 m. However, beyond approximately 25 m, sites equally close or far could
present similar environmental conditions, as illustrated by the autocorrelation distance
(Fig. 3C). This was also illustrated by the weak linear regression (R2 = 0.019;
P, 2.2� 10216) and the best-fitted power model (R2 = 0.087; P=0.005). Spatial auto-
correlation was further tested for each individual variable using the semivariograms
produced prior to kriging. As semivariograms are specific to each variable, the spatial
autocorrelation distances were unique to each parameter. All the semivariograms pro-
duced prior to Kriging indicated positive autocorrelations oscillating between 1 m and
100 m, depending on the variable tested, further illustrating the importance of the
scale of investigation (Fig. S2).

Spatial distribution across the landscape. Using an ordinary kriging method and
after examining the semivariograms, the spatial distribution of alpha diversity and key
environmental variables was mapped across the landscape (Fig. 4). The bacterial rich-
ness, diversity, and evenness changed across the landscape (Fig. 4A to C), and kriged
maps illustrated the relationships between diversity, evenness, and richness. Overall,
low richness indicated low diversity and low evenness, further observed using linear
models (Fig. S3). The kriged maps of alpha diversity and environmental variables
showed the strong heterogeneity at the landscape scale, with changes from high to
low concentrations within just a few meters (Fig. 4D to F).

Indicator taxa. The indicator species analysis identified 163 true specialist (statistic
.0.98) OTUs associated with 12 environmental variables. Indicator taxa were generally

FIG 3 (A) Distance-decay curve illustrating the increase in bacterial community dissimilarity with increasing geographic
distance. (B) Mantel correlogram of spatial autocorrelation illustrating the dispersal limitation. The red square indicates
positive significant autocorrelation, which was identified only in the first distance class (0 to 21 m). Beyond 60 m, the
autocorrelation was either negative (black squares) or not significant (white squares). (C) Distance-decay curve
illustrating increasing environmental variation with increasing geographic distance. The red curve illustrates the
linear regression, and the blue curve is the power model.
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FIG 4 Kriged maps of the spatial distribution across the landscape showing the heterogeneity of (A)
richness, (B) Shannon index, (C) Simpson index, (D) pH, (E) total organic carbon, and (F) aluminum. The

(Continued on next page)
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associated with the highest concentration of each element. The phylogenetic tree spe-
cific to indicator taxa illustrated the high taxonomic diversity of indicator taxa (Fig. 5);
however, Fig. 6 demonstrates that identified indicator taxa do not necessarily follow
environmental gradients as they are expected to. Of the four key factors (excluding
pH) influencing bacterial communities (Table 1), only conductivity and arsenic had
some associated indicator taxa. Indicators of conductivity (Cond) were restricted to

FIG 4 Legend (Continued)
color bars in panels A, B, and C indicate values of alpha diversity, while those for the environmental
variables indicate element concentrations (units for each variable are given in Table S2, taking into
account data transformations).

FIG 5 Phylogenetic tree of indicator taxa associated with environmental variables showing the high
phylogenetic diversity. Colored bands illustrate the taxonomy of each OTU at the phylum level (or
class level for Proteobacteria); labels indicate the taxonomy down to the family level if available.
Colored points indicate the associated element.
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FIG 6 Spatial distribution across the landscape using a kriged map and illustrating the heterogeneous distribution. The
color bars for environmental variables indicate element concentrations (Table S2 gives units, considering data

(Continued on next page)
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two OTUs associated with high conductivity, both members of the Bacteroidetes classi-
fied in the order Cytophagales (Fig. 5). Peaks of high conductivity were visualized in
Fig. 6A and correlated with peaks in abundance of the two OTUs identified (Fig. 6B and
C). Indicators of arsenic (As) were closely associated with barium (Ba) and were taxo-
nomically diverse, with the majority classified as Actinobacteria, Alphaproteobacteria,
Chloroflexi, Halanaerobiales incertae sedis, and Firmicutes (Fig. 5). Arsenic concentration
appeared more homogeneous across the landscape (Fig. 6D), with an average concen-
tration of 13 parts per million (ppm), a minimum of 1.81 ppm, and a maximum of
20.51 ppm. These indicator taxa of arsenic were all associated with high concentrations
(Fig. 6E to I) and were also associated with high concentrations of barium in the soil.

