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Summary

Background: The advances in single-cell technologies such as mass cytometry provides
increasing resolution of the complexity of cellular samples, allowing researchers to deeper
investigate and understand the cellular heterogeneity and possibly detect and discover
previously undetectable rare cell populations. The identification of rare cell populations
is of paramount importance for understanding the onset, progression and pathogenesis
of many diseases. However, their identification remains challenging due to the always
increasing dimensionality and throughput of the data generated.

Aim: This study aimed at implementing a straightforward approach that efficiently
supports a data analyst to identify disease-associated rare cell populations in large and
complex biological samples and within reasonable limits of time and computational in-
frastructure.

Methods: We proposed a novel computational framework called D-AREdevil (disease-
associated rare cells detection) for cytometry datasets. The main characteristic of our
computational framework is the combination of an anomaly detection algorithm (i.e.
LOF, or FiRE) that provides a continuous score for individual cells with one of the
best performing and fastest unsupervised clustering methods (i.e. FlowSOM). In our
approach, the LOF score serves to select a set of candidate cells belonging to one or more
subgroups of similar rare cell populations. Then, we tested these subgroups of rare cells
for association with a patient group, disease type, clinical outcome or other characteristic
of interest.

Results: We reported in this study the properties and implementation of D-AREdevil
and presented an evaluation of its performances and applications on three different test-
ing datasets based on mass cytometry data. We generated data mixed with one or more
known rare cell populations at varying frequencies (below 1%) and tested the ability of
our approach to identify those cells in order to bring them to the attention of the data
analyst. This is a key step in the process of finding cell subgroups that are associated
with a disease or outcome of interest, when their existence and identification is not pre-
viously known and has yet to be discovered.

Conclusions: We proposed a novel computational framework with demostrated good
sensitivity and precision in detecting target rare cell poopulations present at very low
frequencies in the total datasets (<1%).
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Résumé

Contexte: Les avancées en technologies sur cellules individuelles telles que la cytométrie
de masse offrent une meilleure résolution de la complexité des échantillons cellulaires, per-
mettant aux chercheurs d’étudier et de comprendre plus en profondeur l’hétérogénéité
cellulaire et éventuellement de détecter et découvrir des populations de cellules rares au-
paravant indétectables. L’identification de populations de cellules rares est importante
pour comprendre l’apparition, la progression et la pathogenèse de nombreuses maladies.
Cependant, leur identification reste difficile en raison de la haute dimensionnalité et du
débit toujours croissants de données générées.

But: Cette étude met en œuvre une approche simple et efficace pour identifier des
populations de cellules rares associées à une maladie dans des échantillons biologiques
vastes et complexes dans des limites de temps et d’infrastructure de calcul raisonnables.

Méthodes: Nous proposons un nouveau cadre de calcul appelé D-AREdevil (détec-
tion de cellules rares associées à une maladie) pour l’analyse de données de cytométrie
de masse. La principale caractéristique de notre cadre computationnel est la combi-
naison d’un algorithme de détection d’anomalies (LOF ou FiRE) qui fournit un score
continu pour chaque cellule avec l’une des méthodes de regroupement non-supervisé les
plus performantes et les plus rapides (FlowSOM). Dans notre approche, le score LOF
sert à sélectionner un ensemble de cellules candidates appartenant à un ou plusieurs
sous-groupes de populations de cellules rares similaires. Ensuite, nous testons ces sous-
groupes de cellules rares pour déterminer s’ils sont associées avec un groupe de patients,
un type de maladie, un résultat clinique ou une autre caractéristique d’intérêt.

Résultats: Dans cette étude, nous avons rapporté les propriétés et l’implémentation de
D-AREdevil, et présenté une évaluation de ses performances et applications sur trois jeux
de données différents de cytométrie de masse. Nous avons généré des données mélangées
contenant une ou plusieurs populations de cellules rares connues à des fréquences vari-
ables (inférieures à 1%) et nous avons testé la capacité de notre approche à identifier ces
cellules afin de les porter à l’attention de l’analyste. Il s’agit là d’une étape clé dans le
processus de recherche de sous-groupes de cellules qui sont associés à une maladie ou à
un résultat d’intérêt qui est encore inconnu.

Conclusions: Nous proposons un nouveau cadre de calcul avec une bonne sensibil-
ité et une bonne précision dans la détection de cellules rares qui sont présentes à de très
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basses fréquences dans l’ensemble des données (<1%).

4



Table of Abbreviations

AML acute myeloid leukemia

AUC area under the (ROC) curve

BMMCs bone marrow mononucler cells

CC consensus clustering

CyTOF cytometry by time-of-flight mass spectrometry

D-AREdevil disease-associated rare cell detection

FCS flow cytometry standard (file)

FDR false discovery rate

FiRE finder of rare entities

FP/FN false positive/negative

GC germinal center (B cells)

HIV human immunodeficiency virus

iNKT invariant natural killer T cells

k-NN k-nearest neighbors

LOF local outlier factor

LRD local reachability density

MRD minimal residual disease

PBMCs peripheral mononuclear cells

PPV positive predictive value

RD reachability distance

ROC receiver operating operating characteristic

scRNA-seq single-cell RNA-sequencing

SOM self-organizing map
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SW switched memory (B cells)

TP/TN true positive/negative

t-SNE t-distributed stochastic neighbor embedding

UMAP uniform manifold approximation and projection

US unswitched memory (B cells)
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Chapter 1

Introduction

1.1 An overview of flow and mass cytometry applica-

tions

Technological advances in single-cell measurements such as flow or mass cytometry
(CyTOF, cytometry by time of flight mass spectrometry) have allowed researchers to
achieve a deeper understanding of the cellular heterogeneity within populations that
were once assumed to be homogeneous [Spitzer and Nolan, 2016]. These technologies
are a staple of biological research with applications in immunology and cell biology, and
widely used in clinical diagnostics.

Flow cytometry uses fluorescence-labeled antibodies for the rapid and simultaneous
analysis of multiple parameters (> 20). Fluorescent molecules with different excitation
and emission properties are used in combinations to detect proteins on the surface or
within cells. When cells labeled with fluorescent molecules pass through the laser beam,
the peak of photon emission is recorded and the resulting fluorescence intensity is used
to determine to the protein abundance [Bashashati and Brinkman, 2009]. The passage
through the laser beam also provide information about cell size and shape. Moreover, this
technology allows the viable separation (or sorting) of purified cell populations [Perfetto
et al., 2004]. Although flow cytometry is in continue evolution permitting an increasing
number of parameters to be analyzed, fluorophore emission spectral overlap (cross-talk
between channels) remains a limitation to the number of parameters that can be recorded
[Palit et al., 2019].

Mass cytometry represents a next generation flow cytometry platform that uses
unique stable heavy-metal isotopes (i.e. rare earth metals) labeled antibodies, not nat-
urally found in cells. The use of these isotope-labeled antibodies results in very little
cross-talk between channels due to the different atomic weights that can be discriminate
with high accuracy and enabling the quantification of over 50 parameters at the single-cell
level [Bruggner et al., 2014a] (Figure 1). This high parameterization allows to identify
lineage or maturation states of cells of interests (by measuring levels of transmembrane
proteins expressed on the cell surface, called surface markers) and to study the cellular
behavior (e.g. cell-signaling receptors, phosphorylation of signaling proteins, receptor lig-
ands, adhesion molecules, transcription factors, cytokines production etc.) with several
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CHAPTER 1. INTRODUCTION

additional parameters. Consequently, this technology allows to significantly increase our
ability of characterize complex cellular populations. In addition, mass cytometry does
not restrict the investigation to a single level of cellular metabolism. Indeed, proteins
levels, posttranslational modifications and proteolysis products can be evaluated in a
single experiment [Spitzer and Nolan, 2016].

Figure 1: Mass cytometry uses antibodies labeled with isotopically enriched chelated metals
to detect and quantify surface and intracellular proteins. Labeled cells are diluted in water,
dispersed in droplets through a nebulizer and sent into an inductively-coupled argon plasma
(ICP) to be vaporized, atomized and ionized. This process leads to the formation of ion clouds
that contain the ions derived from single-cells metal-conjugated probes. Ions in ion clouds
are filtered by a quadrupole and sent to the time-of-flight (TOF) mass spectrometer (MS) that
separates ions on the basis of mass-to-charge ratio. Ions’ profile from each single cell are recorded
and compiled into flow cytometry standard (FCS) files [Bendall et al., 2011].

More recently, have been developed methods that control batch effects such as fluc-
tuations in instrument sensitivity or other experimental variation [Lai et al., 2015; Finck
et al., 2013]. In the first case, calibration beads are used as internal standards and spiked
in samples to correct for temporal variations in signal intensity: both for the variations
associated to different mass cytometer instruments and for the signal drift during acqui-
sition [Abdelrahman et al., 2010; Finck et al., 2013; Newell and Cheng, 2016]. In the
second case, mass-tag ’barcoding’ (generally through CD45 for its ubiquitous expression
on cell membrane) is used to simultaneously stain and acquire a large number of cellular
samples (up to 20) at the same time and eliminate technical variability in both sample
preparation and acquisition [Lai et al., 2015].

The main limitations of mass cytometry include the lower rate of cell acquisition
(about 500 cells/sec) compared to flow cytometry (tens of thousands cells/sec), the high
operating costs, the lower sensitivity for features expressed at very low levels and the
inability to sort cells, since they are destroyed during the acquisition process [Newell
and Cheng, 2016]. Despite that, CyTOF combines a high level of throughput, high
resolution (at the single-cell level) and high parametrization which provides the advantage
of capturing the complexity of cellular samples and the possibility of detecting and/or
discovering rare cell populations that would not necessarily be analyzed using other
single-cell technologies (e.g. single-cell RNA-sequencing).

A representative example highlighting the unique features of mass cytometry is pre-
sented by Sachs et al. [2014]. Application of the method led to the detection of rare
cell populations in the context of an acute myeloid leukemia (AML) study. The main
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CHAPTER 1. INTRODUCTION

challenge in finding stem cell abnormalities causing relapse in more than 60% of AML
patients is the identification and classification of rare and heterogeneous cell popula-
tions. Using mass cytometry, Sachs et al. identified NRAS-dependent signaling changes,
driven by mutations found in a large portion of those AML patients that present rare
and aggressive subtypes of leukemic cells. They showed that NRAS had cell-type-specific
effects, meaning that the same NRAS mutation could have different effects depending
on the leukemic subpopulation. The marker combinations required to identify these rare
stem cell populations and the examination of NRAS-dependent signaling needed more
parameters than flow cytometry machines were able to support [Insights powered by
mass cytometry, Fluidigm, 2020].

1.2 Relevance of rare cell populations identification

As previously mentioned, the comprehensive understanding of the samples’ cell hetero-
geneity via mass cytometry can reveal previously uncharacterized immune cell types,
help to understand their differentiation and function, and possibly provide new diag-
nostic biomarkers or novel therapeutic targets [De Biasi et al., 2017]. In particular, the
identification and characterization of rare cell populations is of paramount importance
for understanding the onset, progression and pathogenesis of diseases such as autoimmu-
nity, immune deficiencies or cancer [Schreier et al., 2018]. Often, the health and disease
status of the patients depend on minor group(s) of cells with frequencies largely below
1% of the total cell population [Proserpio and Lönnberg, 2016]. Consequently, the identi-
fication and quantification of rare cells can provide valuable information on the status of
the patient, thus improve medical diagnostics. The subsequent characterization of these
populations can improve not only the understanding of disease mechanisms, but also the
definition of novel therapeutic targets [De Biasi et al., 2017]. The next paragraphs briefly
discuss few examples.

Circulating endothelial cells (CECs, 0.01-0.001%) are mature endothelial cells found in
the blood stream. The physical barrier between blood and tissue that the endothelium
constitutes have important functional roles in trafficking regulation, coagulation and reg-
ulation of blood pressure. The detection of elevated CEC levels has been associated to
different cardiovascular diseases, offering a non-invasive option to diagnose and eventu-
ally prevent cardiovascular diseases [Farinacci et al., 2019].

Endothelial progenitor cells (EPCs, 0.01-0.001%) are a rare cell population that moves
from the bone marrow to the peripheral circulation to join sites of vessel injury in order
to contribute to vasculogenesis [Li et al., 2012]. EPCs have been associated to neovas-
cularization, thus defined as a biomarker of tumor angiogenesis [Farinacci et al., 2019;
Mancuso et al., 2003].

Circulating tumor cells (CTCs, 0.001%) are used as an outstanding tool to evaluate the
biology of metastatic cancers, monitor progression and are used as a relapse indicator
[Castro-Giner and Aceto, 2020]. For example, the detection of measurable ("minimal")
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CHAPTER 1. INTRODUCTION

residual disease (MRD) in AML patients posttherapy serves as a strong prognostic marker
for the increased risk of relapse and shorter survival. It can also be used to define risk-
stratification and assess treatment response [Ravandi et al., 2018].

Despite their low frequency, antigen-specific T and B cells are critical for the functional
immune response as they are at the basis of cellular and humoral immunological re-
sponses, respectively [Sweedler and Arriaga, 2007]. In particular, the humoral immune
response starts when antigen-reactive B cells encounter antigens in secondary lymphoid
tissues (i.e. lymph nodes, spleen) where the antigen is delivered to the B cell surface and
presented to T cells via the MHC class II [Cyster and Allen, 2019]. In the specific case of
a T-dependent immune response, rare antigen-engaged B cells have to come in contact
with rare cognate antigen-specific T cells. The interaction between B and CD4 helper
T cells induces B cell proliferation, differentiation and the formation of germinal centers
(GC) in the lymph nodes. In GCs the interaction between B cells and T follicular helper
(Tfh) cells, promote B cell proliferation, affinity maturation, isotype class-switching and
generation of long-lasting memory B cells and plasma cells. The importance of under-
standing B cells affinity maturation lies the capacity of responding to infections, vaccine
antigens and generation of autoantigens. Consequently, the quantification of the resulting
antigen-specific B cells allows to evaluate B cell compartment response when challenged
by infection or vaccination and can provide important information about past exposures.

Invariant natural killer T (iNKT) cells are a population of specialized T cells repre-
senting less than 0.1% of peripheral blood mononuclear cells (PBMCs). iNKT cells are
"innate-like" adaptive lymphocytes that have a crucial role in responding early during
an infection (within hours compared to adaptive lymphocytes responses that takes days)
[Krovi and Gapin, 2018]. These cells express both T lymphocytes (CD3, CD4, CD8) and
NK (CD16, CD56) markers. Moreover, they are mainly characterized by the expression
of invariant TCR (V α24 − Jα18), which does not interact with peptides presented by
MHC molecules but recognize self and foreign lipids as cognate antigen presented by
CD1d [Krovi and Gapin, 2018]. Despite their very low frequency in peripheral blood,
these cells have been shown to balance immune activation and tolerance through prolifer-
ation and release of pro-/anti-inflammatory cytokines. Thus, iNKT cells are involved in
the pathogenesis of many diseases, such as autoimmune and allergic diseases and cancer
[Brennan et al., 2013]. Defects in iNKT cells have been shown to predispose to autoim-
mune diseases due failure of immune regulation [Chen et al., 2015]. In particular, the
reduced frequency and impaired function of iNKT cells in patients with systemic lupus
erythematosus suggest that they play a protective role in autoimmunity [Hofmann et al.,
2013]. Moreover, a subset of iNKT cells expressing CD4 and HIV-1 co-receptors CCR5
and CXCR6 has been shown to be susceptible to infection by HIV, thus constituting
a reservoir for HIV [Motsinger et al., 2002]. In addition, a reduction in the number of
iNKT in patients with AML has been linked to a poor prognosis with lower overall sur-
vival [Najera Chuc et al., 2012].
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CHAPTER 1. INTRODUCTION

1.3 State-of-the-art methods in mass cytometry

1.3.1 The curse of dimensionality in manual gating

Traditional analysis of flow or mass cytometry data consists in manual gating, that
involves the inspection of a series of 2-dimensions (i.e. markers) at a time to reveal
information about cellular hierarchy and identify known cell populations. The major
limitations of this technique are the variations in populations definition, which are asso-
ciated with the level of expertise of the investigator, the difficulties in detecting unknown
cell populations and the time required to inspect p(p − 1)/2 (p, nb. markers) bi-plots.
Moreover, by considering one or two markers at a time, we can lose a lot of information.
Importantly, the mentioned limitations increase with the increasing of the dimensionality
of the data and has been referred as the "curse of dimensionality". These terms refer to
the difficulties associated with the exponential increase of space volume as the number
of features of a dataset increase [Newell and Cheng, 2016]. Even if each dimension is
considered only as a binary variable (i.e. cells considered positive or negative for each
marker, and not considering intermediate states), the number of potential states in terms
of markers combinations increases exponentially and rises to a number beyond a trillion
when 40 dimensions are considered [Newell and Cheng, 2016].

Automatic methods

During the past decade, many efforts have been made to develop methods for the auto-
matic and unbiased detection of cell populations in order to extract relevant information
from the increasing complexity of the datasets. Most of these methods aimed at detecting
already well characterized cell populations or discover unknown or not well-characterized
cell populations (i.e. non-canonical cell subsets) that could explain or describe differences
between control and disease samples.

The main reason for the development of automatic methods is the need of circumvent
the subjectivity of manual gating, which introduces variability in the data as well as a lack
of reproducibility. This is particularly important in the context of multi-center clinical
trials, where data analysis has to be standardized, reproducible and comparable over
time and centers [Finak et al., 2014] to be efficiently usable in all subsequent statistical
data analyses.

In response to these needs, the FlowCAP consortium (Flow Cytometry: critical
assessment of population identification methods) took the initiative to promote the de-
velopment of computational methods for the automatic identification of cell populations.
The first computational tools were designed for the automated gating of cell populations
that aimed at support the application of similar operations to a collection of samples.
These methods include flowCore [Hahne et al., 2009] and flowViz [Sarkar et al., 2008]
(an others) that have been included in the Opencyto framework (a Bioconductor infras-
tructure), which extends these flow cytometry packages. Briefly, Opencyto implements
a hierarchical automated gating pipeline for data-driven automated gating using a so-
called gating template. These templates are panel-specific and allow to standardize the
analyses of experiments with the same panel. However, it has been shown that such auto-
mated analysis has limitations in accurately identifying and quantifying rare cell subsets
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CHAPTER 1. INTRODUCTION

[Hunter-Schlichting et al., 2020]. Although the increased automation of the gating anal-
ysis process, these algorithms-assisted methods require some kind of user information
such as a pre-defined gating hierarchy (e.g. the gating template in Opencyto).

The efforts on automatic gating approaches were followed by a rapid growth in the
number of supervised and unsupervised clustering and other computational methods for
flow cytometry data analysis, most of which are currently applied to mass cytometry
datasets as well. The methods described and discussed in the following sections include
those that do not require prior information about the data, but identify cellular groups
(i.e. cluster) in an agnostic manner in the high-dimensional space. The advantage of
these methods is their unbiased and exhaustive way of analyzing the data and identify
novel cellular phenotypes in a data-driven manner.

1.3.2 Unsupervised methods

The unsupervised clustering methods aim at organize single cells into consistent groups,
called clusters, based on features similarities (i.e. markers expression profiles). Com-
pared to single-cell RNA-sequencing (scRNA-seq) methods that processes between tens
of thousands to hundreds of thousands of cells and deals with an extremely high dimen-
sionality of the data (p >> N , p = features, N = number of observations), the algorithms
applied to cytometry data have to manage up to millions of cells but with reduced di-
mensionality. Consequently, most of the methods for cytometry data do not require a
dimension reduction step and generally can perform calculations on the original high-
dimensional space. However, calculations on such a large number of observations require
greater efficiency (in terms of runtime) compared to scRNA-seq data analysis methods.
Contrary to scRNA-seq, cytometry data analysis is not faced to technical variation such
as dropout, strong batch effect or to the large number of different data generation pro-
tocols available, which have big effects on the data characteristics [Duò et al., 2018].
As expected, the different nature of these single-cell measurements has an impact on
the data analysis. Indeed, in Duò et al. [2018] the authors showed that unsupervised
clustering methods specifically designed for scRNA-seq methods (i.e. SC3, Seurat) have
overall best performance compared to methods developed for other single-cell data (i.e.
FlowSOM) and more general approaches (i.e. hierarchical clustering, k-means).

In the context of mass cytometry, there have been a few studies [Weber and Robin-
son, 2016; Melchiotti et al., 2017; Liu et al., 2019; Saeys et al., 2016] comparing the
performance of clustering methods in terms of accuracy, efficiency and stability, and/or
summarizing their features. In the next chapters, we recapped and discussed the most
used methods in mass cytometry and their applicability for rare cell populations detection
based on literature or direct experience, with a major focus on unsupervised techniques
since they allow for the discovery of not-previously described cell populations [Weber and
Robinson, 2016]. Indeed, the separation of cells into clusters is exclusively based on cells’
features profile, meaning that no prior knowledges are required to identify aberrations of
the immune system.

As our interest is focused on methods aiming at detecting rare cell populations rather
than major cell populations, we selected and discussed some of the best performing
algorithms available [Weber and Robinson, 2016] for flow and mass cytometry and their
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CHAPTER 1. INTRODUCTION

ranking in terms of performance (mean F1 score and runtime) (see Table 1). The F1 score
is generally used to evaluate classification systems by considering both precision (number
of true positive divided by the number of predicted positive results, i.e. TP/(TP +FP ),
or positive predictive value) and recall (number of true positive divided by the number
of relevant items, i.e. TP/(TP + FN)). The traditional F1 score is the harmonic mean
of precision and recall:

F1 =
2 · precision · recall
precision+ recall

, (1.1)

Note, the dataset [Naim et al., 2014; Mosmann et al., 2014] used for the evaluation
of the different methods in Weber and Robinson [2016] is a simple case analysis. Indeed,
only one healthy sample was analyzed, which is not representative of experimental design
complexity and the number of samples measured in disease studies. Moreover, the target
rare cells are mostly localized in a distinct part of the t-SNE plot (Figure 2), suggesting
a unique expression profile of the rare population compared to the rest of the sample.

Figure 2: Left-plot: performance (F1 score) vs. runtime of unsupervised clustering methods for
the detection of rare cell populations (adapted from Weber and Robinson [2016]). Green circles
show the top-three methods for rare cell detection. Red circle shows a method designed for rare
cells identification. Right-plot: t-SNE representation of Mosmann dataset. Grey dots represent
396’460 PBMCs and red dots represent 109 manually gated Flu-specific CD4 T cells (0.03%).

Consequently, the main limitations of the recent publications dedicated to the detec-
tion of rare cell populations in high-throughput single-cell data is that they were tested
on datasets that do not accurately reflect the complexity of physiological cellular sam-
ples in terms of variable cell phenotypes, heterogeneous population compositions and the
lower frequencies (<1%) of rare cells to be detected [Weber and Robinson, 2016; Jindal
et al., 2018b].

Unsupervised clustering methods evaluation in Weber and Robinson [2016] showed
that methods such as FlowSOM, X-shift [Samusik et al., 2016] or Rclusterpp [Linderman
et al., 2013], which were not specifically designed for the detection of rare cell subsets,
have the best performance [Weber and Robinson, 2016] (Figure 2). However, both X-shift
and Rclusterpp require much higher computer power to complete an analysis. Typically,
they can only be used with machines equipped with multiple processor cores and Rclus-
terpp in addition usually requires also subsampling to reduce the number of cells actually
used in one run. Such a sub-sampling seems suited for detection of major populations but
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Ranking

Method Description Major Rare

FlowSOMM Self-organizing map & consensus clustering 1 3
flowMeansM k-means based 2 7
Xshift∗∗,M weighted kNN density estimation 3 1

PhenoGraphM kNN graph 6 4
ClusterX∗,M density-based clustering 4 6

Rclusterpp∗∗,M large-scale hierarchical clustering 5 2
SWIFT∗,∗∗,R gaussian mixture models by expectation maximization 7 5

Table 1: Ranking of best performing clustering methods (accordingly to [Weber and Robinson,
2016] for both main and rare cell populations identification. Performance was established in
terms of mean F1 score and runtime. Some methods require subsampling* and/or a multicore
processor**. Methods designed for mainM or rareR populations detection

is problematic when one is searching for rare cells as their identification is uncertain even
in the whole dataset. Surprisingly, SWIFT (scalable Weighted Iterative Flow-clustering
Technique) [Naim et al., 2014; Mosmann et al., 2014] that was designed for rare cell pop-
ulations detection was found to be much less performant in terms of F1 score (despite
its very short runtime) compared to the three previously mentioned methods in the data
used by the authors.

