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Abstract

In this paper we will give a survey on results for semi-static hedging strate-
gies for exotic options under different model assumptions and also in a model-
independent framework. Semi-static hedging strategies consist of rebalancing the
underlying portfolio only at certain pre-specified timepoints during the lifetime of
the hedged derivative, as opposed to classical dynamic hedging, where adjustments
have to be made continuously in time. In many market situations (and in particular
in times of limited liquidity) this alternative approach to the hedging problem is
quite useful and has become an increasingly popular research topic over the last
years. We summarize results on barrier options as well as strongly path-dependent
options such as Asian or lookback options. Finally it is shown how perfect semi-
static hedging strategies for discretely observed options can be developed in quite
general Markov-type models.

1 Introduction
In their famous work of 1973, Black & Scholes [10] showed how a standard European
option can be replicated by dynamically trading the underlying asset and investing in
the riskless bond. The so-called delta hedging strategy is (with some modifications)
still among the most widely used methods to manage and reduce the risk inherent in
writing an option. However, already Merton [60] applied static “hedging” methods
to relate different option prices, and also the Put-Call-Parity, which at least goes back
to Stoll [76], can be interpreted as a consequence of a particular static hedging strat-
egy. Recently, Derman & Taleb [39] outlined some pitfalls of the dynamic replication
strategies and argued in favour of the more robust static replication methods, which
in the meantime attained quite some attention in the practical and academic literature,
starting in the mid 1990’s with the work of Bowie & Carr [14] and Derman et al. [37].

The semi-static hedging approach structurally differs from the dynamic counterpart in
terms of hedging instruments and trading times. While dynamic hedges base on the
assumption of being able to trade continuously in time, semi-static portfolios do not
need to be adjusted dynamically, but only at pre-specified (stopping) times. Further-
more, in contrast to classic dynamic hedging, they typically use plain vanilla (or other
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liquidly traded) options as hedging instruments. Studies comparing the performance of
semi-static and dynamic hedging strategies (as for example undertaken by Tompkins
[79], Nalholm & Poulsen [64], or Engelmann et al. [43]), indicate that the semi-static
ones are in many situations more robust and outperform their dynamic counterparts.

Here, we aim to give an overview of the most prominent semi-static hedging strategies
for options written on some asset (e.g. a stock or an exchange rate), for which some
standard European options are liquid. In this text we focus on fully discrete strate-
gies, i.e. we exclude the possibility of dynamic hedging (for combined dynamic-static
hedging strategies see e.g. Ilhan & Sircar [53] and Ilhan et al. [52]). In principle, the
outlined methods directly translate to the case where the options are written on baskets
of assets, but one has to be aware that plain vanilla options with the basket as the un-
derlying are needed to apply the strategies in practice.

Strategies, for which the composition of the portfolio is not changed after the initial
composition except investing gains in the riskless asset will be called static, and those
with a finite number of transactions will be termed semi-static (semi-static strategies
can be further subclassified as done in Joshi [55]). We will also distinguish between
model-dependent and model-independent strategies. The former depend on assump-
tions on the asset price process (like continuity) or need a fully specified model, while
the latter are correct in any market, which is frictionless in the following sense:

Definition 1.1 (Frictionless market) A market is called frictionless, if

• the no-arbitrage assumption holds

• all investors are price-takers

• all parties have the same access to relevant information

• there are no transaction costs, taxes or commissions

• all assets are perfectly divisible and can be traded at any time

• there are no restrictions on short-selling

• interest rates for borrowing and lending are identical

Throughout the text we will assume frictionless markets. Although the methods work
for time-dependent interest rates as well, we will (mainly for notational convenience)
further assume that the riskless interest rate is a constant r.

Definition 1.2 (Weak and strong path-dependence) An option is said to be weakly
path-dependent, if the dynamics of the option price depend only on asset price and
time, i.e. the stochastic differential equation (SDE) for the option price differs from the
SDE of a vanilla option only in the boundary conditions. Otherwise the option is said
to be strongly path-dependent.

While for weakly path-dependent options quite general methods are available, the the-
ory is somewhat more involved for strongly path-dependent options. Nevertheless, we
will present hedging strategies for lookback options, as well as for Asian options and
discretely sampled options in general.
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The rest of the paper is structured as follows. Section 2 introduces a method to synthe-
size arbitrary (sufficiently regular) payoffs that depend solely on the asset price at some
later time T . In Section 3 techniques for weakly path-dependent options will be out-
lined. The focus lies in particular on barrier options, which are the most liquid and best
understood exotic options of this kind. Section 4 deals with two examples of strongly
path-dependent options (the lookback and the Asian option) and shows some robust
hedging strategies. In Section 5 discretely sampled options, which may be weakly
path-dependent (e.g. discretely monitored barrier options) or strongly path-dependent
(e.g. Asian options) will be considered. Finally, Section 6 concludes and points out
some potential future research topics.

2 Hedging path-independent options
Consider now options with a path-independent payoff. To fix ideas let us denote the
price process of some asset S up to time T by ST = {St}0≤t≤T and the payoff function
by p, so that p(ST ) = p(ST ). Moreover we assume, that there is a riskless bond
available, which pays off 1 at time T .

Plain vanilla options with arbitrary strikes are liquid
First we suppose that standard European options with maturity T are liquid for all strike
levels K ≥ 0, and the payoff function p is assumed to be twice differentiable. Then
the fundamental theorem of calculus implies

p(S) = p(K∗) + p′(K∗)(S −K∗) +
∫ S

K∗
p′′(x)(S − x) dx.

Since (S − x) = (S − x)+ − (x− S)+, we can rewrite this further to

p(S) = p(K∗) + p′(K∗)(S −K∗)

+
∫ ∞
K∗

p′′(x)(S − x)+ dx+
∫ K∗

0

p′′(x)(x− S)+ dx. (1)

Note that (1) holds for any K∗ and even extends to the case where p is not twice
differentiable (in which case – e.g. for a Dirac-Delta payoff p – the above equality will
hold in a distribution sense).
For hedging purposes, we can rewrite formula (1) as

p(S) = p(K∗) + p′(K∗)(F −K∗) + p′(K∗)(S − F )

+
∫ ∞
K∗

p′′(x)(S − x)+ dx+
∫ K∗

0

p′′(x)(x− S)+ dx,

where F denotes the forward price of the asset. In this way the payoff of the contingent
claim p is decomposed into four parts, two of which are hedgeable by static positions
in the riskless bond and a forward on the asset. The other two are synthesized by “in-
finitesimal” positions in standard European options. In total we get the following static
hedging strategy (cf. Carr & Madan [22]):
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Payoff Hedged by positions in
p(K∗) + p′(K∗)(F −K∗) (p(K∗)− (K∗ − F )p′(K∗)) bonds
p′(K∗)(ST − F ) p′(K∗) forwards∫∞
K∗

p′′(x)(ST − x)+ dx p′′(x)dx calls struck at x (∀x ∈ [K∗,∞))∫K∗
0

p′′(x)(x− ST )+ dx p′′(x)dx puts struck at x (∀x ∈ [0,K∗))