Iron (Fe) and manganese (Mn) are both essential elements of soils. Iron concen-
tration was highly heterogeneous across the landscape, with a strong peak in con-
centration at one site (Fig. 6J). This peak was reflected by the presence of unique in-
dicator taxa whose abundance was closely related to this high concentration (Fig.
6K and L). Indicators of iron were diverse, with a large number of Proteobacteria
(Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria), Chloroflexi,
Bacteroidetes, Cyanobacteria, Planctomycetes, and Verrucomicrobia (Fig. 5). On the
other hand, manganese concentration was heterogeneous across the landscape
(Fig. 6M), but unlike other indicator taxa, indicators of manganese were associated
with low concentrations in the soil (Fig. 6N and O). The indicator taxa of manganese
were predominantly classified as Proteobacteria (Fig. 5) and were also closely related to
low concentrations of niobium (Nb), lead (Pb), and zirconium (Zr); however, they were
associated with high concentrations of molybdenum (Mo). Indicator taxa of strontium (Sr)
were limited to five OTUs, an unknown Verrucomicrobia, a “Candidatus Saccharibacteria”
(TM7), a Deltaproteobacteria, and two Alphaproteobacteria, while indicators of zinc (Zn)
were classified in all almost all phyla (Fig. 5), illustrating the wide array of specialist taxa
associated with high concentrations of zinc.

DISCUSSION
Key environmental factors influencing bacterial communities. Total organic car-

bon, pH, and conductivity were identified as the key drivers of bacterial diversity across
the Arctic landscape and are also commonly identified in studies across the globe (8,
34–38). While pH was previously identified as the primary driver of bacterial diversity in
Arctic soils across the whole Arctic region (19), here, at the landscape scale, TOC was
identified as the primary factor influencing bacterial community structure and was
tightly linked with soil moisture. Generally, soil organic carbon content increases with
increasing precipitation and decreasing temperature (39). In the Arctic tundra, not only
precipitation but also snowmelt and permafrost thaw have major impacts on soil mois-
ture and hydrology across the landscape (40, 41). In this study, where pH was on aver-
age acidoneutral at 6.056 0.36 with very few acidic patches, but organic carbon con-
tent was very patchy (6% to 46%), the role of TOC in bacterial community structure is
perhaps not surprising. However, it highlights the importance of investigating different
spatial scales, as drivers at the global scale may not necessarily be the same across the
landscape of interest.

Aluminum and arsenic were the fourth and fifth environmental variables account-
ing for the most variation in bacterial community structure (Table 1). Aluminum is one
of the most abundant metals in the Earth’s crust, and microorganisms continuously

FIG 6 Legend (Continued)
transformations), while those for OTUs represent relative abundance. (Box 1) (A) Conductivity. (B) Phylum, Bacteroidetes; order,
Cytophagales. (C) Phylum, Bacteroidetes; order, Cytophagales. (Box 2) (D) Arsenic. (E) Phylum, Firmicutes; order, unknown
Clostridiales. (F) Phylum, Halanaerobiales incertae sedis; order, Halanaerobiales. (G) Phylum, Halanaerobiales incertae sedis; order,
Halanaerobiales. (H) Phylum, Gemmatimonadetes; order, Gemmatimonadales. (I) Phylum, “Candidatus Parcubacteria”; class,
“Candidatus Azambacteria.” (Box 3) (J) Iron. (K) Phylum, Proteobacteria (Deltaproteobacteria); order, Bdellovibrionales. (L)
Phylum, Cyanobacteria; order, Oscillatoriales. (Box 4) (M) Manganese. (N) Phylum, Chlamydiae; order, Chlamydiales. (O)
Phylum, Proteobacteria (Deltaproteobacteria); order, Oligoflexales.
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interact with aluminum in soils (42, 43). While aluminum lacks apparent biological
function (42), the aluminum ion (Al31) can be toxic to living organisms and is a func-
tion of the soil pH; the concentration of toxic Al31 gradually increases as pH decreases
from 6.2 (42, 43). Here, small pH changes but large aluminum concentration variations
were observed across the landscape, which were not correlated with each other (linear
regression: R2 = 0.00069; P=0.81). The toxicity of Al31 may influence the bacterial com-
munity structure; however, the concentration of Al31 ions was not measured.

