
 
 
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
 

Year : 2019 

 

 
CIRCADIAN MODULATION OF GENOME-WIDE RXR BINDING IN 

MOUSE LIVER TISSUE 

 
Trang Khanh Bao 

 
 
 
 
 
 
Trang Khanh Bao, 2019, CIRCADIAN MODULATION OF GENOME-WIDE RXR BINDING IN 
MOUSE LIVER TISSUE 

 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_C4CE7516215F0 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/�


 

 
Département of Genomics 

CIG - Centre Intégratif de Génomique 
 

CIRCADIAN MODULATION  
OF GENOME-WIDE RXR BINDING IN 

MOUSE LIVER TISSUE 
 

Thèse de doctorat ès sciences de la vie (PhD) programme 
Integrative Experimental and Computational Biology 

 
présentée à la 

 
Faculté de biologie et de médecine  

de l’Université de Lausanne 
 

par 

Khanh Bao TRANG 
 

M.D diplômé, l’Université de Pharmacie et Médicine d’Ho-Chi-Minh-Ville, Vietnam 
Maîtrise en Santé Publique, Université de Debrecen, Hongrie 

 
Jury 

 
Prof. Nicolas SALAMIN, Président 

Prof. Béatrice DESVERGNE, Directeur de thèse 
Dr Nicolas GUEX, Co-directeur de thèse 

Dre Mercedes RICOTE, expert 
Dr Philipp BUCHER, expert 

Prof. Ioannis Xenarios, expert 
 

Lausanne 2019 



UNIL I Université de Lausanne Ecole Doctorale
boctorat ès sciences de la vie

Salamin
Desvergne
Guex
Xenarios
Ricote
Bucher

Faculté de biologie
et de médecine

Président.e
Directeur.trice de thèse
Co-directeur.trice
Expert.e.s

Imprimatur
Vu le rapport présenté par le jury d'examen, composé de

Monsieur
Madame

Monsieur
Monsieur
Madame
Monsieur

Nicolas

Béatrice
Nicolas
Ioannis
Mercedes
Philipp

Prof

Prof

Dr
Prof
Dre
Dr

le Conseil de Faculté autorise I'impression de la thèse de

Madame Khanh Bao Trang
Master of Public Health, University of Debrecen, Hongrie

intitulée

Circadian modulation of genome-wide RXR
binding in mouse Iiver tissue

Lausanne, le ll juillet 20L9

pour le Do
et

Prof.

de la Faculté

las Salamin

médecine



ACKNOWLEDGEMENT 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



For Nicolas – “the wind”, who lifted my bioinformatic passion,  

and for Beatrice – “the string”, who kept my head earth-bound and steady. 

 

You flew my kite high and strong. 

Khanh – “the kite” 



 

TABLE OF CONTENT 
SUMMARY	....................................................................................................................................................................................	1	
RÉSUMÉ	........................................................................................................................................................................................	2	
ABBREVIATIONS	.......................................................................................................................................................................	3	
1.	 INTRODUCTION	..............................................................................................................................................................	5	
1.1	 RXR	AS	THE	CENTRAL	MEMBER	OF	NUCLEAR	RECEPTORS	SUPERFAMILY	..............................................................................	6	
1.1.1	 The	discovery	of	Nuclear	receptor	and	the	birth	of	the	Molecular	Endocrinology	field	............................	6	
1.1.2	 Nuclear	receptors	genes	and	their	evolution	................................................................................................................	9	
1.1.3	 The	modular	structure	of	RXR,	and	more	broadly	of	all	the	NRs	.......................................................................	13	
1.1.3.1	 The	A/B	domain	..........................................................................................................................................................................	13	
1.1.3.2	 The	C	domain	................................................................................................................................................................................	15	
1.1.3.3	 The	D	domain	...............................................................................................................................................................................	15	
1.1.3.4	 The	E	domain	................................................................................................................................................................................	16	
1.1.3.5	 The	F	domain	................................................................................................................................................................................	18	

1.1.4	 The	dimerization	property	of	NR	and	the	specific	role	of	RXR	in	heterodimerization	.............................	19	
1.1.5	 The	controversial	existence	of	endogenous	ligands	for	RXR	................................................................................	25	
1.1.6	 RXR	specific	biological	functions	......................................................................................................................................	30	
1.1.6.1	 Total	ablation	and	the	roles	of	RXR	isotypes	in	embryogenesis	............................................................................	30	
1.1.6.2	 Tissue	specific	ablation	and	diverse	effects	....................................................................................................................	34	
1.1.6.3	 Clinical	relevance	of	subtypes	...............................................................................................................................................	35	

1.2	 THE	INVOLVEMENT	OF	RXR	IN	CIRCADIAN	RHYTHM	.............................................................................................................	36	
1.2.1	 The	CycliX	project:	interrogating	the	coordination	of	circadian,	nutrient	and	cell	cycles	by	
transcription	factors,	including	NRs	.................................................................................................................................................	36	
1.2.1.1	 The	global	landscape	of	epigenetics	along	the	diurnal	cycle	...................................................................................	38	
1.2.1.2	 The	integrating	circadian	cycle	with	feeding	rhythm	.................................................................................................	39	
1.2.1.3	 Cell	cycle	-	the	third	cog	coming	into	focus	.....................................................................................................................	40	

1.2.2	 The	possible	role	of	RXR	in	coordinating	the	three	liver	cycles	..........................................................................	40	
1.2.3	 Aim	of	the	project	....................................................................................................................................................................	43	

2.	 EXPERIMENTAL	MATERIALS	AND	METHODS	....................................................................................................	44	
2.1	 ANIMALS	AND	TREATMENT	........................................................................................................................................................	45	
2.2	 CHROMATIN	IMMUNOPRECIPITATION	FOLLOWED	BY	SEQUENCING	PROTOCOL	(CHIP-SEQ)	..........................................	46	
2.3	 CHIP-SEQ	LIBRARY	CONTROL	AND	READ	MAPPING	................................................................................................................	47	
2.4	 PEAK	CALLING	...............................................................................................................................................................................	49	
2.4.1	 Identifying	the	enriched	regions	.......................................................................................................................................	49	
2.4.2	 Peak	refinement	within	the	regions	................................................................................................................................	51	

2.5	 MOTIF	ANALYSIS	...........................................................................................................................................................................	54	
2.6	 GENES	ENRICHMENT	ANALYSIS	..................................................................................................................................................	54	
2.7	 BIOINFORMATICS	TOOLS	.............................................................................................................................................................	55	
2.8	 LIST	OF	USED	DATA	SETS	.............................................................................................................................................................	55	

3.	 RESULTS	.........................................................................................................................................................................	56	
3.1	 THE	PEAK-CALLER	METHOD	IS	EFFICIENT	TO	IDENTIFY	CHIP-SEQ	ENRICHED	REGIONS	..................................................	57	
3.2	 PEAK	REFINEMENTS	....................................................................................................................................................................	60	
3.2.1	 Identifying	single,	double,	and	multiple	peaks	...........................................................................................................	60	
3.2.2	 RXR	peaks	validation	by	analyzing	the	overlaps	with	DNase	hypersensitive	sites	....................................	63	
3.2.3	 PhastCons	analyses	and	peak	shapes	.............................................................................................................................	65	



 

 

3.3	 PEAK	ANNOTATION	.....................................................................................................................................................................	68	
3.3.1	 RXR	peaks	prefer	promoter	regions,	including	transcription	start	sites	........................................................	68	
3.3.2	 Relationship	between	peak	annotation	and	gene	expression	levels	.................................................................	70	
3.3.3	 Clustered	RXR	peaks	and	gene	expression	...................................................................................................................	72	

3.4	 THE	PLATEAUS	REVEAL	A	PROMISCUOUS	RELATIONSHIP	BETWEEN	RXR	AND	POL-II	.....................................................	73	
3.4.1	 The	plateau	peaks	cover	entire	genes	of	small	size	..................................................................................................	73	
3.4.2	 Colocalization	of	RNA	Polymerase	II	and	RXR	on	High	plateaus	and	at	transcription	starting	sites75	

3.5	 CIRCADIAN	ANALYSES	..................................................................................................................................................................	78	
3.5.1	 Clustering	RXR	peaks	using	peaks	tag	density	values	.............................................................................................	78	
3.5.2	 The	sinusoidal	fit	.....................................................................................................................................................................	82	
3.5.3	 Circadian	functional	analyses	...........................................................................................................................................	89	

3.6	 MOTIF	SEARCH	IDENTIFIES	NUCLEAR	RECEPTOR	CONSENSUS	BINDING	SITES	....................................................................	93	
3.6.1	 Unbiased	motif	searches	......................................................................................................................................................	93	
3.6.2	 Searching	for	RXR	heterodimer	consensus-derived	binding	sites	......................................................................	97	
3.6.3	 Distribution	of	motif	patterns	across	RXR	peak	groups,	time	points	and	annotations	.........................	103	
3.6.4	 Distribution	of	the	different	Nuclear	receptor	binding	modes	across	target	genes	...............................	107	

3.7	 ENRICHED	PATHWAYS	ANALYSES	...........................................................................................................................................	109	
3.7.1	 The	highly	expressed	–	high	plateau	genes	...............................................................................................................	109	
3.7.2	 Comparative	pathways	enrichment	among	RXR	binding	modes	....................................................................	111	
3.7.3	 The	gating	effect	on	pathway	analysis	.......................................................................................................................	112	

4.	 DISCUSSION	.................................................................................................................................................................	115	
4.1	 PEAK-CALLERS	ARE	NOT	ONE-SIZE-FIT-ALL	TOOLS	.............................................................................................................	116	
4.2	 ASSOCIATION	OF	AN	RXR	PEAK	WITH	ITS	TARGET	GENE	IS	NOT	PERFECT	.......................................................................	118	
4.3	 CHROMATIN	–	REGULATORS	ORGANIZATION	FOR	CO-EXPRESSED/CO-REGULATED	GENES	..........................................	120	
4.4	 POL-II:	THE	UNEXPECTED	EXPECTED	JOURNEY	....................................................................................................................	122	
4.5	 WHAT	IS	THE	FUNCTION	OF	HIGH	PLATEAUS	........................................................................................................................	125	
4.6	 CIRCADIAN	RHYTHMS	...............................................................................................................................................................	127	
4.7	 THE	HETERODIMER	PARTNERS:	PUBLIC	PLAYGROUND	(WITH	RULES)	.............................................................................	130	

REFERENCES	..........................................................................................................................................................................	134	



 

 1 

SUMMARY 
Nuclear receptors (NRs) are transcription factors that regulate genes involved in the 

development, homeostasis and metabolism of the organisms. Their expression is dynamic and, in the 
liver, follows a circadian pattern. Among the 48 members of this protein super-family, the retinoid 
receptor X (RXR) has a special status as an obligatory heterodimer partner for several other NRs. Unlike 
most of its partners, RXR is suitable for chromatin immunoprecipitation (ChIP) experiments, and is 
therefore a candidate of choice for genome-wide characterization of NR-dependent regulations. The 
aim of this thesis was to map the repertoire of RXR chromatin binding sites and explore the ability of 
RXR to regulate the rhythmic functions of the liver during the day. For that purpose, we used a pan-
RXR antibody to perform a ChIP-seq experiment on mouse liver at 7 different time-points of the day 
over 24 hours. 

Faced with the complexity of multiple comparisons between the 7 sets of ChIP-seq peaks 
obtained at the genome scale, we have developed an in-house method for analyzing the 7 samples 
together. Just over 30,000 binding sites have been identified, divided into 4 categories: solitary peaks, 
clustered peaks, high plateaus (wide regions with continuous high tag density), and low plateaus. RXR 
peaks were preferentially located in promoter regions, and the expression of three-quarters of the 
corresponding putative RXR target genes, representing almost half of mouse genes, was detectable by 
microarray. The abundance of RXR binding sites for each gene, but not the intensity of the signal 
observed at each binding site, correlated with gene expression levels. Intriguingly, the high plateaus 
most often cover the entire sequence of small and highly expressed genes, from promoter to 
polyadenylation site. The plateaus signals were remarkably similar to the Pol-II signals, also obtained 
in ChIP-seq. Taken together with the fact that nearly 40% of the peaks located in promoters exactly 
overlap with the transcription initiation site (TSS), it suggests a possible direct contribution of RXR to 
Pol - II's dependent transcription machinery. 

Analysis of the density variation of the RXR peaks during the circadian or ultradian rhythm 
reveals that only 10% of RXR binding sites are considered rhythmic, and only 10% of their putative 
target genes (a total of 219 genes) presented a rhythmic expression. This disproportion implies that the 
transcriptional response requires more than the binding rate of RXR.  

After gating out the RXR peaks presenting high Pol-II co-occupancy, motif analyses of the 
sequences under each remaining peaks were performed to identify the associated heterodimeric 
partners. The binding sites of RXR coupled to a partner are made of two repeats of a canonical hexamer, 
separated by 1 to 5 base-pairs, and were identified in more than 90% of the remaining peaks. The direct 
repeat with one base pair spacing (DR1) was the dominant predicted binding mode, followed by the 
other direct repeat DR2-5, and finally by the IR1-2 inverted repeats. Half of the genes used in this 
analysis are adornedwith multiple binding modes, and are therefore likely regulated by multiple NRs. 
Metabolic functions and circadian rhythm maintenance are particularly well represented in this subset 
of genes. 

In summary, these results demonstrate that RXR and its partners interact directly with a 
significant number of liver genes, although RXR cannot be considered as the driving force behind the 
internal regulation of the liver clock. A key discovery is the close association of RXR with Pol-II, found 
on more than 8000 genes. Their co-occupancy, which could be observed on whole genes as well as on 
TSS, suggests a close involvement of RXR in the transcription machinery, particularly for genes highly 
expressed in the liver. 
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RÉSUMÉ 

Les récepteurs nucléaires (NRs) sont des facteurs de transcription qui régulent des gènes 
impliqués dans le développement, l'homéostasie et le métabolisme de l'organisme. Leur expression est 
dynamique et, dans le foie, suit un schéma circadien. Parmi les 48 membres de cette super-famille de 
protéines, le récepteur rétinoïde X (RXR) occupe un statut particulier de partenaire obligatoire pour 
former un hétérodimère avec plusieurs autres NRs. Contrairement à la plupart de ses partenaires, RXR 
se prête aux expériences d’immunoprécipitation de la chromatine (ChIP), et est donc un candidat de 
choix pour caractériser à l’échelle du génome les régulations dépendantes des NRs. Dans le cadre de 
cette thèse, le but était de cartographier le répertoire des sites de liaison de RXR à la chromatine et 
explorer la capacité du RXR à réguler les fonctions rythmiques du foie pendant la journée. En 
conséquence, nous avons utilisé un anticorps pan-RXR pour réaliser, sur le foie de souris, une 
expérience dite de ChIP-seq, à 7 différentes heures de la journée sur 24 heures. 

Face à la complexité des comparaisons multiples entre les 7 sets de pics ChIP obtenus à l’échelle 
du génome, nous avons développé une méthode permettant l’analyse des 7 échantillons ensemble. Un 
peu plus de 30'000 sites de liaison ont été identifiés, répartis en 4 catégories: pics solitaires, pics groupés, 
hauts plateaux (larges régions à forte densité continue de marquage), et bas plateaux. Les pics de RXR 
se regroupent préférentiellement au niveau des promoteurs, et l'expression des trois quarts des gènes 
cibles putatifs de RXR, représentant presque la moitié des gènes de souris, est détectable par microarray. 
L'abondance des sites de liaison RXR, mais non l’intensité du signal observé à chaque site de liaison, 
corrèle avec le niveau d’expression du gène. Curieusement, les hauts plateaux couvrent le plus souvent 
l’entier de gènes petits et fortement exprimés. Les plateaux partagent également une similarité 
remarquable avec les signaux Pol-II obtenus également en ChIP-seq. Enfin, près de 40 % des pics situés 
au niveau des promoteurs chevauchent exactement le site d’initiation de la transcription (TSS), 
suggérant une possible contribution directe de RXR à la machinerie de transcription dépendante de Pol 
- II. 

L’analyse de la densité des pics de RXR au cours du rythme circadien ou ultradien révèle que 
seules 10 % des sites de liaison RXR sont considérés comme rythmiques. Et seulement 10 % des gènes 
cibles correspondants à ces sites (un total de 219 gènes) ont une expression rythmique. Cette 
disproportion implique que la réponse transcriptionnelle exige plus que le rythme de liaison de RXR.  

Après avoir éliminé les pics RXR associés à une co-occupation élevée de Pol-II, les analyses de 
motifs sur les séquences des pics restants ont été effectuées dans le but d'identifier les partenaires 
hétérodimères correspondant à des éléments de réponse spécifiques. Les modes de liaison de RXR 
couplé à un partenaire sont formés de deux répétitions d’un hexamère canonique, et ont été trouvés dans 
plus de 90% des pics restants. Le tandem de répétitions directes avec un espacement d’une paire de base 
(DR1) était le mode le plus dominant, suivi par les autres répétitions directes DR2-5, et enfin par les 
répétitions inversées IR1-2. La moitié des gènes dans cette analyse présentent plusiseur modes de 
liaison, et sont donc probablement régulés par de multiples corégulateurs. Les fonctions métaboliques 
et le maintien du rythme circadien sont particulièrement bien représentés dans ce sous-ensemble de 
gènes. 

En résumé, ces résultats démontrent que RXR et ses partenaires interagissent directement avec 
un nombre important de gènes hépatiques, bien que RXR ne puisse être considéré comme le moteur de 
la régulation interne de l'horloge hépatique. Une découverte clé est l'association étroite de RXR avec 
Pol-II, trouvée sur plus de 8000 gènes. Cette co-occupation, pouvant s’observer sur des gènes entiers 
comme au niveau des TSS, suggère une implication étroite de RXR dans les mécanismes de 
transcription, en particulier pour les gènes fortement exprimés dans le foie. 