FlowSOM

FlowSOM [Van Gassen et al., 2015] is a powerful tool originally designed for flow cytom-
etry data analysis but now widely used in mass cytometry data analysis. It has been
integrated into different analysis pipelines [Nowicka et al., 2017; Chen et al., 2016; Weber
et al., 2019] given its accuracy and rapidity in identifying both major and rare cell pop-
ulations [Weber and Robinson, 2016; Liu et al., 2019]. The FlowSOM algorithm consists
in the construction of a self-organizing map (SOM) [Kohonen, 1990], where the points
(i.e. single cells) are mapped to nodes (also called codes) of a 2-dimensional SOM-grid
(typically a grid of 10x10 units, each interpreted later as a cluster of similar cells thus
calling "cell types") [Van Gassen et al., 2015].

The SOM aims at reproducing the topology of the data in the high-dimensional space
by maintaining the same neighbors, and this starting from a distance matrix [Wehrens,
2007]. However, the concept of distances in SOM is different and cannot be interpreted
as estimates of the true distances between points but as relatedness when mapped to the
same node in the grid. Indeed, SOM focuses on the largest similarities between points
rather than dissimilarities. This is of great advantage in the context of large single cell
data sets because it ensures the grouping of cells with very similar profiles.
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Figure 3: Scheme of SOM learning process: The 2 -dimensional grid of nodes (representing
neurons of an artificial neural network) is connected to input data (x ) by local coordinates (ij)
and weights (w, codebook vectors). The closest point to the randomly selected input point
is called best matching unit (BMU). Nearest points of BMU are identified by a neighborhood
function and weights for these nodes are updated at each iteration t [Friedel and Iwashita, 2013].

The mapping of cells to the SOM nodes is an iterative process that starts by a training
step, which consists in building the map using input information (Figure 3). The training
begins by the random selection of k points in the dataset that are assigned to the k
nodes (corresponding to the number of clusters, by default 100). This represents the
assignment of the so-called codebook vector (vector of weights, which are the positions
in the input space) to every node that defines the pattern or prototype of the node. At
each iteration, a cell is randomly selected and the nearest node (i.e. best matching unit
or BMU) to that cell is identified as well as nearest nodes using the Chebyshev distance
(called neighborhood function). At this point, the selected node (and the corresponding
neighbors with less extent) are updated to become more similar to the selected cell
according to the learning rate, which decreases at each iteration until convergence of the
map. The weight (w) for node j are updated at each iteration as follow (2):

ωt+1(j) = ωt(j) + εt × ht(i, jBMU )× (x− ωt(j)), (1.2)

where ε corresponds to the learning rate (typically with a value of 0.05), h represents the
neighborhood function around the BMU node (best matching unit) and x is the target
input vector.

At the end of the process, each cell in the dataset is assigned to one of the hundred
nodes corresponding to the cluster label of the final clustering. In this way, we identify
a much larger number of clusters than the expected number of cell types. By adding
a step of consensus clustering (CC) on the hundred nodes, we obtain a smaller number
of (meta-)clusters. The FlowSOM package provides as clustering method the consensus
hierarchical clustering (metaClustering_consensus function), which is iteratively applied
to a subset of nodes. The process by which the subsampled nodes are partitioned into
one of the numbers of meta-clusters is repeated hundred times in order to calculate a
consensus rate between all pairs of nodes [S, enbabaoğlu et al., 2014]. The resampling
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procedure simulates perturbations in the data and is used to assesses the stability of
the meta-clusters. Consensus rate is defined as the proportion of pairs of nodes that
are grouped together in several subsamples, which represents the agreement among the
multiple iterations.

diffcyt

The diffcyt [Weber et al., 2019] framework incorporates FlowSOM for the differential
discovery analyses in high-dimensional cytometry data. The authors proposed the com-
bination of high-resolution clustering, which consists in the definition of an extremely
high number of clusters (i.e. from 400 to 1600 clusters tested) by increasing the total
size of the 2d-grid of nodes in the hope that one of these clusters coincides with the
cells to be discovered, and the application of statistical approaches, originally developed
for transcriptomic applications (e.g. edgeR [Robinson et al., 2010], voom [Law et al.,
2014]) to find those clusters that are differentially abundant between study groups. To
test the capacity of the diffcyt approach in detecting rare cell populations the authors
used in silico spiked-in semi-simulated datasets. They used mass cytometry bone marrow
mononuclear cells (BMMCs) from healthy donors that they split into two parts; one half
was used to define the healthy group of donors and the second half to simulate minimal
residual disease (MRD) in acute myeloid leukemia (AML) patients. For the MRD group
they added real experimental AML blast cells at different frequencies (5%, 1% and 0.1%),
which represented the ground truth signal to be detected. In order to test the capacity
of the approach in detecting the target rare cells they defined and tested 400 clusters
for differential abundance between the two groups and used ROC curves to assess the
quality of this detection method. They showed that the diffcyt method succeeded in de-
tecting the blast cells as a cell population specific for the MRD group, and also that their
detection is more difficult at low frequency. In particular, the authors reported very low
precision (PPV = 0.25) in detecting AML blast cells at 0.1%, meaning that the relevant
cluster was strongly "contaminated" by non-blast cells, which hinder the identification of
their biological role. At the higher tested frequencies of 5% and 1%, the AML blast cells
were split into different clusters, meaning that the use of FlowSOM does not guarantees
the identification of a unique cluster containing the target cells. An additional difficulty
of the approach is that one has to adapt the number of clusters used to the data, and
there is no simple method to know how to do so.

cydar

Cydar [Samusik et al., 2016] represents a computational approach that aimed at detect-
ing differentially abundant cell populations by assigning cells to overlapping hyperspheres
(spheres in the high-dimensional space, p-dim hyperspheres where p is the number of fea-
tures) that are then tested for significant differences between study groups and controlled
for the so-called spatial false discovery rate. Hyperspheres are centered on an existing
cell and its radius is 0.5

√
(p) to balance the increasing sparsity of the data as the number

of features increases. Then, cells are assigned to the hyperspheres (or clusters for analogy
to the other methods) within the specified radius and then the hyperspheres are tested
for significant differences between study groups. The testing is performed using nega-
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tive binomial models (implemented in the edgeR package from Bioconductor originally
designed for bulk transcriptomic data) that account for the discrete nature of the cell
counts per hypersphere. The resulting p-values per hypersphere are then used to control
the FDR.

Importantly, edgeR assumes that input counts are filtered from low average counts
hyperspheres. This because these hyperspheres do not provide enough evidence to re-
ject the null hypothesis (H0: there is no change in the average counts between study
groups within each hypersphere) even if they contain consistent changes in abundance.
Therefore, the removal of low average counts hyperspheres reduces the total number of
tests and the severity of multiple test correcting. The discard of such low average counts
hyperspheres can potentially have negative effect on the capacity of detecting rare cell
populations. Since there is no power to detect group imbalances in hyperspheres with
low average counts, these are not considered in the tests, thus reducing the severity
of the necessary multiple testing correction. The discard of such low average counts
hyperspheres can potentially preclude the detection of some rare cell populations.

1.3.3 Supervised methods

The second groups of algorithms include supervised machine learning clustering methods,
which are based on biological or clinical information (i.e. external variables) describing
the study groups of a dataset. These methods focus on the identification of cellular corre-
lates of an independent biological variable (e.g. biological condition or clinical outcome)
[Aghaeepour et al., 2016]. With that intent, these methods rely on annotated training
sets as input in order to identify patterns associated with groups of cells that at best pre-
dict a sample’s group (or end-point of interest). Generally, supervised methods require
different steps of analysis; firstly, markers’ measurements for each cell events (i.e. depen-
dent variable) are used to assign cells to a cell type, then each cell type is tested – based
on its features – for an association with the external variable. In this way, markers are
used to train a model on the basis of a test dataset, in which it learns and identifies pat-
terns in the data that are used to define groups of cells, which are subsequently tested for
association. The resulting model provides information about the data (e.g. the cell types
that are associated with an external variable) that can be further investigated. These
types of analysis approach seek at stratifying cell sub-populations whose abundance or
behavior is correlated with an end-point of interest. For instance, the identification of cell
populations whose frequency predicts a disease status, the effectiveness of a treatment or
can predict patient outcome and survival. Currently, supervised methods are a minority
compared unsupervised techniques. The most famous methods include Citrus, which is
not adapted for rare cell detection (discussed below) and CellCNN, which is the only
supervised method designed for the detection of rare disease-associated cell subsets.

Citrus

Citrus [Bruggner et al., 2014b] is an automated method for the detection of stratifying
cellular sub-populations, which combines unsupervised clustering and machine learning
supervised association testing. Clusters of cells are identified using agglomerative hi-
erarchical clustering on down-sampled data (fixed number of cells per sample). Data
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down-sampling is required (by default 5’000 cells per sample) due to the runtime limita-
tion associated to performing hierarchical clustering, which represent a major limitation
for the identification of rare cell populations. After that, clusters are selected based on
a minimum frequency criterion and examined for subsequent analysis. To identify clus-
ters with stratifying signals Citrus uses regularized regression or classification models to
selected features that are predictive and thus associated to an outcome of interest, these
features include cluster abundance (frequency) or median marker expression. In princi-
ple, the use of agglomerative hierarchical clustering could be a valid option to identify
rare cell. Populations at the lower levels of the hierarchy. However, the necessity of
down-sampling the data due to the computational limitation of the algorithm consider-
ably reduces the chances that the randomly selected down-samples contain (enough) rare
cell events from the same population to be identified.

CellCNN

CellCNN [Arvaniti and Claassen, 2017] is a supervised method specifically designed for
the detection (and/or discovery) of rare cell populations that are associated with disease
status. It uses convolutional neural networks to identify cell subsets that differ in terms
of frequency between study groups without considering all the input features but using
filters that correspond to molecular profiles (i.e. combinations of markers expression
that do not necessarily correspond to known cell populations). CellCNN has been shown
to have overall comparable performance with the diffcyt approach in the detection of
differentially abundant rare cell populations.
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1.4 Anomaly detection algorithms

1.4.1 General introduction

Probably the first definition of anomaly was given by Grubbs (1969): "An outlying ob-
servation, or outlier, is one that appears to deviate markedly from other members of
the sample in which it occurs". Anomaly detection algorithms are used within diverse
research areas and have different application domains for the identification of observa-
tions that deviate from the norm, so they are by definition "rare" compared to "normal
instances". Many of the algorithms were specifically developed for certain applications,
while other are more generic. Historically, one the main reason for identifying anomalies
(or outliers) was their removal because of algorithms’ sensitivity to these observations
in the data [Goldstein and Uchida, 2016a]. Generally, anomalies are divided into global
anomalies (formally called collective anomalies) and local anomalies (formally called con-
textual anomalies); Figure 4 gives a schematic representation of the difference between
the two concepts [Goldstein and Uchida, 2016a]. Observations that are very different
from all other observations in the dataset are considered global anomalies. These could
for example be due to a defective measurement or an unexpected contamination of the
objects under study. Therefore they are frequently relatively easy to identify, at least in
principle. While local anomalies are considered as such only when a close-by neighbor-
hood of the data is considered.

������
�����

Figure 4: Simple schematic 2-dimensional example showing the difference between global and
local anomalies.

The main challenge of anomaly detection includes the definition of normal regions,
since boundaries between normality and anomaly is often not well-defined. An additional
challange is the distinction of subgroups caused by measurement noise in the data from
authentic subgroups with bona-fide reproducible anomalous characteristics. The applica-
tions of anomaly detection algorithms are wide and typically include intrusion detection
(e.g. network traffic and server applications), fraud detection (e.g. financial transactions,
credit card payments, insurance claim, insider trading detection), data leakage preven-
tion (e.g. sensitive information protection) or industrial damage detection (e.g. faults
in mechanical units or structural detects) [Goldstein and Uchida, 2016a]. In the medical
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context it comprises patient monitoring (e.g. ECG or EEG signals) or image analysis
(e.g. computed tomography), where the cost of wrongly classifying an anomaly as normal
can be very high.

1.4.2 Classification of anomaly detection methods

Anomalies detection methods are divided into two major groups: supervised and unsu-
pervised Methods (see Figure 5). The first group consists of methods that use a set of
labeled observations to identifiy the features that can distinguish normal from anomalous
observations. This group also include semi-supervised methods, where the labels of only
normal instances are provided. The identification of such features includes the training
of a model (i.e. classifier) that allows then to classify new unlabeled observations. The
second group of methods includes unsupervised anomaly detection algorithms are used
to detect and/or discover rare observations of unknown nature. In this case, the input
of the algorithm consists in unlabeled data. Unsupervised anomaly detection techniques
generally compute an anomaly score (or degree of anomaly, that is a continuous score)
for each observation in the dataset.

Figure 5: Anomaly detection categories: a) supervised (and semi-supervised) techniques uses
both normal and anomalous labeled observations (fully labeled) or only nomal labeled obser-
vation to train the model, b) unsupervised techniques does not need any labels, indeed these
methods are uniquely based on the intrinsic properties of the data.

Since this study is focusing on the detection and eventually discovery of rare observa-
tions in cytometry data, we focused our attention uniquely on unsupervised anomaly de-
tection algorithms. Figure 6 summarizes the three main groups of unsupervised anomaly
detection principles: nearest-neighbors based, clustering-based and statistical methods,
more closely described in the following paragraphs.
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Unsupervised anomaly detection algorithms
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Figure 6: Overview of unsupervised anomaly detection algorithms. Local methods from nearest-
neighbor based algorithms include LOF (local outlier factor, from dbscan package allows entering
arguments of kNN algorithm), COF (connectivity-based outlier factor), INFLO (influenced out-
lierness), LoOP (local outlier probability), LOCI (local correlation integral). The additional kNN
methods from DDoutlier package in R include the KNN-AGG (aggregated k-nearest neighbors
distance over different ks), KNN-IN (n-degree for observations in a k-nearest neighbors graph)
and KNN-SUM (Sum of distance to k-nearest neighbors).

Nearest-neighbor (NN) methods are again divided into two groups depending on
the targeted anomalies: global or local. NN methods that target global anomalies include
those using a distance (or similarity) measure to identify the k th-NN (a single observation)
or average distance to all k -NNs [Angiulli and Pizzuti, 2002] . NN methods targeting local
anomalies use measures of relative density instead of a distance measure. Density-based
anomaly detection techniques estimate the density around each observation by taking in
consideration a neighborhood of the data points. An observation in a low-density region
is considered anomalous, while an observation in a high-density region is considered as
normal. The distinction between normal and anomalous observation is determined based
on a score that describes the density in its neighborhood. The neighborhood is com-
posed by the k nearest-neighbors respectively to the hypersphere centered at the given
observation and with radius given by the distance to the k th nearest-neighbor. This dis-
tance represents an estimate of the inverse density in this space; the higher the distance
between the given observation and its k nearest-neighbors the lower the density around
the given point is. Then, the estimated densities are used to compute the anomaly score,
that consists in the ratio of the density of a given observation and its neighborhood.
The second group of unsupervised anomaly detection techniques consists of clustering-
based methods. These methods are divided into different categories depending on the
type of assumption that the algorithm is based on. Clustering algorithms that do not
force all observation to belong to a cluster (e.g. DBSCAN [Ester, 1996]), consider obser-
vations not assigned to a cluster as anomalous. However, these methods are designed to
optimize the quality of the clusters and not to find anomalies. Other methods calculate
distances to clusters’ centroids to obtain an anomaly score, which assumption is based
on the fact that anomalies are far away from the closest cluster centroid. Finally, there
are clustering methods that consider as anomalous any small cluster.
The third main group of unsupervised anomaly detection algorithms include statisti-
cal based methods. This group of methods is probably the less adapted to biological
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applications given the requirement of assumptions on data distribution. In few words,
statistical techniques fit a model that is based on normal behavior of the data and then
preform statistical inference to evaluate if an observation belongs or not to the defined
model.

In [Goldstein and Uchida 2016], the authors have shown that NN-based algorithm
have overall better performance compared to clustering-based algorithms, especially for
local anomalies identification. These methods were tested on ten datasets of varying
dimensions and frequencies of rare instances. The tested datasets include breast cancer
images (separate cancer to healthy patients, Nnormal = 367, Nrare = 10, p = 30), pen-
based recognition of handwritten text (digits from different writers, few digits kept at low
frequencies, Nnormal = 6724, Nrare = 10, p = 16), speech accent data (normal consists
in American accent and anomalies other accents, Nnormal = 3686, Nrare = 61, p =
400), satellite images (Nnormal = 5100, Nrare = 75, p = 36), thyroid disease features
(distinguish healthy non-thyroid and thyroid patients, Nnormal = 6916, Nrare = 250, p
= 21), detection of abnormal radiator flow in a NASA space shuttle (Nnormal = 46464,
Nrare = 878, p = 9), object images taken under different light conditions and viewing
angles shuttle (Nnormal = 50000, Nrare = 1508, p = 27), and intrusion detection of a
computer network environment shuttle (Nnormal = 620098, Nrare = 1052, p = 38). In
general, Goldstein and Uchida 2016 showed that the performance of NN-based methods
was better in most of the tested datasets compared to clustering-basted algorithms.
They also observed a much higher stability of the results even when a not-perfect k
is selected, probably due to the non-deterministic nature of the tested clustering-based
methods. The advantage of clustering-based methods is the lower computation time.
Consequently, the authors recommend the use of NN-based methods if precision is a more
important issue than computation time. As mentioned, NN-based algorithms have higher
computation time. In fact, the computation complexity of finding the nearest neighbors is
O(n2), while the remaining computations can be neglected (< 1% of runtime) [Goldstein
and Uchida 2016]. According to their analysis, the authors concluded that among the
NN-based methods, the best performing algorithm for local anomaly detection was the
local outlier factor (LOF) when the target rare observations involve local anomalies. At
present, to the best of our knowledge, there is no publicly available benchmark study
testing local anomaly detection algorithms on single-cell data such as cytometry data,
consequently part of this study involves evaluation of anomaly detection methods on these
data. Based on the remarkable paper reported above [Goldstein and Uchida 2016], we
decided to limit the study to NN-based algorithms, and, for feasibility, we only considered
methods that were readily available in R software packages. The advantage of NN-
based over statistical-based methods is the absence of any assumption about the data
(e.g. distribution, independency of variables) that statistical methods require. The only
assumption of NN-based methods is that normal observations are found in dense regions,
while anomalies occur in low density regions, as previously described. In particular,
density-based approaches have the advantage of considering the different densities of the
neighborhoods in the data.
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1.4.3 Local outlier factor

Local outlier factor (or LOF) [Breunig et al., 2000] is the most popular anomaly detection
algorithm and the first introducing the concept of local anomaly.
Formal definition of local outliers - the basic idea of local outlier factor is that being
outlier is not a binary property, instead each observation has an outlier factor that has
a degree of being outlier.
LOF is based on the concept of local density that is defined by the number of nearest
neighbors (k). Comparing local density of a data point x to the local densities of its
k -nearest neighbors (k -NN) allows identifying regions of similar and lower density, thus
outliers.
The distance of a data point x to the k -NN (k− distance(x)) is the distance d(x, o) and
includes all data points that are at the same distance, consequently could include more
data points than the k value (Figure 7). This set of points at the same distance from
x are notated as Nk(x). The k − distance(x) is used to define the reachability distance
(RD) (Equation 1.3). The RD of x from o is the true distance (d(x, o)) of the object o
but at least the k − distance(o). In other words, if the data point o is far away from x,
then the RD is the actual distance between the two data points, if o is "sufficiently" close
to x, then RD is replaced by the k− distance(o). This smoothing effect allows to reduce
fluctuations in results and is controlled by the number of designated ks; the higher the
number of k value the more similar the RD for points within the same neighborhood.

Figure 7: Reachability distance according to the number of k-nearest neighbors.

RDk(x, o) = max{k − distance(o), d(x, o)} (1.3)

The local density of a data point is then estimated by the distance at which it can be
"reached" from its neighbors. The local reachability density (LRD) is defined in Equation
1.4.

LRDk(x) = 1/(

∑
o∈Nk(x)RDk(x,o)

Nk(x)
) (1.4)

In order to detect density-based outliers, local reachability densities (LRD) are then
compared with those of the neighbors by means of Equation 1.5. LOF for a point x is
the average local reachability density of the k neighbors (LDR(o)) divided by its own
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LDR.

LOFk(x) =

∑
o∈Nk(x)

LDR(o)
LDR(x)

Nk(x)
(1.5)

LOF values of 1 corresponds to a data point with density comparable to its neighbors,
while increasing values (> 1) indicate regions of lower density.

1.4.4 Other NN-based methods

The aim of this study was not to provide a comprehensive evaluation of all anomaly
(or outlier) detection algorithms available, consequently we focused on well-documented
methods and on those available as an R package. We based our selection on literature
search with major emphasis on a study proposing a comparative evaluation of unsuper-
vised anomaly detection algorithms for multivariate data [Goldstein and Uchida, 2016a].
In this publication the authors reported nearest neighbors-based methods to be bet-
ter performant compared to clustering-based methods. We excluded statistical-based
methods for the required assumptions on the data, because we might not have enough
knowledge or information about the analyzed data and their underlying distribution.
The dbscan and DDoutlier packages propose different nearest-neighbors outlier detec-
tion algorithms for multi-dimensional (multivariate) datasets, most of those are distance
or density based. We will briefly describe the methods that were tested in order to be
able to select candidate methods that we tested on single-cell mass cytometry datasets.
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Figure 8: NN-based methods schematic representation of anomaly identification. Distance-based
methods (left representation) uses distances calculated between each pair of points as anomaly
score. The distances calculated between point o1 and points in cluster C1 or the distances
between points within cluster C1 are larger compared to the distance between o2 and points in
cluster C2. Meaning that o1 and points in C1 will have high score compared to point o2 and
points in C2. Density-based methods (right representation) uses a close-by neighborhood of the
points to estimate densities around each point, thus able to deal with neighborhoods of different
densities (i.e. different densities of C1 and C2). Consequently, density-based techniques identify
o2 as an anomaly as well.

Distance-based methods - these methods are based on the k -NN algorithm (from
dbascan package) in order to find the k -nearest neighbor observations of all the points
in the dataset. Since these methods do not deal with neighborhoods of different densi-
ties, they are considered global anomaly detection techniques (see Figure 8, left). The
distance measure for an observation to the k -NNs is interpreted as follow: observations
with low distance have a dense neighborhood, while observations with high distance have
sparse neighborhoods, thus deviating characteristics from dense regions and considered
as anomalies (or outliers). We tested three variants of these methods called; k -NN sum,
k -NN aggregation and k -NN in-degree. The k -NN sum method [Jacob H. Madsen] sums
the distance to the k -NNs and use the resulting values as anomaly or outlier score. The
k -NN aggregation was thought by Angiulli and Pizzuti [2002] to reduce the subjectiv-
ity of selecting the appropriate number of neighbors (k) and consists in aggregating the
distances (i.e. sum of the distances) to the k -NNs over a range of k values and use the re-
sulting value as outlier score. Finally, the k -NN in-degree method compute the in-degree
for each observation, that represent the number of reverse neighbors (retrieves all points
that have the given observation as their nearest neighbor) [Hautamaki and Ismo, 2004].
The smaller the in-degree, the greater the degree of outlierness of the observation.