Arsenic is ubiquitous in low abundance in the natural environment and recognized
as one of the most toxic elements (44, 45). Here, a decrease in diversity and richness
was observed with increasing arsenic concentrations, which likely reflects the toxic
effect of oxyanions of arsenate on many bacteria, although some can use it as a termi-
nal electron acceptor (44). As with Al31, the chemical concentration of the various
forms of arsenic was not measured, and therefore, we cannot conclude that the toxic-
ity has an influence on bacterial community structure, although it is a possibility.
Indicator taxa associated with high concentrations of arsenic were diverse but domi-
nated by Actinobacteria and Proteobacteria, which was in accordance with results
reported by Dunivin et al. (45), who conducted a global survey of arsenic related genes
in soils and identified these phyla as harboring more arsenic resistance genes.

All other elements measured had some influence on the observed bacterial com-
munity (Table 1), from key major elements such as sulfur, calcium, and silicon to key
trace elements such as iron, manganese, magnesium, zinc, copper, molybdenum, and
cadmium, as well as other elements, toxic or not, such as bromine, yttrium, and lead. It
should also be noted that while TOC, pH, and conductivity had a significant influence
on bacterial community composition (21.8%), the soil elemental composition com-
bined explained most of the variation (.50%). This may serve to highlight the level of
complexity of the factors influencing community structure.

Indicator taxa. Environmental variables were highly heterogenous across the land-
scape, which was reflected by the distribution of alpha diversity and indicator taxa. The
indicator species analysis determined abundant OTU-environment associations and
identified 163 OTUs that could be considered true specialists in relation to 12 environ-
mental variables. These OTUs were generally associated with high concentrations of
the variable in question except for those associated with manganese, niobium, lead,
and zirconium, which were representative of low concentrations. As illustrated in the
phylogenetic tree (Fig. 5), the diversity of these indicator taxa was high, with numerous
representatives of the Proteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes, and
Verrucomicrobia. The distribution of some indicator taxa, selected for their reported
relationship with the associated variable in the literature, was mapped across the land-
scape to illustrate the association with the elements’ concentrations. For arsenic,
Clostridium and Clostridia-related (Halanaerobiales) taxa were mapped, as they have
been identified with some role in arsenic cycling (44, 46) and with arsenic resistance
genes (45). A Gemmatimonadetes and a “Candidatus Parcubacteria” (clustered closely
with the Cyanobacteria) were also mapped, as both have been identified with potential
roles in arsenic cycling (46). The distribution of OTUs associated with iron were
mapped and included a Cyanobacteria (47, 48) and a Deltaproteobacteria, a class with
known taxa involved in iron cycling (47–49). Finally, the OTUs associated with manga-
nese were also associated with other environmental variables and mainly identified as
Proteobacteria. A Deltaproteobacteria and the only Chlamydiae identified were mapped,
two classes associated with manganese cycling (48). While this analysis showed the
strong associations of some OTUs with the measured environmental parameters, it
also illustrated the difficulty of using indicator taxa for monitoring purposes due to the
large number of associations identified and the high heterogeneity across the land-
scape. This was clear when the distribution of key indicator taxa was mapped across
the landscape and did not clearly follow the distribution of the environmental variable
associated. Furthermore, while indicator taxa may be identified, they do not necessarily
participate in the associated element cycle. For instance, these OTUs may benefit from
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high concentration of arsenic due to higher tolerance to toxicity and decreased com-
petition, without having any involvement in arsenic cycling.

Selection and dispersal structure bacterial communities. The variation partition-
ing analysis quantified the importance of both selection (deterministic) and dispersal
(stochastic) for bacterial community structure. Environmental variables explained 54%
of the total variation, corresponding to selection, and 16% were spatially structured,
corresponding to the induced spatial dependence. Then, spatial components (trend 1

dbMEMs) alone explained 10% of the variation, illustrating spatial autocorrelation or
dispersal (33). This is the magnitude of influence recorded by Malard et al. (19), who
investigated biogeographical patterns across the whole Arctic region, suggesting that
the magnitude of influence of dispersal of bacterial community structure may be stable
in the Arctic.

More specifically, the distance-decay curve of environmental factors showed that
edaphic properties were spatially autocorrelated up to approximately 25 m, although
this was the overall spatial autocorrelation, as each variable autocorrelated within dif-
ferent distances. After that distance, environmental variables were independent, and
this was illustrated by the weak slope of the linear regression and the overall variability
of edaphic properties. In addition, even highly similar environmental conditions could
harbor dissimilar bacterial communities, further illustrating the potential role of disper-
sal and other processes, such as drift or diversification. The distance-decay curve of
bacterial communities showed a positive spatial autocorrelation distance at up to 60
m, which was further supported by the Mantel correlogram. For the Arctic region as a
whole, an autocorrelation distance within the same order of magnitude, approximating
20 m, was previously identified (19). This limited dispersal range in Arctic soils is in con-
trast with studies in other regions of the globe. For instance, in a glacier forefield in
southern Alaska, this distance was over 600 m (50) while in British soils, it was below
1 km (4). This suggests that Arctic soil bacterial communities disperse only to approxi-
mately 60 m and may form rather isolated island communities. Thus, the scale of sam-
pling is important in these landscapes to capture community variability, and therefore,
a minimum of 60 m should be maintained between sites to obtain independent sam-
ples. Further investigations at other Arctic sites are required to determine whether this
applies across the whole Arctic region.