This means that if European calls and puts with maturity T are liquid for all strikes,
any (sufficiently regular) contingent claim on the time-T -price of S can be replicated
perfectly – regardless of the model assumptions and in particular also in incomplete
market models (this fact was already noticed e.g. by Ross [71], Breeden & Litzenberger
[11], Green & Jarrow [47], or Nachmann [62]).
A nice application of formula (1) was given by Carr & Madan [22], who show that
a variance swap written on some forward F can be replicated by a contingent claim
with payoff ln(FT ) and a dynamic trading strategy involving the forward (see also e.g.
Dupire [42], Derman et al. [38], Carr & Lee [18, 19] for further details).
It is worth noting that equation (1) also yields a pricing formula for the contingent
claim with payoff p. Denote by C(St, t;K,T ) and P(St, t;K,T ) the call and put price
at current time t. Since due to the first fundamental theorem of asset pricing (see e.g.
Delbaen & Schachermayer [35]) the price of the claim in an arbitrage-free setup is
given as the risk-neutral expectation of the discounted payoff, we have (the forward
contract has value 0 by definition)

EQ[e−r(T−t) p(ST )] = e−r(T−t) p(K∗) + e−r(T−t)(Ft −K∗)p′(K∗)

+
∫ ∞
K∗

p′′(x) C(St, t;x, T ) dx+
∫ K∗

0

p′′(x) P(St, t;x, T ) dx, (2)

where interchanging the order of integration is justified, whenever the integrands in
this last formula are absolutely integrable.
A straightforward corollary of the above formula is the familiar Put-Call-Parity

C(St, t;K,T ) = e−r(T−t)(Ft −K) + P(St, t;K,T ), (3)

which is obtained by setting p(S) = (S−K)+ and choosing K∗ > K (Ft denotes the
time t-forward price of the asset). Equation (1) implies the following static hedging
portfolio for the call payoff:

• a long position in a put with the same strike K and maturity T as the put

• a long position in a forward contract

• investing exp(−rT )(Ft −K) in the bond

It is easy to see that the payoff of this portfolio at time T is the same as provided by
the vanilla put, and the hedging strategy is therefore correct.

Finitely many liquid strikes
The derivation of the perfect hedging strategies in the last section relied on the assump-
tion that standard European options are liquid for arbitrary strikes. In reality, of course,
there are only a finite number of maturity/strike combinations available on the market.
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The first question in this more realistic context is, whether the option prices themselves
are consistent with the no-arbitrage assumption. This question was for instance ad-
dressed by Carr & Madan [21] and in a general setting by Davis and Hobson [32] (see
also Cousot [28]).
Now, given a set of traded option prices, one can derive no-arbitrage bounds for the
price of contingent claims by solving a semi-definite optimization problem (see e.g.
Hodges & Neuberger [51], or Bertsimas & Popescu [9], who both also consider more
general options). The dual of this problem is then to find the most expensive sub- and
the cheapest super-replicating strategy using static positions in liquid options. The lat-
ter question is obviously highly relevant in practical applications, as it shows an (in
some sense) optimal way to cover the payoff in any case.
Alternatively the right hand side of equation (1) may be approximated by a sum, where
the sampling points correspond to the liquid strikes. However, then one cannot ensure
that the payoff of the hedging portfolio will be sufficient to cover the payoff of the
contingent claim, unless the weights of the liquid options are chosen with great care.

3 Hedging barrier and other weakly path dependent
options

The prototype of a weakly path-dependent option is the barrier option, which, starting
from Bowie & Carr [14], has attracted by far the most attention in the literature of
semi-static hedging. The payoff of a barrier option generally depends on whether the
asset price has reached some pre-specified region up to maturity or not.
For example, the Down-and-Out call (DOC) with parameters strike K, barrier B < S0

and maturity T has the payoff

p(ST ) = (ST −K)+I{inf0≤t≤T St>B}, (4)

where IA denotes the indicator function of the set A.
Analogously the payoff of a Down-and-In call (DIC) is defined by

p(ST ) = (ST −K)+I{inf0≤t≤T St≤B}.

In a similar manner the payoff of Up-and-Out and Up-and-In calls (UOC and UIC) are
defined by

p(ST ) = (ST −K)+I{sup0≤t≤T St<B} and p(ST ) = (ST −K)+I{sup0≤t≤T St≥B},

respectively, and the put counterparts are defined analogously.
Variants of the standard barrier options include double barrier options (where the bar-
rier region is two-sided), or barrier options with rebates. Here we will mainly focus on
the standard ones (note that Sbuelz [72] shows in the Black-Scholes-model how double
barrier options can be replicated by single barrier options).

Since the plain vanilla option payoff obviously dominates the barrier option payoff,
a first simple super-replicating portfolio for the considered a barrier option is a long
position in a standard European option with the same strike and the same maturity.
Let us denote the time-t-price of a Down-and-Out and a Down-and-In call with strike
K, barrier B and maturity T by DOC(St, t;K,T,B) and DIC(St, t;K,T,B), re-
spectively. Since the sum of the payoff of a DOC and a DIC with the same parameters
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equals the payoff of a plain vanilla call, we have by the law of one price

C(St, t;K,T ) = DOC(St, t;K,T,B) + DIC(St, t;K,T,B). (5)

The same equation also holds for UOC and UIC prices and naturally for the corre-
sponding put options as well.
In the remainder of this section the DOC will serve as the illustrating example. Exten-
sions to other option types are often analogous.

In practice, early-exercise or cancellation features will additionally play a role. The
interested reader is referred to Neuberger [65] for an optimization based treatment of
super- and sub-replicating strategies for American options and to Davis et al. [33, 34]
or Ben-Hameur et al. [8] for hedging strategies of installment options.

3.1 Model-dependent strategies: Perfect replication
Let us assume that the barrier option with maturity T is written on the time T forward
price FT of the asset and let us use the forward price as the underlying. For conve-
nience, the prices of all options will w.l.o.g. be expressed with respect to this forward
price.
Any barrier option can be adapted to this notation, simply by replacing the original
constant barrier by a time-dependent one. The first hitting time τ is defined as the
first time for which the forward asset price process is at or below the (now possibly
time-dependent) barrier B(t),

τ = inf {t ≤ T : Ft ≤ B(t)} ,

with the convention inf ∅ =∞.

First we assume that the barrier B(t) ≡ B for the forward is constant (i.e. the cor-
responding barrier for the spot price would be time-dependent) and we suppose the
forward price process Ft to be continuous. The following is a nice and conceptionally
simple semi-static hedging strategy for a DOC written on the forward price of an asset
(with strike K, maturity T and barrier B = K at the strike):

• Buy a standard European call struck at K and maturing at T and sell a European
put with the same parameters.

• The first time the forward price touches the barrier close the positions.

• If the barrier is never hit, hold the call until expiry.

This perfectly replicates the payoff of the DOC, as follows by considering the two
different sacenarios:

• The barrier is not reached until maturity. Then the payoff of the portfolio is the
same as the one of the DOC, i.e. (ST −K), as necessarily ST = FT ≥ B = K
(and the put has payoff 0).

• The barrier is hit at τ < T . Then

C(Fτ , τ ;K,T ) = P(Fτ , τ ;K,T ),

because of the Put-Call-Parity (3) (recall that Fτ = K). Thus the cost of closing
the positions is 0 and the payoff of the DOC is replicated also in this case.
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The price of the DOC is hence given by:

DOC(F0, 0;K,T,K) = C(F0, 0;K,T )− P(F0, 0;K,T ). (6)

This hedging strategy is rather simple (and – due to the involved continuity assumption
– model-dependent). But it is not straight-forward to extend this to other types of bar-
rier options (an exception is the barrier exchange option, see Lindset & Perrson [57]).
Thus there is the need for a more general approach.

One of the most famous semi-static hedging strategies for barrier options was originally
developed by Carr & Bowie in [14] (see also Carr & Chou [15, 16] and Carr et al. [17])
and is based on a relation between standard European calls and puts with different
strikes:

Assumption 1 For any 0 ≤ t ≤ T the implied volatility smile (for maturity T ), plotted
as a function of the log-moneyness, is symmetric. More precisely: LetK andH be such
that the geometric mean of K and H is the forward price,

√
KH = Ft, then

σimp(K) = σimp(H).