Density-based methods - these methods are also based on the k -NN algorithm but
estimates the density around each observation based on the distances of the k neighbors.
These methods overcome the drawback of distance-based methods that consists in do not
dealing with neighborhoods of different densities (see Figure 8, right). In addition of the
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LOF method (available in both dbscan and DDoutlier packages), the DDoutlier package
provides functions for the following (tested) methods: INFLO, COF, LOCI, LoOP and
KDEOS (see Figure 6). The connectivity-based outlier factor (COF) [Tang, Chen, Fu
and Cheung, 2002] is similar to LOF, but the density estimation for each observation
is performed using a shortest-path approach (i.e. chaining distance, is the minimum
sum of all the distances that connect an observation and its k nearest-neighbors). Then,
the chaining distances are compared between observations as a ratio of distances, which
corresponds to the anomaly score. The influenced outlierness (INFLO) method uses in
addition of the k -NN method a reverse nearest-neighborhood set, that are then combined.
Then, the local density is calculated in the same way as LOF [Goldstein and Uchida,
2016a]. The local outlier probability (LoOP) produces as output an anomaly probability
instead of a score as the previously described methods. The advantage of this method
is the possibility of comparing anomalous observations across different datasets [Gold-
stein and Uchida, 2016a]. The assumption behind this method is that distances to the
nearest-neighbors follow a normal distribution, and given the positivity of distances LoOP
assumes half-normal distribution and calculates standard deviations as probabilistic set
of distance, that are used as local density estimation. The LoOP anomaly score consists
of a ratio between each observation and its k -nearest neighbors. The local correlation
integral (LOCI) [Papadimitriou, Gibbons and Faloutsos, 2003] address the inconvenience
of defining the number of neighbors to use. It uses a maximization approach in order to
include all possible k values by defining the radius-neighborhood (that is expanded over
time) and then use the maximum score. As LoOP, it estimates local density using the
half-normal distribution of the amount of observations in the neighborhood instead of
distances [Goldstein and Uchida, 2016a]. However, the local estimation is calculated by
comparing two neighborhoods of different size instead of the ratio of local densities.
The previous methods that use the k -NN algorithm to find the k -nearest neighbors have
typically a computational complexity of O(n2), and the additional operations are negligi-
ble. On the other hand, LOCI includes an additional step of expanding the radius, which
increases the computational complexity to O(n3). Finally, the kernel density estimation
outlier score (KDEOS) [Schuber, Zimek and Kriegle, 2014] calculates a kernel density
estimation over a range of k values. The resulting anomaly score is normalized between
1 (lowest density estimation) and 0 (higher density estimation).

1.4.5 Finder of Rare Entities

In Jindal et al. [2018], the authors proposed a new method for the identification of rare
cells in single-cell RNA-sequencing data called FiRE (Finder of Rare Entities). FiRE is an
unsupervised anomaly detection technique that computes a rareness score to individual
cells without learning from a set of labeled examples. The rareness score is an estimate
of the density around each point in the multi-dimensional space using the Sketching
technique, which is a ranked-based analysis for similarity search. The Sketching technique
consists in compacting data structures into features vectors by encoding each data points
into bit vectors (values 0, 1). These vectors are constructed by applying a threshold to
the expression profile (values between the minimum and maximum expression value).
In addition, when variables are very numerous, vectors can be shortened by randomly
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selecting only a subset of the variables (defined by the parameter M). Then, distances
between features vectors are calculated using the Hamming distance, which consists in
the number of bit positions that are different (Figure 9).
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Figure 9: Scheme describing the principle of the Sketching technique. In the scheme are shown
bit vectors (taking values in the set {0, 1}) for two cells. Bit vectors are defined based on a
randomly selected threshold of markers expression (pn), if the cell express higher levels a 1 is
assigned, else a 0. Then, the distances (i.e. similarities or dissimilarities) between bit vectors
consists in the number of bit positions in which the two bit vectors are different (shonw by the
red arrows). The Sketching technique is used for compacting data structures and approximate
distances between high-dimensional points (i.e. cells).

This can be done for all pairs with very fast computer code. When variables subsets
are used the process is iteratively repeated (parameter L) for different variables subsets.
This generates hash codes (also called buckets of cells, which contains cells that are close
in the high-dimensional space). Then, bit vectors are mapped to the hash codes. The
density is estimated for each bucket as the number of cells in it divided by the total num-
ber of cells. The density estimate corresponds to the probability that a randomly picked
cell is assigned to the bucket containing that cell. Buckets containing large amounts of
cells correspond to large clusters while buckets containing few cells correspond to rare
cells. The FiRE score is calculated as follow: Figure 10 shows the performance assessed
for FiRE, LOF and two other methods for single-cell RNA-sequencing in Jindal et al.
[2018], for the identification of rare events. The authors showed that two methods, Gini-
Clust and RaceID, are computationally expensive and failed in detecting the majority of
the labeled rare events (as shown in Figure 10, left). While FiRE and LOF performed
well for increasing frequencies of “rare” target cells in this dataset. However, the ap-
plication of LOF to transcriptome datasets is not adapted to the size of dimensionality
as previously reported by [Goldstein and Uchida, 2016a]. One of the limitations of the
testing dataset used by authors is the artificial nature of the data. Indeed, the simu-
lated datasets used consist of human Jurkat T cells and human 293T embryonic kidney
cells, which are very distinct cell populations between each other and very homogeneous
among them. Moreover, these populations are cell lines, thus not representing a real bi-
ological sample. The nature of the data used allow the cell populations separation quite
straightforward even without the use of such a specialized method (as shown in Figure
10, right).
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Figure 10: Figures from [Jindal et al., 2018]. Left-side plot shows the performance (F1 score) as
a function of the frequency of rare Jurkat cells (human T cell line) among 293T cells (human cell
line derived from human embryonic kidney cells) of FiRE and other scRNA-sequencing methods
for rare cell detection, plus LOF. Right-side t-SNE plot shows the abundant 293T cells and rare
cells (Jurkat).

1.5 Motivation and aims of the study

In the last decade, substantial efforts have been done with the objective of developing
methods for the automatic detection and eventually discovery of unknown (or not well-
characterized) cell populations. Currently, the analytical tools for the detection of major
cell populations and subsets with mass cytometry applications are widely present and
continue to increase. However, only few data analysis methods specifically designed for
the efficient identification of rare cell populations are available. In particular, mass cytom-
etry data present significant challenges due to the high number of data points (single-cell
resolution and high-throughput) in the fairly high and growing dimensionality given by
multiplexed panels. Because of this scarcity, this study aimed at implementing a straight-
forward approach that efficiently supports a data analyst to identify disease-associated
rare cell populations in large and complex biological samples and within reasonable limits
of time and computational infrastructure. In this study, we proposed a novel computa-
tional framework called D-AREdevil (disease-associated rare cells detection) for cytom-
etry datasets (see section x for details). This new computational approach combines the
use of two unsupervised methods; an anomaly detection algorithm called LOF (local out-
lier factor) [Breunig et al., 2000] and a clustering algorithm called FlowSOM [Van Gassen
et al., 2015] (self-organizing map). In our approach, the LOF score serves to select a set
of candidate cells belonging to one or more groups of similar rare cell populations. Then,
the clustering method is used to identify subgroups within the selected set of cells and
this allows to identify any subgroup that is associated with a patient group, disease type,
clinical outcome or other characteristic of interest. The major objectives of this study
included:

• Selection of candidate anomaly detection and unsupervised clustering algorithms
based on the study of the current literature in the field

• Testing of the selected anomaly detection algorithms with the aim of determining
the best performing one in the context of single-cell mass cytometry data

• Definition of performance criteria (ROC curves and AUC values, runtime)
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• Testing on different datasets containing abundant and target rare observations in
real experimental mass cytometry datasets

• Overall performance evaluation of the combined approaches in a classification set-
ting, where manually gated target rare cells are used as reference-standard for
testing

• The comparison and evaluation of the performance with similar method available
for single-cell RNA-sequencing data (see Section 1.4.5).

• Propose a straightforward analysis pipeline (as a “way-to-proceed”) for the approach
application

• Apply and validate the approach on different datasets containing abundant and
target rare observations in real experimental mass cytometry datasets

The main objective and challenge of this study was to find methods for the identifica-
tion of rare cells among a specific cell population. For instance, identify B cells specific for
a given known antigen among total B cells. Importantly, we aimed at targeting rare cells
differ from abundant cell types by a restricted number of markers. In the language used
by specialists in the field of “anomaly detection”, such rare cell populations are referred
to as local anomalies, because their peculiarity can be recognized only when a close-by
neighborhood of data points is considered (see section 1.4.4 for details). In this study,
we focused on local anomalies detection since their identification by state-of-the-art di-
mensionality reduction techniques or unsupervised clustering methodologies were unable
to isolate these cells from abundant cell types. Indeed, using dimensionality reduction
techniques, these cells showed to be poorly resolved with other data points in a 2-dim
representation. On the other hand, rare cell types that correspond to global anomalies
are very distinct both in terms of frequency and features profile compared to abundant
cell types that can be easily identified (i.e. isolated) using clustering algorithms or visu-
alized in a 2-dim plot. Currently, to the best of our knowledge, there are no published
studies that integrate the LOF (or any other anomaly detection algorithms) for this task,
within the context of mass cytometry. In this study, we reported the properties and im-
plementation of the D-AREdevil computational framework and presented an evaluation
of its performances and applications on three different spiked-in datasets based on real
mass cytometry (experimental). We took advantage of real experimental mass cytometry
datasets (two generated in our lab and one publicly available [Weber and Soneson, 2019])
to generate spiked-in datasets with one or more known rare cell populations at varying
frequencies (all below 1%) and tested the ability of our approach to identify the labeled
target cells in order to bring them to the attention of the data analyst. This is a key step
in the process of finding cell subgroups that are associated with a disease or outcome of
interest, when their existence and identification is not previously known and has yet to
be discovered.
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1.6 D-AREdevil (disease-associated rare cell popula-

tions detection) framework

1.6.1 Additional considerations on previous methods

The main limitations of the recent publications dedicated to the detection of rare cell
populations in high-throughput single-cell data is that they were tested on datasets that
do not accurately reflect the complexity of physiological cellular samples in terms of
variable cell phenotypes, heterogeneous population compositions and lower frequencies
(<1%) of rare cells to be detected. Indeed, most of the studies use (semi-)simulated
datasets in which the separation of rare from the abundant cell types could already be
visualized in plots obtained by standard dimensionality reduction techniques such as
t-stochastic neighbor embedding (t-SNE) or tested detecting of cell populations with
frequencies above 1%. One of the major aims of this study is to test and establish
methods that can perform the detection of rare cells in cell populations where these are
extremely underrepresented and which profile deviates from abundant cell types by only
a few features; such as antigen-specific B cells among total non-naïve B cells. In these
examples, even the best state-of-the-art dimensionality reduction techniques appear so
far to be unsuited for detecting and isolate these rare cell events.

1.6.2 Overview of D-AREdevil

The D-AREdevil framework takes as input single cell expression data from samples repre-
senting different experimental or medical conditions (i.e. including samples from different
study groups, time-points or datasets) that include major cell populations and poten-
tially rare cell types, associated with disease status or other relevant clinical or biological
information, to be identified. D-AREdevil proceeds in several steps (Figure 11). Firstly,
(1) we apply an anomaly detection scoring algorithm (i.e. LOF, FiRE) to rank cells.
Afterward, we take the set of top-scoring cells above a selected cutoff. By varying the
cutoff, we can adjust the number of selected cells. Then, (2) we apply dimensionality
reduction to visualize the selected rare cells and watch out for differences between condi-
tions. On the reduced dimensions (3) we apply unsupervised clustering (i.e. FlowSOM)
to group the selected cells into clusters with a similar profile. Finally (4) we test each of
these clusters for differential abundance between conditions.
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Figure 11: Schematic overview of analysis steps of the D-AREdevil methodology. The analysis
starts with pooling and normalization of cells from all samples (i.e. including samples of different
study groups, time-points or datasets). (1) Next, we apply an anomaly detection scoring (LOF)
to rank cells. LOF computes the local density of each cell with respect of its k-nearest neighbors
(the LOF score). Afterward, we take the set of cells above a selected LOF score cutoff. By
varying the cut-off, we can adjust the number of selected cells. (2) Then, we apply dimensionality
reduction to visualize the selected rare cells and watch out for differences between conditions.
(3) On the reduced dimensions we apply unsupervised clustering (i.e. FlowSOM) to identify
subgroups of cells with a similar profile and (4) test each of them for differential abundance
between conditions.
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Results

2.1 Anomaly detection algorithms selection

This section of results shows how we selected the local outlier factor (LOF) algorithm
among the several methods available in R software packages.

We tested the performance of different nearest neighbors-based anomaly detection
algorithms on a two simple-case datasets created for benchmarking purposes to select
the most interesting method.

The first datasest is a publicly available flow cytometry (Mosmann dataset 2) dataset
that has been previously used in Weber and Robinson [2016] to evaluate the performance
of different unsupervised clustering methods for the detection of rare cell populations.
It consists of PBMCs from healthy human donors stimulated ex vivo with a peptides
pool of H1N1 strains of influenza A. The PBMCs were antibody-labeled using 14 surface
and intracellular markers. The data we used here were already pre-processed Weber
and Robinson [2016] and consists of 396’460 PBMCs from one healthy donor and 109
influenza-specific memory CD4 T cells (representing 0.03% of the total dataset).

The second dataset has been described in the manuscript at the end of the thesis
(HIV-specific B cells dataset). Briefly, it consists of LNMCs from ART treated and
untreated HIV+ patients that were analyzed by mass cytometry (CyTOF) using a B cell
panel of 32 surface and intracellular markers. It contains 79’886 non-naive B cells and
80 HIV-specific B cells (representing 0.1% of the total dataset).

Figures 12-13 show ROC curves (a) and AUC values as a function of runtime (b) for
the tested algorithms. Note, results for COF and LOCI were not available due to the too
demanding memory requirements and we discarted INFLO due the too high computation
time observed when ran on Mosmann and HIV-specific B cells datasets.

2Downloaded from: https://flowrepository.org/id/FR-FCM-ZZPH
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(a) ROC curves (b) AUC values vs. runtime

Figure 12: Performance of different nearest neighbors-based anomaly detection algorithms: LOF
(local outlier factor), INFLO (influenced outlierness), KDEOS (kernel density estimation outlier
score), LOOP (local outlier probability), KNNAGG (aggregated k-nearest neighbors distance
over different k’s), KNNIN (in-degree for observations in a k-nearest neighbors graph), KNNSUM
(sum of distance to k-nearest neighbors) on Mosmann dataset.

(a) ROC curves (b) AUC values vs. runtime

Figure 13: Performance of different nearest neighbors-based anomaly detection algorithms: LOF
(local outlier factor), INFLO (influenced outlierness), KDEOS (kernel density estimation outlier
score), LOOP (local outlier probability), KNNAGG (aggregated k-nearest neighbors distance
over different k’s), KNNIN (in-degree for observations in a k-nearest neighbors graph), KNNSUM
(sum of distance to k-nearest neighbors) on HIV-specific B cells dataset.

Overall, the testing on the three datasets show that the best performing algorithms
were LOF (in red), a density-based local anomaly detection method, k-NN sum (in grey)
and k-NN aggreagation (in green), two distance-based global anomaly detection methods.
Indeed, the three methods showed the highest AUC values and shortest runtime. Based
on these results and previous studies that reported the higher performance of LOF to
accurately identify local anomalies, we focus further evaluations on LOF algorithm rather
than global anomaly detection techniques.
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2.2 Paper I : A novel computational approach for dis-

covering disease-associated rare cell populations in

cytometry data (unpublished)

In this manuscript we proposed and described the application of a novel multi-step com-
putational framework called D-AREdevil. This methodology was developed to identify
and discover rare cell populations that are associated with a disease or condition of in-
terest. To this end, our strategy was to take advantage of anomaly detection algorithms
(i.e. LOF and FiRE, described in the Introduction) to select a set of candidate rare
cells for further investigation. The identification of rare cells subsets is then performed
by clustering the set of candidate rare cells to find sub-groups that are then tested for
assiciation.

The design of the methodology is implemented to deal with the high throughput
of cytometry dataset, where the detection of minor cell populations (< 1%) remains
challenging. We presented step-by-step the methodology application on three different
test datasets. The test datasets were generated by keeping low frequencies of manually
gated rare cell populations (0.1, 0.05 and 0.01%) amongst abundant cell types.

The performance of D-AREdevil framework was evaluated in terms of specificity and
precision in detecting the target rare cells. We observed overall good performance of
our approach, especially in the dataset 1 (AML blast cells among BMMCs), where the
expression profile of rare cells was more distinct compared to abundant cell types. The
detection of rare cells in dataset 2 (iNKT cells among CD3+ T cells) and 3 (HIV-specific
B cells among non-naive B cells) was more challenging due to the restricted number of
features distinguishing the rare cells from the rest of the data collection. In particular,
for frequencies below 0.05% we obtained reduced precision (i.e. contamination of cell
types that were not manually gated as rare cells). Despited that, we investigated the
expression profile of clusters and observed that the "contaminations" consisted of cells
with very similar profile to the target rare cells. Meaning that our approach identified
homogenously similar rare cell types that the subjective nature of manual gating did not
take into account.
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2.3 Paper II : The Deficiency in Th2-like Tfh Cells Af-

fects the Maturation and Quality of HIV-Specific B

Cell Response in Viremic Infection (unpublished,

format for submission to Nature Communication)

T follicular helper CD4 T cells (Tfhs) promote the development of germinal centers and
maturation of B cells. Germinal center (GC) Tfhs are a very heterogeneous population
that is characterized phenotypically by the co-expression of CXCR5 and PD-1 and by
the expression of B-cell lymphoma 6 protein (BCL-6) transcriptor factor. HIV infection
is characterized by the expansion of Tfh cell in viremic individuals and the viremia levels
in these patients correlates with increased frequencies of GC B cells. Despite the higher
frequency of Tfh cells in HIV-infected individuals, they are less effective at providing
adequate B-cell help and even if they are capable of responding to HIV antigens the
response is affected.

In this study, I mainly contributed in the dissection of the phenotypic hetero-
geneity of Tfh cells in lymph nodes of HIV infected viremic, long-term ART treated
and healthy HIV negative individuals (Result section: Characterization of Tfh
cells, Figure 1). We used unsupervised clustering on pooled Tfh cells from the three
study groups, i.e. FlowSOM, in combination with consensus clustering in order to define
20 different Tfh clusters. Among the 20 defined clusters we identified those that were
significantly differentially abundant between the three study groups.

We observed that clusters with higher frequencies in viremic individuals co-expressed
CXCR3 and CD38 with varying levels of CD57, CXCR4, HLA-DR and CD25, thus
identified CXCR3 and CD38 as the markers driving the Tfh heterogeneity in lymph
nodes. The increased co-expression of these two markers by Tfh cells from viremic
compared to ART treated and healthy individuals was then confirmed by manual gating.
We further investigated the markers characterizing CD38+CXCR3+ Tfh cells and found
that an un-regulation of markers of T cell activation (Ki-67, CD25 and HLA-DR), classic
Tfh markers (BCL-6, ICOS, CD40L) and the HIV co-receptor CCR5, suggesting that
this subset might be more susceptible to HIV infection.
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Discussion

In this thesis, we presented a novel computational framework that we called D-AREdevil.
This approach targets disease-associated rare cell populations in a multi-step, flexible
and straighforward manner in high-dimensional mass cytometry datasets. D-AREdevil
has been designed to help bioinformaticians to identify rare unknown cell populations
(cell type, cell state, aberrant cancer cell or the like) of potential high importance in
high dimensional mass cytometry data. This is often the case when a cell population
is challenging to identify because it represents a rare minority of the full cell collection
and thus typically remains hidden among the other cells. In the case of a cell population
associated with a disease or condition under study, a test of association between the
number of cells in a cluster and conditions can highlight cluster(s) for further analyses.
This problem has so far received only little attention in the literature and no standard
leading approach exists.

The method is easily implemented and relies on an optimal combination of existing
and well-documented unsupervised methods; unsupervised anomaly detection techniques
(i.e. LOF or FiRE) and unsupervised clustering (i.e. FlowSOM). The selection of
FlowSOM, was mainly based on previous studies [Weber and Robinson, 2016; Nowicka
et al., 2017; Weber and Soneson, 2019] that demonstrated, for applications in the context
of mass cytometry, a high performance and an extremely fast runtime compared to other
populations-finding methods. On the other hand, the selection of anomaly detection
techniques was based on testing and comparisons performed in here (Results section
2.1).

Heretofore, no study (to the best of our knowledge) showed the applicability and prac-
tical employment of anomaly detection algorithms in the context of single-cell analysis.
The applicability of the approach developed in this thesis was demonstrated through
different datasets types, in particular in cytometry data.

3.1 Discussion of the different steps

3.1.1 Anomaly detection

In Results section 2.1 we showed the performance of anomaly detection techniques in
terms of AUC values and runtime. We selected and tested the state-of-the-art methods
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based on two criteria: the methods that are available in R software and focused on those
that provide a continuous anomaly score for individual data points. In particular, our
selection was based on Goldstein and Uchida [2016a], which presented nearest neighbors-
based techniques as the best performant for local anomaly detection despite the higher
computation time. Among those, we preferred methods providing continuous anomaly
score over binary output in order to have more flexibility when selecting rare cell popu-
lations. Since the absolute value of the score strongly depends on the dataset, number of
variables and normalization, a binary output "hides" important information about the
cell ranking and restrincts the investigator to a defined subset of cells.

The R packages available for anomaly (or in the case of the following packages are
called "outlier") detection include HighDimOut (2015), DDoutlier (2018) and OutlierDe-
tection (2019), all available from CRAN. The methods available from OutlierDetection
package were excluded because only providing a binary output (i.e. list of anomalous
observations) without any information about the cell ranking. The HighDimOut package
contains angle-based (ABOD) and feature bagging (FBOD) outlier detection algorithms,
methods suggested to be more appropriate for dataset with increasing dimensionality
[Lazarevic and Kumar, 2005; Breunig et al., 2000]. However, in Domingues et al. [2018]
the author showed poor performance of ABOD compared to LOF in terms of scalability,
memory consumption and precision in their test datasets. We rapidly evaluated both
ABOD and FBOD but did not included them in further evaluation since they did not
provide significant improvents over the methods tested from DDoutlier package. From
the DDoutlier package we observed the higher performance, in terms of AUC values and
runtime, for LOF, k -NN sum and k -NN aggregation methods (Result section 2.1). Due
to the very similar results obtained for the three methods, we based our decision of select-
ing LOF for further evaluation on previous assessments [Goldstein and Uchida, 2016a]
that showed and recommended LOF for local anomalies detection tasks over the k-NN
methods that targets global anomalies more efficiently (Introduction section 1.4.4). One
of the major drawbacks of the selected anomaly detection technique remains the runtime
complexity associated with the k -nearest neighbors search. Generally, the k -NN search
have a time complexity of O(n2). The kNN function used in LOF (from dbscan pack-
age) uses a space-partitioning data structure called kd-tree to identify neighbors in the
high-dimensional space. Even if this approach allows to reduce the number of distance
computations, it remains costly in large datasets [Wu and Jermaine, 2006]. In addition,
this technique does not scale well as the number of variables increases [Chandola et al.,
2009; Bentley, 1975]. The other computations of LOF, that is density estimation and
score calculations (Introduction section 1.4.3, Equations 1.3-1.5), can be neglected since
representing less than 1% of runtime [Goldstein and Uchida, 2016b].

Another method that was selected for examination is called FiRE (finder of rare enti-
ties) published in [Jindal et al., 2018a]. FiRE has been shown to be a very fast algorithms
(O(n), where n is the number of cells), which takes advantage of the Sketching technique
to estimate similarities between data points. We compared the two anomaly detection
methods LOF and FiRE in the context our approach, and discussed the results in the
following paragraphs.
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In summary, we used benchmark mass cytometry datasets to compare the detection
performance of the two selected methods within our D-AREdevil framework: the local
outlier factor (LOF) and finder of rare entities (FiRE). We included these anomaly
detection techniques in our approach to serve as selectors for candidate rare cells. In this
way, we were able to filter-out the majority of abundant cells and focus on potentially
relevant disease-associated rare cell subsets. Importantly, the rare cell populations that
we are targeting using this approach are not necessarily the rarest cells in the datasets,
we rather want to focus on those cell types that are present in different abundance
between conditions. With that purpose, we tested different cut-offs in order to provide
an indication to the users concerning the most appropriate ones and to address decision-
making in the context of mass cytometry data analysis. We showed that the use of a
permissive cut-off (i.e. that selects a large number of candidate rare cells) such as q75,
maximises the capacity of identifying the majority of rare disease-associated cell types.
However, when the starting number of cells from pooled samples was very large, taking
25% of the cells is not sufficient to filter-out enough abundant cells and thus to focus on
rare cell populations. An overall observation is that less permissive cut-offs (i.e. that
selects a reduced number of candidate rare cells compared q75 ) such as q95 and IQR-
q95 provided an enogh filtered set of candidate rare cells to allow good sensitivity and
precision in the identification of disease-associated rare cell types. The most stringent
cut-off (i.e. that selects a very limited number of candidate rare cells), IQR-q95, was
tested because proposed in the FiRE publication and because it corresponds to the
"standard" way of identifying outliers. We observed that this cut-off was not adapted
for FiRE application in the context of mass cytometry datasets. Indeed, in each tested
dataset this cut-off did not select any cell when applied to FiRE score. However, the use
of IQR-q95 on LOF score provides good results in terms of PPV but has the disadvantage
to lose some of the already rare target cells due to its high stringency.