Overall, these results suggest that induced spatial dependence may be an impor-
tant factor shaping bacterial communities within 25 m; that is, as edaphic properties
are very similar, bacterial communities are also similar. Between 25 and 60 m, environ-
mental variability increased, and yet communities remained relatively similar, suggest-
ing that dispersal may be the primary process shaping bacterial communities. Beyond
60 m, the environment was highly heterogeneous, bacterial communities were highly
dissimilar, and selection was likely the main process structuring communities. While
one process may dominate within each distance category, it is still likely the combina-
tion of different processes (selection, dispersal, diversification, and drift) with different
magnitudes still driving community assembly (51).

While 63% of the variation (nonadjusted R2 = 81%) of bacterial community assem-
blage could be explained, 37% remained unexplained. Many factors, whether biotic or
abiotic, could influence bacterial communities. Based on the scale of this study, it is
unlikely that most climatic and topographic variables would have much influence on
the community structure variation. Instead, other edaphic factors, such as total nitro-
gen or phosphorus content and clay, silt, and sand content, but also the presence of
ice or soil texture may have more impact locally. Furthermore, biotic interactions such
as competition and predation within bacterial communities or with other members of
the soil biota or higher organisms may have some influence. For instance, grazing is
one of the main disturbances to the ecosystem locally, primarily by Svalbard reindeer
and the barnacle goose (52). In addition to impacting the vegetation, they trample
over the landscape and fertilize it; therefore, grazing can have significant impacts on
the ecosystem, and it has been shown to decrease microbial respiration and the
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available carbon (53), while animal feces increase the available nitrogen and can
increase bacterial abundance (54). Human presence may also have some influence, as
the sampling site was close to another scientific research site with open-top chambers.
A few cabins were located in the area, and coal mine 7 was still in operation, approxi-
mately 1.5 km away and 400 m above the sampling site.

Conclusion. In this study, spatial factors accounted for approximately 10% of the
variation in community composition at the landscape scale, equivalent to observations
across the whole Arctic region, suggesting that while the role and magnitude of other
processes involved in community structure may vary, the role of dispersal may be sta-
ble globally in the region. Furthermore, the identification of different driving environ-
mental factors at different scales highlights their dependence upon the spatial scales
over which they are investigated. Overall, we suggest that induced spatial dependence
may shape bacterial communities within 25 m. Between 25 and 60 m, dispersal may be
the primary process shaping bacterial communities, and beyond 60 m, selection is
likely the main process structuring communities. As dispersal may be limited to 60 m,
and while further studies should be conducted, we suggest that soil sampling in the
region should be conducted beyond this distance to capture landscape variability
when independent samples are being collected. Finally, by mapping the spatial distri-
bution of indicator taxa across the landscape, we showed that strong taxon-environ-
ment statistical associations may not actually be reflected in the landscape distribution
of these bacterial taxa.

MATERIALS ANDMETHODS
Sampling site. In July 2017, 44 soil samples were collected in Adventdalen, Svalbard, Norway (Fig.

1A), following the sampling design depicted in Fig. 1B and characterized by 8 north-south transects of 5
samples each. Samples within each transect were approximately 50 m apart, while the distance between
transects was approximately 100 m. On transect 6, extra samples were collected 10 m and 1 m apart to
investigate smaller-scale patterns (Fig. 1B and C).

Adventdalen is a broad U-shaped valley open to the west, from which the mouth is located approxi-
mately 2 km from Longyearbyen and 6 km from Svalbard Airport. Adventdalen was deglaciated about
10 kiloannums before the present (ka BP) (55), and permafrost is estimated to be 100 m thick close to
the shore. It is a typical Arctic landscape, in one of the driest areas of Svalbard, with an average of
190mm of annual precipitation and a mean annual temperature of26°C (56). The study site was located
approximately 9 km into the valley, 11 km away from Longyearbyen, at 78.17°N, 16.02°E. The vegetation
is primarily dwarf shrub/grass heath, dominated by Salix spp., mosses, lichens, and Graminea spp. (57)
(Fig. 1D). The main disturbances to the site come from grazing, primarily by Svalbard reindeer (Rangifer
tarandus platyrhynchus) and the barnacle goose (Branta leucopsis) (52).