Theorem 3.1 (Put-Call-Symmetry, Carr et al. [17]) Given a frictionless market, un-
der Assumption 1 the following holds for all K,H with

√
KH = Ft:

C(Ft, t;K,T ) =

√
K

H
· P(Ft, t;H,T ), ∀t ∈ [0, T ] .

We will shortly sketch the proof of the above theorem: Recall that the price of a call in
the Black-Scholes model (with volatility σ) is given by

C(Ft, t;K,T ) = e−r(T−t)
(
FtΦ(d+)−KΦ(d−)

)
,

where Ft is the forward price of the asset,

d± =
log(Ft/K)± 1

2σ
2(T − t)

σ
√
T − t

,

and Φ(x) is the cumulative distribution function of the normal distribution. Due to√
KH = Ft, the above is easily seen to be equivalent to

C(St, t;K,T ) =

√
K

H
e−r(T−t)

(
HΦ(−d−)− FtΦ(−d+)

)
=

√
K

H
P(St, t;H,T ).

Thus as long as the implied volatility for vanilla options with strike K and H is iden-
tical (which is Assumption 1), the theorem remains valid.
Necessary and sufficient conditions on an asset price model to fulfill Assumption 1
are given in Carr & Lee [20]. A first example is of course the Black-Scholes model.
Another is the following local volatility model for the forward price:

dFt = Ftσ(Ft, t)dW
Q
t ,
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where Wt is a Brownian motion and

σ(Ft, t) = σ(F 2
0 /Ft, t). (7)

Condition (7) implies that the local volatility at a fixed time t plotted as a function of
the log-returns is symmetric around 0, which explains also the symmetry of the implied
volatility surface.

Starting from Theorem 3.1, Bowie & Carr [14] investigated how the Put-Call-Symmetry
can be used to hedge barrier options (a similar relation between different call and put
prices, termed Put-Call-Reversal, was used in Andreasen & Carr [6] to hedge long-
term call options). Consider a DOC with strike K, maturity T and barrier B < K.
By definition, the payoff of this option is (ST −K)+, if the barrier was never hit and
0 otherwise. In order to hedge the final payoff, a vanilla call with the same strike
and maturity as the DOC should be bought. Clearly this is a super-hedge and another
vanilla option can be sold such that one obtains a portfolio with value 0 at the bar-
rier. Assuming the conditions for the Put-Call-Symmetry, we know that a put with the
same maturity and strike B2/K fulfills the geometric mean condition of the theorem.
Therefore

C(B, t;K,T ) =
K

B
P(B, t;B2/K, T ) ∀t < T.

Hence a portfolio consisting of a long position in the corresponding vanilla call and a
short position inK/B puts with strikeB2/K has value 0, if the forward price is exactly
at the barrier. Consequently a replicating portfolio for a DOC is to take a long position
in a standard European call with strike K and maturity T and a short position in K/B
puts with strike B2/K and the same maturity. The corresponding trading strategy is
to hold the portfolio until expiry, if the barrier is never hit, or to close the positions (at
0 cost) at the first hitting time τ ≤ T . Note that for the correctness of the replication
strategy it is necessary that the forward price is exactlyB at the first hitting time (which
explains the continuity assumption).
Summing up, under the no-arbitrage principle this leads to the equation:

DOC(S00;K,T,B) = C(S0, 0;K,T )− K

B
P(B, 0;B2/K, T ), B < K. (8)

This hedging procedure can be extended to other types of barrier options, but typically
then becomes more complicated. For example, for an UOC one would also need to take
a position in a binary call (i.e. an option, which pays 1 if the asset price at maturity
exceeds the strike, and 0 otherwise). The latter can then be hedged by the strategies
outlined in the previous section. If the assumption of a constant barrier on the forward
price is relaxed, super- and sub-replication strategies can be derived. For the details we
refer to Carr et al. [17] (see also the nice summary of Poulsen [68]). Kraft [56] consid-
ers the case, when only a finite number of options with prespecified strikes are available
and identifies conditions under which a strategy based on the Put-Call-Symmetry is a
semi-static superhedge.

Another hedging strategy for barrier options has its roots in papers of Derman et al.
[36, 37]. In order to point out the main idea of the Derman-Ergener-Kani (D-E-K)
algorithm, a binomial model is considered first, i.e. the asset price process is assumed
to follow a binomial tree. In this setting the D-E-K-algorithm for a DOC with maturity
T , strike K and barrier B is as follows:
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• Identify the boundary nodes, i.e. the maturity and the barrier nodes and denote
the resulting time grid by t1 < . . . < tn.

• Buy a standard European option replicating the payoff of the barrier option, if
the barrier boundary is not hit during the lifetime of the barrier option. In the
case of a DOC with B < K this would be a standard European call with the
same strike and maturity as the barrier option.

• Choose n options with different maturities Ti and strikes Ki having payoff 0, if
the barrier was not hit. In the example of a DOC, one could for instance choose
puts with strikes Ki ≤ B and maturities Ti ≤ T . Then solve the linear equation
system

Vi ·w + C(B, ti;K,T ) = 0, i = 1, . . . , n (9)

for w, where

Vi := (P(B, ti;K1, T1),P(B, ti;K2, T2), . . . ,P(B, ti;Kn, Tn))

denotes the vector of the time-ti-prices of the n additional options and · is the
scalar product.

Note that due to (9) the portfolio consisting of the option replicating the final payoff
and wi options with strike Ki and maturity Ti can be sold at zero cost at every barrier
node and thus the semi-static trading strategy of holding the portfolio until expiry in
case the barrier has not been hit, or to close the positions at the first hitting time, is a
perfect replication of the barrier option.

In the binomial framework the D-E-K-algorithm thus gives a perfect hedge for all kinds
of barrier options – in particular also for double-barrier options and options with a time-
dependent barrier – as long as enough different standard European options are liquid
(i.e. at least as many as there are barrier nodes). However, since the prices in (9) are
model-dependent (as they have to be calculated using a model – in the above case the
binomial model), the entire portfolio is model-dependent.
For continuous-time models, the approach outlined in [37] is to discretize (in time) the
asset price process and hedge the values at the discrete monitoring times. Toft & Xuan
[78] examine the effectiveness of such a discretization for stochastic volatility and find
that it works well for a small volatility of volatility, but not satisfactory in the oppo-
site case combined with discontinuous final payoff of the barrier option (as e.g. for an
UOC). We will come back to better alternatives in the next section.