Overall, our results demonstrated the applicability of FiRE in our framework by its
high sensitivity in detecting the target rare cell populations. On the other hand, LOF
showed longer computation time. Despite that, LOF showed not only high sensitivity but
overall higher precision when using the different cut-offs for identifying the target rare
cells compared to FiRE. Although the lower precision of FiRE, the two methods can be
used in conjunction to validate the results when both methods identify the same rare cell
populations. Although any discovery using this approach requires to be validated using
targeted confirmatory experiments, the agreement between the two methods provides an
indication about the probable existence of identified rare cell populations.

3.1.2 Dimension reduction and Clustering

Once a set of candidate rare cells is selected on the basis of their anomaly score and a
defined cut-off, we used dimensionality reduction techniques such as UMAP to visualize
the selected cells in a 2-dimensional plot per condition. We suggest the use of UMAP
for its scalability for rapidly increasing sample sizes (conversely to ISOMAP, Diffusion
Map or t-SNE) and preservation of global structures of the data. The visualization of
the selected rare cell allows to have a first snapshot of the possible differences in these
cells distribution between conditions.
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Dimensionality reduction is not only used for visualization purposes but also to im-
prove the clustering of these cells and identify homogeneous sub-groups that are specifi-
cally associated with a disease or outcome of interest. Indeed, when applying FlowSOM
using the first two UMAP coordinates in addition to the whole markers set, we observed
an improved separation of the target rare cells. The use of all markers in the dataset
and the first two UMAP coordinates allows to maximise our capacity of identifying the
target rare cells while maintaining the unsupervised and unbiased way of proceeding. We
also tested whether adding additional UMAP coordinates would improve our capacity of
identifying the target rare cells, but it was not the case for the tested datasets.

The use of FlowSOM as unsupervised clustering technique was based on previous
studies reporting this method as one of the best performing and the one showing the
fastest runtime. We defined ten different clusters independently of the dataset type,
anomaly score technique applied and anomaly score cut-off used. We did not focus on
the optimization of the clustering step since the previous step (i.e. anomaly detection)
should have filter-out enough abundant cell types to reveal, in principle, the interesting
rare cell subsets at the dimensionality reduction and visualization step of the analysis.
Indeed, we observed that the methodology was mostly effective when the target rare
cells were distinctly separated when the selected candidate rare cells were visualized in
lower dimension plot. Among the ten different clusters that we defined, we identified the
cluster containing the higher number of target rare cells and evaluated sensitivity and
precision on that cluster.

In general, our results demonstrated that with this approach one can easily identify
multiple rare cell subsets (i.e. dataset 1, AML blast cell subsets) by inspecting the
expression profile of cells once these are conveniently enriched and grouped in one cluster.
This is the case even when the PPV of the cluster is low because the target cells represent
a minority in the selected cluster. Of note, in all the three datasets we observed that
by plotting the expression profile of the cells (those contained in the cluster with the
target cells) the LOF score is homogeneously higher compared to the other cell types.
This indicates that these cells are found together (in close proximity to each other) in
low density regions in the high-dimensional space.

3.1.3 Testing association

The final step of the analysis consists in testing all the clusters represeting less than 1%
of the total sample size for association with the conditions’ variables. Since the target
cells correspond to few cell counts, we used a simple Fisher’s exact test on a 2x2 table,
with the numbers of cells in the cluster per condition, is used to help identify the rare
cell populations of interest for further investigations. This test provides a p-value for
the difference in cell counts between conditions and the odds ratio value that provides
indication of the strength of association. One aspect that could be studied further is
the association test, where regression methodologies that could include single sample or
patient information and additional covariates would be a logic extension.
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CHAPTER 3. DISCUSSION

3.2 Conclusions and future persepectives

Advances in single-cell technologies increase progressively the potentialities of cellular
heterogeneity understanding, including the discovery of previously undetectable cell types
and in particular rare cell populations. Because the data generated have increasing reso-
lution, both in terms of throughput and dimensionality, we have now the means to search
for and discover cell populations that are very under-represented (<1%) in the total pop-
ulation. Despite the many efforts that have been done in the last past years, methods
enabling the automatic, accurate and rapid detection of rare cell populations are nearly
non-existent. In particular for mass cytometry, where the throughput is considerably
higher compared to scRNA-sequencing, which identification represent a real "needle in a
haystack" scenario.

Globally, this study showed very good results for the identification of rare cell pop-
ulations that are present at frequencies below 0.1% in the total cell population under
investigation. Our computational framework uses anomaly detection (i.e. LOF or FiRE)
in combination with unsupervised clustering to maximize and improve the detection
capacity of rare cell populations with very good sensitivity and precision compared to
previous work. In particular, we showed that this approach performed well in detect-
ing single (HIV-specific B cells or invariant natural killer T cells) or multiple rare cell
populations (two different subsets of AML blast cells).

Of note, our approach performed particularly well if we consider the complexity of the
testing datasets we used to demonstrate the performance of the D-AREdevil approach.
The complexity of the datasets is intended not only in terms of markers diversity; con-
taining a large majority of phenotypic markers (cell surface), transcription factors or
phospho proteins, but also in terms of cellular homogeneity if compared to total PMBCs.
We believe that proposing an approach involving multiple analysis steps is of advantage
to adapt the analyses to the biological question(s). Indeed, it makes the approach very
flexible and allows the user to make decisions according to the results obtained at the
different steps of analysis. Given the demonstrated adaptability of the approach to differ-
ent dataset types, D-AREdevil could potentially be adapted and applied to data beyond
flow and mass cytometry. A potential application is scRNA-seq data, which requires
adaptations of the approach to the different type of dimensionality. ScRNA-seq data
requires a feature selection step when dealing with increasing dimensionality (p >> N)
or the use of an expression matrix with reduced dimensionality (e.g. using UMAP, t-SNE
or other techniques). Alternatively, the selection of an anomaly detection method able
to deal with many variables (e.g. FBOD).

In conclusion, this approach has the potentiality of being used as a pipeline for direct
data analysts in the field and/or representing a bridge towards more sophisticated solu-
tions for detecting rare cell population of biological relevance. In addition, it deserves to
be validate on additional testing datasets and eventually updated with new developed
state-of-the-art methods at the different steps of analysis.
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Abstract  

Advances in single-cell technologies such as mass cytometry provide increasing 

resolution of the complexity of cellular samples, allowing researchers to deeply 

investigate cellular heterogeneity and potentially discover previously undetected rare 

cell populations. The identification of rare cell populations is of paramount importance 

for understanding the onset, progression and pathogenesis of many diseases while 

remaining a challenge due to the always increasing dimensionality and throughput of 

the data generated.  We demonstrate in three different mass cytometry datasets the 

efficacy of a novel computational framework called D-AREdevil (disease-associated 

rare cells detection) that efficiently supports a data analyst to identify low frequencies 

(< 0.1%) disease-associated rare cell populations in large and complex biological 

samples. Our approach takes advantage of anomaly detection techniques in 

combination with modern dimension reduction and unsupervised clustering method.  

 
 
 
 
 
 
 



Introduction (926) 

Technological advances in single-cell technologies such as flow or mass cytometry 

allow researchers to achieve a deeper understanding of the cellular heterogeneity 

within populations that were once considered to be homogeneous [Spitzer and Nolan, 

2016]. In particular, mass cytometry (or CyTOF, “cytometry by time-of-flight mass 

spectrometry”) enables the quantification of over 50 parameters at the single-cell level 

and profiling of millions of cells from a single sample [Bruggner et al., 2014].  

The capacity of accurately characterizing rare cell populations is crucial for 

understanding the onset, progression and pathogenesis in diseases such as 

autoimmune diseases, immunodeficiencies, or cancer [Schreier et al., 2018]. The 

comprehensive understanding of the samples’ heterogeneity can reveal previously 

uncharacterized immune cell types, help to understand their differentiation and 

function, and possibly provide new diagnostic biomarkers or novel therapeutic targets 

[De Biasi et al., 2017]. Indeed, health and disease status of patients often depend on 

minor groups of cells with frequencies largely below 1%. Examples of these rare cell 

populations include circulating endothelial cells, which have been associated with 

cardiovascular damages [Farinacci et al., 2019] or endothelial progenitor cells, which 

are biomarkers of tumor angiogenesis [Li et al., 2012]. In the case of hematologic 

malignances, such as acute myeloid leukemia (AML), the detection of minimal residual 

disease (MRD) serves as a strong prognostic marker for a high risk of relapse post-

therapy [Ravandi et al., 2018]. However, the identification of these rare cell populations 

remains challenging in mass cytometry data due to the high number of data points 

(single-cell resolution and high-throughput) in the growing dimensionality given by 

multiplexed panels. 

 In the last decade, significant efforts have been made to develop methods for the 

automatic detection and discovery of unknown or not well-characterized cell 

populations, but few methods were designed and demonstrated to be efficient for rare 

cell populations detection. In Weber and Robinson [2016], several unsupervised 

clustering methods for cytometry data have been evaluated for the detection of rare 

cell populations, both in terms of performance and runtime, on a simple case dataset. 



Xshift [Samusik et al., 2016], Rclusterpp [Linderman et al., 2013] and FlowSOM [Van 

Gassen et al., 2015] were reported as the best performing methods. In Weber et al. 

[2019] the authors proposed high-resolution clustering (i.e. definition of an extremely 

high number of clusters) using FlowSOM for the discovery of differentially abundant 

rare cell types. However, the enrichment for the rare cells of interest was not optimal 

when the cells were present at frequencies below 1%.  

In machine learning, the use of anomaly detection algorithms to find rare observations 

has a long tradition for tasks such as intrusion detection (including network traffic and 

server applications), fraud detection (financial transactions), patient monitoring (ECG 

and EEG signals) or image analysis (computed tomography), much less for molecular 

applications [Goldstein and Uchida, 2016]. 

The anomaly detection method called Local Outlier Factor (LOF) [Breunig et al., 2000] 

has been shown to be the best performing algorithm among the nearest neighbor-

based methods to detect local anomalies, even though it has a relatively high 

computation time [Goldstein and Uchida, 2016]. The advantage of nearest neighbors-

based methods is their simplicity; the only assumption is that normal observations are 

found in dense regions of data points while anomalies occur in low density regions 

[Chandola et al., 2009]. In particular, LOF assigns to each observation a continuous 

anomaly score, which represents an estimate of the local density obtained based on 

the number of nearest neighbors (k). 

A more recent method was proposed by Jindal et al. [2018], called FiRE (finder of rare 

entities) assigns a score of anomaly to individual cells as well but in a very rapid 

timeframe. The computation of the FiRE score combines the use of the Sketching 

technique that compacts the expression profile of cells into bit vectors and the creation 

of low-dimensional bit signatures (hash codes) to group cells of similar profile. Then, 

the populousness of hash codes is used as estimate of cell density.  

The purpose of this study is to present an approach that uses unsupervised anomaly 

detection algorithms to support a data analyst to finding extremely rare cell populations 

(with frequencies < 0.1%) in large and complex biological samples within reasonable 

limits of time and computational infrastructure. The approach aims to find rare cells 



that have homogeneously consistent expression profile with only few deviating 

features, for example antigen-specific B cells among total B cells. We propose a novel 

computational framework called D-AREdevil (disease-associated rare cells detection) 

for cytometry datasets. The main characteristic of our computational framework is the 

combination of an anomaly detection algorithm (i.e. LOF or FiRE) with a fast 

unsupervised clustering method (i.e. FlowSOM). In our approach, the anomaly score 

serves to select a set of candidate rare cells to be further investigated, thus filter-out 

the vast majority of abundant cell types. Then, the selected set of cells is analyzed to 

identify sub-groups of similar cells. This is a key step in the process of finding cell sub-

groups that are associated with a disease (or condition of interest) when their 

existence and identification is not previously known and has to be discovered.  

Currently, to the best of our knowledge, there are no standard analysis workflows that 

integrate anomaly detection algorithms with the end of detecting disease-associated 

rare cell populations within the context of mass cytometry. Here, we report the 

properties and implementation of D-AREdevil and present applications on three 

different test datasets. We generated the test datasets by mixing one or more known 

rare cell populations at varying frequencies and tested the ability of our approach to 

find the target rare cells.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results  

Overview of D-AREdevil  

D-AREdevil is a novel multi-step computational framework designed for the detection 

of disease-associated rare cell populations in molecular profile data. It consists of four 

major steps (Figure 1a): (1) anomaly detection, (2) dimension reduction, (3) 

unsupervised clustering and (4) statistical testing for association. The analysis starts 

with single cell expression data from pooled samples (Figure 1b), i.e. samples 

representing different "conditions", for example healthy and disease. The input data 

might contain one or several unknown rare cell populations potentially associated with 

the disease status or with other relevant clinical-biological features, which are difficult 

to detect because of the overwhelming number of cells. The steps 1-3 are useful for 

exploring or discovering rare cell populations in absence of different conditions. 

The first major step aims at eliminating the vast majority of abundant cells and to enrich 

for the target rare cells we want to further investigate. A set of candidate rare cells is 

obtained by taking the top-ranking cells according to the anomaly-detection method. 

It is not straightforward to find an optimal cut-off value for the anomaly score, here we 

tested four different cut-off values (Figure 1c): two permissive cut-offs, the 75th and 

the 95th percentile (called q75 and q95, selecting 25% respectively 5% of cells with 

the highest score) and two more stringent cut-offs, where the interquartile range IQR 

times 1.5 is added to q75 or q95 (called IQR-q75 and IQR-q95), thus selecting a small 

number of cells with very high anomaly score. We tested two different anomaly scoring 

algorithm, LOF and FiRE (described Introduction and Methods). The following two 

steps are done in parallel and both on the selected candidate rare cells. Firstly, the 

dimensionality of these cells is reduced and then visualized using a modern technique 

called UMAP (uniform manifold approximation and projection [Becht et al., 2019]) 

(Figure 1d). Then, unsupervised clustering is applied to sub-group similar cells within 

the selected set. UMAP allows to efficiently visualize the spatial distribution of the 

individual cells, their sub-groups and eventually to identify differences between 

conditions. We identify sub-group using the FlowSOM and generate a fixed number of 

10 clusters. In some cases, the UMAP representation can suggest that a higher 



number of clusters should be defined. The clusters are shown using different colors in 

the UMAP representation (Figure 1e). Finally, to identify clusters significantly 

associated with a condition (Figure 1f) we perform Fisher’s exact tests on clusters 

representing <1% of the total dataset. In principle, all clusters with statistically 

significant p-value and relevant odds ratio value should be investigated.  

In order to test the proposed procedure, we applied it to three test datasets containing 

known rare cells, called target cells. As a measure of the ability to identify the target 

cells, we report sensitivity and precision values after the cut-off application (step 1) as 

well as in the cluster containing the majority of target cells (step 3). Moreover, we 

present examples of the UMAP pattern and the results of the association test aimed 

at their identification.   

Test-dataset 1:  Detection of rare AML blast cells subsets in simulated minimal residual 

disease   

The first test dataset we used consists of data previously used for a similar purpose 

[Weber et al., 2019]). The dataset consists in bone marrow mononuclear cells 

(BMMCs) from healthy donors in which two subsets of AML blast cells 

(CD34+CD45mid) were introduced at low frequency (0.04%) to simulate minimal 

residual disease (MRD) and to test the ability to identify these cancer cells (see 

Methods, Table 1). The target AML blast cells were either cytogenetically normal (CN 

subset) or had one of the classic rearrangements t(8;21) and inv(16) that affect the 

core-binding transcription factor translocation (CBF subset). We applied LOF and 

FiRE on this dataset and show 2-dimensional UMAP representations of the selected 

candidate rare cells based on four different cut-offs on LOF score (Figure 2a). The 

UMAP representations show that AML blast cells were clearly isolated from the other 

cells when applying the q95, IQR-q75 and IQR-q95 cut-offs. While for q75 cut-off, the 

AML blast cells are melted within the other cells, likely due to the high number of cells 

this cut-off selects. Nonetheless, FlowSOM defined one cluster that was sufficiently 

enriched of the target cells (Cluster 2 in blue, Figure 2a). The hierarchical clustering 

and heat-map representation of the expression profile of this cluster (Figure 2b, 
including selected markers) show that the two AML blast cells subsets form separated 



sub-groups and have higher LOF score compared to the other cells included in cluster 

2. The CBF AML blasts are CD38- and CD7- representing an immature phenotype of 

blast cells, while the CN AML blasts express both markers. This cluster is also 

prominent in a test of association with the AML condition (Table 2, q75 cluster 2). 

Note, few target CN AML blast cells are found among other cell types (UMAP 

representations for q95, IQR-q75 and IQR-q95) due to the absence of expression of 

CD7, which profile is more similar to other BMMCs (Figure 2b, arrows in the heatmap). 

The results demonstrate that we can identify multiple rare cell subsets by inspecting 

the expression profile of cells contained in clusters that result associated with a 

condition. As shown here, rare subsets are identified even when the target cells are 

only a minority in the selected cluster, thus resulting in low precision of the cluster 

(Figure 2c, black square). In this dataset, the target cells are relatively easy to find 

due to their differences in markers profile compared to the other cell types. Indeed, 

the LOF-FlowSOM and FiRE-FlowSOM methodologies have both good sensitivity and 

positive predictive value, except that sensitivity is reduced at the most stringent cut-

off (IQR-q95) and precision tends to be lower at permissive cut-offs. This emphasized 

the potential importance of an optimal cut-off, stringent enough for high precision but 

without losing high sensitivity. In the following, we tested the methodologies in more 

challenging situations and less artificially designed test datasets. 

 

Test-dataset 2: Detection of rare invariant natural killer T cells associated with potential 

reduced protection in autoimmune diseases 

Invariant natural killer T cells (iNKT) cells represent less than 0.1% of peripheral blood 

mononuclear cells (PBMCs). These cells are interesting due to their possible 

protective role in autoimmunity [Hofmann et al., 2013] as they are present at reduced 

frequencies in autoimmune diseases such as systemic lupus erythematosus (SLE) 

compared to healthy subjects. We created the second test datasets by selecting CD3+ 

T cells from SLE patients and healthy individuals that represent the abundant cell 

types (see Methods). We used manually gated iNKT cells (characterized by TCR-

Vα14−Jα18 expression) as target rare cells (Supplementary Figure 2). We tested 



three different datasets with decreased frequencies of target cells (0.1, 0.05 and 

0.01%). We applied the four different cut-offs on LOF and FiRE anomaly scores on 

these three datasets. Similarly to dataset 1, the 2-dimensional UMAP representations 

(Figure 3a) show the iNKT cells distribution among CD3+ T cells in the dataset with 

frequency of 0.01%. The target iNKT cells (violet dots) are not all clustered together 

(q95, IQR-q75 and IQR-q95) but some of them are scattered amongst other cell types. 

This is likely due to the fact that, with the exception of TCR-Vα14−Jα18 expression, 

these iNKT cells have an expression profile very similar to CD3+ T cells. Consequently, 

solely iNKT with homogeneous phenotype are grouped together after clustering. We 

show the cells’ expression profile of the cluster containing the majority of target iNKT 

cells for the cut-off q95 (Figure 3b, heatmap of cluster 3), which have the lowest 

precision value (Figure 3c bottom, triangle in black box). The heat-map shows that 

the target cells represent a sub-population of CD4-CD8- (double negative) T cells, 

which is itself a rare population in PMBCs. 

An objective and rapid identification of interesting sub-groups of cells can be obtained 

by testing the FlowSOM clusters for association with the healthy condition (Table 3). 

The interesting clusters can be further investigated as previously demonstrated 

despite the low PPV (Figure 3c), as is the case at frequency 0.01%. We obtained 

multiple clusters with a statistically significant association with the healthy condition 

and the highest log(OR) for cluster 3 (2.09, CI95% [1.51, 2.75]) (Table 3). The p-value 

of the association test tends to improve with increasing total number of cells in a 

cluster. Therefore, we recommend prioritizing the highest log(OR) values for ranking 

clusters in order of interest. 

The FiRE-FlowSOM methodology was less effective: there were no target cells 

selected at the two stringent cutoffs. At the permissive cut-offs the performance was 

good for frequencies 0.1 and 0.05%. A low PPV shows that no cluster specific enough 

for target cells was obtained at 0.01% (Figure 3c).   

 

 



Test-dataset 3: Number of nearest-neighbors evaluation and runtime comparison 

between LOF and FiRE 

The third test dataset is a mass cytometry dataset acquired from lymph node 

mononuclear cells (LNMCs) isolated from HIV+ untreated and HIV+ ART treated 

patients (see Methods). We used HIV-specific B cells as target cells that were 

manually gated on IgG+ memory B cells specific for the HIV envelope glycoprotein 

gp140 and used memory B cells as abundant cell types (Supplementary Figure 3). 

We took advantage of this dataset to explore the performance variation of LOF 

accordingly to the number of nearest-neighbor (k) points selected by the user.  

We generated 100 sub-samples test datasets by randomly selecting 85 HIV-specific 

B cells and mixing them with a fixed set of memory B cells to a frequency of 0.05%. 

We report and compare sensitivity and precision (or PPV) for the cluster containing 

the majority of target cells after applying the whole procedure with LOF or FiRE (step 

1-3 of the methodology) (Figure 4a, Supplementary Table 1).  

The results show that the LOF-FlowSOM and FiRE-FlowSOM methodologies typically 

have good sensitivity and precision for q95, IQR-q75 and IQR-q95 cut-offs. 

Concerning LOF-FlowSOM, higher k values and in particular k ≥ 300 performs well in 

sensitivity and in precision for all tested cut-offs, while the lowest value (k = 50) 

performs poorly. As expected, when using stringent cut-offs, the sensitivity tends to 

be reduced due to the smaller number of target cells that are selected. For both 

anomaly scores, the q95 cutoff is a good choice for this test dataset, that is when 5% 

of the cells with highest score is selected. The precision has high variation for q75, 

likely due to the fact that selecting 25% of the most anomalous cells (about 430k cells) 

is a too large number to isolate the 85 target cells in one distinct cluster out of the 10 

defined.  

Overall, by selecting a large k value (≥ 300) for LOF we obtain better precision 

compared to FiRE for q95, IQR-q75 and IQR-q95 cut-offs.  

Concerning FiRE-FlowSOM, its performance is similar to that of LOF-FlowSOM but is 

more variable depending on the selected cut-off and sub-sample of target cells. 

 



Afterwards, we evaluated how the k value influences the computation time. We tracked 

the runtime of LOF (with varying k) and FiRE on the same data, while increasing the 

input data size (Figure 4b). FiRE shows a faster runtime (about 20 seconds for 320k 

cells) compared to LOF (on average across the different k values, about 4h for 320k 

cells) with an Intel Core i7 processor and clock speed of 2.9 GHz, and 16GB RAM. 

The runtime of LOF increased of 1.7-fold from k = 40 to k = 1280.  

Overall, the results show that LOF tends to give slightly better performance than FiRE 

on this dataset, when k ≥ 300.  FiRE also showed a good performance, and was 

substantially faster in execution, thus it is suited for larger datasets than those used 

here. 

 

Test-dataset 3: Detection of rare HIV-specific B cells associated with increased 

viremia  

HIV-specific B cells are more frequent in HIV+ untreated compared to the HIV+ ART 

treated patients, as their expansion is driven by HIV replication and the presence of 

antigen [Cubas et al., 2013]. We generated three datasets by randomly selecting HIV-

specific B cells at frequencies of 0.1%, 0.05% and 0.01% of the total dataset.   

We decided to compare more in detail how well cells’ ranking based on LOF and FiRE 

scores allow to select the target cells (step 1 of the methodology). We generated 

receiver operating characteristic (ROC) curves and calculated the area under the 

curves (AUC) values (Figure 5a, Supplementary Figure 4). The curves confirm that 

overall both methods are excellent at attributing a high anomaly score to the target 

cells and thus distinguishing them from the other cell types. The 2-dimensional UMAP 

representations (Figure 5b) show the selected candidate rare cells based on the 

different cut-offs and FlowSOM results on the dataset containing 0.01% of HIV-specific 

B cells. The q75 cut-off is not shown because not suited (too permissive) given the 

input data size of this dataset (Table 1). We inspected the expression profile of the 

cluster containing the majority of target cells for IQR-q75 cut-off (Figure 5c, cluster 2), 

which has low precision (Figure 5d). Interestingly, the low precision of this cluster is 

due to the presence of additional HIV-specific B cells that were not considered in the 



gating strategy since IgG-. Thus, with our approach we identified additional HIV-

specific B cells (with less affinity to gp140 trimer) (Supplementary Figure 3).  