Sample collection and soil properties. The coordinates of each site were recorded with a portable
global positioning system (GPS) device. At each location, 50 g of soil in the top 15 cm was collected
using ethanol-cleaned trowels and Whirl-Pak bags (Nasco, Fort Atkinson, WI, USA). Plant roots and rocks
were removed manually in a class II biological safety cabinet (ESCO, Singapore); samples were homoge-
nized and frozen at 220°C before transportation to the United Kingdom for analyses. pH and conductiv-
ity were measured in the laboratory at a 1:5 ratio of freshly thawed soil to water, using a Mettler-Toledo
FE20 pH meter (Mettler-Toledo Instruments Co., Shanghai, China) and a CMD500 conductivity meter
(WPA, Cambridge, UK). Moisture content was measured gravimetrically on soils after drying at 150°C for
24 h, and total organic content (TOC) was measured gravimetrically by heating previously dried soils to
550°C for 4 h. To analyze the elemental composition of each sample, 5 g of thawed soil was placed in ce-
ramic crucibles and left to dry at 37°C for 5 days. Dried samples were crushed to a fine powder using a
mortar and pestle, put in a powder sample cup, placed in the XRF spectrometer (X-Lab2000; Spectro,
Kleve, Germany) and analyzed. Resulting concentrations were adjusted using calibrated values and
results were expressed in parts per million.

DNA extraction and amplicon sequencing. Soil DNA was extracted in duplicate for each sample
using the PowerSoil kit (Qiagen, Hilden, Germany) following the manufacturers’ protocol. 16S rRNA gene
libraries were constructed using the universal primers 515F and 806R (58) to amplify the V4 region.
Amplicons were generated using a high-fidelity Accuprime DNA polymerase (Invitrogen, Carlsbad, CA,
USA), purified using AMPure magnetic bead capture kit (Agencourt, Beckman Coulter, MA, USA), and
quantified using a QuantIT PicoGreen fluorometric kit (Invitrogen). The purified amplicons were then
pooled in equimolar concentrations using a SequalPrep plate normalization kit (Invitrogen), and the final
concentration of the library was determined using a SYBR green quantitative PCR (qPCR) assay. Libraries
were mixed with Illumina-generated PhiX control libraries and our own genomic libraries and denatured
using fresh NaOH. The resulting amplicons were sequenced on the Illumina MiSeq V2 (500 cycles).

Bioinformatics processing. Raw paired-end reads were subjected to adaptor and primer clipping
using Cutadapt (59), resulting in 71,2076 3,280 reads per sample. Forward and reverse reads were
merged using FLASH (60). Reads with more than 1.5 total expected errors per read and/or read lengths
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less than 245 bp were truncated during quality filtration using the Vsearch (61) filtering module. This
resulted in 64,9176 4,291 high-quality merged reads per sample. Dereplication was performed to iden-
tify unique sequences. A two-step chimera detection method was used, first by aligning against
ChimeraSlayer Gold database provided with SILVA (62) and second by using the denovo detection mod-
ule. An open-reference operational taxonomic unit (OTU) calling was performed on high-quality
trimmed sequences at a 97% similarity level using the USEARCH (63) algorithm for clustering to generate
operational taxonomical units (OTUs). This resulted in (85 DNA samples) a total of 5,436,264 reads
(63,9566 38,865 reads/sample) assigned against 23,627 OTUs. Unique (chimera-filtered) representative
sequences were aligned using the Python Nearest Alignment Space Termination (PyNAST) (64) tool with
a relaxed neighbor-joining tree built using FastTree (65). OTUs were assigned taxonomy using the lowest
common ancestor (LCA)-based Classification Resources for Environmental Sequence Tags (CREST) pack-
age (66), with a minimum classification score of 0.80 against SILVA release 128 as a reference database.

Statistical analysis. Alpha diversity (richness and Shannon and Simpson indices) was calculated in
QIIME v1.90 (67) on the matrices resulting from multiple rarefactions, with the smallest sample size
(22,316 reads) as the maximum depth. Results were collated and averaged to obtain a single representa-
tive value for each sample. The OTU table was normalized using cumulative-sum scaling (CSS) (68). The
resulting OTU table was input into R for subsequent analyses, and the Bray-Curtis dissimilarity distance
was calculated using vegan (69).