 

ABBREVIATIONS 

3C Chromosome conformation capture  
3C-seq chromosome conformation capture combined with sequencing 
9CDHRA 9-cis-13,14-dihydroretinoic acid 
ABAC ATP-binding cassette 
APL Acute promyelocytic leukemia  
BH Benjamini–Hochberg 
bp base pair 
CAR Constitutive androstane receptor 
CCL Chemokine (C-C motif) ligand 
ChIP-seq chromatin immunoprecipitation followed by sequencing 
Cryo-EM Cryogenic electron microscopy  
CTCF CCCTC-binding factor / Transcriptional repressor 
DBD DNA-binding domain  
DHA Docosahexaenoic acid  
DHSs DNase I hypersensitive sites  
DR Direct repeat 
ER Everted repeat  
ERα Estrogen receptor alpha 
FCHL Familial combined hyperlipidemia  
FFA free fatty acid 
FXR Farnesoid X receptor 
GR Glucocorticoid receptor  
H3K36me3 Tri-methylation of lysine 36 on histone H3  
H3K4me3  Tri-methylation of lysine 4 on histone H3  
HDAC Histone deacetylase 
HDL High-density lipoprotein  
HNF Hepatic nuclear factor  
IR Inverted repeat 
kb kilobase - a length of double-stranded DNA containing one thousand nucleotides 
LBD Ligand-binding domain  
LDL Low-density lipoprotein  
LPL Lipoprotein lipase  
LXR Liver X receptor 
MA Mineralocorticoid receptor  
MAPKs Mitogen-activated protein kinases  
NCoR Nuclear receptor corepressor 
NR Nuclear receptor 
NR-IL Nuclear factor interleukin 
nts Nucleotides 
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PAS Polyadenylation site 
Pol-II RNA polymerase II 
Pol-III RNA polymerase III 
PPAR Peroxisome proliferator-activated receptors 
PR Progesterone receptor 
PWM Position weight matrix 
PXR Pregnane X receptor 
RA Retinoic acid 
RAR Retinoid acid receptor 
RE Response element  
ROR RAR-related orphan receptor 
RXR Retinoid X receptor 
SAP Spike adjustment procedure 
SCN Suprachiasmatic nucleus  
SMRT Silencing mediator for retinoid and thyroid hormone receptor 
Sp1 Specificity Protein 1 
SREBP1 Sterol Regulatory Element Binding Protein 1 
TF Transcription factor 
TGF Tumor/Transforming growth factor 
TR Thyroid hormone receptor 
TTS Transcription starting site 
VDR Vitamin D receptor 
VLDL Very-low density lipoprotein  
ZT Zeitgeber time 
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1.1 RXR as the central member of nuclear receptors superfamily 

1.1.1 The discovery of Nuclear receptor and the birth of the Molecular 

Endocrinology field 

 The discovery of nuclear receptors has its historical roots in endocrinology with the studies 

of functional small lipophilic molecules that regulate the development, homeostasis, and 

metabolism of the organism. Examples of these molecules are steroid and thyroid hormones, 

retinoid (vitamin A) and vitamin D. Many of these molecules were associated with known human 

diseases, and glucocorticoids had gained popularity as a therapeutic agent very early on. The 

chemical characteristics of each of these small molecules are very distinct, but they share the unique 

property of being fat-soluble, which allowed them to pass through the lipid bilayer cell membrane. 

There was no presupposition of their common functional mechanism. However, and yet 

astonishingly, initial biochemical experiments revealed the presence of an intracellular receptor 

that, upon ligand binding could translocate from the cytoplasm into the nucleus (Jensen et al., 

1967), and activate transcription of tissue-specific sets of target genes (Ashburner et al., 1974). 

Thus, the ‘‘Nuclear Receptor’’ (NR) is a transcription factor that is able to sense and translate 

simple chemical changes into distinct physiologic effects, by regulating the expression of specific 

genes, thereby controlling the physiologic states. The concept was early delineated, but the 

fundamental nature of this receptor, its means for recognizing specific chemical ligands, its mode 

of interaction with the genome, and its mechanism for control of gene transcription were beyond 

the limits of classic biochemical analysis (Evans and Mangelsdorf, 2014). The first biochemical, 

molecular, and genetic characterization of the encoding genes for steroid receptors was indeed a 

prerequisite for ultimately understanding the molecular basis of the nuclear receptors structure and 
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functions. The isolation of their encoding genes, the analysis of their structures and function 

revealed an evolutionarily conserved template that delineate the structural and functional features 

for nuclear receptors superfamily. Access to their coding genes cDNAs revealed three fundamental 

domains: the DNA binding, the ligand binding and the transactivation domains (Giguere et al., 

1986, Green et al., 1986, Miesfeld et al., 1986). Importantly, this also enabled key experiments 

needed to test protein function, including alteration by mutagenesis of the receptor's primary 

structure to assess the importance of specific amino acids and characterization of the nucleotide 

code within the promoter sequences of target genes that allows gene-specific regulation (Evans and 

Mangelsdorf, 2014). These works highlighted the fundamental process of transcriptional regulation 

by hormone-receptor complexes, and their extracellular signal transduction by lipophilic endocrine 

mechanism. The discoveries of their ligands and their activation through ligand ignited great 

interest, especially for therapeutic medicine studies, in the attempt to control their signaling 

pathways.  

 The most revolutionary outcome sparked from the cloning of the first steroid receptors was 

the identification soon after of numerous evolutionarily related proteins along with their encoding 

genes. The explosion of characterization of these receptors created the new field of molecular 

endocrinology (Evans and Mangelsdorf, 2014). It grew with the suggestion of the existence of many 

previously unknown signaling pathways under the regulation of myriad of undiscovered ligands. 

The term “orphan” was thus given to the receptors for which the ligands were not (yet) identified, 

but these receptors were shown to be significantly phylogenetically conserved. Unlike in traditional 

endocrinology where a hormone was identified based on its predicted functions and confirmed by 

the use of its already known ligand(s), these receptors were found without precognitive functions. 

The development of cotransfection assay (Giguere et al., 1986) was a remarkable and innovative 
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technological achievement, that answered the conundrum of finding such ligands. In this assay, 

cells in culture were transfected with two distinct plasmids. The first one allows the expression of 

the receptor. The second one is carrying a promoter sequence which drives the expression of an 

easily quantifiable marker and that encompasses a binding site for the nuclear receptor. Upon this 

transfection, different combination of receptors or small lipophilic molecules could be tested to 

attest of the activation of the receptors. The cotransfection assay was versatile as a cell-based mean 

to study transcription, extremely sensitive to small-molecule, and provided quantitative results. It 

quickly became the mainstay of every molecular biology laboratory and pharmaceutical 

discovery/screening tool, and most importantly contributed greatly in the efforts of “de-orphaning” 

these orphan receptors (Evans and Mangelsdorf, 2014). The cotransfection assay was quickly 

adapted on the isolated cDNAs of the orphan receptors as an unbiased, high-throughput screening 

method that could be implemented for natural, synthetic, and xenobiotic, even when the receptor’s 

DNA binding site (or response element) was not precisely known (Kliewer et al., 1999, Chawla et 

al., 2001).  

 The retinoid X receptor (RXR) was the first established “adopted orphan” with the 

identification of the first (but still controversial) “endogenous” ligand – the 9-cis retinoic acid (RA), 

a metabolite of vitamin A (Mangelsdorf et al., 1990, Heyman et al., 1992, Levin et al., 1992). And 

with this “de-orphaning”, originated two major concepts in the nuclear receptor field: the discovery 

of many signaling pathways regulated by the orphan receptors; and a novel feature of multiple 

intertwined signaling pathways partly elucidated by the discovery of RXR heterodimerization, as 

presented later. 
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1.1.2 Nuclear receptors genes and their evolution 

 As of today, there are a total of 270 putative nuclear receptor genes, among which 48 in 

human and 49 in mouse genomes (Evans and Mangelsdorf, 2014). Their sequences obtained in 

various species show a high degree of conservation. Evolutionary genomics has extensively studied 

the phylogeny of the nuclear receptors. The conserved domain structures and the distribution in the 

various subfamilies suggest that nuclear receptors appeared very early during metazoan evolution 

and are present in all metazoan phyla (Escriva et al., 1997, Escriva et al., 2000, Owen and Zelent, 

2000). No nuclear receptors have been found in fungi, plants or unicellular eukaryotes so far (Szanto 

et al., 2004). It is presumed that nuclear receptors emerged explosively after two waves of gene 

duplication events: the first wave during the emergence of metazoans, leading to the formation of 

members in six subfamilies, and the second wave later, mainly in vertebrates, leading to the 

divergence of the paralogues. A latter identified nuclear receptor in a sponge, Suberites domuncula, 

indicated that nuclear receptors were present at the base of metazoan evolution and RXR 

homologues might be indeed the most ancient members of the family (Wiens et al., 2003). From an 

evolutionary point of view, RXR seems to be an ancestral nuclear receptor from which many of the 

other receptor families emerged. The LBDs of the RXRs share a high similarity from jellyfish to 

humans. A homologue of the RXR, ultraspiracle (USP) was identified in advanced arthropods 

including the insects (Henrich et al., 1990, Oro et al., 1990), that bear different amino acid sequence 

but similar crystal structures with RXR, and does not bind 9-cis RA (Billas et al., 2001, Clayton et 

al., 2001). This suggested that RXR ligand binding may have appeared very early in metazoan 

development and was then lost mainly in arthropods. Since the appearance of RXR signaling 

happened much earlier than retinoic acid receptor (RAR)s signaling, we can assume the 
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independence of RXR signal pathways from RAR and that autonomous RXR signaling 

(independent of RAR and other partners) may still persist. 

 According to nomenclature provided by (Germain et al., 2006), the six subfamilies include 

65 known nuclear receptors in vertebrates, arthropods, and nematodes. The first subfamily is a large 

family with its members regulated by lipophilic signaling molecules; including thyroid hormone 

receptors (TR), retinoic acid receptors (RAR), peroxisome proliferator activated receptors (PPAR, 

adopted), reverse-Erb receptors (REV-ERB), retinoic acid related receptors (ROR), farnesoid X 

receptors (FXR, adopted), liver X receptors (LXR, adopted), and vitamin D receptors (VDR). 

Second subfamily comprises of other “adopted” receptors that were shown to bind fatty acids via 

structural studies but with controversial in dynamic regulation; RXR, chicken ovalbumin upstream 

promoter transcription factors (COUP�TF), and hepatocyte nuclear Factor 4 (HNF4) are members. 

Third subfamily comprises the steroid receptors such as androgen receptor (AR), progesterone 

receptor (PR), glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and estrogen 

receptors (ER-α and -β). Fourth subfamily contains the orphan NRs that involved in neuron 

development and maintenance like nerve growth Factor 1B (NGF1-B), nurr-related Factor-1 

(NURR1), and neuron-derived orphan Receptor-1 (NOR-1). Fifth subfamily members, 

steroidogenic Factor 1 (SF-1)50 and liver receptor Homolog-1 (LRH-1), are regulated by 

phospholipids. The last subfamily contains only one receptor, germ cell nuclear factor (GCNF) that 

has critical difference in its structure and is known to drive gene silencing. 

 Among the 48 and 49 nuclear receptor genes in human and mouse, respectively, RXR stands 

for Retinoid X Receptor. The mysterious “X” was due to its discovery as a nuclear retinoid receptor 

that was activated by but did not bind to all-trans RA, (Mangelsdorf et al., 1990, Heyman et al., 

1992, Levin et al., 1992) (hence, “retinoid X”, and later discovered as 9-cis RA), in contrast to the 
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first class of the RA receptors (RARa, b and g), which all bind all-trans RA with high affinity and 

share a high degree of structural conservation. Three isotypes RXRa (NR2B1), RXRb (NR2B2) 

and RXRg (NR2B3) and their encoding genes Rxra, Rxrb, Rxrg in mice were isolated (Mangelsdorf 

et al., 1992). Although closely related and quickly identified as forming a separated group of the 

retinoic acid receptor, none of the Rxr loci co-segregated with each other or with the Rar loci 

previously mapped. Rxra gene locates on chromosome 2 near the centromere, forward strand, with 

13 exons; Rxrb on chromosome 17 to the H-2 region, forward strand, with 11 exons, and Rxrg 

tightly linked to the Pbx gene on distal chromosome 1, forward strand with 11 exons (Hoopes et 

al., 1992). Alternative splicing can result in different isoforms of each isotype.  

 The three RXR genes were found to be abundantly expressed in many metabolic organs, 

such as the liver, kidney, and intestine. More specifically, their expression levels vary with cell 

types. RXRα was found to predominate in the epidermis, placenta, intestine, kidney, and liver; 

RXRβ expression was ubiquitous; RXRγ has limited tissue expression, including brain, skeletal 

muscle, anterior pituitary gland and was weak in adipose tissue (Dawson and Xia, 2012).  

 Paradoxically from the great interest in their physiological importance, specific studies on 

the RXR genes regulatory models were rather limited. The early studies focused on measuring by 

northern blot the modulation of RXR genes expressions under different stimulators. Mano H 

reported the regulation effect of thyroid hormone positively on gene expression of RXRb at 

transcriptional level, and negatively on RXRg gene expression possibly at a post-transcriptional 

level in intact rat (Mano et al., 1994). A study in osteoblastic MC3T3-E1 cells (Chen et al., 1996) 

showed that TGF-β1 transcriptionally stimulated the expression of Rara, Rarg, and Rxra genes, but 

did not do so for Rarb, Rxrb, and Rxrg genes; and transcriptional factor AP-1 plays an important 

role in the signal pathway of these stimulations. Other study in rat hepatocytes (Steineger et al., 
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1997) indicated that the RXRα gene expression is under distinct regulation by all-trans RA, fatty 

acids and dexamethasone acid which connected the lipid metabolizing system and the retinoid 

signaling pathway. Treatment of rat hepatocyte cultures with all-trans RA led to morphological 

differentiation and re-establishment of cell polarity, perhaps through activation of retinoid-

responsive genes (Falasca et al., 1998). Lipopolysaccharide was reported to induce a rapid, dose-

dependent reductions in mRNA and nuclear protein levels of all three RXR isoforms in hamster 

hepatocytes (Beigneux et al., 2000), and in mice cardiomyocytes (Feingold et al., 2004). 

 Sequencing and nuclease protection assay studies dwelled more in-depth to the regulatory 

elements on RXR genes loci. The cloning (Li et al., 2000a) and characterization of human RXRA 

gene and its mouse homolog Rxra (Li et al., 2006) showed highly conserved intron-exon 

positioning, surprisingly GC-rich promoter, upstream and downstream flanking regions and first 

exon, which resulted in a potentially stable folding pattern for transcription. These reminiscent 

hallmarks of housekeeping genes suggested regulation of RXRa at translational level. A part of the 

H2-Ke4 (of the major histocompatibility complex) genomic region, as well as the 250bp promoter, 

was reported to transcriptionally active as an mouse Rxrb promoter, on which TNF-alpha could 

repress the activity, and this repression is mediated by p38 MAP kinase independent of NF-kappaB 

(Sugawara et al., 1998). A study on cartilage cell culture and transgenic mouse showed an active 

507-bp intergenic sequence from the Col11a2 enhancer/silencer insulated the Rxrb promoter, 

probably associating with unknown factors that recognize a motif similar to CTCF (Murai et al., 

2008). For Rxrg, a study isolated the mouse Rxrg1 gene promoter region and identified the major 

start site, which is uniquely suppressed by 9-cis-RA in thyrotropes (McDermott et al., 2002). With 

the dawn of high-throughput era, many studies using chromatin immunoprecipitation followed by 
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sequencing (ChIP-seq) have put RXR genes into regulation target of many transcription factor 

including itself. 

1.1.3 The modular structure of RXR, and more broadly of all the NRs 

 

Figure 1: General nuclear receptor molecule with 6 domains and simplified tertiary structure  
 
 From the first three identified domains, molecular structure studies established six major 

functional/structural domains for nuclear receptors, including RXR. From the N-terminal to C-

terminal, the order of domains are as follows: the A/B domain, the C or DNA-binding domain, the 

hinge D domain, the E or ligand-binding domain, and the F domain (Fig.1). 

1.1.3.1 The A/B domain 

 This domain contains a ligand-independent activation function AF-1 to which coactivator 

proteins bind. The sequence and length are highly variable between receptors and among receptor 

subtypes (RXRα versus β). This domain is also frequently the site of alternative splicing and 

secondary start sites. It contains a variety of kinase recognition sequences, and is thus supposed to 

contribute for the receptor-, species-, and cell type-specific effects as well as promoter context-
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dependent properties of NR transactivation. This N-terminal region is reported as an interaction 

surface for multiple transcriptional coregulatory proteins: steroid receptor coactivator-1 and -2, 

p300 and CBP. The functional synergism between AF-1 and AF-2 of the E domain (described later) 

cooperatively enhances transactivation function (Bommer et al., 2002, Gianni et al., 2003, Bugge 

et al., 2009).  