We tested the 10 clusters defined using FlowSOM for association with HIV+ untreated 

patients (Table 4). Among them, several clusters resulted to be significantly 

associated with viremia and with strong association log(OR) that could be further 

investigated. In particular, cluster 2 (Figure 5b and c, IQR-q75) has with p < 10E-18 

and log(OR) = 2.49[1.74, 3.41]. Cluster 2 is one of two showing strong positive 

association with viremia. 

 



Discussion       

The computational strategy we present here has been designed to help 

bioinformaticians that aim at finding unknown cell populations (cell types or cell states, 

for example aberrant cancer cells or rare immune cells) of potential high importance 

in high throughput mass cytometry data. There is a lack of computational strategies 

designed to find cell populations that represents a small minority (< 1%) of the full cell 

collection. Indeed, such rare populations do not appear as a separate group among 

the full cell collection when using clustering algorithms (e.g. FlowSOM) or 

dimensionality reduction technique (e.g. UMAP) (Supplementary Figures 1-3). This 

is particularly the case when the distinction between rare and abundant cell types is 

defined by one or few features. Importantly, in our methodology we focus our attention 

on rare cell populations that are associated with a disease or condition of interest. In 

this case, identification is guided by an association test. The strategy of filtering-out 

the vast majority of abundant cell types using anomaly detection algorithms, leads to 

clusters sufficiently enriched in rare cells to be revealed by a classic test of association. 

In the context of mass cytometry, the problem has so far received little attention in the 

literature and no standard leading approach exists. Apart the novelty of the proposed 

approach, D-AREdevil framework has the merits of simplicity and rapidity. It does not 

require much code-writing, as it is fully based on existing robust methods implemented 

in packages for the R environment. 

We used three test mass cytometry datasets to explain and exemplify the 

methodology. Compared to existing approaches, we provided a strategy that improves 

the detection performance of rare cell populations in complex datasets. The datasets 

used reflect the complexity of physiological cellular samples in terms of population 

composition and low frequencies of rare cells to be detected. Moreover, this approach 

allows to better cover the entirety of phenotype-associated rare cell populations due 

to the flexibility of the continuous LOF or FiRE score compared to unsupervised 

clustering that assigns a cell label. In particular, the visualization of the LOF score in 

concomitance with the expression profile of the selected rare cells gives information 

about the level of rareness and profile deviation compared to abundant cells. 



The three test datasets were also used to compare performance and runtime of the 

two anomaly detection methods (LOF and FiRE) in the context of our approach. 

Overall, in the test datasets studied, LOF is more precise and stable in the selection 

of points situated in low density regions. FiRE also performs well and has the 

advantage of being very fast with execution time complexity O(n), linear in the number 

of cells. Therefore, for very large cell collections or for a first-step analysis, FiRE may 

be preferable to LOF when analysis time is a constraint. On the other hand, LOF has 

computational complexity O(n2), due to the k-NN algorithm for calculating distances 

between data points. Moreover, FiRE is designed to deal with high dimensionality of 

the data (e.g. single-cell RNA-sequencing), while LOF is not scalable for such 

dimensionality of the data and requires the use of dimension reduction (e.g. UMAP) 

before application. The two methods could be used in conjunction as they might find 

different cell clusters of interest or increase the confidence in a discovery when both 

identify the same cell subsets.  

One limitation of our framework resides in the exploratory nature of the approach. Any 

discovery will require confirmation in new and independent data sets, additional 

experimental wet lab investigations or follow-up clinical studies. The current approach 

requires human intervention and the empirical choice of parameters: the cut-off value 

on the anomaly score and the number of nearest-neighbor (k values), if LOF is used. 

A related issue is the presence systematic background noise (s antibody labeling) that 

could be identified as rare observations and which exclusion requires biological 

knowledges.  

Concerning the cut-offs selection, we made the following conclusions. By using a 

permissive cut-off such as q75, we maximize our capacity of identifying the majority of 

rare disease-associated cell types. In situations where the starting number of cells 

from pooled samples is very large, this restriction to 25% of the cells is not sufficient 

to filter-out enough abundant cell types. Overall, we observe that less permissive cut-

offs provide a suitably filtered set of candidate rare cells with good sensitivity and 

precision. This was especially true for populations that have only subtle distinguishing 

characteristics. In practice, the data analyst might want to try a few different 



parameters, in particular when no priori knowledges about the frequency of rare cells 

to be detected. 

We did not address the question of a data-driven optimization and automation of these 

steps, nor of rigorous statistical control, as these seem hard to achieve.  In our view, 

the proposed flexible exploratory approach is very valuable by itself for the analysis of 

many current projects. One aspect that could be improved is the association test, by 

considering samples’ information. For instance, using regression methodologies that 

include single sample labels for cells and evaluate statistical significance with 

resampling or label-permutation methods, in order to achieve a higher degree of 

statistical robustness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Methods 
 

Datasets  

We use three mass cytometry datasets (Table 1), which are available upon request 

by the authors.  

The dataset 1 (AML blast cells) consists of bone marrow mononuclear cells (BMMCs) 

that was treated as follow based on Weber et al., 2019. BMMCs comes from healthy 

donors (N = 5) that were split into two parts; the first half represents the healthy 

subjects, the second represents the simulated minimal residual disease (MRD) 

subjects, in which were introduced AML blast cells (two subsets) at low proportions 

(Supplementary Figure 1).  

We constructed the datasets 2 and 3 with data generated at the University Hospital of 

Lausanne (Supplementary Methods). The principle used to create test datasets was 

to select a rare cell type in real experimental datasets. Then we combined a number 

of these target rare cells with a large number of “abundant” cell types in order to obtain 

the desired relative frequencies of target cells. The cells from all samples were 

analyzed as a unique pool, in order to track conditions of the cells [Nowicka et al., 

2017].  

Dataset 2 (iNKT cells): Peripheral blood mononuclear cells (PBMCs) from 6 systemic 

lupus erythematosus (SLE) patients and 6 healthy donors were profiled by CyTOF 

using 34 extracellular markers recognizing and characterizing CD3+ T cells. Cells were 

manual gated by an expert as CD3+ invariant natural killer T cells (iNKT cells) positive 

for the TCR-Vα24-Jα18 protein (Supplementary Figure 2a). iNKT cells were used as 

target rare cells among CD3+ T cell sub-populations.  

Dataset 3 (HIV-specific B cells): Lymph node mononuclear cells (LNMCs) from 24 

HIV+ patients (14 untreated viremic and 10 ART treatead aviremic) were profiled by 

CyTOF with 33 B cells surface and intracellular markers. HIV-specific B cells were 

manually gated by an expert on the basis of IgG and gp140 trimers (HIV envelope 

glycoprotein that is recognized by the IgG receptor on B cells). We used non-naïve B 



cells as abundant cell types, that were gated on the basis of IgD and CD27 

(Supplementary Figure 3a). 

D-AREdevil Procedure  

 
We provide here some information to complement the description of our method 

given in the section results (Figure 1). 

Step 1: Anomaly detection.  

The D-AREdevil framework is intended for the identification of so-called local 

anomalies, points occurring in local low-density regions in the high-dimensional 

feature space. Local anomalies are found in the neighborhood of a large cluster of 

data points and difficult to identify by other means. We use two methods for assigning 

anomaly score to cells, Local Outlier Factor (LOF) [Breunig et al., 2000] and Finder of 

Rare Entities (FiRE) [Jindal et al., 2018], implemented in the R packages DDoutlier 

and FiRE respectively. LOF generates a score that has larger values for points located 

in regions of low density. The score depends on the parameter k, which is the 

(minimum) number of nearest neighbors’ points used to estimate the local point 

density. As indication, a good choice of k is generally larger than the (unknown) 

number of rare cells to detect. FiRE uses a fast algorithm to estimate the local 

densities and to derive an anomaly score for each cell. It uses the Sketching technique 

to map each data point into a bit vector hash code obtained by binarizing the features 

(here the marker expression values) by ensuring that points mapped to the same hash 

code are nearby in the space of all features. To define similarities, it subsamples a 

number M of features from the measurements at the same time and repeats the 

operation L times with new subsamples of features in order to deal with the high 

dimensionality of transcriptomic datasets. Then, the L density estimates are combined 

in the final score. FiRE does not have parameters that need to be tuned given the 

reduced dimensionality of cytometry datasets, so we used the parameters suggested 

by the authors.   

Steps 2 and 3: Clustering and visualization.  



 

Once a set of candidate rare cells is selected on the basis of their anomaly score, the 

aim is to identify any homogeneous sub-group of these cells that is specifically 

associated with a disease or outcome of interest. Concomitant visualization of the 

selected candidate rare cells in the two conditions is obtained by applying the UMAP 

technique [Becht et al., 2019] from the package uwot to all selected candidate rare 

cells and plotting them in two side-by-side graphs per condition. We performed 

clustering with the FlowSOM package [Van Gassen et al., 2015]. The clustering was 

performed on the selected candidate rare cells using all the markers and the first two 

UMAP coordinates. We used the SOM function with default options, which uses a two-

dimensional self-organizing map grid of size 10x10 leading to 100 clusters. 

Successively, we reduced the number of clusters to 10 with the consensus clustering 

method implemented in the metaClusteringconsensus function of the same package.   

Step 4: Association testing. 

To identify clusters of cells with different abundance between conditions, we apply the 

Fisher’s exact test to each of the 10 clusters to a 2-by-2 contingency table per cluster. 

The contingency table consists in the number of cells for each condition belonging or 

not to the cluster. We report p-values adjusted with a Bonferroni correction (with factor 

10, for the 10 clusters) and report estimated log odds ratios and their 95% confidence 

intervals. Note, in our analyses we focused on clusters representing <1% of the total 

dataset, thus rare cell populations. 

 

Runtime analysis 

The runtime analysis was tracked using peakRAM package. 

 

 

 



Figure legends 
 

Figure 1: Schematic overview of analysis steps of D-AREdevil methodology. (a) 
Schematic representation of the four major steps in the D-AREdevil workflow: (1) 

anomaly detection, (2) dimension reduction, (3) clustering and (4) association testing. 

(b) Input data are provided as an expression matrix of pooled samples (i.e. cells from 

different conditions analyzed together). (c) Anomaly detection applied on the input 

matrix produces a score of anomaly (or rareness) for individual cells. Left plot shows 

a typical right-skewed distribution of LOF score, the blue region (score values > 1) 

represents cells with high score value. The middle and right plots show the LOF and 

FiRE score distributions, respectively. The vertical lines show the tested cut-offs to 

selected candidate rare cells (red: q75 = 75th percentile, green: q95 = 95th percentile, 

the blue/black lines show IQR based cut-offs). (d) 2D-UMAP plots of the selected 

candidate rare cells for LOF (left) and FiRE (right), where an example of target rare 

cells is shown be present in one condition (minimal residual disease (MRD) in acute 

myeloid leukemia patients) but not in the other (healthy subjects) (e) Same 2D-UMAP 

(as in d) but with clusters produced by FlowSOM labeled by different colors. Dashed 

circles show the cluster containing target rare cells (f) Contingency tables for clusters 

representing < 1% of the total dataset and tested for association using a Fisher’s exact 

test. Results for LOF-FlowSOM are on the left and FiRE-FlowSOM on the right.  

Figure 2: Benchmark results for the identification of rare AML blast cell subsets 

(0.04%) in simulated minimal residual disease of AML patients. (a) UMAP 

representations of candidate rare cells selected by applying: (from left to right) q75 

cut-off (N = 39,389 cells) on LOF score and subsequent application of FlowSOM (in 

blue is shown cluster 2 that contains the target AML blast cells, CBF subset in green 

and CN subset in red), q95 (N = 7,878 cells), IQR-q75 (N = 8,020 cells) and IQR-q95 

(N = 1,866 cells). (b) Heat-map showing the expression profile of cells in cluster 2. 

Blue-to-yellow color-code shows low-to-high markers expression. LOF score is shown 

in the first column (green shades). Cell labels are shown in the second column. Arrows 

and black boxes indicate similar profile between some CN blasts and some BMMCs 

(c) Detection performance for LOF (purple) and FiRE (blue). For each score cut-off is 



shown sensitivity after anomaly selection (step 1) respectively after selection of a 

FlowSOM cluster (step 3) along with the positive predictive value (PPV).  

Figure 3: Benchmark results for the identification of rare iNKT cells (0.01%) in 

systemic lupus erythematosus patients and healthy donors (dataset 2). (a) UMAP 

representations of candidate rare cells selected by applying different cut-offs to the 

LOF score: q75 (N = 89,013 cells), q95 (N = 17,803), IQR-q75 (N = 11,558 cells) and 

IQR-q95 (N = 2,166 cells). The clusters defined by FlowSOM are shown by different 

colors and black squares show the cluster containing the majority of iNKT cells (violet 

dots).  (b) Heat-map showing the expression profile of cells in cluster 3 (q95). Blue-to-

yellow color-code shows low-to-high markers expression. LOF score is shown in the 

first column (green shades). Cell labels are shown in the second column. (c) Detection 

performance for LOF-FlowSOM (purple) and FiRE-FlowSOM (blue) for datasets 

containing 0.1, 0.05 and 0.01 % of iNKT cells. For each score cut-off (circle = q75, 

triangle = q95, square = IQR-q75 and prism = IQR-q95) the plots show sensitivity (top) 

and positive predictive value (bottom) after the whole procedure (step 1-3). Black 

boxes indicate the results for clusters in black boxes in (a). 

Figure 4: Performance results for the identification of HIV-specific B cells among non-

naïve B cells in the lymph nodes of HIV+ ART treated and untreated patients (dataset 

3). (a) Boxplots of sensitivity and positive predictive value for 100 sub-samples of HIV-

specific B cells when using LOF-FlowSOM (purple colors distinguishing the different 

number of nearest-neighbors’ values (k)) and FiRE-FlowSOM (blue) applied on the 

dataset containing 0.05% of target cells. The results are reported for cut-off. (b) 

Execution time recorded for FiRE (blue) and LOF (using different k values, purple 

colors) with increasing number of cells from 10k to 320k. 

Figure 5: Benchmark results for the identification of rare HIV-specific B cells among 

non-naïve B cells in the lymph nodes of HIV+ ART treated and untreated patients 

(dataset 3). (a) ROC curves and corresponding AUC values on datasets containing 

0.1%, 0.05% or 0.01% of rare target cells (LOF at the top, FiRE at the bottom). Marks 

on the curves indicate the position of the four tested cut-offs. There are no cells that 

reach the most stringent cutoff on the FiRE score. The color scale of the curve 



indicates the anomaly score values.  (b) UMAP representations for dataset containing 

0.01% of target cells selected by applying different cut-offs to the LOF score: q75 (N 

= 107,548 cells), q95 (N = 21,510), IQR-q75 (N = 18,577cells) and IQR-q95 (N = 4,114 

cells). The clusters defined by FlowSOM are shown by different colors and black 

squares show the cluster containing the majority of iNKT cells (violet dots).  (b) Heat-

map showing the expression profiles of cells in cluster 2 (IQR-q75). Blue-to-yellow 

color-code shows low-to-high markers expression. LOF score is shown in the first 

column (green shades). Cell labels are shown in the second column. (c) Detection 

performance for LOF-FlowSOM (purple) and FiRE-FlowSOM (blue) for datasets 

containing 0.1, 0.05 and 0.01 % of target cells. For each score cut-off (circle = q75, 

triangle = q95, square = IQR-q75 and prism = IQR-q95) the plots show sensitivity (top) 

and positive predictive value (bottom) for a selected cluster (step 1-3). Black boxes 

indicate the results for clusters shown in (a). 
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Tables 

Table 1: Summary of the datasets used to evaluate the performance of the D-

AREdevil approach. 

 
 

 

 

 

 
 
 

 

 
 
 
 

 

 
 
 

 



Table 2: Fisher’s exact test results for dataset 1 (AML blast cells) using the LOF-

FlowSOM methodology with parameter k = 100. We reported results in log for the 

odds ratio (OR) and its 95% confidence interval. In bold are shown the clusters 

containing the target rare cells. A positive log(OR) corresponds to a positive 

association with the simulated MRD condition. 

 

   
 

 

 

 

 

 

 

 

 

 



Table 3: Fisher’s exact test results for dataset 2 (iNKT cells) using the LOF-

FlowSOM methodology with parameter k = 100. We reported results in log for the 

odds ratio (OR) and its 95% confidence interval. In bold are shown the clusters 

containing the target rare cells. A positive log(OR) corresponds to a positive 

association with the healthy condition. 

 

 



Table 4: Fisher’s exact test results for dataset 3 (HIV-specific B cells) using the LOF-

FlowSOM methodology with parameter k = 300 (based on results obtained in Figure 

4a). We reported results in log for the odds ratio (OR) and its 95% confidence 

interval. In bold are shown the clusters containing the target rare cells. A positive 

log(OR) corresponds to a positive association with the untreated condition. 

 

 



References 

E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. Kwok, L. G. Ng, F. Ginhoux, and 

E. W. Newell. Dimensionality reduction for visualizing single-cell data using umap. 

Na- ture biotechnology, 37(1):38–44, 2019.  

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based 

local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on 

Management of data, pages 93–104, 2000.  

R. V. Bruggner, B. Bodenmiller, D. L. Dill, R. J. Tibshirani, and G. P. Nolan. 

Automated identification of stratifying signatures in cellular subpopulations. 

Proceedings of the National Academy of Sciences, 111(26):E2770–E2777, 2014.  

F. Castro-Giner and N. Aceto. Tracking cancer progression: From circulating tumor 

cells to metastasis. Genome Medicine, 12(1):1–12, 2020. ISSN 1756994X. doi: 

10.1186/s13073- 020-00728-3.  

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM 

computing surveys (CSUR), 41(3):1–58, 2009.  

R. A. Cubas, J. C. Mudd, A.-L. Savoye, M. Perreau, J. Van Grevenynghe, T. Metcalf, 

E. Con- nick, A. Meditz, G. J. Freeman, G. Abesada-Terk, et al. Inadequate t 

follicular cell help impairs b cell immunity during hiv infection. Nature medicine, 

19(4):494–499, 2013.  

S. De Biasi, L. Gibellini, M. Nasi, M. Pinti, and A. Cossarizza. Rare cells: focus on 

detection and clinical relevance. In Single Cell Analysis, pages 39–58. Springer, 

2017.  

M. Farinacci, T. Krahn, W. Dinh, H.-D. Volk, H.-D. Du ̈ngen, J. Wagner, T. Konen, 

and O. von Ahsen. Circulating endothelial cells as biomarker for cardiovascular 

diseases. Research and Practice in Thrombosis and Haemostasis, 3(1):49–58, 

2019. ISSN 2475-0379. doi: 10.1002/rth2.12158.  



G. Finak, W. Jiang, and R. Gottardo. Cytoml for cross-platform cytometry data 

sharing. Cy- tometry Part A, 93(12):1189–1196, 2018.  

M. Goldstein and S. Uchida. A comparative evaluation of unsupervised anomaly 

detection algorithms for multivariate data. PloS one, 11(4):e0152173, 2016.  

D. Gru ̈n, A. Lyubimova, L. Kester, K. Wiebrands, O. Basak, N. Sasaki, H. Clevers, 

and A. Van Oudenaarden. Single-cell messenger rna sequencing reveals rare 

intestinal cell types. Nature, 525(7568):251–255, 2015.  

S. C. Hofmann, A. Bosma, L. Bruckner-Tuderman, M. Vukmanovic-Stejic, E. C. Jury, 

D. A. Isenberg, and C. Mauri. Invariant natural killer t cells are enriched at the site of 

cutaneous in- flammation in lupus erythematosus. Journal of Dermatological 

Science, 71(1):22–28, 2013.  

L. Jiang, H. Chen, L. Pinello, and G.-C. Yuan. Giniclust: detecting rare cell types 

from single- cell gene expression data with gini index. Genome biology, 17(1):144, 

2016.  

A. Jindal, P. Gupta, Jayadeva, and D. Sengupta. Discovery of rare cells from 

voluminous single cell expression data. Nature Communications, 9(1):1–11, 2018. 

ISSN 20411723. doi: 10.1038/s41467-018-07234-6.  

J. H. Levine, E. F. Simonds, S. C. Bendall, K. L. Davis, E. A. D. Amir, M. D. Tad- 

mor, O. Litvin, H. G. Fienberg, A. Jager, E. R. Zunder, R. Finck, A. L. Gedman, I. 

Radtke, J. R. Downing, D. Pe’er, and G. P. Nolan. Data-Driven Phenotypic Dis- 

section of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell, 

162(1):184–197, 2015. ISSN 10974172. doi: 10.1016/j.cell.2015.05.047. URL 

http://dx.doi.org/10.1016/j.cell.2015.05.047.  

D. W. Li, Z. Q. Liu, J. Wei, Y. Liu, and L. S. Hu. Contribution of endothelial progenitor 

cells to neovascularization (review). International Journal of Molecular Medicine, 

30(5):1000–1006, 2012. ISSN 11073756. doi: 10.3892/ijmm.2012.1108.  



M. Linderman, R. Bruggner, and M. R. Bruggner. Package ‘rclusterpp’. 2013. 

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine 

learning  

research, 9(Nov):2579–2605, 2008.  

M. Nowicka, C. Krieg, L. M. Weber, F. J. Hartmann, S. Guglietta, B. Becher, M. P. 

Levesque, and M. D. Robinson. Cytof workflow: differential discovery in high-

throughput high- dimensional cytometry datasets. F1000Research, 6, 2017.  

F. Ravandi, R. B. Walter, and S. D. Freeman. Evaluating measurable residual 

disease in acute myeloid leukemia. Blood Advances, 2(11):1356–1366, 2018. ISSN 

24739537. doi: 10.1182/bloodadvances.2018016378.  

N. Samusik, Z. Good, M. H. Spitzer, K. L. Davis, and G. P. Nolan. Automated 

mapping of phe- notype space with single-cell data. Nature Methods, 13(6):493–496, 

2016. ISSN 15487105. doi: 10.1038/nmeth.3863.  

S. Schreier, S. Borwornpinyo, R. Udomsangpetch, and W. Triampo. An update of 

circulat- ing rare cell types in healthy adult peripheral blood: findings of immature 

erythroid pre- cursors. Annals of Translational Medicine, 6(20):406–406, 2018. ISSN 

23055839. doi: 10.21037/atm.2018.10.04.  

M. H. Spitzer and G. P. Nolan. Mass Cytometry: Single Cells, Many Features. Cell, 

165(4):780–791, 2016. ISSN 10974172. doi: 10.1016/j.cell.2016.04.019. URL 

http://dx.doi.org/10.1016/j.cell.2016.04.019.  

S. Van Gassen, B. Callebaut, M. J. Van Helden, B. N. Lambrecht, P. Demeester, T. 

Dhaene, and Y. Saeys. Flowsom: Using self-organizing maps for visualization and 

interpretation of cytometry data. Cytometry Part A, 87(7):636–645, 2015.  

L. M. Weber and M. D. Robinson. Comparison of clustering methods for high-

dimensional single-cell flow and mass cytometry data. Cytometry Part A, 

89(12):1084–1096, 2016. ISSN 15524930. doi: 10.1002/cyto.a.23030.  



L. M. Weber, M. Nowicka, C. Soneson, and M. D. Robinson. diffcyt: Differential 

discovery in high-dimensional cytometry via high-resolution clustering. 

Communications biology, 2(1): 1–11, 2019.  

H. Zhang, V. Vakil, M. Braunstein, E. L. Smith, J. Maroney, L. Chen, K. Dai, J. R. 

Berenson, M. M. Hussain, U. Klueppelberg, et al. Circulating endothelial progenitor 

cells in multiple myeloma: implications and significance. Blood, 105(8):3286–3294, 

2005.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Information 

Supplementary Methods 

FCS files (dataset 1 and 3) were normalized to the EQ Four Element Calibration Beads 

using the CyTOF software. FCS files (dataset 3) were de-barcoded using Cytobank 

software. Cell populations used as reference-standard for the analyses (dataset 1 and 

3) were manually gated for major and rare cell populations in CytoBank Data Analysis 

Software (dataset 1) or FlowJo v10.4.2 (Treestar, Inc., Ashland, CR) (dataset 3). FCS 

files as well as major and rare cell populations’ labels were imported in R software 

v3.6 using CytoML package (from Bioconductor) [Finak et al., 2018]. Input data consist 

in a single protein-expression matrix for each dataset, where rows correspond to cells 

and columns to markers and meta-data (i.e. sample IDs, study groups, cell label). 