A possible limit strategy for continuous-time price models can be achieved by assum-
ing standard options with all strikes and maturities to be liquid. This strategy was
developed by Andersen et al. [5] (see also Mijatović [61]), who observed that the key
assumption on the price model is that the price of European options, besides their pa-
rameters, only depends on the current time t and asset price St (this assumption for in-
stance rules out stochastic volatility models). The approach is, as the D-E-K-algorithm,
very powerful in terms of the barrier structure and allows for arbitrary (sufficiently reg-
ular) functions of time.
For the ease of exposition we assume that the forward price again follows a local
volatility model in the risk-neutral world (the method can be extended to more gen-
eral Markov-type models), i.e.

dFt
Ft

= σ(Ft, t)dWt, (10)
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where σ is now just assumed to be positive and sufficiently regular to admit a unique
solution of equation (10).
Consider again the standard example of a DOC with a continuous time-dependent bar-
rier B(t) on the forward price of an asset with dynamics as specified in (10). Then the
following PDE specifies the price function G(Ft, t) of a DOC with strike K, barrier
B(t) and maturity T started at time t (and has in particular not reached the barrier up
to the time t):

Gt(F, t) +
1
2
σ2(F, t)F 2 GFF (F, t) = 0, t < T, F > B(t)

G(F, t) = 0, t < T, F ≤ B(t) (11)
G(F, T ) = (F −K)+ ∀F,

where we assumed again for simplicity that B(T ) < K. Then

G(F, t) = DOC(F, t;K,T, {B(s)}t≤s≤T ),

in case the asset price has not crossed the barrier before t. If the function σ in (11)
is sufficiently regular, G(F, t) is twice differentiable with respect to F , except at F =
B(t), where the (formal) second derivative is given by δ(F − B(t)) G+

F (B(t), t) (δ
denoting the Dirac Delta measure and G+

F the right derivative). Using (11) and the
Meyer-Itô-formula (see e.g. Protter [69, Theorem IV.70]), one finds:

(FT −K)+ −G(F0, 0) =
∫ T

0

1{Ft>B(t)}GF (Ft, t)Ftσ(Ft, t) dWt

+
∫ T

0

1
2
δ(Ft −B(t)) G+

F (B(t), t)B(t)2σ2(B(t), t) dt.

Rearranging the terms gives:

G(F0, 0) +
∫ T

0

1{Ft>B(t)}GF (Ft, t)dFt =

(FT −K)+ −
∫ T

0

1
2
δ(Ft −B(t)) G+

F (B(t), t)B(t)2σ2(B(t), t) dt. (12)

Using equation (12), a semi-static hedge for the DOC can be formulated: Take a long
position in a call with strike K and maturity T and short positions in an amount of
G+
F (B(t), t)B(t)2σ2(B(t), t)/2 options with maturity t (∀ 0 ≤ t ≤ T ) and payoff

δ(Ft − B(t)). Note that the latter payoff can be approximated arbitrarily closely by
butterfly spreads (we assumed options for all maturities and strikes to be liquid). The
corresponding trading strategy is to hold the portfolio until expiry, if the barrier is not
reached and to sell the portfolio at the first hitting time τ . This is in fact a perfect
replication strategy, which can be seen as follows: If the barrier is not reached, then
the payoff of the replicating portfolio equals the payoff of the call option and thus the
payoff of the DOC. On the other hand, with (12) we have

E

[
G(F0, 0) +

∫ T

0

1{Ft>B(t)}GF (Ft, t)dFt

∣∣∣∣∣Fτ
]

= E[(FT −K)+|Fτ ]

− E

[∫ T

0

1
2
δ(Ft −B(t)) G+

F (B(t), t)B(t)2σ2(B(t), t) dt

∣∣∣∣∣Fτ
∣∣∣∣∣ ,
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which can be reformulated as

G(F0, 0) +
∫ τ

0

1{Ft>B(t)}GF (Ft, t)dFt =

C(B(τ), τ ;K,T )− 1
2

G+
F (B(τ), τ)B(τ)2σ2(B(τ), τ)

−
∫ T

τ+

1
2

DC(B(τ), τ ;B(t), t) G+
F (B(t), t)B(t)2σ2(B(t), t) dt,

where we denoted the time-t-price of the payoff δ(FT −K) by DC(Ft, t;K,T ). Note
that at this point it is crucial that the prices of European options only depend on the
asset price at time τ in order to interpret the expectations as prices. Since

G(F0, 0) +
∫ τ

0

1{Ft>B(t)}GF (Ft, t)dFt

+
1
2

G+
F (B(τ), τ)B(τ)2σ2(B(τ), τ) = G(B(τ), τ)

and G(B(τ), τ) = 0 by definition, the value of the portfolio at time τ is 0. Thus we
can close the positions at zero cost and replicate the payoff of the DOC.
This replication strategy can be generalized to all kinds of terminal payoffs, barrier
regions, rebates and also to jump-diffusion processes. We refer to Andersen et al. [5]
for details.
An interesting difference to hedging strategies using the Put-Call-Symmetry is that
here not only the correctness, but also the strategy itself depends on the model. More
precisely: the strategy G+

F (B(t), t) has to be calculated using a model, while the strat-
egy outlined before was independent of the exact specification of the local volatility, as
long as Assumption 1 was fulfilled.

3.2 Model-dependent strategies: Approximations
The hedging strategies in the previous sections were perfect, if the model was correct;
i.e. the risk of the option could be completely eliminated. In particular, this gave fur-
ther insight into the underlying models and into relations between barrier options and
standard European options. However, the perfect replication could only be achieved at
the cost of more or less severe assumptions like liquidity of arbitrary standard Euro-
pean options, or restrictions on the model. In this section a different and in some sense
more pragmatic approach to semi-static hedging is discussed.
In the previous section we discussed an algorithm for a binomial model (although al-
ready Derman et al. generalized the approach to continuous time models). A key point
of this generalized D-E-K algorithm is that the barrier is hit exactly and that the prices
of the European options only depend on the asset price. This assumption is too restric-
tive, as for example stochastic volatility or price jumps cannot be accommodated in
this framework. Therefore, a lot of research in recent years has been devoted to gener-
alize the assumptions, but keeping the main idea of matching the barrier option value
at the first hitting time. Examples of such studies are Allen & Padovani [4], Fink [44],
Nalholm & Poulsen [63, 64], Siven & Poulsen [75], Giese & Maruhn [46], or Maruhn
& Sachs [58, 59].
To outline the basic ideas of these generalizations we focus again on a DOC. As in the
D-E-K algorithm, we take a long position in a call with the same maturity and strike
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as the DOC to cover the payoff at maturity in the case the barrier was not hit. Thus
the aim is to take positions in other options, such that the value of the portfolio is 0,
if the barrier is hit. Furthermore the additional options should not have any payoff, if
the asset price stays above the barrier during the lifetime of the barrier option. In a
binomial world this could be done by solving equation system (9). For general asset
price dynamics, this equation system has to be replaced by something more general
and the method of choice of the above cited studies is to consider different scenarios
for the portfolio value at the hitting time.
To fix ideas, let Θ denote the set of possible scenarios for the evolution of the barrier
option. Then an element θ ∈ Θ consists of

• the time when the barrier is hit (the hitting time)

• the undershoot of the asset price under the barrier

• the form of the implied volatility surface at the hitting time (i.e. the prices of the
used European options at the hitting time).

Thus we have to solve

Vθ ·w + Cθ(Sτθ , τθ;K,T ) = 0, θ ∈ Θ, (13)

where Vθ is the price vector of the options and Cθ(Sτθ , τθ;K,T ) is the price of the call
option at the hitting time τθ under scenario θ. Note that the asset price Sτθ ≤ B(τθ) is
allowed to undershoot the barrier.
As Θ is an infinite set, system (13) consists of a continuum of linear equations, which
is obviously not feasible.
Hence the set Θ has to be discretized to make (13) a finite-dimensional equation sys-
tem. This can be done by assuming a model and using Monte-Carlo simulation (see
e.g. [63, 64, 75, 46]) or by an a-priori choice of “reasonable” scenarios (e.g. [4, 59]).
The implied volatility surface at the hitting time, i.e. Vθ and Cθ, can be calculated
using a pre-specified model, or can be allowed to vary in some reasonable manner (e.g.
by allowing the parameters of the model to take a set of values [59]) in order to robus-
tify the hedge with respect to model risk.
After a discretization of (13), the number of equations, albeit finite, may be huge, if a
large number of different scenarios is considered. However, since the number of sce-
narios is directly linked to the error due to discretization, it should in fact be chosen
large in order to obtain robust results. As in general only a limited number of different
options is liquid, we cannot hope to be able to solve even a discretized version (13)
exactly. To overcome this problem, several approaches are feasible. Siven & Poulsen
[75] (see also Nalholm & Poulsen [63, 64]) propose to minimize a risk measure of
the hedging error under the budget condition that the price of the hedging portfolio is
smaller or equal to the one of the barrier option. Alternatively, Giese & Maruhn [46]
and Maruhn & Sachs [58, 59] suggest to modify the equation to an inequality, such
that the trading strategy becomes a super-replication and then minimize the cost of this
hedge.