 The phosphorylation at various residues throughout the protein may modulate its stability 

and function (reviews (Weigel, 1996, Shao and Lazar, 1999). Nuclear receptors are 

phosphoproteins, and multiple receptor functions can be affected by phosphorylation in response 

to various types of effector. (Lefebvre et al., 1995) have shown that dephosphorylation decreases 

the DNA binding of RXRα. The majority of the nuclear receptor phosphorylation sites lie within 

the N-terminal A/B region; they can be complex and comprise up to 13 residues, as in the case of 

the progesterone receptor. Most of the modified residues are serines surrounded by prolines and 

therefore correspond to consensus sites for proline-dependent kinases, which include cyclin-

dependent kinases and mitogen-activated protein kinases (MAPKs). This was reported for RXRα 

function, although the ultimate phosphorylation sites and effects were subject for debate through 

several studies (Adam-Stitah et al., 1999, Solomon et al., 1999, Lee et al., 2000, Matsushima-

Nishiwaki et al., 2001, Adachi et al., 2002). Studies have shown that RXRα is phosphorylated at 

serine 260 in human hepatocellular carcinoma, readily distinguishable from adjacent normal human 

tissue where this residue is not phosphorylated (Adachi et al., 2002, Matsushima-Nishiwaki et al., 

2001). The phosphorylation of the serine/threonine-rich nuclear localization signal on MR N-

terminus can influence receptor subcellular localization (Walther et al., 2005). An example of 

piggyback nuclear exclusion of RXR upon association with an AF-1 phosphorylated Nur77, 

resulting reduced transcription activity, provided interesting regulatory mechanism for RXR 
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(Katagiri et al., 2000, Walther et al., 2005). Similarly, PPARg nuclear localization inhibition was 

proposed to occur via MEK1-mediated phosphorylation of serine at position 84 (Burgermeister et 

al., 2007), and alternatively via Pin1-mediated proteasomal degradation (Fujimoto et al., 2010).  

1.1.3.2 The C domain 

 DNA-binding domain (DBD) mediates NR binding to the response element (RE) in the 

vicinity of the promoter of target genes. DBD folds into a globular domain, is composed of two 

zinc fingers and is most conserved within NR superfamily. It is indeed a major hallmark of the 

nuclear receptor family. Each zinc atom is coordinated by four cysteine residues, and removal of 

one zinc ion results in protein unfolding and loss of DNA-binding activity (Freedman et al., 1988). 

The N-terminal helix (helix 1) directly interacts with the major groove of binding DNA, making 

base-specific contacts, while the C-terminal helix (helix 2) overlays perpendicularly helix 1, and 

contributes to stabilization of the overall protein structure. In the dimerization formation (details 

presented later for RXR), the residues within dimer interface are located within the C-terminal zinc 

finger, called the D-box; the residues within sequence-specific DNA binding are located within 

helix 1, called the P-box. Interactions between the P-box and the DNA half-site coupled to 

conformational changes in the D-box are necessary for cooperative recruitment of the second 

monomer. 

1.1.3.3 The D domain 

 The hinge, connects the DNA and ligand-binding domains; it contains the carboxy- terminal 

extension of the DBD, which may be involved in recognizing the extended 5’ end of the RE. The 

D-domain appears to allow for conformational changes in the protein structure following ligand 
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binding. Also, this region may contain nuclear localization signals and protein-protein interaction 

sites. (John P. Vanden Heuvel, nrresource.org) 

1.1.3.4 The E domain 

 For RXR, and for nuclear receptor in general, the ligand-binding domain (LBD) is most 

extensively studied. Crystallography has been used to investigate this domain in depth either alone 

(apo form), agonist/ligand bound (holo form), and in complexes with the LBDs of its dimeric NR 

partners and/or coactivator peptides. First high-resolution LBD structure of RXR was determined 

in 1995 (Bourguet et al., 1995). This domain varies substantially between NRs, but they mainly 

consist of 12 α-helices and a small β-sheet between helices H5 and H6. They typically form three 

antiparallel helical sheets that combine into the α-helical sandwich. The ligand-binding pocket for 

each receptor is located in the interior of the structure and is formed by a subset of the surrounding 

helices. The strength and specificity of LBD-ligand complexes are largely dependent on 

hydrophobic interactions, extensive hydrogen-bonding networks, and the steric size and shape of 

this binding pocket (Li et al., 2003). There is a correlation between receptor function with the 

overall size and shape of the binding pockets. To accommodate a number of different structures of 

diverse metabolic ligands, orphan receptors tend to have larger volume binding pockets (Bain et 

al., 2007). 

 The entrance to the binding pocket is guarded by the helix H12, which forms a movable lid. 

This lid forms with the LBD a crucial hydrophobic groove for the ligand-induced activation 

function, the AF-2 function, which capable of recruiting coactivators. Similar to the binding pocket 

conformation, the orientation of H12 is allosterically affected by the particular chemical structure 

of the specific binding ligand (Gronemeyer et al., 2004). In the absence of a ligand, all 12 helices 

of the LBD (apo form) position away from the LBD core structure, and thus are unable to complete 
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the formation of the hydrophobic groove. With the binding of ligand, LBD has a structural change 

(holo form): H2 unwound, providing a larger loop between helices H1 and H3 that permitted H3 to 

undergo a 13-Å tilt, H12 is stabilized and forms with H3 and H4 the hydrophobic groove that 

accommodates the binding of a coactivator (Dawson and Xia, 2012). Most coactivators that interact 

with nuclear receptors contain helical LxxLL motifs where L is leucine and x is any amino acid, 

called the nuclear-receptor box that is recognized by the groove. Interaction specificity is conferred 

by charge-clamp electrostatic interactions between the LBD and coactivator residues that cap each 

end of the two-turn LxxLL helix. For RXR which has the ability of forming tetramers, there exist 

another regulation mechanism at the quaternary level: the maintaining of a tetrameric state of RXR 

physically prevents coactivator binding. Upon agonist/ligand binding this tetramer is dissociated to 

dimers, resulting in the concomitant formation and exposure of the hydrophobic groove (Gampe et 

al., 2000, Yasmin et al., 2010, Yasmin et al., 2004). 

 In the absence of ligand, some nuclear receptors have the LBD bound to a set of 

transcriptional corepressors, such as nuclear receptor corepressor 1 (NCoR1) or silencing mediator 

for retinoid and thyroid hormone receptor (NCoR2, also known as SMRT). These corepressors 

recruit transcriptional complexes that contain specific histone deacetylases (HDACs) which 

generate condensed chromatin structure over the target promoter, resulting in gene repression 

(Gronemeyer et al., 2004). The corepressors can also prevent coactivator recruitment, such as for 

PPAR (Chen and Evans, 1995). Like coactivators, they contain LxxLL-binding motifs and thus are 

able to recognize the hydrophobic residues that make up AF-2. But in contrast to coactivators, the 

corepressor-binding motif forms a lengthy three-turn helix that sterically blocks H12 active 

conformation and thus prevents the formation of the hydrophobic binding groove (Xu et al., 2002). 

Antagonist ligands can inhibit coactivator binding by blocking H12 to approach the core LBD 
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structure (Brzozowski et al., 1997, Xu et al., 2002) or by inducing H12 binding to hydrophobic 

groove and thus unproductively mimic the coactivator (Shiau et al., 1998).  

 The allosteric ligand effect on the LBD conformation can also modulate the activity of the 

N-terminal AF1 – for example, through intramolecular crosstalk between N- and C-terminal 

domains, deletion of the PPARg N-terminal domain prevents corepressor binding (Suzuki et al., 

2010). 

1.1.3.5 The F domain 

 Whether any of the RXR isotypes has a functional F domain has yet to be established. For 

RXR structure, this domain is usually included with the LBD (Mangelsdorf et al., 1992). However, 

other NRs such as estrogen receptor (ER) α, Glucocorticoid receptor (GR), hepatic nuclear factor 

(HNF) 4α, progesterone receptor (PR), and even RARs have F domains with specific sequences 

that modulate gene transcription that were described in many studies (Patel and Skafar, 2015). 

Several studies from (Safe and Kim, 2008) showed that he deletion of the entire F domain of the 

ERα eliminates its interaction with the transcription activator Specificity Protein 1 (Sp1). A recent 

study (Arao and Korach, 2018) analyzed the transcriptional activity of constructed mouse-human 

F domain-swapped ERα in the human hepatoma cell line HepG2, and deletion and point mutations 

experiments on a predicted β-strand region on F-domain; the results suggested that this region 

governs the species-specific 4-hydroxytamoxifen-mediated transcriptional activity of ERα. The F 

domain of the GR, despite having a relatively small number of residues, fundamentally contributes 

to protein dimerization (Bledsoe et al., 2002), ligand affinity (Lanz and Rusconi, 1994, Kauppi et 

al., 2003), and activation (Charmandari et al., 2005). 
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1.1.4 The dimerization property of NR and the specific role of RXR in 

heterodimerization 

 Early studies based on domains swapping and the characterization of DBD-DNA 

interactions suggested the autonomy of DBD (Green and Chambon, 1987, Kumar et al., 1987, 

Umesono and Evans, 1989). For more than two decades, structural efforts were focused on discrete 

domain/segment of nuclear receptor structure. However, as mentioned above, several studies have 

demonstrated high quaternary organization of NR domains, and the allosteric communications 

among them. The advances in crystallographic studies started to unveil how the entire receptor 

polypeptides act in a concerted fashion using its multiple domains to dimerize, to bind with ligands 

and DNA. 

 While the recognition two helix within DBD domain partially accounts for the selective site 

binding, this type of interaction alone did not fully account for response element selectivity in the 

NR family. With the paradox of conserved structures and diverse signaling pathways, nuclear 

receptors rely heavily on the ability of fine-tuned modulation by combination of ligand-binding and 

interaction with other receptors, coactivators, corepressors. Protein dimerization plays an important 

role in the functions of a wide variety of proteins, often altering as well as expanding the functions 

(Jiang et al., 1997). Particularly for transcription factors, dimerization influences nuclear 

localization, DNA binding affinity and specificity, and transactivation potentials (Lee et al., 1992). 

Studies using combinations of co-transfection assay and the electrophoretic mobility shift assay 

revealed that the steroid receptors (GR, PR, AR, and ERα) bind as homodimers to the sequence-

specific bindings termed response elements (REs) configured as palindromes composed of two 

hexamer nucleotide sequences separated by three base pairs (Beato, 1991). Non-steroid receptors 

(RAR, VDR, and TR), in contrast bind preferentially to REs composed of two hexamer half-sites 
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arranged as direct tandem repeats (DR) (Näär et al., 1991, Umesono et al., 1991), with the 

nucleotide spacing between the two half-sites being specifically 3 for VDR, 4 for TR and 5 for 

RAR, hence the 3-4-5 rule (Rochel et al., 2011). The most striking difference between the steroid 

and non-steroid groups, however, is the ability of the later to heterodimer with RXR. Shortly after 

identified, RXR was shown to be the missing factor required for the high affinity binding of VDR, 

TR, and RAR to their cognate response elements (Yu et al., 1991, Bugge et al., 1992, Leid et al., 

1992b, Kliewer et al., 1992a, Zhang et al., 1992). As for the orphan receptor, PPAR was the first 

then-orphan receptor shown to heterodimerize with RXR. While using cotransfection assays to 

identify interactions between an orphan receptor and compounds that promote peroxisome 

proliferation, PPAR was ultimately adopted as another first subfamily member of fatty acid 

receptors. And this heterodimer also confirmed the concept of crosstalk between hormone signaling 

and lipid metabolism (Issemann and Green, 1990, Dreyer et al., 1992, Kliewer et al., 1992b, Wahli 

et al., 1995, Desvergne et al., 1998). The paradigm of RXR heterodimerization quickly expanded 

into the universe of orphan receptors that now included the LXRs, FXR, PXR, and CAR (Evans 

and Mangelsdorf, 2014). Innate structure of the RXR ligand binding domain permits it to adopt 

multiple conformations and thereby dimerize with different nuclear receptors when bound to each 

of the binding half-sites (Chandra et al., 2008, Lou et al., 2014) as a ready anchor for heterodimer 

partners to come bind to the other half-site. This plasticity allowed the heterodimer rule expanded 

beyond the 3-4-5 rule. 

 The first polarized DR1 was reported for PPAR:RXR heterodimer (Juge-Aubry et al., 1997, 

IJpenberg et al., 1997) with the RXR positioned downstream from its partner. The full structural 

conformation for the PPARγ:RXRα heterodimer was also the first to be reported by (Chandra et 

al., 2008) using crystallography, with the fold and dimerization of the DBDs and the LBDs are 
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similar to those of isolated DBDs and LBDs reported earlier, and each of the liganded LBDs was 

bound by one LxxLL coactivator peptide (Gampe Jr et al., 2000, Connors et al., 2009). The 

configuration of the PPARγ:RXRα heterodimer on its DNA response element is largely 

asymmetrical (Fig.2A), with the RXRα being stretched out, enclosing the LBD of PPARγ between 

its LBD and DBD, revealing an interface between PPARγ LBD and RXRa DBD. Furthermore, the 

hinge of PPARg interacts with the 5’-upstream region of the DR1 determining the polarity of the 

PPARg�RXRa binding orientation (Juge-Aubry et al., 1997, IJpenberg et al., 1997). The hinge of 

RXRa, on the other hand, is involved in the DNA-dependent dimerization of the DBDs in a head-

to-tail conformation on the DR1. In short, the PPARγ LBD contacts both DBDs to stabilize DNA 

binding (Chandra et al., 2008). Moreover, phosphorylation of Ser273 in the DBD–LBD interface 

in mouse PPARγ LBD results in changes in PPARγ-dependent gene expression (Choi et al., 2010). 

This notion of communication between domains strongly suggests the possibility of selective genes 

expression regulation by alteration/modification of receptors structure conformations induced by 

ligands. Later, several studies using small-angle X-ray scattering, small-angle neutron scattering 

and fluorescence spectroscopy reported a different full size solution structures of PPAR:RXR 

heterodimer, which they termed “open” as oppose to “closed” conformation by crystallography 

(Rochel et al., 2011, Osz et al., 2012). Open conformation was reported where PPAR:RXR 

heterodimer formed an elongated asymmetric shape with the LBDs well separated from the DBDs 

by the hinges. The LBD dimer, however, is positioned above the DBD located at the 5’ end of the 

element, with the two hinges in parallel. The hinge of PPAR is not contacting the DNA upstream 

of the 5 half-site which is in contrast with the crystal structure (Helsen and Claessens, 2014). While 

the position of the DBDs in these RXR heterodimers depends on the composition of the response 
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element, the position and the orientation of the dimerized LBDs is always very similar and 

positioned above the upstream DBD (Rochel et al., 2011). 

 The DR1 heterodimer structure with RXR of PPAR was later also predicted for RAR 

(Rastinejad et al., 2000), after the first identified pattern as DR5 and weakly at DR2 (Mader et al., 

1993, Perlmann et al., 1993, Umesono et al., 1991), however with RXR positioned upstream 

(Fig.2B). The stabilization for the contacts between RXR and RAR in their complex takes 

advantage of the polar functional groups in the minor grooves of base pairs 8 and 9, and the well-

ordered hydration spine associated with DNA structure. The downstream RXR uses exclusively its 

T-box to mediate protein-protein interactions with the upstream Zn-II region.  

 The DR1 structure was also proposed for RXR homodimer (Zhao et al., 2000) (Fig.2C). 

However, the subunit interactions in the homodimer rely to some extent on hydrogen bonding 

interactions between Glu74 from the T-box of the downstream subunit, and Gln49 and Arg52 from 

the Zn-II region of the upstream subunit, while this is not possible in the RXR-RAR interaction due 

to T49 in RAR disabling the salt-bridge at the dimerization surface. The bending of the DNA has 

also been suggested to be exploited to achieve cooperativity in the RXR-RAR. The RXR 

homodimer induces a 12° kink in DR1 compared with the RXR-RAR complex, which bends the 

DNA by 6° at the spacer as compared to 12° bend. The adoption to combination of tilt and roll  

G. Structure of RXR-partner heterodimer complex bind to the DR4 (adapted from (Chandra 
et al., 2017). TR, LXR and CAR are the partners that heterodimer with RXR in this 
manner. 

H. RXR and partners bind to the IR2 adapted from (Mohideen-Abdul et al., 2017, Suino et 
al., 2004) 

I. RXR and FXR bind to the inverted repeat (IR) of two AGGTCA with one nucleotide 
spacer: IR1 (adapted from (Devarakonda et al., 2003) 

J. DR0 
K. IR0 
L. Predicted everted repeats with various number of space nucleotide 
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Figure 2: RXR heterodimer binding domain complexes structures and binding consensus 
A. RXR and partners bind to the direct repeat (DR) of two AGGTCA with one nucleotide spacer – 

DR1. RXR-PPARg heterodimer structure arrangement with PPARg binds to the 5’ upstream 
hexamer of the DR1 and RXR binds to the 3’ downstream hexamer (adapted from (Huang et 
al., 2010) 

B. RXR-RARb heterodimer structure arrangement with RXR binds to the 5’ upstream hexamer of 

the DR1 and RARb binds to the 3’ downstream hexamer (adapted from (Chandra et al., 2017) 
C. The structure of two DNA binding domains of RXR-RXR homodimer in DR1 (adapted from (Osz 

et al., 2015)  
D. Another conformation of RXR-RAR heterodimer structure (adapted from (Moutier et al., 2012) 

where the DBD domain of RAR binds to the second hexamer 5 nucleotides downstream from 
the first (DR5) and on the same side with RXR-DBD domain on the DNA – as oppose to the 
arrangement in DR1 

E. RXR and partners bind to the DR2 adapted from (Lefebvre, 2001) 
F. Structure of RXR-VDR heterodimer complex bind to DR3: RXR binds to the upstream hexamer 

and VDR binds to the downstream hexamer with three nucleotide spacer (adapted from (Orlov 
et al., 2012) 
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angles of the DNA are a direct consequence of the dimerization arrangements, the distortion of 

helical axes of the RXR–RAR and RXR–RXR binding sites. Different from the tight connection in 

DR1, (van Tilborg et al., 1999) suggested the ability of the highly dynamic Zn-II region of RXR 

within the DR5 assembly of RAR-RXR heterodimer complex (Fig.2D). The differences between 

extrapolated structures were later confirmed by crystallographic study by (Chandra et al., 2017). 

While the DR2 were found along with DR5 in naturally occurring response elements of RAR-RXR 

heterodimer (Mangelsdorf et al., 1991, Predki et al., 1994), no structure of the DBDs complex has 

been established (Fig.2E extrapolated). 