Markers intensity values (ion counts) were transformed using an inverse hyperbolic 

sine (arcsinh) with cofactor 5 [Nowicka et al., 2017]. The arcsinh transformation allows 

to reduce skewness of markers distribution, similarly to log transformation it de-

emphasizes high values but can handle zeros or negative values (quasi-linear close 

to zero values). The cofactor of the function controls the width of the quasi-linear 

region; cofactor 5 correspond to standard value for mass cytometry, while 150 is used 

for flow cytometry [Weber et al., 2019].  

 

 

 

 

 

 

 

 



Supplementary Tables 

Supplementary Table 1: Sensitivity (true positive rate, TPR) and precision (or positive 

predictive value, PPV) of 100 sub-sampling of HIV-specific B cells (target rare cells) 

in dataset 3. We report 95% confidence intervals for TRP and PPV and the percentage 

of sub-samples with TPR/PPV higher than 0.5 when applying q75, q95, IQR-q75 and 

IQR-q95 cut-offs. We show the results for FiRE and LOF with different number of 

nearest-neighbors (k).  

 

 

 
 
 
 
 
 
 
 



Supplementary Figures 

 

 

 

Supplementary Figure 1: AML blast cells dataset (a) UMAP representation of the 

whole dataset. 0.02% of AML blast cells CBF subset (green dots) and 0.02% of CN 

subset (red dots) among BMMCs (grey density lines) (b) FlowSOM results on the 

whole dataset for increasing number of total clusters (C = 5 clusters, C = 10, C = 20, 

C = 50 and C = 100). The green bars represent non-target cells (i.e. BMMCs) and in 

violet are shown the target AML blast cells. We indicated the number of target cells (in 

violet) among the BMMCs (approx. value) for the most enriched cluster. 
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Supplementary Figure 2: iNKT cells dataset (a) Gating strategy of iNKT cells in one 

healthy subject and one SLE patient. (b) UMAP representations of the whole datasets. 

iNKT are present at different frequencies 0.1%, 0.05% and 0.01% (violet dots) among 

CD3+ T cells (grey density lines). (c) FlowSOM results on the whole dataset for 

increasing number of total clusters (C = 5 clusters, C = 10, C = 20, C = 50 and C = 

100). The green bars represent non-target cells (i.e. CD3+ T cells) and in violet are 

shown the target iNKT cells. We indicated the number of target cells (in violet) among 

the CD3+ T cells (approx. value) for the most enriched cluster. 
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Supplementary Figure 3: HIV-specific B cells dataset (a) Gating strategy of non-

naïve B cells and HIV-specific B cells in one HIV+ viremic subject and one HIV+ ART 

treated subject. (b) UMAP representations of the whole datasets. HIV-specific B cells 

are present at different frequencies 0.1%, 0.05% and 0.01% (violet dots) among non-

naïve B cells (grey density lines). (c) FlowSOM results on the whole dataset for 

increasing number of total clusters (C = 5 clusters, C = 10, C = 20, C = 50 and C = 

100). The green bars represent non-target cells (i.e. non-naive B cells) and in violet 

are shown the target HIV+ B cells. We indicated the number of target cells (in violet) 

among the non-naïve B cells (approx. value) for the most enriched cluster. 
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Supplementary Figure 4: Boxplots of area under the ROC curve (ROC AUC) 

calculated on test samples for 100 sub-samples of HIV-specific B cells (at frequency 

0.05%) and fixed major B cell types in lymph nodes of HIV+ ART treated and untreated 

patients. In blue are shown results for FiRE and in orange colors are shown LOF 

results for increasing number of nearest-neighbors (k). 
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 2 

Abstract 26 

T follicular helper cells (Tfhs) promote the development of germinal centers and maturation of B 27 

cells. We have found that the expression of CXCR3 defines distinct single IFN-γ and dual IL-28 

21/IFN-γ Th1-like Tfh (CXCR3+) and single IL-4 and dual IL-21/IL-4 Th2-like Tfh (CXCR3-) 29 

cytokine secreting cells. CXCR3- Th2-like Tfhs are significantly reduced during ongoing HIV 30 

replication. While the percentage of Th2-like Tfhs correlates with that of total and cycling HIV-31 

specific B cells, the percentage of CXCR3+ Th1-like Tfhs correlates with HIV-specific B cells 32 

expressing T-bet and CXCR3. Of note, only IL-4 and IL-21 cytokines boosted efficient maturation 33 

of HIV-specific B cells while IFN-γ induced expression of T-bet and CXCR3 in B cells and 34 

suppressed immunoglobulin production. Interestingly, total and HIV-specific CXCR3+ B cells 35 

showed lower rate of somatic hypermutation, as compared to CXCR3- B cells. Therefore, the 36 

imbalance in Th2/Th1-like Tfhs is a major cause of  B cell abnormalities in viremic HIV infection.    37 

38 



 3 

Introduction 39 

T follicular helper CD4 T cells (Tfhs) are essential for germinal center formation, B cell 40 

proliferation, affinity maturation, isotype class switching, and generation of long lasting memory 41 

B cells and plasma cells1-5. Germinal center (GC) Tfhs are a very heterogenous population, 42 

phenotypically defined by coexpression of CXCR5 and PD-1 and by expression of the B-cell 43 

lymphoma 6 protein (BCL-6) transcription factor, and functionally characterized by the  44 

production of IL-21 and IL-4 cytokines that together optimally drive B cell maturation6-11.  45 

HIV infection is characterized by the expansion of Tfhs in viremic individuals and viremia 46 

levels correlate with increased frequency of GC B cells and plasma cells and decreased frequencies 47 

of naive, unswitched memory and switched memory B cell populations12. Despite an increase in 48 

their frequency, Tfhs from HIV-infected individuals are less effective at providing adequate B-cell 49 

help13. They remain capable of responding to HIV antigens but become functionally skewed14,15. 50 

The increased expression of Programmed death-ligand 1 (PD-L1) by GC B cells and the delivery 51 

of the inhibitory signal through the PD-1/PDL-1 interaction13 has been suggested to explain the 52 

dysfunction of Tfhs.  53 

Lymph node Tfhs from simian immunodeficiency virus (SIV) infected animals and 54 

peripheral Tfhs from HIV-1 infected individuals have been shown to have a polarized T helper 55 

(Th)1-like phenotype and to express increased levels of T-bet and CXCR316,17. Futhermore, Th1-56 

like Tfhs have increased production of Interferon (IFN)-γ and contain more copies of SIV DNA as 57 

compared to CXCR3- Tfhs in chronic SIV infection16.  58 

Of note, studies performed in Non-Human Primates (NHPs) and in humans have 59 

demonstrated that the frequency and the quality of Tfhs specific to Env drives the magnitude and 60 

the quality of the Env-specific B cell response18 and that they are required for the development of 61 



 4 

HIV broadly neutralizing antibodies19. In this regard, an elegant study performed in mice has 62 

shown that the progressive differentiation of Tfhs secreting IL-21 and IL-4 regulates the GC 63 

response11. 64 

Two recent studies performed in tonsils and lymph nodes obtained from healthy HIV 65 

negative and/or HIV-infected viremic individuals have started to uncover the phenotypic 66 

heterogeneity of Tfhs and highlighted certain phenotypic and functional (cytokines) differences 67 

between healthy and viremic individuals15,20 68 

Previous studies have demonstrated that PD-1+/Tfh CD4 T cells are the major cell reservoir 69 

in lymph nodes in both viremic and long term treated individuals12,21. Whether the role of Tfhs as 70 

a major cell reservoir for HIV has an impact on the generation of the antibody response remains 71 

unclear21, 22, 23, 12.  72 

 In the present study, we have dissected the phenotypic and functional heterogeneity of Tfhs 73 

in lymph nodes of HIV infected viremic, long-term ART treated and healthy HIV negative 74 

individuals, and determined their impact on the development of the Env-specific B cell response. 75 

We show that the expression of CXCR3 defines a Th1-like Tfh cell population functionally 76 

enriched in single IFN-γ and dual IFN-γ/IL-21 cells while CXCR3- Th2-like Tfh cells are enriched 77 

in single IL-4 and dual IL-4/IL-21 producing cells. Of note, the Th2-like Tfh cell population was 78 

significantly reduced in viremic individuals. We provide evidence that the reduction in this Tfh 79 

cell population and the imbalance in the Th2 and Th1-like Tfh cell populations are a major cause 80 

of the phenotypic and functional abnormalities in the B cell responses of HIV viremic individuals. 81 

These results will be also instrumental in developing strategies to optimize the induction of the 82 

magnitude and quality of antibody responses following vaccination.  83 

84 
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Results  85 

Characterization of Tfh cells 86 

In order to dissect the heterogeneity of Tfhs, lymph node biopsies were obtained from 8 87 

healthy HIV negative, 12 long-term ART treated and 9 viremic individuals (Table 1). Lymph node 88 

mononuclear cells (LNMCs) were then characterized with a unique panel of 30 markers of T cell 89 

activation, memory differentiation, chemokine receptors and HIV coreceptors (Supplementary 90 

Table 1a). Tfhs were defined by gating on memory CD4 T cells on the basis of the expression of 91 

PD-1 and CXCR5 and high levels of BCL-6 (Figure 1a and 1b). Unsupervised clustering was 92 

performed on pooled Tfh cells from the three study groups by a data-driven unsupervised 93 

clustering method, i.e., FlowSOM, in combination with consensus clustering. This analysis 94 

defined 20 different populations (i.e. clusters) within CXCR5highPD-1high Tfhs. T-distributed 95 

stochastic neighbor embedding (t-SNE) was used to perform dimensions reduction and visualize 96 

our data in a two-dimensional plot that placed cells with similar phenotypic characteristics (in high 97 

dimensional space) in close proximity (Fig. 1c, Supplementary Fig. 1a and b). After clusters 98 

definition, we used the heat map (Fig. 1d) to show the phenotypic profile of each cluster in terms 99 

of median marker intensity for an individual marker. The 20 defined clusters showed variations in 100 

the expression of CD38, CXCR3, CD57, HLA-DR, CD127, CXCR4, and to less extend of CCR5, 101 

CD25, CCR7 and CD32 while Tfhs were homogeneous for the expression of CD27, ICOS and 102 

CD40L (Fig. 1d). 103 

Next, we found that only 8 out of the 20 Tfh clusters were significantly differentially 104 

distributed in the three study groups (Fig. 1e and Supplementary Fig. 1c).  Clusters 1, 8 and 11 105 

were significantly decreased in viremics as compared to ART treated and healthy individuals. 106 
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These three clusters accounted for the 29.3% and 26.84% of the total Tfh cell population in ART 107 

treated and healthy individuals, respectively, and in viremics only 5.9% (P < 0.0001) (Fig. 1f).  108 

Clusters 5, 10, 13 and 15 were over represented in viremics and accounted for 49.17% of 109 

the total Tfh cell population (cluster 5: 24.4%; cluster 10: 15.53%; cluster 13: 0.89%; cluster 15: 110 

8.35%), while in ART treated and healthy individuals they accounted for 22.14% and 18.66%, 111 

respectively (P < 0.0001) (Fig. 1f). 112 

Only cluster 12 was significantly increased in healthy as compared to ART treated (P = 113 

0.048) and viremics (P = 0.0014) (on average healthy: 5.12%; ART treated: 2.63%; viremics: 114 

0.89%) (Fig. 1e and f).  115 

Clusters with higher frequencies in viremics co-expressed CXCR3 and CD38 with varying 116 

levels of CD57, CXCR4, HLA-DR and CD25 (Fig. 1d) while those abundant in ART treated and 117 

healthy individuals expressed lower levels of CD38 and CCR5 and were heterogeneous in CXCR3 118 

expression (Fig. 1d). This was further confirmed by unsupervised principal component analysis 119 

(PCA) which showed that the markers that contributed the most to Tfh heterogeneity were CXCR3 120 

and CD38 (Fig. 1g).  121 

Alltogether these data highlight the phenotypic heterogeneity of Tfhs and define distinct 122 

phenotypic subsets of Tfhs that are differentially distributed in healthy, ART treated and viremic 123 

individuals. 124 

 125 

Relationship between CD38 and CXCR3 Tfh cell populations  126 

Having delineated the phenotypic markers defining the Tfh cell populations differentially 127 

distributed in the three study groups, we sought to investigate further the relationship between 128 

CD38 and CXCR3 and to confirm the findings generated by FlowSOM in combination with 129 
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consensus clustering by manual gating. The additional analyses confirmed that Tfhs co-expressing 130 

CD38 and CXCR3 were consistently increased in viremics as compared to healthy and ART 131 

treated individuals (Fig. 2a, b). SPICE analyses demonstrated that the frequency of the 132 

CD38+CXCR3+ Tfh cell population was 44.1% in viremics, 17.4% in ART treated individuals (P 133 

< 0.0001) and 6.7% in healthy (P < 0.0001). CD38-CXCR3+ cells were significantly reduced in 134 

viremics as compared to ART treated individuals (10.5% vs 21.19%, P = 0.001) and to healthy 135 

(20%, P = 0.017) (Fig. 2a, b). CD38+CXCR3- cells were significantly increased in viremics as 136 

compared to healthy individuals (28.9% vs 14.11%, P < 0.0001) but not as compared to ART 137 

treated subjects (22.9%, P = 0.14) (Fig. 2a, b). 138 

We next determined the expression of markers of memory cell differentiation, cell 139 

activation, and cell trafficking within the Tfh cell populations defined by the expression of CD38 140 

and CXCR3 in the three study groups (Fig. 2c). The heat map shows that the large majority of 141 

markers defining T cell activation (Ki-67, CD25, HLA-DR) as well as classic Tfh markers (BCL-142 

6, ICOS, CD40L) were significantly increased in CD38+CXCR3+ Tfhs as compared to the other 143 

Tfh cell populations. Of note, the expression of the HIV coreceptor CCR5 was greatly enriched 144 

within  CD38+CXCR3+ Tfhs in the three study groups (67% in healthy, 55.8% ART treated and 145 

44.5 % in HIV viremics) (Fig. 2c), suggesting that this subset might potentially be more susceptible 146 

to HIV infection. Interestingly, we found higher levels of cell-associated HIV RNA in CXCR3+ as 147 

compared to CXCR3- Tfhs (Fig. 3). Therefore, these findings have identified a cell subset serving 148 

as HIV reservoir within the total Tfh cell population. Previous studies16,24, have shown an 149 

enrichment of inducible replication competent HIV in blood CXCR3+ CD4 T cells and an 150 

enrichment of SIV DNA in the same cell population. 151 

Suffiotti Madeleine
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The Th1 cell lineage T-box transcription factor (T-bet) was significantly increased in 152 

CD38+CXCR3+ Tfhs as compared to CD38-CXCR3+, CD38+CXCR3- and CD38-CXCR3- Tfhs (P 153 

< 0.001), while the Th2 transcription factor GATA-3 was significantly increased in CD38-CXCR3- 154 

Tfhs (Fig. 2c) (P < 0.01). Of note, GATA-3 expression within the CD38-CXCR3- Tfhs was 155 

significantly decreased in HIV infected viremic individuals as compared to ART treated subjects 156 

(0.81% in viremics vs 30.8% in ART treated, P < 0.0001) and HIV uninfected individuals (12.04%, 157 

P = 0.0006). Similarly, the Th2 specific chemokine, CCR4, was strongly reduced in all Tfhs of 158 

viremic individuals compared to both healthy and ART treated donors (1.6 to 2 fold, P < 0.01).  159 

Taken together, these results indicate that the co-expression of CD38 and CXCR3 identifies 160 

a population of activated and Th1 polarized Tfhs, while Th2 polarized Tfhs were CD38-CXCR3- 161 

and significantly reduced in viremic individuals. 162 

 163 

Functional characterization of CD38+CXCR3+ Tfh cells  164 

Tfhs produce high levels of IL-21, a cytokine that is critical for GC formation and B cell 165 

maturation25,26. Although IL-21 is the signature cytokine of Tfhs , studies have shown that Tfhs  166 

are also able to produce cytokines typical of other cell lineages of helper CD4 T cells12. Therefore, 167 

we determined the cytokine profile of total Tfhs  and of the four Tfh cell populations defined by 168 

CXCR3 and CD38 expression. LNMCs from HIV uninfected, HIV-1 infected ART treated and 169 

viremic individuals were stimulated for 5 hours in the presence of PMA and ionomycin and the 170 

cytokine profile was evaluated by mass cytometry. The production of IFN-γ, IL-21, IL-4, IL-2 and 171 

TNF-α by total Tfhs within the three study groups using SPICE analysis is shown in 172 

Supplementary Figure 2a. Tfhs from healthy subjects were enriched in polyfunctional Tfhs 173 

producing five (IFN-γ+IL-21+IL-4+IL-2+TNF-α+) and four (IFN-γ-IL-21+IL-4+IL-2+TNF-α+) 174 
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cytokines as compared to ART treated and viremic subjects, while Tfhs from viremics were 175 

generally enriched in IL-21+IL-4-IL-2- regardless of their ability to produce IFN-γ and TNF-176 

α (Supplementary Fig. 2a).  177 

Next, we assessed the cytokine profile in the four Tfh cell populations defined by the 178 

expression of CD38 and CXCR3 (Fig. 4a, b). t-SNE analysis showed a dichotomy in the 179 

distribution of IFN-γ and IL-4 between CXCR3+ and CXCR3- Tfh cell populations whereas the 180 

two cytokines were spread within CD38+ and CD38- Tfhs (Fig. 4a). The dichotomy in the 181 

distribution of IFN-γ and IL-4 between CXCR3+ and CXCR3- Tfh cell populations was further 182 

confirmed in the heat map (Fig. 4b) analysing the distribution of all cytokines within the four Tfh 183 

cell populations. CD38-CXCR3- and CD38+CXCR3- Tfhs on one side and CD38-CXCR3+ and 184 

CD38+CXCR3+ on the other side share similar functional cytokine profiles and are closely related 185 

to each other. CXCR3-CD38- and CXCR3-CD38+ Tfhs were predominantly enriched in IL-4 186 

whereas CXCR3+CD38- and CXCR3+CD38+ Tfhs were significantly enriched in IFN-γ and also 187 

in IL-21, IL-2 and TNF-α. Of note, in viremics there was a significant trend in the decrease of 188 

Tfhs secreting IL-2 across the four Tfh cell populations and in the percentage of Tfhs secreting IL-189 

4 (about 2.7 fold reduction) as compared to healthy individuals (Fig. 4b and Supplementary Fig. 190 

2b). The cytokine profile observed in ART treated individuals was generally intermediate beween 191 

healthy and viremic individuals apart from IL-4, which was strongly reduced in all CXCR3+ and/or 192 

CD38+ cell populations (Fig. 4b and Supplementary Fig. 2b).  193 

Taken together these results demonstrate that the expression and/or the lack of CXCR3 194 

defines functionally distinct Tfh cell populations, i.e. CXCR3+ Tfh/Th1-like IFN-γ+ and CXCR3- 195 

Tfh/Th2-like IL-4+. 196 
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        A recent study performed in mice has demonstrated that IL-21 promotes efficient B cell 197 

proliferation and that both IL-21 and IL-4 are required for full maturation of B cells11. We therefore 198 

analyzed the distribution of IL-21, IL-4, and IFN-γ producing Tfhs within CXCR3+ and CXCR3- 199 

cell populations in the three study groups. Interestingly, we identified Tfhs producing only IL-21 200 

(single IL-21), only IFN-γ (single IFN-γ), IL-21 and IFN-γ (dual IL-21/IFN-γ), only IL-4 (single 201 

IL-4), or IL-21 and IL-4 (dual IL-21/IL-4). The expression and/or lack of CXCR3 segregated the 202 

single IL-4 and dual IL-21/IL-4 cytokine producing Tfhs within the CXCR3- Th2-like Tfhs and 203 

single IFN-γ and the dual IL-21/IFN-γ within the CXCR3+ Th1-like Tfh cell populations (Fig. 4c). 204 

Similar to what was observed for the total IL-4 secreting Tfhs, the percentage of dual IL-21/IL-4, 205 

and to a lesser extent of single IL-4 Tfh, was reduced in viremic as compared to healthy individuals 206 

(Fig. 4c). Of note, the Th1-like/Th2-like Tfhs ratio calculated by the ratio between the frequency 207 

of total IFN-γ+ (i.e. single IFN-γ+ plus dual IFN-γ+/IL-21) Tfhs and the frequency of total IL-4 208 

producing Tfhs (Supplementary Fig. 2c) was significantly increased in viremic as compared to 209 

HIV negative individuals (5.1 vs 1.2 , P = 0.003) (Fig. 4d). Furthermore, treatment with ART 210 

showed a trend towards the recovery of Th2-like Tfhs (Fig. 4d and Supplementary Fig. 2c).  211 

Therefore, these results indicate that the CXCR3- Th2-like Tfh cell populations potentially 212 

important for promoting efficient B cell maturation are quantitatively reduced in viremic 213 

individuals. 214 

 215 

Frequency and distribution of gp140-specific B cells in ART treated and viremic individuals 216 

We have previously shown that during the viremic phase of HIV infection the expansion 217 

of Tfh cells positively correlates with the frequency of total GC B cells12. Here, we investigated 218 

the relationship between Tfhs and antigen-specific B cells. We have taken advantage of the use of 219 
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a biotinylated gp140 trimers linked to metal conjugated streptavidin in order to identify HIV-220 

specific B cells from lymph nodes by mass cytometry27. As comparator, we have analyzed Flu-221 

specific B cells within the same lymph nodes of healthy, viremic and ART treated individuals. 222 

After gating on CD19+ cells to identify B cells and on IgG+ cells to enrich in memory B cells, 223 

gp140 trimers and HA protein were used to identify HIV-specific and Flu-specific B cells, 224 

respectively (Fig. 5a). The frequency of LN gp140-specific B cells was significantly higher in 225 

viremics versus long-term ART treated individuals (2.7% vs 1.2%, P = 0.0005) (Fig. 5a, b) and in 226 

LNs as compared to peripheral blood (viremics: 2.7% in LNs vs 1% in blood, P =  0.006;  ART 227 

Treated: 1.2% in LNs vs 0.5% in blood, P = 0.002) (Supplementary Fig.3a, b). Flu-specific B cells 228 

were detected at similar frequencies in a subset of the LNs from the three study groups (about 229 

0.3% of IgG+ B cells) but at significantly lower frequencies as compared to the percentage of 230 

gp140-specific B cells in viremic and ART treated LNs (P = 0.002 and P = 0.001, respectively) 231 

(Fig. 5a, b). Next, we determined the distribution of gp140- and Flu-specific B cells within memory 232 

B cell subsets using mass cytometry. In LNs, IgD and CD38 identify four populations of non-naive 233 

B cells: unswitched memory IgD+CD38-, switched memory IgD-CD38-, GC B cells IgD-CD38+ 234 

and plasma cells IgD-CD38hi 12. After gating on non-naive B cells (naive IgD+CD27- (<1%) were 235 

excluded) the phenotypic analysis showed that gp140-specific B cells in LNs from viremic 236 

individuals were primarily contained within GC B cells (52.6%) and switched memory (42.3%), 237 

while gp140-specific B cells from ART treated individuals were mostly contained within the 238 

switched memory B cell population (78.3%) (Supplementary Fig. 4a and Fig. 5c). Flu-specific B 239 

cells were mostly contained within switched memory B cells in the three study groups (around 240 

80%) (Fig. 5d). The frequency of gp140-specific B cells was positively correlated with the total 241 

percentage of GC B cells (r = 0.82, P < 0.0001) and negatively correlated with the frequency of 242 
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switched memory B cells (r = -0.79, P < 0.0001) (Supplementary Fig. 4b). Moreover, plasma viral 243 

load was positively correlated with the percentage of gp140-specific B cells within the total GC B 244 

cells (r = 0.61, P = 0.037) and negatively correlated with the percentage of gp140-specific B cells 245 

within switched memory B cells (r = -0.74, P = 0.007) (Supplementary Fig. 4b).  246 

To further confirm the differences in the distribution of gp140- and Flu-specific B cells in 247 

the different manually gated memory B cell populations (Fig. 5c, d and Supplementary Fig. 4a) 248 

we performed a multivariate analysis with 31 markers (listed in Table S1b) using multi-249 

dimensional scaling (MDS). MDS provides a graphical summary of the cell subsets similarities in 250 

the expression patterns of the 31 markers. The 3D MDS plots (Fig. 5e) were used to directly 251 

compare the phenotypic relationship between gp140- and Flu-specific B cells and the LN memory 252 