3.3 Model-independent strategies: Robust strategies
In the preceding section the problem of robustifying the hedging strategies with respect
to model risk was already mentioned. Now let us sharpen the question: what can be
deduced on the price of the barrier option, if solely the no-arbitrage assumption is
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assumed? In particular, robust super- and sub-replicating strategies for barrier options
will be considered. Those strategies are called robust, because they over- (respectively
under-)hedge the barrier option in any frictionless (and in particular arbitrage-free)
market model. For barrier options, these were first developed by Brown et al. in [12]
(for some recent extensions see e.g. Cox & Oblój [29, 30]).
In order to outline the approach, assume again a forward market model and a constant
barrier on the forward price (the ideas can be extended to time-dependent barriers, but
the price intervals implied by the hedges might increase). Consider again the DOC
with strike K, maturity T and barrier B. If K ≥ B, then a sub-replicating portfolio for
the DOC is given by:

• a long position in a call with strike K and maturity T

• a short position in
γ̃ ∨K −K
γ̃ ∨K −B

puts with strike B and maturity T

• a short position in
K −B

γ̃ ∨K −B
calls with strike γ̃ ∨K,

where a ∨ b := max{a, b} and

γ̃ = argmaxβ>B
P(F0, B, 0, T )− C(F0, β, 0, T )

β −B
.

The corresponding trading strategy is to hold the portfolio until expiry, if the barrier is
not reached, and otherwise to unwind the positions at the first hitting time.
To show the sub-replication property of this semi-static strategy, let us again distinguish
the two cases:

• If the barrier is not hit, the payoff of the strategy is

(ST −K)+ − K −B
γ̃ ∨K −B

(ST − γ̃ ∨K)+ ≤ (ST −K)+,

where the right-hand side corresponds to the payoff of the DOC.

• If the barrier is hit at time τ , then Ft = B−x, where x ≥ 0 denotes the (possible)
undershoot. Hence for the value Vτ of the portfolio we find

Vτ = C(B − x, 0;K,T )− γ̃ ∨K −K
γ̃ ∨K −B

P(B − x, 0;B, T )

− K −B
γ̃ ∨K −B

C(B − x, 0; γ̃ ∨K,T )

≤ C(B − x, 0;K,T )− γ̃ ∨K −K
γ̃ ∨K −B

C(B − x, 0;B, T )

− K −B
γ̃ ∨K −B

C(B − x, 0; γ̃ ∨K,T )

≤ 0,

where the first inequality follows from the Put-Call Parity (3) and the second one
from the convexity (in K) of the call price (or alternatively by a direct look on
the final payoff of the last portfolio).

If K < B, then a sub-replicating portfolio for the DOC is given by:
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• a long position in a forward contract (with forward price F0)

• a long position in F0 −K bonds

• a short position in
B −K
γ −B

puts with maturity T and strike γ, where

γ = argminβ>B
P(S0, β, 0, T )

β −B
.

The trading strategy is the same as before and the subreplication property is again
shown by distinguishing two cases:

• If the barrier is not hit, we have for the payoff of the strategy

(ST − F0) + (F0 −K)− B −K
γ −B

(γ − ST )+ ≤ (ST −K),

where the right-hand side corresponds to the payoff of the DOC, since B > K.

• If the barrier is hit at time τ , then Ft = B−x. Thus the time-τ -value of the long
position in the forward is e−r(T−τ)(B − x− F0) and hence for Vτ we find

Vτ = e−r(T−τ)(B − x−K)− B −K
γ −B

P(e−(r−δ)(T−τ)(B − x), τ ; γ, T )

≤ e−r(T−τ)(B −K)− B −K
γ −B

P(e−(r−δ)(T−τ)B, τ ; γ, T )

≤ e−r(T−τ)(B −K)− B −K
γ −B

e−r(T−τ)(γ −B)

= 0,

where the first inequality follows from the monotonicity of the put price and the
second one from the Put-Call Parity (3).

Super-replicating portfolios are in both cases found by omitting the barrier feature in
the final payoff, i.e. they are given as the trivial super-hedges consisting of

• a long position in a call with maturity T and strike K, if K ≥ B

• a long position in a call with maturity T and strike B and in B −K binary calls
(a path-independent option with payoff I{ST≥B}) with strike B, if K < B.

Of course the sub- and super-hedging strategies also imply price bounds on the DOC:
If K ≥ B we have

C(S0, 0;K,T )− γ̃ ∨K −K
γ̃ ∨K −B

P(S0, 0;B, T )− K −B
γ̃ ∨K −B

C(S0, 0; γ̃ ∨K,T )

≤ DOC(S0, 0;K,T,B) ≤ C(S0, 0;K,T ),

while in the case K < B we have

e−rT (F0 −K)− B −K
γ −B

P(S0, 0; γ, T ) ≤ DOC(S0, 0;K,T,B)

≤ C(S0, 0;B, T ) + (B −K) BC(S0, 0;B, T ),
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where BC(St, t;B, T ) denotes the time-t-price of a binary call with strike B, and γ̃, γ
are as before.

The particular role of these sub- and super-replication strategies is identified in the
following result:

Theorem 3.2 (Brown et al. [12]) Assume that European options for all strikes with
maturity T are liquid and that there are no options available with maturity less than T .
Then the bounds on the price of the DOC are sharp. This means that there are forward
price processes, that are martingales and consistent with the prices of the European
options, for which the price of the DOC is given by the lower (resp. upper) bound. In
those market models the hedging strategies are perfect.

The proof of this theorem is closely related to the Skorokhod problem (see also e.g.
Oblój [67]).

4 Hedging strongly path-dependent options
In this section we consider strongly path-dependent options. We will in particular fo-
cus on lookback and Asian options. For lookback options we show how barrier options
(and the corresponding hedging strategies) can be used to hedge them. For Asian op-
tions robust hedging strategies are shown, which are related to hedging strategies for
basket options. A perfect (model-dependent) strategy for discretely sampled options
(DSO), which include Asian or cliquet options, will be outlined in Section 5.

4.1 Lookback options
Let us consider a floating strike lookback option (LO) with terminal payoff

p(ST ) = ST −mT ,

where mT = inf0≤s≤T Ss.
This kind of lookback option can be hedged robustly in terms of barrier options, as was
first observed by Carr et al. in [17] (see also Coleman et al. [27, 26] for static hedg-
ing strategies of similar insurance products). The hedging strategies are not exact, but
rather sub- and super-replications and hence impose bounds on the price of the look-
back option. Along the way to obtain the hedging strategies for the lookback option,
we will also deal with some other exotic options with gradually increasing complexity.