 The hinge of the receptors seems to play an important role in adapting to differences in 

spacer lengths and hexamer orientations to still allow the regular DBD and LBD dimerization. The 

cryo-EM structure of DNA-bound RXR–VDR on a DR3 shows an extended RXR hinge region, 

while the hinge of VDR contains a rigid helix that determines the topology of the complex (Fig.2F). 

The localization of the short N-terminal domain of VDR interacts with the major groove of the 

DNA response element, next to the recognition helix of VDR, could point towards a modulating 

effect on DNA binding (Orlov et al., 2012). A naturally occurring polymorphism shortening the N-

terminal domain by 3 amino acids, has been shown to influence the repressive function of the VDR 

in the absence of ligand. Both conformations could indeed support different aspects of receptor 

functioning. While the open conformation allows coregulators and other proteins to interact with 

the available surfaces on the DBD, the LBD and the hinge, the closed conformation could reinforce 

or stabilize binding of the receptor complex to the response element and/or conducting allosteric 

signals between these domains, the DNA and interacting complexes (Helsen and Claessens, 2014). 



Introduction 

 

 25 

 After TR, LXR was found to bind to DR4 in heterodimer with RXR, and their crystal 

structure were later reported in detail by (Lou et al., 2014)(Fig.2G). CAR and PXR were the two 

orphan receptor reported to heterodimer with RXR at DR4 and IR2 (Fig.2H) sites however only 

their LBD were explored (Echchgadda et al., 2007, Suino et al., 2004). 

 Using electrophoretic mobility shift assays and transient transfection assays, (Laffitte et al., 

2000) reported the inverted repeat pattern for FXR/RXR heterodimer with a T or A as the one spacer 

nucleotide (Fig.2I), and for a stretch of T nucleotides flanking the downstream half-site (positions 

8–11), referred to as the “extended half-site”. The structure was adapted from the homologs study 

(Devarakonda et al., 2003) and partially validated in recent study (Kim et al., 2015). 

 Aside from these traditional method of identifying binding consensus, high through put 

ChIP-seq also provided several computational predicted binding motif for RXR and partners 

heterodimer, such as tandem repeat with no spacer (DR0 – Fig.2J, IR0 – Fig.2K), or longer spacer 

(>5), and everted repeats (Fig.2L) (Moutier et al., 2012, Zhan et al., 2012). 

1.1.5 The controversial existence of endogenous ligands for RXR 

 The autonomy of the DNA- and ligand-binding domains of the receptors inspired the 

swapping between these domains between receptors, and even other transcription factors, still 

retaining ligand-dependent transactivation (Giguere et al., 1987, Green and Chambon, 1987, 

Petkovich et al., 1987). Upon the ligand transactivation of each monomer, heterodimer partners of 

RXR have been characterized into three classes: non-permissive, permissive or conditionally 

permissive.  

• In non-permissive heterodimers, RXR activity was classified as being subordinated 

compared to its partner, although RXR ability of binding its agonists and interacting with 
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coactivators are retained (Cheskis and Freedman, 1996, Thompson et al., 1998, Germain et al., 

2002). The heterodimer would only be activated in response to the partner’s ligand binding and 

induce transactivation response. The binding of RXR to a retinoid agonist would not enhance this 

response. The release of corepressor is also prompted in the same manner only by binding of a 

selective ligand. TRs and VDR belong to this category. 

• In permissive heterodimers, transactivation would occur through the binding of an agonist 

to either partner or to both partners. Binding by both agonists could have additive or synergistic 

affects. A corepressor protein would also be released when a retinoid agonist binds to RXR (Lammi 

et al., 2008). Within this classification are FXR (Zheng et al., 2018), LXR (Willy and Mangelsdorf, 

1997), TR (Castillo et al., 2004) and PPAR (DiRenzo et al., 1997). PPAR was later found by (Feige 

et al., 2005) to be capable of readily heterodimerizing with RXR in living cells prior to the binding 

of ligand. 

• The RAR heterodimers have a mixed status: while this heterodimer would not be activated 

by an RXR agonist, binding by an RAR agonist would induce both transactivation and permit RXR 

agonist to enhance the activation (Shulman et al., 2004). 

 Ironically, one of the most enigmatic and controversial areas of RXR research is the 

documentation of the presence of endogenous ligands activating RXR in vivo. Perlmann and co-

workers created a ligand detector mouse line (Solomin et al., 1998). Transgenic lines were 

constructed using Gal-DBD RXR-LBD fusion constructs and a reporter gene containing Gal 

binding sites and a β-galactosidase reporter gene. X-gal staining of mouse embryos revealed sites 

of ligand production. Specific regions of the spinal cord lit up, suggesting that endogenous ligand 

production took place. Using a similar system with green fluorescent protein as a reporter, (Luria 

and Furlow, 2004) later have confirmed these results. RXR ligand also remains the only mean to 
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activate heterodimers with orphan receptors or RXR homodimers. Many molecules have been 

proposed as potential endogenous ligands. Here we will present the most representative ones: 

• 9-cis-retinoic acid was initially suggested as an endogenous ligand for RXRα (Heyman et 

al., 1992, Levin et al., 1992, Mangelsdorf et al., 1992) and quickly and widely accepted as “the” 

natural RXR ligand (Evans and Mangelsdorf, 2014, Kane, 2012, Kane et al., 2010, Desvergne, 

2007). However, many groups failed to detect endogenous 9-cis RA in humans and other mammals 

(Horton and Maden, 1995, Matt et al., 2005, Blomhoff and Blomhoff, 2006, Gundersen et al., 2007, 

KANE et al., 2005, Kane et al., 2008, Kane et al., 2010, Rühl, 2006, Schmidt et al., 2003, 

Wongsiriroj et al., 2014) makes it doubtful to be RXR physiological ligand and partly questioned 

its endogenous existence as well as its nutritional significance. The identification of 9-cis RA was 

reported under supra-physiological conditions after administration of a high dosage of naturally-

occurring retinoids or after ingestion of food with high content of vitamin A derivatives (Arnhold 

et al., 1996, Ulven et al., 2001), suggested its discrepancy in detectable versus efficient 

concentration in physiological conditions. Highly sensitive mass spectrometry-detectors can detect 

9-cis RA levels as low as 0.03-0.003 nM (Kane et al., 2008, de Lera et al., 2016), however such 

levels are not sufficient to modulate RXR signaling. Multiple transactivation assays in diverse 

reporter cell lines suggested 10-100 nM is the minimal concentration of 9-cis RA that can facilitate 

RXR binding and transcriptional activation (Heyman et al., 1992, Levin et al., 1992, Ruhl et al., 

2015), consequentially excluded the possibility of 9-cis RA function as endogenous and 

physiological ligand (Ruhl et al., 2015, de Lera et al., 2016). 

• Docosahexaenoic acid (DHA) and other free fatty acids (FFAs) were proposed to be 

capable of inducing RXR transcriptional activation with different efficiencies in mouse brain by 

(de Urquiza et al., 2000). However, they reported a relatively high concentrations of DHA 
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necessary to induce transcription by RXR, which was confirmed by other studies (Calderon and 

Kim, 2007, Goldstein et al., 2003), although a much lower concentration (by one tenth) was 

applicable using a different method by (Lengqvist et al., 2004). Crystallography study of RXRα-

LBD documented the direct interaction of DHA with the domain (Egea et al., 2002). In in vitro 

experiments, treatment with DHA (free acid form) increased the number of surviving neurons in 

primary culture cells, similarly to synthetic RXR agonists (LG100268 or BMS649), and prevented 

in the presence of the RXR agonist LG100268 (Wallén-Mackenzie et al., 2003). This effect was 

Nurr1-dependent indicating the driving of Nurr1-dependent signaling via ligand-dependent 

activation of RXR. DHA-dependent RXR activation was crucial for survival of cultured rat 

photoreceptors during early phases of primary cultures and in response to oxidative stress (German 

et al., 2013). Beside neuroprotection, RXR signaling is also critical for DHA cognitive and affective 

activities in vivo. In Rxrg-null mice and RXR antagonist pre-treated mice, the beneficial effect of 

DHA treatment on spatial working memory performance was abolished (Wietrzych-Schindler et al., 

2011). They also implicated the relevance of RXRg in antidepressant activities of DHA. DHA 

enhancement of antibody phagocytosis by microglial cells (Hjorth et al., 2013) could potentially 

be mediated by RXRs, and could be enhanced by bexarotene (LGD1069), a synthetic RXR ligand 

(see below), in an RXRα dependent manner (Yamanaka et al., 2012). The capability of vertebrates 

to synthesize DHA from α-linolenic acid as precursor of plant origin (Rajaram, 2014) supported 

the role of DHA as physiological ligand. However, the complication in measuring the 

administrative and effective concentration of DHA free form, especially hindered in neurology due 

to blood brain barrier, impeded the direct confirmation of DHA levels to function as a ligand-

dependent switch, or the interaction between RXR and DHA in the nucleus. The relevance of DHA 

in modulating RXR signaling needs also to be considered in a context of other RXR endogenous 
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ligands due to potential competitions or cross-talks between metabolic pathways involved in the 

production of such ligands. Some retinol-binding proteins may bind with different efficiencies also 

to DHA (Tachikawa et al., 2018), suggesting that FFA and retinoid signaling may cooperate in 

controlling RXR signaling. Such control may involve transcriptional control and sharing of some 

proteins involved in ligand metabolism and traffic. 

• Phytanic acid was identified as a natural agonist of RXRs by (Lemotte et al., 1996, 

Kitareewan et al., 1996) and its effective concentration confirmed by (Zomer et al., 2000). As an 

important metabolite of chlorophyll, phytanic acid can be produced in ruminating animals by their 

bacteria. Humans neither efficiently absorb nor metabolize chlorophyll, and entirely depend on 

meat and milk products. Thus, phytanic acid can hardly be considered endogenous ligand nor 

physiological relevance. Implication of RXR activation in mediating effects of high amounts of 

phytanic acid on glucose and lipid metabolism or adipocyte differentiation (reviewed in (Roca-

Saavedra et al., 2017)) were not tested in competition with an RXR antagonist or in any RXR null 

mutations mice. 

 Recently, the endogenous presence of 9-cis-13,14-dihydroretinoic acid (9CDHRA) with its 

all-trans isomer was identified in several organs (liver, serum, brain) from mice through a combined 

liquid chromatography-tandem mass spectrometry using UV analytical set-up and comparison with 

synthetic standard samples (Ruhl et al., 2015). Crystallography analyses revealed that 9CDHRA 

employs a similar mode of binding to RXRα-LBD as 9-cis RA. The physiological relevance of 

9CDHRA was documented by deficits of spatial working memory associated with reduced levels 

of 9CDHRA in Rbp1-null mice, that could be rescued by 9CDHRA supplementation. Classification 

of 9CDHRA is still debated, whether a new bioactive metabolite of ATROL (vitamin A1) and 

ATBC (pro-vitamin A1), or whether other dihydro-form(s) of retinol or carotenoids exist in vivo 
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and could play the role of such a precursor. Thus, if ATROL or ATBC act as precursors of 

9CDHRA, the latter could be considered as a new metabolite of the vitamin A1 family. If 9CDHRA 

cannot be efficiently generated from those precursors then it could be considered as a founding 

member of a new class of vitamin A (as vitamin A5). More experiments are still needed to further 

identify relevant metabolic pathways and to understand whether this new-hope 9CDHRA may act 

as ligand fulfilling the food-to-ligand concept. 

 Beside the quest for endogenous ligand, pharmaceuticals also pressed for synthetic ligands 

as potential therapeutic methods. The design of synthetic ligands was much instructed by the 

chemical structures of endogenous ligands, the structure of RXR LBD and data on ligand – LBD 

interactions. The diverse modes of these interactions suggest a possibility of existence of alternative 

natural or endogenous ligands with such novel or yet unknown modes of interaction. 

1.1.6 RXR specific biological functions 

 In order to characterize the mechanisms of how RXRs are implicated in regulatory 

pathways, many studies sought to generate genetically modified animals with mutations in the RXR 

genes.  

1.1.6.1 Total ablation and the roles of RXR isotypes in embryogenesis 

 During development, RXRa and RXRb are present at early embryonic stages, while RXRg 

appears a few days later in gestation (Mangelsdorf et al., 1992). RXRα was the first isotype that 

loss-of-function study revealed lethal effect between E13.5 and E16.5 on mouse embryo, due to 

hypoplastic development of the ventricular chambers of the heart (Sucov et al., 1994). An 

overexpression study 6 years later showed that overexpressing RXRα in cardiomyocytes causes 
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dilated cardiomyopathy but fails to rescue myocardial hypoplasia in RXRα-null fetuses 

(Subbarayan et al., 2000), indicating that the effect of RXRα deficiency is not cell-autonomous. 

Further studies supported the requirement of RXRα expression in epicardium for triggering 

paracrine signal that are necessary for myocardial growth (Chen et al., 2002, Kang and Sucov, 2005, 

Merki et al., 2005). Using a whole-mouse-embryo culture system, wild-type E11.5 embryos treated 

with TGFbeta2 protein for 24 hours, a study (Kubalak et al., 2002) could produce enhanced 

apoptosis in both the sinistroventralconal cushion and dextrodorsalconal cushion similar to that 

observed in the RXRα-null mice. This study also showed that RXRα-null embryos heterozygous 

for a null mutation in the TGFbeta2 allele exhibited a partial restoration of the elevated apoptosis 

and of the malformations. Other heart defects observed in RXRa-null mice were an enhanced rate 

of cell death in both the mesenchymal cells of the conotruncal ridges and the parietal conotruncal 

cardiomyocytes, which led to agenesis of the conotruncal septum (Ghyselinck et al., 1998, Kastner 

et al., 1994). This indicated that RXRα is required for the transduction of the RA signal that controls 

apoptosis in the conotruncal segment of the embryonic heart. 

 RXRα-null mice fetuses also displayed ocular characteristics such as persistent fetal 

vasculature, closer eyelid folds, a thickened ventral portion of the corneal stroma, a ventral rotation 

of the lens, an agenesis of the sclera and a shortening of the ventral (Kastner et al., 1994). Similar 

effects were found in RXRb/g-null mice (Ghyselinck et al., 1997). However, RXRg-null mice 

appeared normal and compound RXRa+/-/RXRb-/-/RXRg-/- triple mutants mice were viable 

(Krezel et al., 1996), indicated the important role of RXRa among other isotypes during 

morphogenesis of the mouse embryo. 
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 To determine the transcriptional role of RXRα in vivo, particularly the transactivation 

function carried out by AF-1 and AF-2 domains, Mascrez et al engineered mouse mutants 

repressing truncated RXRα proteins that lack:  

• the AF-2 activating domain core-containing H12 located at the C-terminus of the ligand 

binding domain: Rxraaf2o mutants (Mascrez et al., 1998) 

• the N-terminal activation function AF-1-containing A/B domain: Rxraaf1o mutants (Mascrez 

et al., 2001) 

• both AF-1 and AF-2: Rxraafo mutants (Mascrez et al., 2009) 

 The Rxraaf2o mutants display lower percentage of the myocardium hypoplasia and the ocular 

syndrome that are hallmarks of the RXRa-null (Kastner et al., 1994). Additional inactivation of 

RXRb —which on its own, displayed no effect in (Krezel et al., 1996) study, but increased the 

frequency of the myocardium hypoplasia from 5% to 50%, and the frequency of the ocular 

syndrome from ~15% to 100% in Rxraaf2o mutants (Mascrez et al., 1998). This might reflect a 

functional compensation of RXRb in the absence of RXRa. The Rxraafo displayed full ocular 

syndrome like the RXRa-null but normal heart histology in 80% of the fetuses (Mascrez et al., 

2009). These results suggested the “silent” role of RXRa in transcription activation during 

myocardial development. The Rxraaf1o mutants however displayed only occasional persistent fetal 

vasculature, and additional ablation of RXRb and RXRg only increased the occurrence of this defect 

but displayed no additional defect (Mascrez et al., 2001). Hence, both RXRα AF-1 and AF-2 are 

required for the involution of the primary vitreous body, while only AF-2 is required for the other 

RA-dependent ocular morphogenetic events. These findings indicated that the activation functions 

of RXRα are differentially required for eye morphogenesis.  
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 While The AF-2 of RXRα may appear functionally more important during development, 

AF-1-containing A/B region may have unique role in the RA-dependent disappearance of the 

interdigital mesenchyme. In early studies, RXRa- and RXRg-, RXRa- and RXRb-null showed 

various level of causing interdigital webbing (i.e., soft tissue syndactyly) as either heterozygous 

and or homozygous mutant (Ghyselinck et al., 1997, Lohnes et al., 1993, Lufkin et al., 1993, Kastner 

et al., 1994). Furthermore, RXRa-null embryos showed resistance to limb malformation usually 

caused by retinoid acid exposure (Sucov et al., 1995). Other study showed reduction levels of either 

RARa or RXRa alone decreased cell sensitivity to growth inhibition by all-trans RA; and cellular 

maximum RA resistance was obtained when both RARa and RXRa were reduced (Wu et al., 1997). 

From the engineered mutant studies of Mascrez, majority of Rxraaf1o mutants and all 

Rxraaf1o/RXRb/g-null mutants display a soft tissue syndactyly (Mascrez et al., 2001), while Rxraaf2o 

and Rxraaf2o/RXRb/g-null mutants never display this defect (Mascrez et al., 1998). Phosphorylation 

of RXRα at a specific serine residue located in the A domain was found necessary for the anti-

proliferative response of F9 teratocarcinoma cells to RA (Bastien et al., 2002, Rochette-Egly and 

Chambon, 2001). The crucial turn of function by phosphorylation, consistent with other studies 

presented previously in the structure of A/B domain, may act in a functioning cascade of molecular 

events that, in vivo, leads to the normal disappearance of the interdigital mesenchyme. 