B cell subsets. In support of the distribution of gp140-specific B cells in the different manually 253 

gated memory B cell populations (Fig. 5c, d), the MDS plot clearly showed that gp140-specific B 254 

cells clustered closer to GC B cells in HIV viremic individuals while in ART treated subjects these 255 

cells clustered closer to switched memory B cells (Fig. 5e). Consistent with the data generated by 256 

manual gating, the MDS analysis showed that Flu-specific B cells clustered with switched memory 257 

B cells in the three study groups (Fig. 5e).  258 

Taken together these results strongly suggest that the enrichment of gp140-specific B cells 259 

within the total GC B cell population is driven by HIV replication.  260 

Next, we analyzed the expression of the same panel of B cell markers (Supplementary 261 

Table 1b) in gp140-specific B cells of both HIV+ viremic and ART treated individuals. We 262 

observed that among all markers, 14 were significantly differentially expressed (FDR < 0.05) 263 

between the two groups. Increased levels of BCL-6 (26.8% vs 11.7%, P = 0.0002), Ki-67 (22.8% 264 

vs 5.5%, P = 0.0002), and CD38 (31.2% vs 7.5%, P = 0.0002) were found in gp140-specific B 265 
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cells from viremic individuals as compared to gp140-specific B cells from ART treated individuals 266 

(Fig. 6a). Similarly, gp140-specific B cells expressed higher levels of T-bet (19% vs 6.5%, P = 267 

0.0005) and of the inhibitory molecule Fc-receptor-like 4 (FCRL4) (28.7% vs 9.4%, P = 0.003) 268 

(Fig. 6a). Interestingly, gp140-specific B cells from viremic individuals had an apoptotic 269 

phenotype as indicated by the decreased expression of BCL-2 (28.7% vs 75.1%, P = 0.0009) and 270 

increased CD95 expression (21.4% vs 7.2%, P = 0.0002) (Fig. 6a). Loss of CD21 expression in 271 

the blood of HIV infected individuals has been described as a marker of active HIV infection and 272 

disease progression28. LN gp140-specific B cells from viremic individuals showed a trend towards 273 

reduced expression of CD21 and decreased expression of CD27 (CD21: 75.8% vs 86.8%, P = 274 

0.015; CD27: 81.3% vs 90.9%, P = 0.005) as compared to gp140-specific B cells of ART treated 275 

individuals (Fig. 6a). Loss of CXCR5 and CXCR3 expression (CXCR5: 50.8% vs 86.8%, P < 276 

0.0001; CXCR3: 55.4 vs 78.2%; P = 0.005) and increased CD11c (13.7% vs 9.7%, P = 0.03) on 277 

gp140-specific B cells suggests that these changes in the expression of trafficking receptors may 278 

result in abnormal trafficking of gp140-specific B cells between the dark and the light zone and 279 

also in an accelerated exit of B cells from the GC.  280 

We then compared the phenotypic profiles of gp140 versus Flu-specific B cells in viremic 281 

individuals presenting both responses. Expression of CD21, CD40, CXCR4 and CXCR5 was 282 

significantly downregulated in gp140-specific B cells as compared to Flu-specific B cells (CD21: 283 

75.8% vs 87%, P = 0.005; CD40: 63.1% vs 78.1%, P = 0.01; CXCR4: 66.6% vs 71.8%, P = 0.03; 284 

CXCR5: 50.8% vs 85.3%, P < 0.0001) (Fig. 6b). Furthermore, the expression of markers of cell 285 

activation and maturation such as BCL-6, CD38 and Ki-67 was significantly increased in gp140-286 

specific B cells (BCL-6: 26.8% vs 17%, P = 0.04; CD38: 31.2% vs 9%, P = 0.002; Ki-67: 22.8% 287 
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vs 10.8%, P = 0.02). The differences in the phenotypic profile between gp140- and Flu-specific B 288 

cells were less important in ART treated individuals (Supplementary Fig. 5).  289 

These results further indicate that the ongoing HIV replication shapes the phenotypic 290 

profile of HIV-specific B cells. 291 

In order to determine the impact of HIV replication on the phenotypic profile of Flu-292 

specific B cells, the profile was compared between LNs of healthy versus viremic individuals (Fig. 293 

6c). Interestingly, expression of the anti-apoptosis marker BCL-2 was downregulated in LN Flu-294 

specific B cells of viremic as compared to healthy individuals (36.7% vs 70.8%, P < 0.0001) and 295 

pro-apotosis CD95 marker was upregulated in viremic individuals (24% vs 11.9%, P = 0.015). 296 

Expression of CXCR5 and ICOS-L was also downregulated in LNs of viremic individuals 297 

(CXCR5: 85.3% vs 93%, P = 0.03; ICOS-L: 21.6% vs 39%, P = 0.03) while markers of activation 298 

and maturation such as CD38 and Ki-67 were upregulated (CD38: 9% vs 4.2%, P = 0.001; Ki-67: 299 

: 10.8% vs 0.9%, P < 0.0001). Finally, T-bet expression was significantly upregulated in Flu-300 

specific B cells of viremic individuals (24.2% vs 9.9%, P = 0.02). Therefore, the phenotypic profile 301 

observed in Flu-specific B cells of viremic as compared to healthy individuals is similar to that of 302 

gp140-specific B cells in viremic individuals. 303 

These results indicate that ongoing HIV replication in LNs causes changes in the 304 

phenotypic profile of Ag-specific B cells that are not restricted exclusively to HIV-specific B cells. 305 

 306 

Relationship between Tfh cell populations and gp140-specific B cells 307 

Having defined phenotypically and functionally distinct Tfh cell populations and the 308 

phenotype of LN gp140-specific B cells associated with ongoing HIV replication, we next 309 

analyzed the relationship between the functional profile of Tfh cells and the phenotype and 310 
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function of gp140-specific B cells. As shown above, the CXCR3- Tfh cell population consists of 311 

single IL-21, dual IL-21/IL-4 and single IL-4 producing Tfh cells thus defining a Th2-like Tfh cell 312 

population while the CXCR3+ Tfh cell population defines a Th1-like Tfh cell population 313 

containing dual IL-21/IFN-γ and single IFN-γ Tfh cells (Fig. 4c). The correlation heat map in 314 

Figure 7 shows that the frequency of gp140+ B cells in viremics was positively correlated with the 315 

proportion of dual Tfh IL-21/IL-4 CXCR3- Th2-like Tfh cells (r = 0.82, P = 0.001). Similarly, the 316 

proportion of dual IL-21/IL-4 CXCR3- Tfhs was negatively correlated with the frequency of 317 

CD95+gp140+ B cells (r = -0.61, P = 0.04) and was positively correlated with the frequency of Ki-318 

67+gp140+ B cells (r = 0.87, P = 0.0004) suggesting that IL-4 in combination with IL-21 drives 319 

the expansion of HIV specific B cells. However, the frequency of single IFN-γ CXCR3+ Th1-like 320 

Tfh cells in viremics did not correlate with the percentage of gp140-specific B cells and was 321 

positively correlated with increased expression of T-bet (r = 0.71, P = 0.014), CXCR3 (r = 0.7, P 322 

= 0.015)  and FCRL4 (r = 0.71, P = 0.013) on gp140+ B cells. A similar correlation heat map from 323 

ART treated individuals is shown in Supplementary Figure 6. 324 

Having identified distinct signatures in both the Tfh and B cell compartments in HIV-1 325 

infected individuals, we sought to provide formal demonstration of the influence of the Th1-like  326 

Tfh and Th2-like Tfh cells on modulating the function and phenotype of B cells.  327 

Firstly, we evaluated the effects of cytokine treatment with IL-21, IL-4 and IFN-γ on the 328 

induction of the expression of CXCR3 and T-bet in different memory B cell populations from 329 

tonsils of HIV negative pediatric donors and on the immunoglobulin production in T-B cell co-330 

cultures in vitro. Tonsil cells were used due to the large number of tissue B cells necessary to 331 

perform these experiments. IFN-γ consistently induced expression of CXCR3 and T-bet in 332 

unswitched, switched and GC B cell populations (Fig. 8a). IL-21 and IL-4 showed no effects, with 333 
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the exception of IL-4 inducing T-bet expression in unswitched memory B cells. R848, a strong 334 

agonist of TLR7/TLR8, was used as positive control and showed an effect similar to IFN-γ.  335 

Secondly, we determined the effects of IFN-γ treatment on immunoglobulin (Ig) 336 

production in Tfh-GC B cell co-culture. Interestingly, IFN-γ treatment caused significant reduction 337 

in the production of IgG1, IgG2, IgG3 and IgM and a trend towards reduction in IgG4 and IgA 338 

(Fig. 8b). 339 

Thirdly, we investigated the impact of IL-4 and IFN-γ treatment on the maturation of HIV-340 

specific B cell responses from 9 HIV viremic individuals after 4 days of stimulation in the presence 341 

of gp140 protein, IL-21 and a suboptimal doses of R848. As shown in Figure 8c, HIV-specific B 342 

cell responses from unstimulated LNMC, as measured by ELISPOT, were low but detectable and 343 

their frequencies significantly increased in all the conditions when cells were stimulated with 344 

gp140+R848 (P < 0.01). Interestingly, IL-4 stimulation led to a significant increase in the 345 

proportion of gp140 ASC cells when compared to gp140+R848 stimulated cells and R848+IFN-γ 346 

stimulation, 1.5 fold, (P = 0.0039) and 1.8 fold (P = 0.01), respectively. Of note, the frequencies 347 

of HIV-specific B cells after IFN-γ stimulation were not significantly different from those 348 

observed with gp140+R848 stimulation alone.  349 

Fourthly, we determined whether there were differences in the quality of the antibodies 350 

produced by CXCR3+ versus CXCR3- GC B cell populations. The rationale for these experiments 351 

is supported by our observation that Th1-like Tfhs drive the expansion of the CXCR3+T-bet+ GC 352 

B cells and substantially affect Igs production. Furthermore, consistent with previous studies29,30 353 

we observed an increased frequency of T-bet+CXCR3+ B cells in viremics as compared to HIV 354 

uninfected and ART treated individuals (P < 0.0001) (Supplementary Fig. 7a), and all T-bet+ B 355 

cells were contained within the CXCR3+ B cell population (P < 0.0001) (Supplementary Fig. 7b). 356 
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Therefore, we isolated CXCR3+ and CXCR3- IgG+ B cells from five viremic individuals and 357 

assessed levels of somatic hypermutation (SHM) by carrying out error-corrected sequence analysis 358 

of natively paired heavy and light chain genes for LN B cells. We found that the level of SHM 359 

differed by B cell CXCR3 status (Fig. 8d). On average, the CXCR3+ phenotype was associated 360 

with significantly lower levels of SHM than the CXCR3- phenotype (P = 0.0003 for the heavy 361 

chain and P < 0.0001 for the light chain).  Along the same line, the level of SHM was significantly 362 

lower in gp140-specific CXCR3+ as compared to CXCR3- B cells  (P = 0.0025 for the heavy chain 363 

and P = 0.0088 for the light chain) (Fig. 8e). 364 

  Taken together these results indicate that the skewed Th1-like Tfh versus Th2-like Tfh 365 

cells cytokine profiles associated with active HIV replication influence the phenotype, the 366 

maturation, the magnitude and the quality of HIV-specific B cell responses. 367 

368 
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Discussion  369 

In the present study we have used mass cytometry to dissect the heterogeneity of Tfh cells.  370 

Phenotypic and functional diversity has previously been shown within different Tfh cell 371 

populations from tonsils using mass cytometry20. Another study performed using lymph nodes of 372 

HIV viremic individuals showed that persistent antigen stimulation likely causes the selection of 373 

an oligoclonal HIV-specific Tfh cell population with a dominant IL-21 functional profile15.  374 

We have studied lymph nodes from three study groups including healthy HIV negative, 375 

HIV infected ART treated and untreated viremic individuals to dissect the differences in 376 

phenotypic and functional profiles and to determine whether the different profiles influence the 377 

development of B cell responses. The unsupervised approach used to analyse distributions of thirty 378 

markers of T cell activation, memory differentiation, chemokine receptors and HIV coreceptors  379 

has allowed us to identify a number of phenotypic markers defining differences between the three 380 

study groups. Four markers including CXCR3, CD38, HLA-DR and CD57 contributed most to the 381 

diversity of Tfhs between the three study groups. In particular, the frequency of Tfhs expressing 382 

CD38, HLA-DR and CD57 was significantly lower in the Tfh clusters differentiating HIV- and 383 

ART treated from HIV viremic individuals. A recent study performed in blood and tonsils of 384 

healthy individuals has shown that the co-expression of CD57 within PD-1hi Tfhs defines Tfhs 385 

with reduced cytokine (IL-21 and IL-10) production and increased cytotoxic potential thus 386 

suggesting a role in the regulation of GC responses31. The significant decrease observed in the 387 

CD57+ Tfhs in healthy and ART treated individuals may suggest that in the absence of antigen-388 

specific activation of GCs the proposed regulatory role of CD57+PD-1hi Tfhs in terminating the 389 

GC reaction is no longer needed. The frequencies of CXCR3+ Tfhs were higher in the clusters of 390 

HIV viremic individuals. The Tfh cell population greatly expanded in viremic individuals was 391 
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characterized by the co-expression of CXCR3 and CD38 while a Tfh cell population lacking both 392 

markers was largely (about 60%) represented in HIV negative individuals. Interestingly, 393 

CD38+CXCR3+ Tfhs expressed lower levels of BCL-2 in viremic individuals, suggesting that they 394 

were more prone to apoptosis. Furthermore, the expression or the lack of CXCR3 distinguishes 395 

between Th1-like Tfhs expressing T-bet and Th-2-like Tfhs expressing GATA-3, respectively.   396 

These results are consistent with the conclusions from other studies pointing out an 397 

increased activation of Tfhs and a higher proportion of CXCR3+ Tfhs in viremic infection12,15,29,32. 398 

However, we demonstrate that CXCR3 is the phenotypic marker distinguishing between Th1-like 399 

and Th-2 like Tfhs both in healthy and HIV infected individuals. 400 

Of note, we also demonstrate that the HIV co-receptor CCR5 is greatly expressed on   401 

CXCR3+ Tfhs and defines the population of Tfhs with highest levels of HIV RNA transcription. 402 

The identification of the major HIV cell reservoir within Tfhs may have implications for 403 

monitoring the efficacy of virus suppression in lymphoid tissue following ART or other 404 

intervention strategies being developed in the arena of HIV cure.     405 

An additional important observation of our study is the functional dichotomy between 406 

CXCR3+ and CXCR3- Tfhs in the secretion of Th1 (IFN-γ) and Th2 (IL-4) cytokines. Previous 407 

studies performed in mice have shown the critical role of IL-21 in driving the expansion of GC B 408 

cells33-40. However, IL-21 is not sufficient for the optimal maturation of the GC response, which 409 

also requires Tfhs producing IL-4, which seem to further regulate the migration of GC B cells 410 

between the dark and light zones11. CXCR3+ Tfhs contain single IL-2, dual IL-21/IFN-γ and single 411 

IFN-γ cells producing cytokines while CXCR3- Tfhs contain single IL-21, dual IL-21/IL-4 and 412 

single IL-4 cells. We have not observed a defect in IL-21 producing Tfhs, which is consistent with 413 

the significant expansion of GC B cells (both total and HIV-specific) associated with active HIV 414 
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replication. However, we have observed a selective defect, about a 4 fold reduction, in the total 415 

percentage of Tfhs producing IL-4 (dual IL-21/IL-4 + single IL-4) between healthy and viremic 416 

individuals,  thus suggesting a potential defect in the maturation of the B cell response in viremic 417 

individuals. Of note, ART was not able to significantly recover the Th2-like Tfh population. 418 

We then characterized in depth the phenotype and the maturation of HIV-specific B cells 419 

and used as comparator B cells specific to Flu isolated from lymph nodes of the same individuals. 420 

HIV-specific B cells were selectively enriched in lymph nodes as compared to blood while Flu-421 

specific B cells show similar frequencies in the two compartments. HIV-specifc B cells were 422 

differently distributed as compared to Flu-specific, being the former mostly contained within GC 423 

B cells and the latter in the switch memory B cells. HIV-specific B cells showed significant higher 424 

percentage of cycling cells and an activated phenotype and also a pro-apoptotic profile as indicated 425 

by the reduced expression of BCL-2 and increased expression of CD95. These observations further 426 

support previous studies12,14 indicating that B cell expansion during actively replicating HIV 427 

infection is driven by HIV. However, when lymph node Flu-specific B cells from viremic were 428 

compared to those of healthy individuals, they also showed significant increase in markers of 429 

activation and maturation, an apoptotic phenotypic profile and increase expression of T-bet. 430 

Therefore, despite the absence of Flu-specific stimulation these results suggest that the Th1 431 

cytokine microenviroment associated with viremic HIV infection may be responsible for the 432 

changes in maturation, activation and phenotype of Flu-specific B cells from viremic as compared 433 

to healthy individuals. 434 

We then determined the influence of the cytokine microenvironment and, in particular, of 435 

the Th1/Th2 cytokine imbalance on the phenotype and the optimal maturation of the B cell 436 

response in individuals with active replicating HIV infection.  437 
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Our results indicate that IFN-γ and not IL-4 induces the phenotype, i.e. expression of T-bet 438 

and CXCR3, observed in GC B cells of viremic individuals. The additional changes in the 439 

phenotype of GC B cells such as the increased in the CD11c and FCRL-4 expression and the 440 

decrease in CD21 and CD27 are in line with previous studies indicating that these phenotypic 441 

abnormalities are associated with chronic stimulation30,41-44. Furthermore, the positive correlation 442 

of the percentage of single IFN-γ Th1-like Tfhs with T-bet+, CXCR3+, CD95+ and FCRL4+ HIV-443 

specific B cells further support the results obtained in vitro and also indicates that HIV-specific B 444 

cells induced by Th1-like Tfhs are potentially prone to apoptosis and limited proliferation. In 445 

contrast, dual IL-21/IL-4 Th2-like Tfhs cells were positively correlated with the percentage of total 446 

and dividing (Ki-67+) HIV-specific  B cells and negatively correlated with the expression of CD95. 447 

Therefore, the dominant Th1-like Tfhs cytokine profile resulting from the reduction of 448 

Th2-like Tfhs is the driving force of the phenotypic abnormalities observed. 449 

We provide several lines of evidence that the imbalance in the Th-l versus Th-2-like Tfh 450 

cytokine profile affects the maturation of B cell response. Firstly, IFN-γ suppresses Igs production 451 

in T-B cell co-cultures. Secondly, only IL-4 and not IFN-γ in combination with IL-21 increases 452 

the maturation of gp140-specifc B cells. Thirdly, HIV-specific B cells have significantly reduced 453 

expression of CXCR4 and CXCR5 indicating that the migration between the dark and light zone 454 

of the GC may be impaired in the presence of a defect of Th2-like Tfh cells with a negative 455 

influence on the affinity maturation of B cells. Fourthly, total and gp140-specific lymph node 456 

CXCR3+ B cells, which contain almost all T-bet+ cells, and which are induced by IFN-γ, show 457 

significantly lower levels of somatic hypermutation as compared to CXCR3- cells.  458 

Our results therefore support the model that the defect in Th2-like/Tfh cells in favor of 459 

Th1-like Tfh cells is an important mechanism to explain the unique phenotypic profile of B cells 460 
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and the impaired maturation of B cell response in viremic individuals. These results also indicate 461 

that HIV immunization strategies aimed at the development of quantitatively and qualitatively 462 

effective antibody responses should target the development of optimal Th2-like Tfh cell responses.  463 

464 
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Materials and Methods 465 

Experimental Design 466 

Lymph node biopsies were performed in 24 HIV-1 infected viremic individuals naive to 467 

antiretroviral therapy and 29 ART treated subjects (Table 1). With regard to HIV negative subjects, 468 

lymph node biopsies (inguinal lymph nodes) were performed in 18 subjects who underwent 469 

vascular (varicose vein stripping) and general (uncomplicated bilateral inguinal herniorrhaphy) 470 

surgery. Tonsils were obtained from young patients who underwent tonsillectomy. These studies 471 

were approved by the Institutional Review Board of the Centre Hospitalier Universitaire Vaudois, 472 

and all subjects gave written informed consent. For all the experiments, participant ID were 473 

randomized, and the samples were randomly numbered to perform the experiments. No outliers 474 

were excluded from the analyses. 475 

 476 

Isolation of lymph node and tonsil mononuclear cells 477 

Lymph node and tonsil mononuclear cells were isolated by mechanical disruption as previously 478 

described45 and cells were cryopreserved in liquid nitrogen. 479 

 480 

CyTOF marker labeling and detection 481 

Cryopreserved lymph node mononuclear cells (LNMCs) were thawed and resuspended in 482 

complete RPMI medium (Gibco; Life Technologies; 10% heat-inactivated FBS [Institut de 483 

Biotechnologies Jacques Boy], 100 IU/ml penicillin, and 100 µg/ml streptomycin [BioConcept]). 484 

For the T cell panel 2X106 cells/ml were stimulated or not with 100 ng/ml PMA (Sigma-Aldrich) 485 

and 1 µg/ml ionomycin (Sigma-Aldrich) in the presence of golgi plug (BD) for 5 hours at 37°C. 486 
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For the B cell panel cells were blocked using unlabeled anti-CD4 pure (clone SK3, BD Bioscience) 487 

antibody as previously described46. Cells were washed twice and then incubated for 30 minutes at 488 

4°C with gp140 (Consensus B) biotinylated bound to a streptavidin PE. Two biotinylated flu 489 

probes bound to APC were used as previously shown47: one from H1 strain CA09 (for samples 490 

collected during or after the 2009-2010 season) and one from NC-99 (for samples collected prior 491 

to the 2009-2010 season).  492 

Viability of cells in 500 μl of PBS was identified by incubation with 50 μM cisplatin (Sigma-493 

Aldrich) for 5 min at RT and quenched with 500 μl fetal bovine serum. Next, cells were incubated 494 

for 30 min at 4°C with a 50 μl cocktail of cell surface metal conjugated antibodies (Fluidigm/DVS 495 

Science). Cells were washed and fixed for 10 min at RT with 2.4% PFA. Next, cells were 496 

permeabilized for 45 min at 4°C with Foxp3 Fixation/Permeabilization kit (eBioscience), washed 497 

and stained at 4°C for 30 min with a 50 μl cocktail of transcription factor and cytokine metal 498 

conjugated antibodies. Cells were washed and fixed for 10 min at RT with 2.4% PFA. Total cells 499 

were identified by DNA intercalation (1 μM Cell-ID Intercalator, Fluidigm/DVS Science) in 2% 500 

PFA at 4°C overnight. The list of metal isotopes antibodies used are listed in Table S1a, b. Labeled 501 

samples were assessed by the CyTOF1 instrument that was upgraded to CyTOF2 (Fluidigm) using 502 

a flow rate of 0.045 ml/min.  503 

 504 

CyTOF data analysis 505 

FCS files were normalized to the EQ Four Element Calibration Beads using the CyTOF software. 506 

For conventional cytometric analysis of B and Tfh cell populations, FCS files were imported into 507 

Cytobank Data Analysis Software or FlowJo v10.4.2 (Treestar, Inc., Ashland, CR) and SPICE 508 

v5.3 (developed by Mario Roederer, National Institute of Health)48. Gated Tfh cells were imported 509 
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into R software using the flowWorkspace framework49. Marker intensity values were arcsinh 510 

(hyperbolic inverse sine) with cofactor 5 transformed. Unsupervised clustering was conducted 511 

using FlowSOM50 (BuiltSOM function in FlowSOM package) on pooled Tfhs from all samples 512 

(92’116 cells) (in combination with hierarchical consensus meta-clustering 513 

(metaClustering_consensus function in FlowSOM package). Dimensionality reduction was 514 

performed using the Barnes-Hut implementation of t-distributed stochastic neighbor embedding 515 

(Rtsne function in Rtsne package). 516 

Principal component analysis was performed on single cell data and the absolute values of the 517 

marker loadings of the first two principal components were averaged and reported in Figure 1F. 518 

 519 

Sorting of Tfh cell populations 520 

Cryopreserved lymph node mononuclear cells were thawed and stained with the violet 521 

LIVE/DEAD stain kit and with anti-CD3 APC-H7 (BD), anti-CD4 Alexa700 (Biolegend), anti-522 

CD45RA ECD (Beckman Coulter), anti-CXCR5 FITC (BD), and anti-PD-1 Pe-Cy7 (BD), anti-523 

CXCR3 PE (Biolegend) and anti-CD38 V450 (BD) at 4°C for 20 min, and the CD38-CXCR3-, 524 