To evaluate the environmental component, Pearson’s correlation coefficients were calculated using
the corrplot package (70) to first identify possible correlations between environmental variables. With
this many variables, it was a necessary step to avoid misinterpretation of the results (76). Coefficients
over j0.8j indicated strong correlations (Fig. S4), and as such, variables were removed to keep only one
representative (76). For example, a high moisture content was correlated with a high TOC content
(Pearson’s coefficient = 0.88); in this case, moisture was discarded, as it is weather dependent and is
expected to be more variable day to day than TOC. Of 48 parameters measured, 35 were independent
and considered representative. The distribution of the 35 remaining environmental variables was investi-
gated using the moments package (71) to assess the skewness and kurtosis. Skewness evaluates the
degree of distribution shift to one side or another, and a good distribution should equal 0, while kurtosis
evaluates the tail distribution and should also be close to 0 to assume normal distribution. Using diag-
nostic plots, skewness, and kurtosis, the necessary transformations to improve the unimodal distribution
of environmental variables were carried out (summarized in Table S2), and collinearity was verified again
with Pearson’s correlations (Fig. S5). Transformed environment variables were scaled, and a sequential
permutational multivariate ANOVA (PERMANOVA) was conducted using the adonis function imple-
mented in vegan with standard 999 permutations to identify environmental variables significantly asso-
ciated with the Bray-Curtis community dissimilarity.

To evaluate the spatial component, the geographic locations (x,y) of the sampling sites were trans-
formed to Cartesian coordinates using the SoDA package (72), and the Euclidean distance was calcu-
lated using vegan. Distance-decay curves were produced using linear regressions of the Euclidean dis-
tance of the geographic locations against the Bray-Curtis dissimilarity distance and the Euclidean
distance of scaled environmental variables.

The presence of a linear trend (a systematic increase or decrease in the OTU data with (x,y) coordi-
nates) was visualized by the distance-decay curve (Fig. 3A) and tested by redundancy analysis (RDA) and
ANOVA, as prescribed by Borcard et al. (33). As a significant linear trend was identified, the OTU table
was detrended by linear regression of the (x,y) coordinates. Distance-based Moran’s eigenvector maps
(dbMEMs) were constructed with (x,y) coordinates using the adespatial R package (73). The significance
of the spatial vectors (dbMEMs) was assessed using the detrended OTU table and tested with ANOVA.
Forward selection was conducted to identify significant dbMEM vectors, and the remaining dbMEMs
were plotted using RDA.

Variation partitioning analysis (VPA) was used to assess the impact of environmental and spatial fac-
tors on community composition (undetrended OTU table) and was conducted using the environmental
variables, (x,y) coordinates (linear trend), and significant dbMEM vectors. Individual fractions were tested
using RDA and ANOVA, as prescribed by Borcard et al. (33).

To evaluate spatial autocorrelation, the detrended OTU table and the Euclidean distances of
Cartesian coordinates (x,y) were used to produce a Mantel correlogram with standard 999 permutations
using vegan. Semivariograms were also produced using the autoKrige function of the automap package
(77) to use for geostatistical analyses. Kriging was conducted using the autoKrig and automapPlot func-
tions in the automap package. Environmental variables and alpha diversity measures were interpolated
and mapped across the landscape.

Indicator taxa were determined by the Dufrene-Legendre indicator species analysis (32) to identify
OTUs that were specifically associated with different environmental variables. The first step was to define
categories for each environmental variable (i.e., high conductivity, medium conductivity, and low con-
ductivity). To identify groups statistically rather than subjectively, an automatic cluster approach was
employed using the nbclust package (74), which indicated the ideal number of groups (Table S2).
Clusters were created using the kmeans function (Table S2) and used with the multipatt function in the
indicspecies package with 999 permutations (32). Indicator taxa with a correlation statistic higher than
0.98 were considered true specialists and used for subsequent analyses. The phylogenetic tree of indica-
tor taxa was built using the representative sequences from the identified indicator taxa using FastTree
method (65) and visualized using iTOL (75). Indicator taxon distribution was mapped across the land-
scape by kriging, as previously described, and Pearson correlations were calculated between the indica-
tor taxa and the environmental variables of interest.
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Data availability. The sequencing data set is deposited at the European Nucleotide Archive under
BioProject accession no. PRJNA564217.
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