 Comparing the severity and penetrance of a given abnormality between various mutants also 

led to the indication of which heterodimers are preferentially involved in transducing RA signals in 

a given developmental process: RXRα/RARα heterodimers are preferentially transducing the RA 

signal acting on myocardial growth, RXRα/RARβ and RXRα/RARγ are the heterodimers 

instrument the ocular morphogenesis (Mark et al., 2009). 
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1.1.6.2 Tissue specific ablation and diverse effects 

 Using tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) to selectively ablate 

RXRα in adult mice adipocytes, (Imai et al., 2001) showed that these mice were resistant to dietary 

and chemically induced obesity and impaired in fasting-induced lipolysis. Their results also 

indicated the involvement of RXR in adipocyte differentiation.  

 Pirinixic acid, or Wy14,643, is known to be a PPAR agonist with strong hypolipidemic 

effects. In hepatocyte RXRα-deficient mice, Wy14,643-induced hepatomegaly was partially 

inhibited, while Wy14,643-induced hepatocyte peroxisome proliferation was preserved in 

adipocytes (Wan et al., 2000, Nagao et al., 1998). This mutant also displayed reducing food intake 

due to leptin increase, increasing body weight, improving glucose tolerance through high serum 

IGF-1 level mechanism (Wan et al., 2003). Hepatomegaly induced by 1,4-bis[2-(3,5-

dichloropyridyloxy)]benzene (TCPOBOP - a CAR and PXR ligand), was also prevented in 

hepatocyte RXRα-deficient mice (Cai et al., 2002), supposedly also through the cytochrome P450 

(CYP) genes family. 

 Mice lacking RXRα in myeloid cells exhibit reduced levels of CCL6 and CCL9, impaired 

recruitment of leukocytes to sites of inflammation, and lower susceptibility to sepsis (Nunez et al., 

2010). 

 Using Cre-ERT recombinases to ablate RXRα selectively in adult mouse keratinocytes, (Li 

et al., 2000b) generated hair loss and skin abnormalities, indicating that RXRα has key roles in 

epidermal keratinocyte proliferation and differentiation. In the epidermis of VDR-/- mice, alopecia 

was observed, but keratinocyte proliferation and differentiation were normal. This similarity in 

phenotype may reflect a major role of RXR/VDR heterodimers in skin hair follicle cycling. 
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 Using a designed dominant negative RXRb mutated receptor, termed DBD-, lacking the 

DNA binding domain but retaining the ability to dimerize with partner receptors, (Minucci et al., 

1994) showed inhibition of retinoic acid-responsive gene regulation in embryonal carcinoma cells.  

 The same lab that designed the domain AF-mutant mentioned in the earlier section (1.1.6.1) 

also did specific mutant in Sertoli cell and showed that Rxrbaf20 mutation does not display the 

spermatid release defects observed in RXRb-null mutants, indicating that the role of RXRb in 

spermatid release is ligand-independent (Mascrez et al., 2004). But they accumulated cholesteryl 

esters in Sertoli cells (SCs) due to reduced ABCA1 transporter-mediated cholesterol efflux. 

 RXRγ was reported to not co-express with RARβ and RARγ in various differentiating 

muscles including those of the face and limbs. However, in the striatum and in part of the ventral 

horns of the spinal cord there was a precise co-expression with RARβ, although with quantitative 

differences, which suggested a possible preferential heterodimerization between these two retinoic 

acid receptors in the developing central nervous system (Dolle et al., 1994). 

1.1.6.3 Clinical relevance of subtypes 

 Nohara and colleagues (Nohara et al., 2009) reviewed the effects of RXR subtype 

polymorphisms: those of RXRα were not linked with any metabolic dysfunction, whereas the 

RXRβ c.51C > T polymorphism was linked to higher body mass, gallstone risk, and bile duct cancer 

risk. The association of an RXRγ polymorphism with hyperlipidemia was noted. The most common 

form of hereditary hyperlipidemia is the familial combined type (FCHL), which has been associated 

with increased very-low density lipoprotein (VLDL) that could be accompanied by increased low-

density lipoprotein (LDL). The locus of RXRγ gene has been termed the “FCHL” locus and linked 

with higher LDL-cholesterol and triglyceride levels in several families. The RXRγ p.Gly14Ser 
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variant was observed in hyperlipidemic patients, was more common in those with FCHL, and was 

higher in those with coronary stenosis. Interestingly, the Ser14 variant suppressed lipoprotein lipase 

(LPL) promoter activity by 60%, whereas wild-type Gly14 suppressed LPL by 40%. LPL plays a 

role in the hydrolysis of VLDL. RXRγ variants have also been linked to free FA and triglyceride 

levels in familial type 2 diabetes. 

1.2 The involvement of RXR in circadian rhythm 

1.2.1 The CycliX project: interrogating the coordination of circadian, 

nutrient and cell cycles by transcription factors, including NRs 

 As life on earth directly depends on the energy of the sun, most of the earth inhabitants have 

their biological activities synchronized with the cycle of day and night – the circadian cycle. 

Adapting to the light cycle on earth, this diurnal rhythm is embedded in the organ and cellular clock 

of living organisms. High-level multicellular organisms like mammals further developed a 

hierarchy of oscillators that keep track of time in specialized tissues and organs. The master 

pacemaker - central suprachiasmatic nucleus (SCN) of the hypothalamus - relays the base tempo in 

activity and rest, feeding, body temperature, and hormones throughout the body. The receiving 

organs tune their metabolism to the rhythmic signal, in adapting to their local different stimulations 

and entrain their own peripheral clock (Mohawk et al., 2012). A fair number of studies have 

established plausible models of autonomous circadian oscillators, detailing transcriptional (Young 

et al., 2001, Rosbash, 2009), non-transcriptional (Roenneberg and Merrow, 2005, Merrow et al., 

2006) and other input mechanisms (Bunger et al., 2000, Cho et al., 2012) that play key roles in 

mammalian clocks. Among the earliest to be discovered and extensively studied is the feedback 

regulatory loop between core oscillators and metabolism, with many evidences indicating that 
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disruption of either the core clock or of the nutrient cycle would affect the other. Other models of 

transcription regulatory cycles are present in nature. As an example, in the same phase-adapted 

transcriptional manner, the cell-division cycle that corresponds to genome duplication and 

segregation during cell proliferation, allows cycle progression only if certain nutrition conditions 

have been met. On the other side, the nutrient-response cycle leads "fasting" cells to undergo a 

program of gene expression that returns to the fasting state once the nutrients have been exhausted. 

However, although each individual cycle has been studied extensively, we still know little about 

the global genomic responses to the cycles and their associated transcriptional regulatory programs. 

Intrigued by the lack of a study on the global view level, CycliX project emerged with the mission 

of seeking to understand three of these circuits and how they interact: the circadian rhythm, cell 

division and nutrient-response cycles, and to shed light on whether there is a causality-consequence 

connection between them. By integrating multiple information from different core transcription 

factors, using high throughput sequencing methods, CyliX project aims to identify "cyclic nodes” 

genes and their regulators to study the interaction networks connecting these cycles. Through their 

most important common cis-regulatory modules and the corresponding transcription factors, this 

project aims to enable the generation of interconnecting core regulatory networks. As a key 

metabolic tissue, the mouse liver has been widely reported to be one of the organs under the crucial 

control of the core clock and the feeding behavior. In addition, hepatic cells can regenerate upon 

hepatectomy (Cho et al., 2012, Miller et al., 2007, Le Martelot et al., 2009). Genome-wide profiles 

have shown that around 10% of genes exhibit cyclic mRNA levels in the liver (Akhtar et al., 2002, 

Panda et al., 2002, Storch et al., 2002, Ueda et al., 2002), and were found to be accompanied by a 

highly dynamic epigenetic landscape (Vollmers et al., 2009). Thus, mouse liver became the central 
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target for multiple projects, and for Cyclix in particular, in an attempt to extrapolate the full view 

of the global transcription system and how its regulators coordinately drive these circuits. 

1.2.1.1 The global landscape of epigenetics along the diurnal cycle 

 From using ChIP-seq for RNA polymerase II and III (Pol-II, Pol-III) and several histone 

modification marks together with microarray on C57BL/6 mouse liver tissue, the first CycliX 

studies have shed light on the kinetic of epigenetic change and the effect of such modulation on 

global transcription activity during diurnal cycle. They found that rhythmic Pol-II recruitment at 

promoters, rather than rhythmic transition from poise to active productive stage, preceded mRNA 

accumulation by 3 hours, consistent with mRNA half-lives. Promoters of transcribed genes had 

rhythmic tri-methylated H3K4 levels reached their peak 1 hour after Pol-II, rhythms tri-methylation 

of H3K36 lagged transcription by 3 hours. They also identified three classes of genes: one showing 

rhythmicity both in transcriptional and mRNA accumulation, second class with rhythmic 

transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs 

that emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver (Le 

Martelot et al., 2012). The mouse liver Pol-III occupied loci were shown to include a conserved 

mammalian interspersed repeat (MIR) as a potential regulator of subunit-encoding gene. They 

indicated a synteny relationships between a number of human and mouse Pol-III genes, whose 

expression levels are significantly linked (Canella et al., 2012).  

 The exploration is followed by a study incorporate another layer of regulatory from a key 

transcription factor the Sterol Regulatory Element Binding Protein 1 (SREBP1) that connects the 

lipid homeostatic and nutrient cycle with the circadian cycle. They found that the recruitment of 

SREBP1 to the DNA showed a highly circadian behavior, with a maximum during the fed status, 

but the expressions of target genes were not always synchronized. A group of genes that harbor 
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bindings sites for both SREBP1 and Hepatocyte Nuclear Factor 4 (HNF4) showed a shift by about 

8 hours in their rhythmicity compared to SREBP1 binding, hinting the cross-talk between hepatic 

HNF4 and SREBP1. In time-restricted feeding Bmal1-/- mice, whose internal molecular clock was 

disrupted, the temporal expression profiles of these genes dramatically changed even though 

SREBP1 rhythmic binding remained. This suggested the existence of a second layer of modulation 

of SREBP1 transcriptional activity, strongly dependent from the circadian clock, besides the 

nutrient-driven regulation of SREBP1 nuclear translocation (Gilardi et al., 2014).  

1.2.1.2 The integrating circadian cycle with feeding rhythm 

 Inspired from the results from one transcription factor SREBP1, more recent studies 

expanded the transcriptional regulatory interplay between the circadian clock and feeding rhythms 

by incorporating DNase I hypersensitive sites (DHSs) (Sobel et al., 2017) and Pol-III (Mange et al., 

2017). They found that hypersensitivity cycled in phase with Pol-II loading and H3K27ac histone 

marks. For the clock disrupted phenotype Bmal1-/- mice, they found that the total number of 

rhythmic genes was equal to that in the wild type, although the amplitudes of expressions were 

generally lower. They analyzed the DNase I cuts at nucleotide resolution and found that 

dynamically changing footprints consistent with dynamic binding of CLOCK:BMAL1 complexes, 

suggested a transient heterotetramer binding configuration driven at peak activity of these footprints 

(Sobel et al., 2017).  

 Concordant to previous study of (Canella et al., 2012), Pol-III occupancy of its target genes 

were found to rise before the onset of the night, to stay high during the night—mice feeding time 

and translation is known to be increased—, and then to decrease in daytime. MAF1 is a repressor 

of Pol-III in response to serum starvation or TORC1 inhibition in fasting phase, and thus Pol-III 

occupancy during the night reflects a MAF1-inactivated response to feeding. The rise of Pol-III 
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occupancy before the onset of the night however reflects a circadian clock-dependent response. 

With this bimodal rhythm, they concluded that Pol-III transcription during the diurnal cycle is 

regulated both in response to nutrients and by the circadian clock, which allows anticipatory Pol-

III transcription (Mange et al., 2017).  

1.2.1.3 Cell cycle - the third cog coming into focus 

 Aside from MAF1, Pol-III activity is also tightly regulated with cell growth and proliferation 

by factors such as MYC, RB1, TRP53. With Pol-III bridging the circadian and the nutrient response 

cycle, the cell proliferation cycle was brought into the interplay using the model of compensatory 

liver hyperplasia-or regeneration-induced two-thirds partial hepatectomy. Early activation of cell-

division-cycle genes were found after 10-20 hours post-surgery and continued with a robust and 

coordinate cell-division-cycle gene-expression response before returning to the resting state after 1 

week. The activation of Pol-II, H3K4me3, H3K36me3 during the post-surgery response revealed a 

general de novo promoter recruitment. Some unusual gene profiles with abundant Pol-II but little 

evidence of H3K4me3 or H3K36me3 modification, indicated that these modifications are neither 

universal nor essential partners to Pol-II transcription (Rib et al., 2018). The results also define two 

classes of genes in response to hepatectomy: one class included genes close to H3K4me3 and Pol-

II peaks, whose Pol-III occupancy is high and stable, reminiscent of housekeeping genes; the other 

class, distant from Pol II peaks, whose Pol-III occupancy strongly increases, represented the ability 

of adaptation to increased demand (Yeganeh et al., 2019). 

1.2.2 The possible role of RXR in coordinating the three liver cycles 

 The ability to regulate reproduction, development, and nutrient utilization have been long 

known to coincide with the evolution of nuclear receptors. Studies on nuclear receptor superfamily 
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has been shown dynamic and expressed in oscillations in key metabolic tissues in the frame of one 

or all of these cycles (Yang et al., 2006, Yang et al., 2007, Duez and Staels, 2010, Nakatsuka et al., 

2013, Bookout et al., 2006). In particularly, RXR was proposed to be tightly integrated in one or 

more of these three cycles, especially in the liver, where the rhythm of transcripts encoding rate-

limiting enzymes is required and warranted by the temporal nature of metabolic processes and 

biological clock (De Cosmo and Mazzoccoli, 2017, Bookout et al., 2006).  

 RXRα was shown by (McNamara et al., 2001) to ligand-dependently interact with NPAS2 

and CLOCK, but not with BMAL1, and impede the transcriptional activity of CLOCK/NPAS2–

BMAL1 heterodimers at the promoters of clock genes. They also showed that RA injection 

prompted small phase shifts of peripheral clocks in the mouse cardiovascular tissue. The expression 

of DEC1 and DEC2, who takes part in the molecular clockwork, were shown to influence and be 

affected by RXR in heterodimer with LXR (Cho et al., 2009). The involvement of RXR in the 

circadian clock was also indirectly exhibited through the effects of its putative ligand retinoid acid. 

All-trans RA, 9-cis RA, and 13-cis RA were found capable to entrain circadian rhythmicity in 

cultured fibroblasts expressing Per2-luciferase (Nakahata et al., 2006), and retinoic acid signaling 

was shown to reset central clock upon light sensing (Thompson et al., 2004, Fu et al., 2005).The 

nutritional vitamin A deficiency shifted BMAL1 phases and abolished PER1 circadian expression 

at both mRNA and protein levels in the hippocampus (Navigatore-Fonzo et al., 2013).  

 Within the cell cycle, RXR is bound and phosphorylated by CK1α in an agonist-dependent 

manner (Zhao et al., 2004), and by GSK3β with modulation of cell predisposition to RXR agonist-

induced growth arrest and apoptosis and support of cell survival (Gao et al., 2013). (Yang et al., 

2010) showed that in partially hepatectomy mouse, RXRa deficiency caused an approximately 20-

hour delay in hepatocyte proliferation, impaired several pathways, including growth factors and the 
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circadian cell cycle. The expression patterns of hepatocyte growth factor, fibroblast growth factor 

2, platelet-derived growth factor, and transforming growth factor alpha were also altered due to lack 

of RXRa. This indicated the central role of RXR in the interconnection between circadian and cell 

cycles. Moreover, several heterodimer partners of RXR showed oscillating expression in mouse 

liver, and PPAR, in particular, has been proposed to be the link between circadian clock and energy 

metabolism (Kersten et al., 1999, Feige et al., 2006, Yang et al., 2006). (Nakamura et al., 2008) 

described the interplay between the PPARs/RXRα-regulated system and the molecular clockwork 

driven by CLOCK/BMAL1 heterodimers. 

 Many studies have suggested that RXR binding has a stable nature and does not have a time-

dependence occurrence (Simicevic et al., 2013, Boergesen et al., 2012, Minucci et al., 1997b, 

Brazda et al., 2014, Shen et al., 2011b, Tzameli et al., 2003, Mangelsdorf and Evans, 1995). 

Notwithstanding, due to the peculiar characteristic of heterodimerizing with many other nuclear 

hormone receptors in binding to chromatin with or without ligand presence (Minucci et al., 1997a, 

Westin et al., 1998, Boergesen et al., 2012, Hong and Tontonoz, 2014), RXR served as a center 

point for the study of astonishing cross-talk between the nuclear receptors signaling pathways. 

Many high throughput sequencing experiments like ChIP-seq have been conducted to study the 

interaction networks connecting different nuclear receptors and other transcription factors through 

their important common cis-regulatory modules with RXR. Biochemistry studies of the domains 

involved in the coupling between RXR and partners have opened up a whole new concept of 

molecular interactions and their regulatory functions. The most direct effect on ChIP-seq studies is 

the abundance of overlapping binding sites between different nuclear receptors. Henceforth, global 

binding sites of RXR and its partners, and the effect of ligands have been established in some mouse 

and human tissues (Tzameli et al., 2003, Frank et al., 2005, Shen et al., 2011a, Brazda et al., 2014, 
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Hosoda et al., 2015). Thus, we hypothesized that RXR could be an important node for cross-talk 

between the CycliX cycles, and expected to demonstrate in more detail the dynamic mechanism of 

RXR chromatin bindings through ChIP-seq, and how this affects its transcriptional regulation 

through gene expression as measured by microarray RNA-transcript levels. 