A roll-down call (RDC) with maturity T and strike K0 has two barriers H1 > H2. In
contrast to a double-barrier option, these two barriers are both below the initial asset
price and the strike. The payoff of the RDC is specified as follows: if neither of the
two barriers is hit, then the payoff is (ST − K0)+. If the nearer barrier (H1) is hit,
the strike of the option is rolled down to this barrier and the second barrier becomes
an out-barrier. So hitting H1 the RDC becomes a DOC with strike H1 and out-barrier
H2. For some more details concerning roll-down-calls and also roll-up-puts, see e.g.
Gastineau [45].
For the purpose of hedging the lookback option, the definition should be extended as
follows. Let H1 > H2 > . . . > Hn be a decreasing sequence of barriers all below the
current spot price and below the initial strike K0. If no barrier is hit, then the payoff
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is again (ST − K0)+. If the first barrier is hit, the strike rolls down to some level
K1 ∈ [H1,K0]. If the second barrier is hit, the strike rolls down to a certain strike
K2 ∈ [H2,K1]. This rolling down process is repeated until the asset price reaches (or
undershoots) Hn – the out-barrier. Thus hitting Hn knocks out the option.
The option defined above is called extended roll-down call (ERDC) and admits the
following decomposition in terms of DOC’s:

ERDC(S0, 0;K0, T, {Ki}1≤i≤n−1, {Hi}1≤i≤n) =
DOC(S0, 0;K0, T,H1)

+
n−1∑
i=1

(
DOC(S0, 0;Ki, T,Hi+1)−DOC(S0, 0;Ki, T,Hi)

)
. (14)

This portfolio indeed matches the payoff of the ERDC exactly, since if Hi+1 < mt ≤
Hi (recall mt = inf0≤s≤t Ss), the sum in (14) starts with i + 1 and the leading term
DOC(S0, 0;K0, T,H1) is replaced by DOC(St, t;Ki, T,Hi+1). Thus the ERDC can
be perfectly replicated by a finite number of barrier options.
Note that the representation above is model-independent and the semi-static hedge is
perfect in all frictionless models. Therefore, to build a semi-static hedging strategy for
ERDC’s using European options, the corresponding hedging strategies for DOC’s can
be used.
The next option we want to consider is the ratchet call. The ratchet call (RC) is an
ERDC with initial strike K0 and the strikes Ki equal the barrier levels Hi for 1 ≤ i ≤
n. Furthermore it cannot be knocked out. Thus the RC can be written as follows:

RC(S0, 0;K0, T, {Ki}1≤i≤n) =
ERDC(S0, 0;K0, T, {Ki}1≤i≤n−1, {Ki}1≤i≤n) + DIC(S0, 0;Kn, T,Kn),

where DIC stands for a down-and-in call.
Using the model-independent representation (14) of the ERCD, we find:

RC(S0,K0, 0, T, {Ki}1≤i≤n) =

DOC(S0, 0;K0, T,K1) +
n−1∑
i=1

(
DOC(S0, 0;Ki, T,Ki+1)−DOC(S0, 0;Ki, T,Ki)

)
+ DIC(S0, 0;Kn, T,Kn). (15)

Consider now the floating strike lookback call, defined at the beginning of the section.
Recall that the payoff at maturity T is given by ST −mT , where mT is the minimum
price of the asset up to T . This type of lookback calls can be seen as RC with a contin-
uum of roll-down barriers and strikes. Due to this continuum of roll-down barriers we
are not able to find an exact hedge, but we will give super- and sub-hedges for lookback
calls.
It is clear that an RC with K0 = S0 and Kn = 0 undervalues the LO, because the
strike of the lookback option at time t can only be below or equal the strike of the RC.
Therefore a model-independent sub-hedge for a LO is given by:

LO(S0, 0;T ) ≥ RC(S0, 0;S0, T, {Ki}1≤i≤n) =

DOC(S0, 0;S0, T,K1) +
n−1∑
i=1

(
DOC(S0, , 0;Ki, T,Ki+1)−DOC(S0, 0;Ki, T,Ki)

)
+ DIC(S0, 0;Kn, T,Kn). (16)

16



Again the barrier options might be hedged using the strategies of Section 3. Adding
more roll-down barriers obviously increases the quality of the sub-hedge, i.e. a tighter
bound is obtained.
In order to find a super-hedge for the LO, an ERDC withKi = Hi+1 for 1 ≤ i ≤ n and
Hn+1 = 0 can be used. Such an ERDC is a super-hedge, because its strike is below or
equal to the strike of the LO throughout the lifetime of the option. Hence we have:

LO(S0, 0;T ) ≤ ERDC(S0, 0;H1, T, {Hi+1}1≤i≤n, {Hi}1≤i≤n+1) =
DOC(S0, 0;H1, T,H1)

+
n∑
i=1

(
DOC(S0, 0;Hi+1, T,Hi+1)−DOC(S0, 0;Hi+1, T,Hi)

)
. (17)

Another portfolio having the same payoff as the one stated above is given by:

LO(S0, 0;T ) ≤
C(S0, 0;H1, T )− P(S0, 0;H1, T )

+
n−1∑
i=1

(
(Hi −Hi+1) DIB(S0, 0;Hi, T )

)
+Hn DIB(S0, 0;Hn, T ), (18)

where DIB is a down-and-in digital option, that pays 1 at expiry if the barrier was
hit before maturity. As for the sub-hedge the bounds become tighter the more Hi are
added.
Note that (16) as well as (17) and (18) are model-independent super- and sub-hedging
portfolios, respectively.
For fixed-strike lookback options one can use similar arguments and digital options to
replicate the payoff (see e.g. Buchen & Konstandatos [13]). Then again the hedging
strategies for weakly path-dependent options can be used.
It is worth noting that Hobson [48] found the best model-independent bounds for look-
back options. However, the ideas are similar to the ones used for the derivation of the
robust strategies for hedging barrier options and we omit the details here.

4.2 Asian options
Let K be the strike, {ti}1≤n the monitoring times and T the maturity of an Asian call
(AC). Then the payoff p of the AC at T is given by:

p(ST ) =

(
1
n

n∑
i=1

Sti −K

)+

=
1
n

(
n∑
i=1

Sti − nK

)+

. (19)

First the best (cheapest) static super-hedging strategy for arithmetic Asian options in-
volving one European call per monitoring time will be outlined. This strategy was
originally introduced by Simon et al. [74] for complete markets and later generalized
by Albrecher et al. [1] and Albrecher & Schoutens [3] (see also Vanmaele et al. [80]
and Chen et al [25]).
Taking the operator (·)+ inside the sum in (19) clearly gives an upper bound and hence
a static super-replication strategy for the AC, i.e.

(
n∑
i=1

Sti − nK)+ =
(

(St1 −K1) + . . .+ (Stn +Kn)
)+

≤
n∑
i=1

(Sti −Ki)+, (20)
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whenever
∑n
i=1Ki = nK. A simple first choice is Ki = K ∀ 1 ≤ i ≤ n. It is now

a natural question to ask for the optimal choice of the Ki’s that minimizes the price of
the vanilla call portfolio. It turns out that the concept of comonotonicity is a helpful
tool to this end:

Definition 4.1 (Stop-loss transform) LetFX(x) be the distribution function of a non-
negative random variable X . Then the stop-loss transform ΦFX (m) is defined by:

ΦFX (m) =
∫ ∞
m

(x−m) dFX(x) = E
[
(X −m)+

]
, m > 0.

Definition 4.2 (Comonotone random vector) Let (X1, X2, . . . , Xn) be a non-negative
random vector with marginal distribution functions FX1 , FX2 , . . . , FXn . The vector is
called comonotone, if the joint distribution function FX1,X2,...,Xn is given by

FX1,X2,...,Xn(x1, x2, . . . , xn) = min {FX1(x1), FX2(x2), . . . , FXn(xn)} .