CD38+CXCR3-, CD38-CXCR3+ and CD38+CXCR3+ Tfh populations were sorted using 525 

FACSAria (BD). In all sorting experiments, the grade of purity of the sorted populations was > 526 

95%. 527 

 528 

Quantification of cell-associated RNA  529 

Cell-associated HIV-1 RNA (unspliced HIV RNA LTR-gag region) from individual samples was 530 

extracted from Tfh cell populations sorted on the basis of CD38 and CXCR3 expression (CD38-531 

CXCR3-, CD38+CXCR3-, CD38-CXCR3+, CD38+CXCR3+) and subjected to DNase treatment 532 
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(RNAqueous-4PCR Kit, Ambion)51. RNA standard curves were generated after isolation and 533 

quantification of viral RNA from supernatant of ACH2 culture as previously described51. One-step 534 

cDNA synthesis and pre-amplification were performed as previously described52. 535 

 536 

B cell/T cell co-culture assay 537 

B cells from tonsil mononuclear cells were enriched using CD19-positive selection (STEMCELL 538 

Technologies), and dead cells were excluded using the violet LIVE/DEAD stain kit at 4°C for 15 539 

min and stained at 4°C for 25 min with the anti-CD19 APC–Cy7, anti-IgD PE, anti-CD27 Pe-Cy7 540 

and anti-CD38 ECD mAbs. GC B cells (CD19+IgD-CD38+) were sorted from enriched B cell 541 

fraction (CD19 positive) using a FACSAria. The CD19-negative fraction was stained with the 542 

violet LIVE/DEAD stain kit at 4°C for 15 min and stained at 4°C for 25 min with the anti-CD3 543 

APC-H7, anti-CD4 FITC, anti-CD45RA ECD, anti-CXCR5 APC, and anti–PD-1 PeCy7. Sorted 544 

Tfh cells populations (105 cells) were co-cultured with sorted autologous GC B cells (105 cells) in 545 

the presence of 250 ng/ml SEB (Sigma-Aldrich) and in presence or absence of 100 ng/ml of 546 

recombinant IFN-γ (R&D) in 96-well U-bottom plates as previously described12. As positive 547 

controls, GC B cells were cultured alone in presence of 5 × 104 pfu/ml of inactivated 548 

Staphylococcus aureus and 25 μg/ml CpG. Secretion of IgM, IgG1, IgG2, IgG3, IgG4 and IgA 549 

was assessed at day 5 by Luminex (Affimetrix). 550 

 551 

Elispot assay  552 

LNMCs were stimulated or not for 4 days with 0.1 ug/ml of gp140 and 1 ug/ml of R848 553 

(InvivoGen), 10 ng/ml of IL-2 (Miltenyi Biotec) and 100 ng/ml of IL-21 (Miltenyi Biotec). In the 554 

stimulated conditions cells were treated or not with 100 ng/ml of IL-4 (Miltenyi Biotec) or IFN-555 
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γ (Miltenyi Biotec). ELISPOT plates (BD) were coated with 15 ug/ml of anti-Ig antibodies 556 

(Mabtech) at 4°C overnight. Next, plates were washed and cells were added for 24 hours at 37°C 557 

followed by addition of biotinylated antibody against IgG or biotinylated proteins gp140 or the 558 

control protein keyhole limpet hemocyanin (KLH), and finally addition of a streptavidin-HRP 559 

(Mabtech). Frequencies of gp140-specific antibody secreting cells (ASC) were calculated from 560 

triplicate wells plated with 100.000 LNMCs per well. Specificity was verified with PBMCs of 561 

HIV-uninfected individuals.  562 

 563 

Paired Chain Antibody Sequencing 564 

Single CD19+CD20+CD3-CD14-IgA-IgM-IgD- IgG+ cells and gp140+ B cell were sorted on the 565 

basis of CXCR3 expression into wells of 384-well plates by FACS. Generation of barcoded cDNA, 566 

PCR amplification, and sequencing of IgG genes were performed as described in Tan et al. 201453, 567 

with the following modifications: biotinylated Oligo(dT) and RT maxima H- (Fisher Scientific 568 

Company) were used for reverse transcription, cDNA was extracted using Streptavidin C1 beads 569 

(Life Technologies), and DNA concentrations were determined using qPCR (KAPA SYBR® 570 

FAST qPCR Kit for Titanium, Kapabiosystems). V(D)J assignment and mutation identification 571 

was performed using a variant of SoDA54. 572 

 573 

Statistical analysis 574 

GraphPad PRISM and R softwares were used to perform statistical analyses.   575 

Linear regressions were performed to compare frequencies (log10 transformed) of Tfh clusters or 576 

antigen specific B cells among the different study groups (Figure 1e, f and and 6) and the resulting 577 
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P values were adjusted for multiple testing using the Benjamini-Hochberg FDR method (with 578 

significance cutoff set at 0.05).  579 

Statistical analyses comparing cell surface markers, transcription factors and cytokine production  580 

(log10 transformed) (Fig. 2c and 4b) in Tfh subsets defined by CD38 and CXCR3 were assessed 581 

by linear mixed-effect models accounting for differences between patient groups (healthy, ART-582 

treated and viremic individuals) with patient-level random intercepts. P values were adjusted using 583 

the Benjamini-Hochberg FDR method (with significance cutoff set at 0.05). 584 

Two-tailed Mann-Whitney unpaired test was used to compare frequencies of B cell subsets 585 

between the three different groups  (HIV-, ART treated and viremic individuals).  586 

Correlative analyses on Figure 7 were performed on log10 transformed frequencies using 587 

Pearson’s test. The Wilcoxon signed-rank paired test was used to detect differences between 588 

variables from the same sample. 589 

590 
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Figure legend:  757 

Fig. 1. High dimensional analysis of Tfh cells in HIV infected and uninfected individuals. Mass 758 

cytometry staining was performed on LN mononuclear cells isolated from 8 HIV 759 

uninfected, 12 HIV infected ART treated, and 9 viremic individuals. (a) Representative 760 

Tfh mass cytometry gating strategy on the basis of CXCR5 and PD-1 expression in 761 

CD45RA-CD4+ cells from representative viremic HIV infected individual and (b) BCL-6 762 

expression on Tfh and non-Tfh cells. (c) t-SNE was performed after pooling the three study 763 

groups and gating on Tfh cells. The numbered and colored clusters Tfh clusters were 764 

obtained using FlowSOM. (d) Heat map showing median marker expression (arcsinh-765 

transformed) of cell surface markers of the indicated clusters identified in (c). Median 766 

marker expression values are color-coded from blue (low) to yellow (high). (e) Frequency 767 

of Tfh clusters that are significantly different between the three groups (HIV uninfected 768 

(green), ART treated (red) and viremic (blue) individuals). (f) Pie charts representing 769 

frequencies of Tfh clusters in HIV uninfected, ART treated and viremics. Arcs show 770 

frequencies of clusters that are significantly different between HIV uninfected, ART 771 

treated and viremics. (g) Bar plot showing the relative contribution of markers to Tfh 772 

clusters heterogeneity. (Y-axis: average marker loadings in the first two principal 773 

components of a PCA). P values were obtained by linear regressions and corrected using 774 

FDR method with a cutoff of 0.05.  * P < 0.05, ** P < 0.01, *** P < 0.001.  775 

Fig. 2. CD38+CXCR3+ Tfh cells are increased in viremics and represent a distinct Tfh population. 776 

Mass cytometry staining was performed on LN mononuclear cells isolated from 8 HIV 777 

uninfected, 20 HIV infected ART treated and 18 untreated HIV-infected viremic subjects. 778 

Cells were stained with antibodies against PD-1, CXCR5, CD38, CXCR3. (a) 779 
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Representative profile by mass cytometry of Tfh cells gated on the basis of CD38 and 780 

CXCR3 from one representative HIV uninfected, one ART treated and one viremic 781 

individual. (b) All the possible combinations of CD38 and CXCR3 expression are shown 782 

on the x axis, whereas the frequencies of the Tfh-cell populations are shown on the y axis. 783 

Pie charts represent all the possible combinations of the two markers. Arcs show the total 784 

proportion of the expression of the specified marker. Statistical analyses of the global 785 

CD38 and CXCR3 expression (pie charts) were performed by partial permutation tests 786 

using the SPICE software. (c) Heat map of scaled mean marker expression (percentage of 787 

positive cells) in Tfh cells defined on the basis of CD38 and CXCR3 expression of 8 HIV 788 

uninfected, 12 ART treated and 9 viremic individuals. The bottom panel shows significant 789 

differences between subsets of cells for all possible comparisons. Differences between 790 

subsets were calculated on all cohort samples using linear mixed-effect models. In (c) P 791 

values were obtained by linear regressions and corrected using FDR method with a cutoff 792 

of 0.05. Stars indicate statistical significance * P < 0.05, ** P < 0.01, *** P < 0.001. 793 

Fig. 3. Levels of cell-associated HIV RNA in Tfh populations. Levels of cell-associated unspliced 794 

HIV RNA (copies/million cells) in sorted CD38-CXCR3-, CD38+CXCR3-, CD38+CXCR3+ 795 

and CD38-CXCR3+ Tfh cells isolated from 6 viremic HIV infected individuals. P values 796 

were obtained by Wilcoxon signed-rank test. *P < 0.05, **P < 0.01. Error bars denote 797 

mean ± S.E.M. 798 

Fig. 4. Functional analyses of Tfhs on the basis of CD38+ and CXCR3+ expression. LNMCs were 799 

isolated from HIV uninfected (N = 12), HIV-1 infected ART treated individuals (N = 12) 800 

and viremics (N =  14) and stimulated with PMA-ionomycin for 5 hours and stained with 801 

antibodies against PD-1, CXCR5, CD38, CXCR3, IFN-γ, IL-21, IL-4, IL-2 and TNF-α. 802 
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(a) t-SNE plot of polled Tfh cells from the three study groups (51’171 cells). (b) Heat map 803 

of scaled mean marker expression (percentage of producing cytokines) in Tfhs gated on 804 

the basis of CD38 and CXCR3. The bottom panel shows significant differences between 805 

subsets of cells for all possible comparisons. (c) Simultaneous analysis of the functional 806 

profile of CXCR3- and CXCR3+ Tfh cells on the basis of IL-21, IL-4 and IFN-γ production. 807 

(d) Th1/Th2 ratio in Tfh cells from HIV uninfected,  HIV infected viremic and ART treated 808 

individuals. Ratio was calculated by dividing the frequencies of IFN-γ producing Tfh cells 809 

and the frequencies of IL-4 producing Tfh cells in HIV- and HIV viremics. In (b) 810 

differences between subsets were calculated on all cohort samples using linear mixed-811 

effect models and  P values were corrected using FDR method with a cutoff of 0.05. In (c 812 

and d) P values were obtained by a Mann-Whitney test to compare the three study groups 813 

and a Wilcoxon signed-rank test to compare frequencies between CXCR3- and CXCR3+ 814 

populations. * P < 0.05, ** P < 0.01, *** P < 0.001. Error bars denote mean ± S.E.M. 815 

Fig. 5. Comparison between lymph node gp140 and influenza specific B cells. LNMCs from HIV 816 

infected ART treated (N = 11) and HIV infected viremic individuals (N = 12) were stained 817 

with a panel of 37 markers (Table S1b). (a) Representative mass cytometry profiles of LN 818 

CD19+ IgG+ B cell populations binding to gp140 or Flu (H1-CA09) probes in 819 

representative HIV-, ART treated and viremic subjects. (b) Cumulative data on the 820 

frequencies of Flu and gp140-specific B cells in LNs of HIV- (green), ART treated (red) 821 

and viremic (blue) individuals. Cumulative data on the distribution of (c) gp140-specific B 822 

cells and (d) Flu-specific B cells within the unswitched memory (IgD+CD38-), switched 823 

memory (IgD-CD38-), GC (IgD-CD38+) and plasma cells (IgD-CD38hi) B cell populations. 824 

(e) Multi-dimentional scaling (MDS) of Flu+ B cells, gp140+ B cells and memory B cell 825 
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subsets from HIV-, ART-treated and viremic HIV-infected subjects. In (b-c-d) P values 826 

were obtained by Mann-Whitney test to compare frequencies between the three study 827 

groups and by Wilcoxon signed-rank test to compare frequencies within the same study 828 

groups. Error bars denote mean ± S.E.M. Stars indicate statistical significance * P < 0.05, 829 

** P < 0.01, *** P < 0.001. 830 

Fig. 6. Phenotype of lymph node gp140 and Flu-specific B cells. LNMCs from HIV infected ART 831 

treated (N = 11) and HIV infected viremic individuals (N = 12) were stained with a panel 832 

of 37 markers (Table S1b). Heat map of scaled mean marker expression (% of positive cell 833 

gated) in (a) gp140-specific B cells from ART treated vs viremic individuals, (b) Flu-834 

specific vs gp140-specific B cells from the same viremic individuals and (c) Flu-specific 835 

B cells from HIV uninfected vs Flu-specific B cells from viremics. All markers shown are 836 

significantly different between groups (FDR < 0.05).  Differences were calculated using 837 

linear regressions.  838 

 Fig. 7. Correlations between cytokines producing Tfhs and frequency and phenotype of gp140 839 

specific B cells. Correlative heat maps between the frequency of cytokines produced by 840 

Tfh cells from HIV infected viremic individuals (Fig. 3c) and the proportion of gp140 841 

specific B cells and their phenotype (Fig. 4b and Fig. 5a) (N = 11). Correlative analyses 842 

were performed on log10 transformed frequencies using Pearson’s test. 843 

Fig. 8. Effect of in vitro cytokine stimulation of B cells on antibody production and SHM. Tonsil 844 

(TN) mononuclear cells were cultured for 3 days in the presence or absence of IL-21 (100 845 

ng/ml), IL-4 (100 ng/ml), IFN-γ (100 ng/ml) and R848 (1 μg/ml). Mass cytometry staining 846 

was performed using anti-CD19, anti-CD27, anti-CD38, anti-IgD, anti-CXCR3, and anti-847 

T-bet antibodies (N = 3). (a) Percentage of T-bet+ and CXCR3+ B cells after 3 days of 848 
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culture. TN Tfh cells were cultured with autologous GC B cells in the presence of SEB and 849 

in the presence or absence of recombinant IFN-γ (100 ng/ml) (N = 6). (b) Immunoglobulin 850 

production was assessed at day 5 by Luminex. Lymph node (LN) mononuclear cells from 851 

9 HIV+ viremic individuals were stimulated or not for 4 days presence of gp140 (0.1 ug/ml) 852 

and R848 and in prensence or absence of IL-4 (100 ng/ml) and IFN-γ (100 ng/ml). (c) 853 

Frequencies of gp140-specific antibody secreting cells (ASC) were measured by 854 

ELISPOT. The left panel shows representative counting of spot-forming cells (SFC) and 855 

the right panel shows the frequency of gp140 ASC calculated from triplicate wells plated 856 

with 100.000 LNMCs per well. Total somatic mutations per antibody were determined by 857 

paired chain sequencing of CXCR3+ and CXCR3- IgG B cells (d) or CXCR3+ and CXCR3- 858 

gp140-specific B cells (e) from five donors.  Error bars correspond to mean ± SEM and 859 

statistical significance was evaluated using Wilcoxon signed-rank test and in (d and e) by 860 

Mann-Whitney test. P values * P < 0.05, ** P < 0.01, *** P < 0.001 861 

862 



 41 

Table 1. Study cohort: clinical data. 863 

 864 

Assay 1: FlowSom clustering (Fig.1); Assay 2:Tfh phenotype (Fig.2b); Assay 3: PMA/ionomicyn stimulation 865 
(Fig.4); Assay 4: Ag-specific B cell phenotype (Fig.5); Assay 5:B cell Elispot (Fig. 8c); Assay 6: SHM (Fig. 8d); 866 
Assay 7: cell associated HIV-RNA (Fig. 3). NA=not applicable 867 

868 
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Supplementary materials 869 
 870 

Supplementary Fig. 1. High-dimensional analysis of Tfh cells by mass cytometry. a) Individual 871 

t-SNE plots of each healthy (N = 8), HIV+ ART treated (N = 12) and HIV+ viremic 872 

individual (N = 9). b) Signal intensity of individual markers on t-SNE plots. Tfh cells were 873 

pooled (N = 92’162 cells) and colored according to the scaled expression level of indicated 874 

markers. c) Tfh clusters not significantly different between the three study groups. Linear 875 

regressions were performed to compare frequencies of Tfh clusters across the three groups 876 

(HIV- (green), HIV+ ART treated (red) and HIV+ viremic (blue) individuals. 877 

Supplementary Fig. 2. Cytokine profile of Tfh cells from the three study groups. LNMCs were 878 

isolated from HIV- (N = 12), HIV+ ART treated individuals (N = 12) and viremics (N = 879 

14) and stimulated with PMA-ionomycin for 5 hours. a) Simultaneous analysis of the 880 

functional profile of Tfh cells on the basis of IL-21, IL-4, IFN-γ, IL-2 or TNF-α production. 881 

All the possible combinations of the various functions are shown on the x axis, whereas 882 

the percentages of the distinct cytokine-producing Tfhs are shown on the y axis. The pie 883 

charts summarize the data, and each slice corresponds to the proportion of Tfh cells positive 884 

for a certain combination of functions. b) Cytokine’s production by Tfh cells gated on the 885 

basis of CD38 and CXCR3 expression. Tfh cells were gated on CD38-CXCR3-, 886 

CD38+CXCR3-, CD38-CXCR3+ and CD38+CXCR3+ and the percentage of IFN-γ, IL-21, 887 

IL-4, IL-2 and TNF-α positive cells was analyzed by mass cytometry. c) Frequencies of 888 

IFN-γ, IL-21 and IL-4 producing cells in the total Tfh cells the three study groups. 889 

Statistical significance (P values) in (b) were calculated using one-way ANOVA followed 890 

by test for multiple comparison and in (c) using Mann-Whitney. * P < 0.05, ** P < 0.01, 891 

*** P < 0.001. Error bars denote mean ± S.E.M. 892 
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Supplementary Fig. 3. Frequency of gp140 specific B cells from HIV infected ART treated and 893 

viremics in blood versus Lymph nodes. a) Representative mass cytometry profiles of blood 894 

and LN CD19+ IgG+ B cell populations binding to gp140 probes in representative ART 895 

treated and viremic subjects. b) Cumulative data on the frequencies of gp140-specific B 896 

cells in blood and LN mononuclear cells of ART treated (red) and viremic (blue) 897 

individuals. Statistical significance (P values) were calculated using Mann-Whitney test to 898 

compare the two groups and a Wilcoxon signed-rank test to compare frequencies between 899 

blood and LNs. * P < 0.05, ** P < 0.01, *** P < 0.001. Error bars denote mean ± S.E.M. 900 

Supplementary Fig. 4. a) Representative mass cytometry profile of gp140 and flu specific B cells 901 

in LN B cell populations defined by IgD and CD38 expression. gp140+ B and Flu+ B cells 902 

(black dots) from representative HIV-, ART treated and viremic individuals by mass 903 

cytometry. Gates were set using total memory B cells (red dots) b) Correlative analyses 904 

between the percentage of GC gp140+ B cells with the percentage of GC B, the percentage 905 

of switched memory B cells and plasma viral load. A Spearman rank test was used for 906 

correlations. 907 

Supplementary Fig. 5. Phenotype of Flu and gp140 specific B cells from ART treated individuals. 908 

Heat map of scaled mean marker expression (% of positive cell gated) in Flu and gp140 909 

specific B cells from ART treated individuals. All markers shown are significantly different 910 

between ART treated and viremic individuals (FDR < 0.05).  Differences were calculated 911 

using linear regressions. 912 

Supplementary Fig. 6. Correlative analyses between the frequency of gp140+ B cells and their 913 

phenotype and Tfh cytokine’s production from ART treated individuals. Correlative 914 

analyses were performed on log10 transformed frequencies  using Pearson’s test. 915 
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Supplementary Fig. 7. Frequency of T-bet+ CXCR3+ B cells subsets from HIV uninfected, HIV 916 

infected ART treated and viremics. Non naive B cells were gated on unswitched memory 917 

(IgD+CD38-), switched memory (IgD-CD38-), GC (IgD-CD38+) and plasma cells (IgD-918 

CD38hi) B cell populations and (a) the percentage of T-bet+ CXCR3+ B cells was analyzed 919 

by mass cytometry. (b) Percentage of T-bet+ B cells within the CXCR3+ and CXCR3- B 920 

cells. In (a) statistical significance (P values) were calculated using Mann-Whitney test 921 

while in (b) by Wilcoxon signed-rank test * P < 0.05, ** P < 0.01, *** P < 0.001. Error 922 

bars denote mean ± S.E.M. 923 

Supplementary Table 1. Mass cytometry panels. a) Mass cytometry T cell panel. b) Mass 924 

cytometry B cell panel. 925 

 926 
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Supplementary Figure 7
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Table S1
Mass cytometry T cell panel.

Clone

RPA-T4
G034E3
HIB19

C398.4A
RPA-T8
IA6-2

CD7-6B7
G10F5
205410
RF8B2
BL13

G025H7
L128
3.9

G043H7
M-A251
M5E2
L161
FUN2
2H7
HIT2
HI100
CD40L
UCHT1
NP-6G4

L243
EH12.2H7

12G5
A019D5

3G8
Cell-ID

Target

CD4
CCR6
CD19
ICOS
CD8
IgD
CD7

CD57
CCR4

CXCR3
CD21

CXCR3
CD27
CD11c
CCR7
CD25
CD14
CD1C

CD32-APC
CD20
CD38

CD45RA
CD40L
CD3

CCR5
HLA-DR

PD-1
CXCR4
CD127
CD16

Live/Dead 

Metal

115In
141Pr
142Nd
143Nd
145Nd
146Nd
147Sm
148Nd
149Sm
153Eu
152Sm
154Sm
155Gd
156Gd
159Tb
158Gd
160Gd
161Dy
162Dy
166Er
167Er
169Tm
168Er
170Er
171Yb
173Yb
174Yb
175Lu
176Yb
209BI
195Pt

Company

Biolegend
Fluidigm/DVS
Fluidigm/DVS

Biolegend
Biolegend

Fluidigm/DVS
Fluidigm/DVS

BD
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS

BIolegend
Fluidigm/DVS

Biolegend
Fluidigm/DVS

Biolegend
Fluidigm/DVS

Biolegend
Fluidigm/DVS

Biolegend
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS
Fluidigm/DVS

a



Mass cytometry B cell panel.

*used for MDS analysis

Clone

G18-145
646702
F21-852
HIB19
L243
HIT2

RPA-T8
IA6-2
2H7

Polyclonal
gα (alpha)

DL-101
MHL-38

BL13
RF8B2

G025H7
L128

PE001
2D3
Bu15

MHK-49
4B10

APC003
K112-91

FAS
5C3
ML5

413D12
Ki-67
HI100

UCHT1
HB15e

MHM-88
100

EH12.2H7
12G5

RPA-T4

Target

IgG*
Blimp-1*
PARP*
CD19

HLADR*
CD38*
CD8
IgD*

CD20*
IgA*

CD79A*
CD138*

IgG Iambda*
CD21*

CXCR5*
CXCR3*
CD27*

gp140-PE
ICOS-L*
CD11C*

IgG kappa*
T-bet*

H1N1-APC
BCL6*
CD95*
CD40*
CD24*

FCRL4*
Ki-67*

CD45RA*
CD3

CD83*
IgM*

BCL-2*
PD-1*

CXCR4*
CD4

Metal

113-In
115-In
141-Pr
142-Nd
143-Nd
144-Nd
145-Nd
146-Nd
147-Sm
148-Sm
149-Sm
150-Nd
151-Eu
152-Sm
153-Eu
154-Sm
155-Gd
156-Gd
158-Gd
159-Tb
160-Gd
161-Dy
162-Dy
163-Dy
164-Dy
165-Ho
166-Er
167-Er
168-Er
169-Tm
170-Er
171-Yb
172-Yb
173-Yb
174-Yb
175-Lu
176-Yb

Company

BD
BIO-TECHNE AG

BD
DVS
DVS
DVS

Biolegend
DVS
DVS
DVS

Biolegend
DVS
DVS
DVS
DVS

Biolegend
DVS
DVS

Biolegend
DVS
DVS
DVS
DVS
DVS
DVS
DVS
DVS

Biolegend
DVS
DVS
DVS

Biolegend
DVS

Biolegend
DVS
DVS
DVS

b
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