1.2.3 Aim of the project 

 To functionally investigate RXR and its synergic partners within the circadian cycle, one 

may wish to perform multiple ChIP-seq assays using paired antibodies against RXR and its partners 

at multiple time points. Aside from being costly and effort-consuming, this approach is unlikely 

achievable due to the limited availability and questionable quality variation of the required 

antibodies. To overcome this hurdle, we performed ChIP-seq assays using a homemade pan RXR 

antibody and took advantage of the heterodimerization nature of RXR binding to map the chromatin 

binding profiles of RXR at 7 time points with 4-hour interval on circadian cycle. We then analyzed 

the pattern of their binding sites and target genes to eventually infer the RXR coupling partner, 

instead of using individual antibodies for each factor. Several partners of RXR have been reported 

to be expressed in distinct phases (Yang et al., 2006, Bookout et al., 2006). It was therefore 

conceivable to anticipate the phased activities in their respected binding motifs. By combining the 

available regulatory elements and transcription factors data of Pol-II, H3K36me3, H3K4me3, DHSs 

and microarray from the previous experiments of the CycliX project (mentioned above in (Le 

Martelot et al., 2012, Canella et al., 2012, Sobel et al., 2017, Mange et al., 2017), in relation with 

genomic features, we hoped to further illuminate the effect on transcription activity of RXR 

binding. 
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Laboratory experiments were performed by Federica Gilardi and Michael Baruchet. 

 
Figure 3: Study scheme 
A. Experiment design through 7 days 
B. 7 time points (in real hour and in ZT) when the mice were sacrificed, and their livers collected 

for nuclei extraction 
C. Chromatin immunoprecipitation and paired-end sequencing steps. 

  

For each precipitated chromatin fragment, the mapping was done on both ends 

2.1 Animals and Treatment 

 C57/BL6 male 12-14-week-old mice were housed in the standard 12 hours light/12 hours 

dark (LD) cycle. For 7 days they had access to food only between ZT12 and ZT24 (Zeitgeber time; 
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ZT0 is the time when lights are turned on, ZT12 as time the lights turned off), but free access to 

water (Fig.3A). At 7 time points of 4 hours interval (ZT02, ZT06, ZT10, ZT14, ZT18, ZT22 and 

ZT26) 5 mice were anesthetized with isoflurane and sacrificed (Fig.3B). Their liver tissues were 

collected, pooled and immediately homogenized in PBS containing 1% formaldehyde for 

immunoprecipitation. All animal care and handling were performed based on the State of 

Lausanne’s law for animal protection. 

2.2 Chromatin Immunoprecipitation followed by sequencing 
protocol (ChIP-seq) 

 Livers of C57BL/6 mice were perfused with PBS before collection. The nuclei isolation was 

performed as described in (Ripperger and Schibler, 2006), except that the ultracentrifugation was 

performed for 1h at 24,000 rpm (100,000g) at 1°C in a Beckmann SW28 rotor. The nuclei were 

lysed with 20 mM Tris pH 7.5, 150 mM NaCl, 2 mM EDTA and 1% SDS. The sonication of the 

chromatin was performed with a Branson SLPe sonicator during 15 cycles of 10 sec at 50% 

amplitude. The sheared chromatin was then diluted 10x in 50 mM Hepes pH 7.9, 140 mM NaCl, 1 

mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate, 0.5 mM PMSF, and protease inhibitor 

cocktail (Sigma, #P8340). 

 The inputs were isolated and the immunoprecipitation performed with a homemade anti-

RXR antibody overnight at 4°C on a rotating platform. This antibody is a rabbit polyclonal antibody 

raised against the first 27 amino acids of RXRa A/B domain, generously provided by Cecile 

Rochette-Egly. Protein A-sepharose CL-4B beads (GE Healthcare, #17-0780-01) were added and 

the tubes were kept rotating for 2 h at 4°C. The beads were then washed 2x with 50 mM Hepes pH 

7.9, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate, 0.1% SDS, 0.5 mM 

PMSF, and protease inhibitor cocktail (Sigma, #P8340); 2x with 50 mM Hepes pH 7.9, 500 mM 
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NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate, 0.1% SDS, 0.5 mM PMSF, and 

protease inhibitor cocktail (Sigma, #P8340); 2x with 20 mM Tris pH 8, 1 mM EDTA, 250mM LiCl, 

0.5% NP-40, 0.5% Na-deoxycholate, 0.5 mM PMSF, and protease inhibitor cocktail (Sigma, 

#P8340); and 2x with 10 mM Tris pH 8 and 1 mM EDTA. The elution of the chromatin from the 

beads was done twice with 50 mM Tris pH 8, 1 mM EDTA, 1% SDS and 50 mM NaHCO3 for 10 

min at 65°C. NaCl was added to 200 mM and the chromatin was de-crosslinked at 65°C overnight. 

The samples were treated with 25 µg/ml of RNase A for 1 h at 37°C, then with 5 mM of EDTA and 

50 µg/ml of proteinase K for 2 h at 42°C. The DNA was purified with the NucleoSpin® Gel and 

PCR Clean-up from Macherey-Nagel. Nuclei isolation method as described in Nature Genetics by 

(Ripperger and Schibler, 2006). 

 The DNA concentration was measured with the Qubit® Fluorometer (Invitrogen). The 

libraries were prepared starting from 2.1 ng to 4.2 ng of IP samples and 8 ng of inputs samples, 

using the Microplex Library Preparation Kit (Diagenode, #C05010010).  

 The immunoprecipitated chromatin fragments were pair-ended sequenced with Illumina 

HiSeq 2500 by 100 cycles each sample. The reads were aligned on mouse genome (Mus musculus 

NCBI m37 genome assembly (mm9; July 2007)) and quality controlled by Illumina pipeline Casava 

1.82. (illustrated in Fig.3C) 

2.3 ChIP-seq library control and read mapping 

 For each time point, we processed two samples: one immunoprecipitated with pan-RXR 

antibody and one not immunoprecipitated as control (input). We used the mapping quality from the 

fastq files produced by Illumina pipeline to filter all the reads that did not pass the filter, reads that 

contain ambiguous match or more than 5 mismatches. Only the reads with both ends uniquely 

mapped were kept. All 14 samples (7 RXRs and 7 inputs) have a high percentage of well-aligned 
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uniquely mapping reads (over 80%). We also checked the redundancy level of all pair perfect reads. 

A read is considered redundant when it was mapped on the same genomic position multiple times; 

and contra wise the non-redundant read was mapped only once at a genomic position. All our 

samples have fraction of non-redundancy above 80% - which is endorsed by the ENCODE project 

(Landt et al., 2012). We used one copy of each redundant fragment in subsequent analyses. 

 

Figure 4: ChIP-seq library quality 
A. Model of 3 mapping types of pair-end fragments onto the reference genome: pair-mapped 

perfect when both ends are uniquely mapped, 1end-mapped, and both ends mapped are when 
one or both ends map multiple times on the genome. The bar-plot shows the percentages of 
these 3 models in each sample 

B. Threshold T=1 for non-redundant read and the table showing the non-redundant fractions of 
each sample 

 The mean fragment length is 214 bases long. Different from the normal ChIP-seq data with 

single-ended, where only information of a small portion at one end of precipitated fragments is 

known, here we have whole fragment span information. Thus the length of each fragment is known 

precisely, and the process of shifting the tags on the top and bottom strand to guess the location of 

each binding site is unnecessary. This facilitates the data processing and eliminates the effect 
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created by the overlap of different length reads. We used only the 50 bases located in the middle of 

each fragment for the enrichment step of the peak calling method. 

Files generated:  

- For analysis: BED files were generated from all the uniquely mapped reads remained after 

filter. The total reads for each sample refer to these numbers. 

- For USCS genome viewer: bedGraph and bigWig files were generated from the BED files 

and scaled by the total tag number for each sample. 

2.4 Peak calling 

2.4.1 Identifying the enriched regions  

 The genome was divided into 500 bases long consecutive, non-overlapping bins to calculate 

the ChIP signal. For each bin, each sample has its own value of tag density which is the AUC (area 

under the curve) created by the tags pilled-up. With the uniquely mapped pair-ended tags taken into 

account, the samples cover at least 3.3 fold genome size. 

 For each time point, the bin values of IP sample (RXR) and of the input sample were log 2 

scaled, and then used to compute ratio-mean distribution. This distribution was sectioned into 200 

step-wise proportions along the mean axis. Smoothing function Lowess with smoother-span 0.2 

was applied for only the negative-ratio bin population of each step-wise proportion. From the 

predicted distribution of smooth function, the mirrored bins were selected on the positive-ratio 

population. Distribution function was applied for this positive-ratio population with the mean and 

standard deviation derived from smooth function. The p-values were adjusted for false discovery 

rate (Benjamini–Hochberg). All bins with adjusted p-value less than 0.05 were considered 
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significant. The second filter layer was the 4-fold ratio of RXR over input within the significant 

bins. 

 
Figure 5: Identification of enriched regions 
Work flow of method. We bin the genome into equal 500 bases length bins, calculate p-values from 
the distribution of the ratio-mean of log2 tag density of RXR and Input in each of the 7 time points. 
Significant bins with adjusted p-value ≤ 0.05 and RXR/Input ratio > 4 in at least one time point 
were collected and merged into regions. 
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 We also repeated the same whole genome analysis using bins shifted of half bin size (250 

bases) in order to collect all the regions where the signal would be split over two consecutive 500 

nt bins. The significant bins in both bin sets (non-shift and 250-shifted) were pooled into the final 

bin set was determined for each sample. All the collected bins for all time points were pooled and 

merged with maximum distant of 250 –two bins separated by 250 bases would be merged– into 

significant regions.  

2.4.2 Peak refinement within the regions 

 For each enriched region, we used the value of tag density of all 7 time points at each 

nucleotide to compute the maximum, mean and minimum coverage lines. Loess Curve Fitting 

(Local Polynomial Regression) function was applied on these lines (Fig.6A.a). The subsets of data 

used for each weighted least square fit in Loess are determined by a nearest neighbor algorithm. 

The smoothing parameter, α, is a number between (λ+1)/n and 1, with λ denoting the degree of the 

local polynomial.  

c) Prediction by Spectrum function: the best fitted width was used to select the best 
smoothing degree 

B. The computation of inflections points (green dots) at 3 data windows from panel A.a 
a) Inflection point is identified when the data curve diverts from the predicted trend of the 

curve 
b) Example case when the maximum and mean curves failed to produce inflection point, 

method is applied to the minimum curve.  
c) When all three curves failed to produce inflection point, substitute is identified where the 

curve crosses input values 
C. The combination of inflection points to form the peak unit(s) for a) Single, or b) Double peak 
D. Difficult cases where: 

a) too many small peak units - the low plateau 
b) two peak units separated by the high amplitude “valley” 
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Figure 6: Peak-refinement method 
A. Application of Loess function and smoothing parameter prediction 

a) Example of a region with 2 peak units, region width is 1250 nts. The maximum (red), 
mean (orange), minimum (purple) smooth curves generated by the Loess function. 

b) Effect of different a values on the smoothed lines and consequentially on inflection 
points identification 
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 The value of α is the proportion of data used in each fit – in our case is the ration between 

the expected width containing ChIP-seq peak (λ) over the total width (n) of the region (Fig.6A.b). 

Because the widths of peaks varied greatly, we used the Spectrum function to predict the λ value. 

(Fig.6A.c) 

 This Loess function produced a set of fitted values, which comprised a smooth line 

representing the peak. The predict function applied on this curve produces predicted values, 

obtained by evaluating the regression data of regions. If the predicted values progress with the same 

linear regression of the smooth curve, we have no inflection. When the predicted values diverge 

from the smoothed curve, or, in other word, the smoothed curve changes its direction, we could 

identify at that position an inflection point (Fig.6B.a). A combination of 3 inflection points marks 

a single peak – this is a peak unit. Combinations of 5 or 6 inflection points that make up two peak 

units indicate the double peak and so on (Fig.6C). 

 To account for the diversity of highest amplitude of each region, the Loess function can be 

applied to the maximum, mean or minimum value line to retrieve the most optimal inflection points 

(Fig.6B.b). For some regions, the margin cut very close to the peak unit that inflection point could 

not be detected, we substituted by the location where the data curve crosses the maximal input level 

(Fig.6B.c). When several inflection points were optimal, we fitted the data curve within each peak 

unit formed by each combination to the Gaussian distribution, then selected the combination of 

inflection points that yielded the best fit.  

 Nearly 10% of the enriched regions presented difficulty in peak separation because of the 

close distance between peak units (Fig.6D.a). A similar difficulty was presented for the other 5% 

highly enriched regions because of the high amplitude of the “valley” between peak units 

(Fig.6D.b). For these regions, we applied the smallest α fraction for the Loess function and used 
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the rising threshold to collect cross-section points as candidate inflection points. A small subset of 

regions yielded too many equally small peak units. After visual inspection, they were assigned to a 

special peak group without refinement called “the low plateau”. 

2.5 Motif analysis  

 All the sequences under RXR peaks were input for motif enrichment analysis using MEME 

tools with meme-chip function, with parameters  

§ for MEME: -meme-mod zoops -meme-minw 6 -meme-maxw 30 -meme-nmotifs 50 

§ for DREME: -dreme-e 0.1 

§ for CentriMo: -centrimo-local -centrimo-score 5.0 -centrimo-ethresh 10.0 

 The customized hexamer scan, tandem repeats search, and motif position weight matrices 

(PWM) construction were performed in R using Biostrings package. The statistic scan was done by 

FIMO (Grant et al., 2011) tool, with relax p-value threshold of 0.1, using the PWMs on whole RXR 

peaks and on ±15 nts extended summits. Each locus was assigned a Benjamini-Hochberg adjusted 

q-value (false discovery rate) by FIMO for its significance of occurrence. 

2.6 Genes enrichment analysis 

 All gene sets enrichment, genes family and pathways analysis were performed on R using 

clusterProfiler package.  

 Gene networks were generated by ToppCluster as eXtensible Graph Markup and Modeling 

Language (XGMML) format. We used Cytoscape to perform layout and rearrangement for figure 

illustration. 
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2.7 Bioinformatics tools 

R studio 3.5.2 

BEDTools version 2.26.0:  

Samtools version 0.1.19 

MACS version 1.4.2.1 

HOMER version 4.7 

MEME suite version 4.12.0 

CycliX toolsbox 

hgWiggle and phastCons 30way, bedGraphToBigWig from ENCODE  

Cytoscape 3.7.0 

2.8 List of used data sets 

All the experiments were sampled in the circadian 7 time points of mouse liver tissue. 

(*) Experiment sets A, B and C indicate different sets of mice used for each experiment, each time 

point pool included 3-5 mice.

Data set Data type Antibody Set* Ref. GEO 

Pol-II ChIP-seq 
Santa Cruz 
Biotechnology, sc-
673-18 

A  (Le Martelot et al., 2012) GSE35788 

H3K36me3 ChIP-seq Abcam, ab9050 A  (Le Martelot et al., 2012) GSE35788 

H3K4me3 ChIP-seq Abcam, ab8580 A  (Le Martelot et al., 2012) GSE35788 

DHSs  DNaseI-seq 
Worthington 
Biochemical 
Corporation, DPFF 

B  (Sobel et al., 2017) GSE60430 

mRNA mRNA 
microarray 

Invitrogen, TRIzol 
reagent A  (Le Martelot et al., 2012) GSE35789 

RXR ChIP-seq customized pan-
RXR 

C     
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3.1 The peak-caller method is efficient to identify ChIP-seq enriched 
regions 

 The classical peak caller methods — for example MACS (Zhang et al., 2008), Homer (Heinz 

et al., 2010), SCICER (Xu et al., 2014), ChIPPeak (Ambrosini et al., 2016) and many other — can 

only process one condition/time point at a time, with one immunoprecipitated sample and one input 

sample, and would produce one set of peaks for each time point. Other methods have been 

developed to detect differential ChIP-seq peaks in pair-wise conditions comparison — such as 

DiffBind (Stark and Brown, 2011), DBChIP (Liang and Keles, 2012), MAnorm (Shao et al., 2012), 

diffReps (Shen et al., 2013), ODIN (Allhoff et al., 2014), ChIPCompor (Chen et al., 2015) — and 

may be better fitted for our study analysis. But due to the study scheme of 7 time-points, using these 

peak callers would produce a large number of combinations of differential comparisons that would 

complicate downstream analyses. We thus developed an appropriate method suitable for the 

combination of multiple timepoints, described in Materials and methods. This method allowed us 

to identify 25’233 enriched regions. To validate this approach, we compared these enriched regions 

with the peak sets obtained from using the MACS tool. For a given single RXR binding site, MACS 

produced 7 different peaks (Fig.7A), while our method created one single region. The computation 

time to proccess all the sample with our method is comparatively shorter than using the MACS2 

peak caller. We used the binary bam-like files that were developed during the CycliX project, which 

are lighter, easily manipulated, and efficient for all further analysis steps. 
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Figure 7: Comparing enriched regions identified by our method and peaks from MACS2 
A. Complication created by MACS: each time point produced different peak coordinates and 

summit positions that actually can be merged into a single region 
B. Intersection of MACS peaks with enriched regions identified by our method 

a) Threshold to retain overlapping peaks 
b) Non-overlapping cases 

C. Table showing the number of peaks called by MACS2 for each time point, and the number of 
peaks that did not overlap with our enriched regions. The total 87’407 non-overlapped peaks 
represented 24’883 distinct regions 

D. 4 examples of those 24’883 regions:  
a) False peaks called by MACS: with same RXR signal as the background, or low signal 
b) The bona-fide peaks that were overlooked by our method due to RXR/input ratio lower than 

our threshold 
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 We used BEDTools to intersect each MACS peak set with our enriched regions. Each 

overlap that encompasses at least 50% of either our region or a MACS peak is considered an overlap 

(Fig.7B.a), otherwise it is a non-overlap (Fig.7B.b). As anticipated, MACS produced large number 

of peaks for each time point, which added up to total more than 800’000 peaks. However, as 

illustrated in Fig.7A, different MACS peaks from different timepoint could have little coordinates 

variations within the same region, which reduced the total number of MACS identified regions 

down to over 200’000. 97% of the 25’233 enriched regions identified by our method were also 

detected by MACS, whereas 24’883 regions (resulting from the merging of 87’407 peaks from 

MACS) were not reported by our method (Fig.7C). However, it turned out that the vast majority 

(~99.7%) of these MACS merged peaks have either the same signal as background or a very low 

signal accumulation spread in wide range regions (Fig.7D.a). These peaks were not detected by our 

method because of the threshold of 4 fold enrichment over input that we imposed at the beginning, 

which ensured that we did not collect as many insignificant peaks. 