Note that the right-hand side of the above equation is a copula (often called lower
Frechet-copula). For a general introduction to this field and proofs of the properties
used below see e.g. Dhaene et al. [40, 41].
To simplify notation, let us assume that the marginal distribution functions are strictly
increasing. Let (X1, . . . , Xn) be a non-negative random vector with marginal distri-
bution functions FXi and suppose (Y1, . . . , Yn) to be the comonotone vector with the
same marginal distributions. Setting SC =

∑n
i=1 Yi the following holds:

F−1
SC

(x) =
n∑
i=1

F−1
Xi

(x), 0 ≤ x ≤ 1. (21)

A crucial result is now the following:

ΦFSC (m) =
n∑
i=1

ΦFXi
(
F−1
Xi

(
FSC (m)

))
, m ≥ 0. (22)

Let now (Y1, . . . , Yn) be the comonotone vector with the marginal distribution func-
tions FSt1 , . . . , FStn and SC the sum of the Yi’s. The following inequality holds for
all
∑n
i=1Ki = nK:

ΦFSC (nK) = E

( n∑
i=1

Yi − nK

)+
 ≤ n∑

i=1

E
[
(Yi −Ki)+

]
=

n∑
i=1

ΦSti (Ki).

Using equation (22) and the relation ΦSti (Ki) = exp(rti) C(S0, 0;Ki, T ) we finally
find:

n∑
i=1

exp(rti) C(S0, 0;F−1
Sti

(
FSC (nK)

)
, T ) ≤

n∑
i=1

exp(rti) C(S0, 0;Ki, T ).

As a consequence, the optimal choice for the call strikes in (20) is:

Ki = F−1
Sti

(
FSC (nK)

)
.

18



Note that
n∑
i=1

F−1
Sti

(FSC (nK)) = F−1
SC

(FSC (nK)) = nK,

for all strictly increasing marginal cumulative distribution functions. Since the inverse
function of FSC is given by (21) and the right-hand side is strictly increasing in x, it is
computationally straight-forward to calculate FSC (nK). Thus this hedging strategy is
also simple to evaluate.

Numerical studies carried out in Albrecher et al. [1] for popular Lévy models and
Albrecher & Schoutens [3] for stochastic volatility models suggest that the obtained
bounds become tighter the deeper the options are in the money.
Of course the concept of comonotonicity can also be applied to other types of options,
for which the payoff depends on a sum of possibly dependent random variables, e.g.
basket options. For more details we refer to e.g. Hobson et al. [49, 50], or Chen
et al. [25]. In those papers in particular also the (realistic) case is considered, when
there are only finitely many strikes liquid in the market and one has to find the optimal
combination of those.
This last question and especially the problem of finding a sub-replicating portfolio
(which is associated to a lower price bound for the Asian option) was also addressed
in Albrecher et al. [2]. Lower price bounds on the AC price were first considered
by Curran [31] and Rogers & Shi [70], who pioneered a quite accurate method to
determine lower price bounds in the Black-Scholes model based on the following idea:
Jensen’s inequality gives(

1
n

n∑
i=1

Sti −K

)+

≥

(
1
n

n∑
i=1

E [Sti |Z]−K

)+

, (23)

where Z is an arbitrary random variable. In the Black-Scholes model the choice

Z =

(
n∏
i=1

Si

) 1
n

or variants thereof are very popular (because the distribution of the geometric mean is
explicitly available in the Black-Scholes-model) and leads to tight lower price bounds,
since the arithmetic and geometric average are strongly correlated (see e.g. Curran
[31], Rogers & Shi [70], Nielsen & Sandmann [66], Thompson [77], or Vanmaele et
al. [80]).
However, in contrast to upper price bounds based on the concept of comonotonic-
ity, this method in general does not imply a subreplication strategy. Nevertheless, in
Albrecher et al. [2] it is shown that using Z = St1 together with (21) yields a ro-
bust sub-replicating portfolio consisting of

∑n
i=1 e

−r(T−ti)/n calls with maturity t1
and strike nK/(

∑n
j=1 e

r(tj−t1)). The corresponding trading strategy is to do nothing,
when S1 ≤ nK/

∑n
i=1 e

r(ti−t1) or to buy 1
n

∑n
i=1 e

−r(T−ti) assets in the case that
S1 > nK/

∑n
i=1 e

r(ti−t1). The cost for this trade is exactly the payoff of the options
in the portfolio plus Ke−r(T−t1), which one should borrow. Then at each monitor-
ing time ti one should sell e−r(T−ti)/n assets and invest the gain in the riskless bank
account. At maturity T of the Asian call, the payoff of the trading strategy will be:(

1
n

n∑
i=1

Sti −K

)
I{Pn

i=1 e
r(ti−t1)St1>nK},
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which is clearly dominated by the payoff of the AC.

5 Case study: Model-dependent hedging of discretely
monitored options

In Section 2 a hedging portfolio for path-independent options was presented. As the
payoff of discretely monitored options depends only on a finite number of monitoring
times, such options can be understood as path-independent between the monitoring
times and it is possible to construct a semi-static hedging strategy with adaptations of
the portfolio only at the monitoring times. This kind of strategies was developed by
Carr & Wu [24] and Joshi [55] (see also Joshi [54]). Similar to Section 2 we assume
that standard European options are liquid for all strikes and monitoring times of the
DSO. However, to apply the techniques for the path-independent options we need the
extra assumption that the asset price process is Markovian. In particular, the prices of
standard European options may only depend on the current option price.
We consider a recursion algorithm, that can be used to price such options and to obtain
some Greeks (namely the Delta and the Gamma) of the exotic option through the corre-
sponding ones of plain vanilla options. This algorithm is based on the assumption that
the price of the exotic option depends in addition to the current price of the asset only
on some summary statistic of the historic asset prices at the monitoring times, which is
measurable with respect to the filtration generated by the asset price and updated only
at the monitoring times of the option. If more than one statistic is needed to describe
the price of the exotic option, the method is still feasible, but for notational convenience
we focus on the case with a single one.
As an illustrating example, an AC with strike K, monitoring times t1, . . . , tn and ma-
turity T = tn will be considered, but any other similar DSO’s (like e.g. cliquets, or
discretely monitored barrier and lookback options) could serve as well.
Let us denote the summary statistic of a generic DSO at time ti by Xi. Due to
the assumptions on X , Xi is Fti -measureable and Xt = Xi for ti ≤ t ≤ ti+1,
i = 0, 1, . . . , n− 1. Furthermore we assume that

Xi+1 = f(Xi, Sti+1), (24)

which is fulfilled for all DSO’s we are aware of.
For the AC, Xi is the running average Ai of the asset prices at time ti, i.e.

Xi := Ai =
1
i

i∑
j=1

Stj ∀ 1 ≤ i ≤ n.

Obviously here assumption (24) is fulfilled, since

Ai+1 =
i

i+ 1
Aj +

1
i+ 1

Sti+1 ∀ 1 ≤ i ≤ n− 1.

Due to (24) we have for the payoff of the generic DSO

p(ST ) = g(Xn−1, Stn)
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for some terminal payoff function g. Now, since Xn−1 is known at time tn−1 we can
use (1) to find

p(ST ) = g(Xn−1,K
∗) + gS(Xn−1,K

∗)(S −K∗) (25)

+
∫ ∞
K∗

gSS(Xn−1, x)(S − x)+ dx+
∫ K∗

0

gSS(Xn−1, x)(x− S)+ dx,

where gS and gSS denote the first and second derivative of g with respect to its second
argument. Note that, as in Section 2, the above describes a static hedge for the DSO at
the time tn−1 and therefore also its time-tn−1-value Vtn−1 is settled.