 Among these 24’883 regions identified by MACS, our method missed only 82 bona-fide 

regions, whereas it eliminated 24’801 false positives regions. Interestingly, the 82 bona-fide regions 

we missed (examples in Fig.7D.b) would have been identified had we used a RXR/input ratio of 

3.8 instead of 4.0. However, considering the relatively large number (over 100’000) of false positive 

peaks that would have been included by decreasing the RXR/input ratio cut-off value, we 

maintained the stringent threshold which limited the number of false negative peaks (n=82).  
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3.2 Peak Refinements  

3.2.1 Identifying single, double, and multiple peaks 

 After validating our total enriched regions with the results from MACS, we sought to inspect 

their general characteristics. The 25’233 regions covered 9.5‰ of the mouse genome assembly 

mm9, containing 5.5% total sequenced reads. This fraction of reads retrieved in peaks is quite 

higher than the estimated 1% usually found in ChIP-seq study (Landt et al., 2012). Due to the 

method, the enriched regions widths were uniformly bins of 500 + n*250 nucleotides (nts) (Fig.8A). 

One common problem for all peak callers, especially the ones analyzing only pair conditions, is the 

fact that original regions usually not only contain the ChIP peak but also some flanking portions. 

These flanking portions are the source of error in subsequent motif analysis, where longer sequences 

decrease the precision of result. To refine the peaks in those regions and limit the error, we first 

employed the established method (Gilardi et al., 2014), simply removing small portions of each 

side of the region until the remaining signal reached 75% of the original signal (Fig.8B.a). This 

method works well with small regions containing only one peak and has the advantage of simplicity. 

But for larger regions that contain two or more peaks next to each other (20-30%, of our set), this 

method is not sophisticated enough to retain the peak information. The removed chunks often cut 

on the flank of peaks; and for regions containing peaks of unequal signal, the smaller peak was 

often cut at the summit (Fig.8B.b) whereas the region should be split to generate two distinct peaks. 

These features show that more sophisticated method of refinement was required. We thus developed 

a method to refine the ChIP-seq peaks, which uses the actual curve of the tag density (the peak) to 

determine the signal boundaries. Using a prediction function on the smoothed curve, we can identify 

the inflection points, defined as position on the curve where it changes direction (see the method 
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section for details). For each combination of inflections points indicating that the curve changes 

direction in an up – down – up fashion, we define a peak.  

 Based on how many peaks were contained in each region, and their shapes, we identified 

four separate morphologies (Fig.8C):  

• the single peaks: only 1 peak in the region  

• the double peaks: 2 peaks positioned close to each other in one region. The distance and the 

peak shape between these 2 peaks are variable.  

• the multiple peaks: there are more than 2 peaks located near each other in the same regions 

• the plateau peaks: regions where tag accumulate on a wide chromatin region. Most of them 

present a continuous high tag density along wide genomic ranges (over 1500 nts), a few 

others contain in addition one or more very tall peak-shape-regions within a high tag density 

plateau. 

 For each refined peak, the tag counts falling in the peak at each time point were normalized 

by total tags of the sample and divided by the width of each peak (Fig.8D.a). Thus, the change in 

peak amplitude through 7-time points can be inspected by a simple plot. Moreover, peak amplitude 

can be presented and ranked by the maximum, the minimum, the mean, the variation across time 

points and the relative amplitude (Fig.8D.b). These various aspects of peak amplitude were used in 

different analyses, in particular for the rhythmic analysis. The same 7-values format was used for 

all the factors studied. 
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Figure 8: Results from peak refinement  
A. Pie chart showing the relative proportion of enriched regions' widths 
B. Identification of peak summit by retaining region encompassing 75% of the signal, vertical red 

lines indicate where the method refine the peak 
a) Illustration of a successful case where only a single peak lays within a region 
b) Examples of failure, where multiple peak units reside within one region 

C. Pie chart describing the relative proportion of four peak morphology groups based on Loess fit 
refinement method, and example models of each peak group 

D. Refined peak value 
a) Step by step normalization for each refined peak 
b) Illustrating effect of normalization on the 7 time point values 
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3.2.2 RXR peaks validation by analyzing the overlaps with DNase 

hypersensitive sites  

 

Figure 9: RXR binding sites overlapping DNase I hypersensitive sites 
A. Pie chart (top) shows proportions of 3 types of overlap between RXR ChIP-seq peaks and 

DNase I hypersensitive sites (DHS sites). An overlap is considered “real” only when at least 
half of the RXR peak is covered. Illustrations (below) show examples for each type of overlap: 
- The non-overlap (grey): including RXR peaks that do not overlap with any DHS site,  
- The border overlaps where the DHS site is adjacent to RXR peak, and where the overlap 

regions are narrower than half of the width of RXR peaks. 
- The real overlap (blue): when RXR peaks overlaps with one or more DHS site.  

B. Box plots of maximum normalized tag densities of a) RXR peaks, and b) of DHS sites within 
each overlapping type 

C. Distance between DHS sites with RXR peak summits of 3 groups of overlapping 

 DNase hypersensitive sites (DHSs) correspond to regions of open chromatin regions, where 

transcription factors may have access to DNA. In the frame of the CycliX project, a genome-wide 

analysis of all DHS has been performed on a same time-wise dataset (same time entrained scheme 
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but different mice; the same time-wise data set (Sobel et al., 2017). We observed that our RXR 

ChIP-seq peaks are often highly correlated with the DHSs from DNaseI-seq. As a validation for the 

peak refinement, we intersected the refined RXR peaks with the loci of DHSs. The overlapping 

fraction required to consider an overlap is the same we used for the MACS comparison (see 

Fig.8B.a for the principle of comparison).  

 About 90% of our RXR bindings overlapped with DHS sites. 10% of the overlaps are 

borderline, where the overlap sequences are less than half of the peak width, but it is possibly due 

to the difference between our peak-calling method and the one used in (Sobel et al., 2017) or simply 

due to the fact that different mice were used (Fig.9A). Figure 9B shows the distribution of distances 

between DHS sites and RXR summits for the 3 types of overlaps defined. There were significant 

differences in the tag density of RXR peaks between these 3 groups (Fig.9C.a), as well as in the 

tag density of the DHS sites (Fig.9C.b). While the tag density of DNase1 increased with the degree 

of overlapping, the borderline RXR peaks appeared to have lowest tag density. 

 

 

Figure 10: Exploiting the DNaseI-seq tag density track 
A. Case of two RXR peaks:  

a) one correlates with DNaseI peak (identified by ChIPPeak - green retangle) 
b) one with lower DNaseI tag density peak (not identified by ChIPPeak) and thus assigned into 

the border overlap (from Fig.8B) 
B. Case showing the dynamic correlation of tag density between RXR and DNaseI 
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 The DHS sites from the Cyclix study (Sobel et al., 2017) were called by ChIPPeak 

(Ambrosini et al., 2016), resulting in exactly 600 nts long sites (±300 nts extended from the 

summit). To understand the extent of the difference between our peak-calling method and the one 

used by Sobel et al, we re-computed the per-base maximum genomic coverage of DNase I and 

compared it with the RXR coverage under our peaks. This analysis clarified the border intersection 

group from the previous analysis, which mainly resulted from difference in peak-calling methods 

(Fig.10A). Following this reanalysis, almost all RXR peaks colocalized with DNase I accumulation, 

albeit the variable in tag density. As expected, the corresponding tag density between RXR peaks 

and DHS sites was not well correlated (Fig.10B), some very prominent RXR peaks were in 

company of very low DNase I tags accumulation. More than two third of identified DHS sites had 

no RXR signal either, which was expected since RXR does not bind systematically to all open 

regions, thus verifying the specificity of the RXR antibody. Moreover, although these two data sets 

were designed on the same time concept, the sample tissues were collected from different batch of 

mice. This observation, hence served as an additional development step of our peak refinement 

method, especially for double peaks where the interval between peak units was too high or too short 

to elicit a separation (Fig.10A). By using the discrepancy between RXR and DNase I tag densities, 

we could divide different peak units within one enriched region (Fig.10B). 

3.2.3 PhastCons analyses and peak shapes 

 To further characterize the different categories of RXR peaks we identified (single, double, 

multiple and plateaus), we explore the possible relationship between the various peak shapes and 

the underneath sequences, as recently proposed (Cremona et al., 2015). In addition, a previous 

report on RXR:RAR binding properties highlighted the fact that the degree of conservation of the 
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binding motif sequences across species were higher than neighbor sequences (Chatagnon et al., 

2015). To further explore these two observations with respect to our data, we retrieved the base-

wise phastCons score based on the genomic conservation between the mouse genome and scores 

for multiple alignments of 30 vertebrate genomes (phastCons30way).  

 

Figure 11: Peak morphologies and peak co-localization 

A. The difference in base-wise average phastCons score between four morphology peak groups 
B. Topography of cluster and solo peaks: the solo peak (top) has no neighbor peaks on chromatin 

landscape within a window of 2000 nucleotides from its RXR binding summit (depicted by green 
arrows), while cluster peaks (bottom) have at least one neighbor peak 

 
 The phastCons score represents the probabilities of negative selection and range between 0 

and 1. Since the conservation score correlates closely with binding site motifs, we speculated that 

the phastCons score and/or the motif distribution would have been different between our 

morphology groups. For each peak, we used hgWiggle command (developed by UCSC 

bioinformatics group) to retrieve and then calculate the base-wise phastCons average score within 

each morphology groups +/- 1.5 kb around the peak summit. The average base-wise phastCons 

score of each peak group shows that the genomic regions containing Multiple peaks have the highest 

conservation score per nucleotide, followed by the Double, the Single then the plateaus (Fig.11A). 

This shows that RXR tends to accumulate more at DNA regions that are more conserved across 
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species. The lowest score interestingly belongs to the plateau peaks group, showing that in spite of 

the continuous high tag density stretch on long regions, these long chromatin regions are not well 

conserved. However, it is interesting to note that although the maximum conservation level is not 

as high as for other morphologies, unlike single peaks, the score does not fall to zero +/- 500nt away 

from the maximum.  

 Although the morphology classification did reveal several interesting characteristics of the 

RXR peaks, the subsequent genomic features distribution analysis alerted us of some caveats. 

Firstly, the morphology classification was based on number of peak(s) which could be found within 

one enrichment region, without considering the distance between peaks nor the genomic context of 

the loci. For example, two single peaks located 250 nts apart were closer to each other than a double 

peak with 500 nts in the valley between. Secondly, we suspected some differences in genomic 

features within each peak group that would definitely affect the average phastCons scores for each 

group. It is worth noting that there was a correlation between the “degree of accumulative” RXR 

peaks and the genomic feature proportions.  

 Considering these observations, we reclassified the RXR peaks—that are not plateaus—

based on the degree of clustering of the peaks on chromatin landscape. The occurrence of a 

neighboring peak summit within +/-1kb extension from the main summit assigned a peak as 

“cluster”; and the absence of neighboring peak assigned a peak as “solo” (Fig.11B). Altogether, 

out of 37’143 well-refined RXR peaks, 36’124 were peak-shape, 1019 were plateaus. Among the 

36’124 peak-shapes, 20’686 were cluster peaks and 15’438 were solo peaks.  
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3.3 Peak Annotation 

3.3.1 RXR peaks prefer promoter regions, including transcription start sites 

 With the supposition raised by the phastCons analysis, we sought to investigate how RXR 

peaks loci distributed on different genomic features. We annotated the refined RXR peak set with 

Ensembl Mus musculus assembly (NCBIm37, UCSC mm9 database) based on the closest distance 

from the summit of each RXR peak to the nearest gene (Fig.12A). The annotated features were 

assigned following the hierarchy from top priority “Promoter” (-1.5kb upstream to 0.5kb 

downstream from TSS), “Intragenic” (on gene body, including “Exon” and “Intron”), “Upstream 

geneStart” (-1.5 to -25kb upstream TSS), “Downstream geneEnd” (from Polyadenylation site 

(PAS) site to 5kb downstream), to bottom priority "Intergenic" (remaining peaks). The TSS of each 

transcript was assigned with corresponding direction of transcript. We also expanded the method 

of ChIP-seq peak annotation by incorporating the locations of known enhancers of transcription 

units (ENCODE). 

 With this approach, 38% of the peaks fell within the Promoter. The same percentage of the 

peaks fell within gene bodies. About five hundred RXR peaks (2%) were found within 5kb after 

the end of transcript PAS. The remaining ~20% was equally shared between Upstream and 

Intergenic annotations (Fig.12A – pie chart). The annotation confirmed the differences between 

peak morphologies groups. The proportion of promoter remarkedly increased from single to double 

to multiple peak group. The plateaus, due to their width, were annotated based on their highest 

identifiable summits, and bore the same distribution as single peaks (Fig.12B). This explained the 

increasing of conservation phastCons score from single to multiple peaks because the first intron 

within the promoter usually the most conserved regions (Park et al., 2014). The lower score of 

plateaus can also be explained due to their long ranges on the gene bodies included multiple 
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elements which are less conserved. Hence, even though the phastCons brought interesting 

observation for the peak morphologies, it did not serve any further informative and led us to the 

chicken-and-egg dilemma, and was thus not further used for subsequent analysis. 

 

Figure 12: Peak annotation 
A. RXR peaks were annotated to the genomic features, according to the relative distance from 

peak summit to the most proximal gene. Transcription unit (top) delimits the distance of each 
genomic feature to TSS and PAS (polyadenylation site). The hierarchy for peak annotation is: 
promoter, intragenic, upstream transcript start, downstream from transcript end, and 
intergenic. Pie chart (bottom left) with frequency table (bottom right) for each annotation 

B. Pie charts of annotation for four groups of peak morphologies 
C. Boxplots of average normalized RXR tag density values of each annotation groups 
D. Fractions of annotation groups across bin of log2 maximum tag density value 
E. Distribution of RXR peaks to nearest transcription starting site (TSS) 

 

 The differences observed for mean occupancy across time point values between the various 

genomic annotation groups were not statistically significant (Fig.12C). The high binding proportion 
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of peaks in promoters was found as well in peaks with low RXR tag density as those with high 

RXR tag density (Fig.12D), and at significantly higher percentage (38%) compared to distributions 

proposed by other studies of RXR binding (Nielsen et al., 2008, Martens et al., 2010, Zhan et al., 

2012, Adhikary et al., 2015). 

 Intriguingly, an important part of peaks localized in the promoter were indeed found at the 

TSS, based on the distribution of distances from RXR summit to nearest TSS – Fig.12E). By 

defining the TSS as the sequence from -50 to +50 bp, 38% of the promoter peaks and 15% of the 

total number of peaks were located on this particular functional gene region. 

3.3.2 Relationship between peak annotation and gene expression levels  

 Since the binding of a transcription factor to the promoter of a gene usually results in a direct 

regulation effect, either activating or repressing the transcription of that gene, this preference of 

RXR to the promoter-rich regions may correlate with certain changes on the downstream genes 

expression. We can only validate these relationships with genes whose mRNA expression levels 

were measurable using microarray. Among the total 24’377 measurable genes by mRNA 

microarray, 15’432 genes were putatively regulated by RXR bindings (Fig.13A). There was no 

statistical difference of maximum time point expression levels in function of the genomic binding 

location of RXR (Fig.13B).  

 Nevertheless, for those genes bound by RXR at their promoters, the correlation between 

maximum RXR tag density and maximum expression was statistically higher than the correlations 

of those genes bound by RXR outside of their promoter. However, all correlation coefficients were 

too low to statistically validate the direct effect of RXR binding on the expression of genes 

(Fig.13C). Thus, RXR binding sites are found preferentially in promoter-rich regions. It must be 
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noted that the tag density value of RXR peaks has no statistical correlation with the expression 

levels of the corresponding gene.  

 

Figure 13: RXR target gene expression 
A. Number of genes with measurable expression (mRNA) and/or harboring RXR binding loci 
B. Boxplots of maximum expression levels of genes with RXR peaks from each annotation groups 
C. Correlation between log2 maximum tag density of RXR peaks with the maximum expression 

level of the target genes, separated by annotation groups. 
D. Pie chart of RXR peaks annotation for the 4987 non-expressed genes from panel A 
E. Boxplot of RXR tag densities between peaks located near expressed versus non-expressed genes 

 

 4987 genes to which we associated with RXR peak were not detected in our mRNA 

microarray at any time point (Fig.13A). However, for these genes, the fractions of our five 
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annotation groups remarkably change to favor the Upstream and Intergenic compartments 

(Fig.13D) instead of Promoter and intragenic compartments (Fig.12A). There was no difference in 

tag density between RXR peak located near expressed genes and near non-expressed genes 

(Fig.13E). 

3.3.3 Clustered RXR peaks and gene expression 

 Clustered peaks— described in Fig.11B as peaks with neighboring peaks within ±1000nts 

window— were found more frequently in promoters than solo peaks, whereas solo peaks were more 

enriched in intragenic regions (Fig.14A,B). We theorized that the clustered bindings found in our 

study are part of the HOT– “high occupancy target”–regions, or “hotspot” reported by previous 

transcription factor binding studies performed on various cell types (in D. Melanogaster fly 

(Moorman et al., 2006), mouse (Joshi, 2014, Siersbæk et al., 2014a, Siersbæk et al., 2014b), and 

human (Wang et al., 2012, Xie et al., 2013) cells).  