Vtn−1(Xtn−1 , Stn−1) = g(Xn−1,K
∗) + gS(Xn−1,K

∗)(Ftn−1 −K∗) (26)

+
∫ ∞
K∗

gSS(Xn−1, x) C(Stn−1 , tn−1;x, T ) dx

+
∫ K∗

0

gSS(Xn−1, x) P(Stn−1 , tn−1;x, T ) dx,

where Ftn−1 is the time-tn−1-forward price. For the AC we have:

p(ST ) =
(
n− 1
n

An−1 +
1
n
ST −K

)+

=
1
n

(
ST − (nK − (n− 1)An−1)

)+

.

and
Vtn−1(Xtn−1 , Stn−1) =

1
n

C
(
Stn−1 , tn−1;nK − (n− 1)An−1, T

)
,

where C(St, t;K,T ) := e−r(T−t)(Ft − K) for K < 0 with Ft denoting again the
forward price.
The formula (26) together with the Markov assumption implies that the value Vtn−1

of the DSO at time tn−1 only depends on Xtn−1 and Stn−1 and using again (24) we
actually have (with a slight abuse of notation)

Vtn−1(Xtn−1 , Stn−1) = Vtn−1(Xtn−2 , Stn−1).

Thus we can use the right-hand-side of (26) as the new payoff function of a (modified)
DSO and iterate the procedure until we reach the current time t0 and obtain a replicat-
ing portfolio. The associated hedging strategy is to hold this portfolio until expiry t1 of
the standard European options involved and invest the payoff of these options to form
the new replicating portfolio for the European-type option Vt2(X1, St2). This strategy
is of course self-financing.
Note that the replicating portfolio does not change until t1 and thus one can calculate
the price of the DSO, as well as the derivatives with respect to the asset price, with this
portfolio. Unfortunately the derivatives with respect to other parameters of the DSO
price in general cannot be calculated in the same manner, since changing those param-
eters would also have an effect on the portfolio.
It is worth noting, that the weights of the standard options in the hedging portfolio at
the current time t0 are determined by the Gamma of the DSO at time t1.
The derivation of this hedging strategy of course relied on the Markov assumption on
the model and the liquidity of arbitrary standard European options. However, even if
those assumptions may fail in practice, the approach gives an idea of how to obtain
approximative hedging strategies. More precisely: if neither the Markov assumption,
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nor the liquidity assumption is fulfilled, one might not be able to hedge the DSO per-
fectly. However, if alternatively a hedging strategy is chosen in order to minimize a
certain risk measure for the hedging error in (25), the semi-static strategy might still
outperform classical dynamic hedging strategies. Recently, this kind of approach was
applied e.g. by Becherer & Ward [7].

6 Conclusion and future research
Semi-static hedging strategies can be a valuable alternative to classic dynamic replica-
tion approaches in various situations, often leading to a better performance and reduced
model risk. Although over the last years various results have been obtained, there are
many open research questions. From a theoretical perspective, it might be interesting
to extend the discussed sharp price bounds to other classes of exotic options, like e.g.
cliquet options. Also, improved price bounds in terms of other liquid options beyond
standard European options are needed. It could be rewarding to investigate, which price
bounds can be obtained if American put options, variance/volatility swaps or credit de-
fault swaps are liquid. A recent paper in this direction is e.g. Carr & Schoutens [23].
Another line of extension is to model the vanilla option prices themselves too. Schweizer
& Wissel [73] recently found dynamics for option prices, that are consistent with the
no-arbitrage assumption and one might be able to use this kind of modelling to design
more advanced trading strategies with options.
Among further future research topics is the quantitative and systematic comparison of
hedging performance of static and dynamic strategies, including historical back-testing
of the strategies.
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Exotic Options and Advanced Lévy Models, pages 129–148. Wiley, Chichester,
2005.

[4] S. Allen and O. Padovani. Risk management using quasi-static hedging. Eco-
nomic Notes, 31:277–336, 2002.

[5] L. B. G. Andersen, J. Andreasen, and D. Eliezer. Static replication of barrier
options: some general results. Journal of Computational Finance, 5:1–25, 2002.

[6] J. Andreasen and P. Carr. Put call reversal. Working paper, New York University,
2002.

[7] D. Becherer and I. Ward. Optimal static hedging of equity & credit risk using
derivatives. Working Paper, Humboldt University, Berlin, 2008.

22



[8] H. Ben-Hameur, M. Breton, and P. François. A dynamic programming ap-
proach to price installment options. European Journal of Opertational Research,
169:667–676, 2006.

[9] D. Bertsimas and I. Popescu. On the relation between option and stock prices: a
convex optimization approach. Operations Research, 50(2):358–374, 2002.

[10] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal
of Political Economy, 81:637–654, 1973.

[11] D.T. Breeden and R. H. Litzenberger. Prices of state-contingent claims implicit
in option prices. Journal of Business, 51(4):621–651, 1978.

[12] H. Brown, D. Hobson, and L. C. G. Rogers. Robust hedging of barrier options.
Mathematical Finance, 11:285–314, 2001.

[13] P. W. Buchen and O. Konstandatos. A new method of pricing lookback options.
Mathematical Finance, 15:245–259, 2004.

[14] P. Carr and J. Bowie. Static simplicity. Risk, 7(8):45–50, 1994.

[15] P. Carr and A. Chou. Breaking barriers. Risk, 10:139–145, 1997.

[16] P. Carr and A. Chou. Hedging complex barrier options. Working Paper, New
York University, 2002.

[17] P. Carr, K. Ellis, and V. Gupta. Static hedging of exotic options. The Journal of
Finance, 53:1165–1190, 1998.

[18] P. Carr and R. Lee. Realized volatility and variance: Options via swaps. Risk,
2007.

[19] P. Carr and R. Lee. Hedging variance options on continuous semimartingales.
Finance and Stochastics, 2008. forthcoming.

[20] P. Carr and R. Lee. Put-call symmetry: Extensions and applications. Mathemati-
cal Fincane, 2008. forthcoming.

[21] P. Carr and D. Madan. A note on sufficient conditions for no arbitrage. Finance
Research Letters, 2:125–130, 2005.

[22] P. Carr and D. Madan. Towards a theory of volatility trading. In R. Jarrow, editor,
Risk Book on volatility. Risk, Berlin, 2006.

[23] P. Carr and W. Schoutens. Hedging under the Heston model with jump-to-default.
International Journal of Theoretical and Applied Finance, 11:403–414, 2008.

[24] P. Carr and L. Wu. Static hedging of standard options. Working Paper, Courant
Institute, New York University, 2002.

[25] X. Chen, G. Deelstra, J. Dhaene, and M. Vanmaele. Static super-replicating
strategies for a class of exotic options. Insurance: Mathematics and Economics,
42(3):1067–1085, 2008.

[26] T. F. Coleman, Y. Kim, Y. Li, and M. Patron. Robustly hedging variable annuities
with guarantees under jump and volatility risk. Journal of Risk and Insurance,
7:347–376, 2007.

23



[27] T. F. Coleman, Y. Li, and M. Patron. Hedging guarantees in variable annuities (un-
der both market and interest rate risk). Insurance: Mathematics and Economics,
38:215–228, 2006.

[28] L. Cousot. Conditions on option prices for absence of arbitrage and exact cali-
bration. Journal of Banking & Finance, 31:3377–3397, 1969.
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