 Such dominant feature of binding called for further investigation, so we analyzed various 

characteristics comparing cluster and solo peak groups. Taking all genomic regions together there 

was no statistical difference in RXR tag density distribution between solo and cluster peaks 

(Fig.14C). However, for promoter regions as defined in Fig.12A, those containing cluster peaks 

presented a significantly higher Pol-II tag density than those bound by Solo peaks (Fig.14D).  

 The maximum mRNA microarray levels of transcripts bound by the clustered RXR regions 

are also significantly higher than transcripts bound by solo RXR bindings, and much higher than 

those without RXR bindings (Fig.14E). Therefore, the density of clustered RXR peaks in a 

promoter might better reflect the overall transcription activity than the higher tag accumulation of 

RXR at a given site. 
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Figure 14: Peak co-localization - The clustering 
A. ~50% of RXR peaks have no neighbor within a window of 2000 nucleotides from their RXR 

summit – the “solo”. The other half cluster together in group of 2 or more peaks.  
a) Pie chart with numbers on wedges indicate the number of peaks co-localizing together. 
b) Pie charts of annotation proportions separated by cluster versus solo peaks 

B. Fractions of cluster peaks versus solo peaks across annotation groups 
C. Distribution of maximum RXR normalized tag density of cluster and solo peaks 
D. Distribution of maximum normalized Pol-II signal at the promoter of genes that harbored 

cluster and solo peaks 
E. Boxplots showing the difference of mRNA level distribution between genes with cluster, solo, 

and no RXR peak. *** one way ANOVA p value < 2e-16 

 

3.4 The plateaus reveal a promiscuous relationship between RXR and 
Pol-II 

3.4.1 The plateau peaks cover entire genes of small size 

 Different from the majority of peaks present a typical transcription factor binding peak 

shape with a single summit and two relatively symmetric slopes (examples pointed by yellow 
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arrowheads in Fig.15A.a), the plateaus covered long continuous regions (from few thousands 

nucleotides up to 20 kb long) with continuously high signal. Within these plateaus, we observed 

that a small fraction of RXR peaks (309 equals to ~1%) that have multiple exceedingly-high-tag-

density summits fused together, we referred to as “High plateau” (Fig.15A.b). The rest of plateaus 

shared the lengthy continuous signal pattern, but with lower tag density, were referred to as “Low 

plateau”. Further inspection of low plateaus revealed that they were often preceded by high peaks. 

This profile led us to hypothesize that the low plateaus were trailing RXR signal from the original 

bindings at the high peaks during transcription, and hence not real binding sites. We thus, removed 

the low plateaus subset from our analysis.  

 

Figure 15: The Plateau 
A. Genomic view of RXR and RNA polymerase-II ChIP-seq reads mapping to 3 genes: 

a) Cnpy3 gene with RXR regular peaks (yellow arrow heads) at TSS and PAS 
b) Apoa1 gene harboring RXR High Plateau signal along the whole gene, from upstream TSS 

to downstream PAS 
B. Colored areas are projected maximal signal at each position. Red/blue lines are temporal 

profiles of ChIP-seq/Input. 

C. Gene lengths distribution for genes encompassing High plateau (purple), compared to other 
genes (yellow) 

D. Boxplot showing the maximum mRNA level of genes encompassing High plateau (purple) 
compared to others (yellow) 
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 Approximately 50 of the High plateau regions appeared to encompass whole genes (hence 

termed “High Plateau genes”, example Fig.15A.b), which were mostly short genes with less than 

20kb in size (Fig.15B). Visual inspection of RXR binding of these genes revealed a special pattern: 

RXR binding presented a very high density at the promoter, was lower on the gene body and 

gradually increased to form a second high-density site toward the end of transcript, reminiscent of 

the Pol-II signal displayed for these genes (Fig.15A.b). 

3.4.2 Colocalization of RNA Polymerase II and RXR on High plateaus and 

at transcription starting sites  

 Pol-II immunoprecipitation had been performed along the exact same experimental protocol 

and time points, in the frame of the CycliX project. We thus could retrieve the corresponding data 

and analyze the behavior of Pol-II parallel to that of RXR. This allows to uncover a remarkable 

alignment of RXR and Pol-II signal on the Plateaus. The high percentage of RXR peaks clustered 

in promoter regions suggested that RXR could be involved in the transcription machinery. Upon 

inspecting all promoter regions from the mm9 genome, we found a linear correlation between RXR 

and Pol-II signal, regardless of the occurrence of discernable RXR peaks at these promoters 

(Fig.16A – blue and green line). This was true not only for the plateau but across many of RXR 

peaks. We can only find a few cases where Pol-II signal at the promoters was high without RXR 

signal (Fig.16A-red circle), an example of them in Fig.16B. Such occurrences Fig.16B eliminated 

the possibility of error cross-link effect from immunoprecipitation step, and suggested that the 

correlation between the Pol-II signal and the RXR signal was the result of RXR recruiting and then 

somehow attaching to the transcription machinery. This correlation might definitely affect further 

analyses, particularly with respect to the motif analyses. Hence, we sought to gate the “Pol-II 

affected” RXR peaks out. The distribution of log2 ratio of RXR signal over Pol-II signal within all 
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RXR peak loci versus only RXR at TSS loci identify a crossing point at the log2 ratio of 1.4 

(Fig.16C).  

 

Figure 16: The correlation with Pol-II 
A. Correlation plot between RXR signal and Pol-II signal within all promoter regions ±1kb around 

TSS, colored by the occurrences of significant RXR peaks at these promoters: without RXR peak 
- blue, with RXR peak - green, with kept RXR peaks from panel C - red. Red circle indicates a 
few cases where promoter regions have high Pol-II signal without RXR signal. 

B. Genome view of one example gene, whose promoter region is enriched with Pol-II and DNaseI 
signal but devoid of RXR signal 

C. Distribution of log2 RXR/Pol-II ratio, considering all the peaks (black line), only peaks in 
promoters (light blue) or not in promoter (green), or separated by whether the RXR peak is 
located at the TSS (dark blue) or not (purple). 
Vertical red dash line shows the coordinate of the crossing point of these curves at a log2 ratio 
of 1.42, which was used for gating 

D. Number of genes within analysis that were gated or included, the mixed group were genes 
harbor both gated and kept RXR peaks 

E. Boxplot showing different levels of expression for genes depending on the presence or absence 
of RXR binding, and whether RXR binding is accompanied by high Pol-II signal. 

 *** one-way ANOVA p-value < 0.05, ** p-value <0.1 
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We took this crossing point value as threshold for gating: 

• Gated:  

o RXR peaks with high Pol-II signal (hence, RXR/Pol-II ratio lower than threshold) 

o RXR peaks located exactly ±50 nts at the TSSs  

• Kept: the rest of RXR peaks 

 This gating did not affect the correlation between RXR and Pol-II (Fig.16A-red line). Upon 

inspecting which RXR target genes were filtered out by our gating, we found that ~8200 genes were 

eliminated because of the gating, 4748 were not affected by the gating, and 4793 genes—for which 

one or some gated peaks were removed—were kept because they also contained a validated RXR 

binding site associated with them somewhere in the gene transcript (Fig.16D). Interestingly, the 

expression of these mixed genes was significantly higher than others (Fig.16E). This was in line 

with a previous study (Kosters et al., 2013) that showed significantly higher gene expression of 

those genes where RXR overlapped with Pol-II signal. Figure 17 showed an example of the mixed 

genes on which RXR clustered with different ratios over Pol-II signal: while the “j” peak was gated 

by the high signal of Pol-II and its overlapping with TSS, there are 7 other validated peaks on the 

intragenic region of this PXR gene. Interestingly, the intragenic peak “a” was located at a previously 

reported locus containing the IR1 response element of FXR, and able to trigger strong induction 

after GW4064 – an FXR ligand – treatment in transactivation experiments (Jung et al., 2006).  
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Figure 17: Genome view of Pxr gene 

An example of mixed genes that harbor both validated peaks (blue arrows) and gated peaks (red 
crosses) based on the cut-off of ratio. Because of the high tag density of peak h, some other peaks 
(a, c, d, f, i, j) seemed small but they are significant peaks. 

 

3.5 Circadian analyses 

3.5.1 Clustering RXR peaks using peaks tag density values 

  With the peak-set well refined, our interest focused on dividing RXR peaks in groups of 

similar behavior. However, the RXR binding poses quite unique challenges. We did not observe 

any group where the RXR signal enrichment was exclusive of certain time point or certain phase 

(dark/light-feeding/fasting). Not only could we observe enriched RXR at their chromatin loci at 

each of the 7 time points probed, but also the change in intensity varied widely between the time 

points at some sites and very little at others. 
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Figure 18: Grouping peaks by tag density values 
A. Transition profile: we scaled the 7 time point normalized tag density values to the maximum 

and minimum of each peak, the transition profile is the 6 angles of two consecutive time points 
made with the horizontal plane 
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 In order to retain and compare the phase information of our peaks, we normalized the tag 

density values of each peak at each time point to the total tags of sample and peak width, and 

rescaled the normalized values to the minimum and maximum tag density across the seven time 

points (Fig.8D). Using the seven time points scaled values, we can calculate the angles created by 

the regression line between 2 successive time points with the horizontal line (Fig.18A). We thus 

transformed the 7 time point values into 6 transition angle values – which we called the transition 

profile. Each angle reflects the direction of change between 2 consecutive time points, and also the 

degree of such change. We then used the transition profiles of RXR peaks as input for complete 

B. Effect of transition profile on how peaks cluster together in heat-map: 
a) The original heat-map by 7 time point normalized tag density values shows no clear 

clustering 
b) Heat-map on the 6 angles shows better clustering and the dendrogram was used to divide 

peaks to groups 
c) Example of a group from heat-map b shows time-wise profile displayed as color scheme 
d) Scaled plot for the time-wise profile of example group in c, mean values each time point 

displayed in red line 
e) Heat-map of non-scaled values from all the peaks in example group in c: values differ 

greatly between peaks and so subtly between time points that we see 3 sub-groups of low 
tag density (red), medium density (black) and high density (green) 

C. Correlation plot explained: with anti-correlated examples on the left, highly correlated 
examples on the right 

D. Examples of five representative groups selected based on transition profiles and their 
correlation profiles. From left to right for each row:  
- the transition profile (as B-c) 
- the scaled values of 7 time points of all peak within groups 
- number of peak within each group 
- density plots showing the correlation score between RXR peaks present in each group 

with four corresponding epigenetic marks that overlapped with RXR: DNase  
- correlation score distribution for Pol-II at promoter  
- correlation score distribution for H3K4me3 at the promoter regions  
- correlation score distribution for Pol-II on gene bodies  
- correlation score distribution for H3K36me3 on gene bodies  
- correlation score distribution for Pol-II gradually downstream from 1kb to 5kb from PAS 

and at gene end  
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linkage clustering using Euclidian distance. (Fig18B.a-b). We used a cutree threshold to separate 

peaks into 15-20 groups. For each peak group, even though the transition profile of each peak within 

one group was similar to each other, as imposed by the clustering (example 1 group in Fig.18B.c-

d), the normalized 7 time point values showed a wide range of binding signal (Fig18B.e). We varied 

the cutree threshold to increase the number of groups, but this did not bring more detail nor reduced 

the wide spread of values.Thus, by using this clustering approach which centered the groups around 

the mean values for each variable (the mean tag density of 7 time points in our case), we achieved 

the peak separation at the cost of real tag density amplitude. 

 Many studies have suggested that RXR binding has a stable nature, and is not time-

dependent (Simicevic et al., 2013, Boergesen et al., 2012, Minucci et al., 1997b, Brazda et al., 2014, 

Shen et al., 2011b, Tzameli et al., 2003, Mangelsdorf and Evans, 1995). The regulatory effect of 

RXR on transcription may not be reflected clearly by tag density changes, but rather by the changes 

on epigenetic signal landscape surrounding RXR bindings. Thus, we theorized that certain motifs 

would appear within groups of RXR peaks having similar matching DHSs, Pol-II and or histone 

marks profiles, or that those groups may regulate genes involved in specific pathways. To test this, 

we retrieved data for Pol-II, H3K36me and H3K4me obtained on the same 7 timepoints during a 

previous Cyclix study (Le Martelot et al., 2012). For all Ensembl transcripts of mm9 database, the 

level of transcription was evaluated by the Pol-II and H3K4me signal within ±1kb around TSS, on-

going transcription activities were calculated by Pol-II and H3K36me signal on the transcript 

bodies, and the amount of Pol-II signal at the end of transcripts (TE1K-TE5K) indicated the recently 

transcribed genes. (DHS sites described in section 3.2.2).  

 We calculated the cross correlation between each RXR peak 7 time point values/6angles 

with the corresponding DHS, Pol-II and histone marks 7 time point values/6 angles, and used the 
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correlation (Fig.18C) to separate groups of RXR peaks presenting the same time-series behavior 

(Fig.18D). We found that the highest positive correlation is observed between RXR and Pol-II, 

especially at the promoter. This can be partially explained by the high proportion of RXR peaks 

residing at the promoters (observed in Fig.12A) and especially at the TSS (Fig.12D). However, in 

general most results are dominated by a correlation centered around zero indicating randomness. 

We encountered the same degree of dispersion using alternatively Pol-II, H3K36m3 and H3K4me3 

dataset as the master-cluster. 

3.5.2 The sinusoidal fit  

 Since one of the focus of our study is on circadian cycle, we hypothesized that each RXR 

peak was bound with maximum intensity at one certain time of day, and each RXR partner may 

have a dominating effect at one certain time point of the circadian cycle. We postulated that this 

could result in an observable segregation of binding motifs. Because of the low resolution of 7 time 

points per day and the lack of time point replicates of our data sets, it was unadvised to use directly 

the 7 values profiles for peak set clustering.  

 To retrieve the phase of each peak, we applied the cosinor function (R package psych), to 

fit the 7 time point values time series of each RXR peaks - also of the DHSs, Pol II and other histone 

marks – to one sinusoidal regression function, with alternative period of 12 and 24 hours. This 

function transformed the 7 time point values of each peak into several curve’s parameters: the phase 

- which is the hour when tag value is highest within the period; the mean and standard deviation of 

signal amplitude of the curve; and the fit score - which is the correlation between observed and 

sinusoidal fitted values, ranged from 0 (non-fitted) approaching to 1 (well fitted). Depending on the 

best fit score, the final period assigned for each peak was determined either 12 or 24 hours 

(Fig.19A).  
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Figure 19: Sinusoidal fitting of 7 time point tag density values 
A. Example plot of how 7 time point values fitted to sinusoidal curve of 24h period (red) and of 

12h period (blue) and the fit score better for 24h.  
Arrow points at the curve phase - where signal is highest 

B. Distribution of fit score of all peaks. 
B’. Panel of examples showing how data obviously fits well (green) or poorly (orange) to sinusoidal 

curve of 24h or 12h. The “grey” shows cases where data can or cannot be fitted to a sinusoidal 
curve depending on how stringent we want the fit to be 

C. Pie chart showing the fraction of RXR peaks fitted to 24h or 12h cycling, based on the fit score 
threshold retained 

D. Histogram of number of RXR peaks’ phases, binned into 2 hours bins 
E. Left: illustration of how to calculate phase delta between 2 curves 

Right: distribution of correlation scores across the distribution of phase deltas 

 
 The majority of RXR peaks fitted well to either period with a fitting score distributed more 

toward well-fitted value 1 (Fig.19B). The fit score of 0.571 indicated 3-4 time points from our 7 

time point values fitted to the curve, which can be consecutive or segmented. Some examples in 

Fig.19B’ show examples of poorly fitted peaks (below threshold), just retained peaks, e.g. at the 
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threshold, where only 3-4 data points fit well, either inconsecutive (top grey panel: 

ZT02,06,14,22,26) or consecutive (bottom grey panel: ZT10,14,18,22) and well fitted peaks at a 24 

hour period (top) or 12 hours period (bottom). Using the 0.571 fit score threshold, 90% of RXR 

peaks were considered cycling, ~10-15% of which were on 12 hours period, the rest were cycling 

on a 24 hours period (Fig.19C). 

 The resulting phase-assigned peaks were binned into 2 hours intervals, which showed higher 

population of RXR peaks that reached their highest intensity at mid-day (Fig.19D). Since all of the 

data sets were transformed into phases grouped by the sinusoidal fitting, we were able to use the 

phase-delay between RXR phase and their regulatory effect markers phases to split RXR peaks into 

groups presenting the same regulatory effect (Fig.19E). We tried several groupings, from the 

simplest correlation/anti-correlation to the more concise degrees of delayed effects between RXR 

and other signal, (RXR – Pol-II at TSS – Pol-II in gene body - microarray)) (illustrated by Fig.20). 

 Though this method gave us the better harmonic grouping of RXR and its regulatory effect, 

it also hindered us accessing the amplitude of the effect within each group. This grouping effect 

also gave a dispersion pattern like the previous clustering by heat-map method, although more 

subtly because of the phase-delay gates we imposed. We speculated that each known regulated 

cellular function of RXR would manifest on certain time point of the circadian landscape, therefore 

the different groups of RXR would be enriched for different pathways, which we did not observe. 

However, our analysis scheme only grouped peaks based on the time of their highest intensity, not 

taking into account the real oscillating signal amplitudes. We reasoned this might be one of the 

reasons our pathways enrichment analysis did not yielded any distinct pattern. 
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Figure 20: Correlation groups 
 Heatmaps (left panel) of peaks for which RXR tag density and mRNA expression are both fitted to 
24 hours circadian period. Each row shows the oscillation of RXR binding with their target genes 
modulations for 3 epigenetic and genetic signals: the intensity of DNA polymerase II bindings 
within ±1kb around the TSS, and on gene body (respectively); and the mRNA expression. We 
grouped them into 6 regulatory effects: 

a) The correlated (top) group includes RXR peaks oscillation are well synchronized with their 
targeted genes;  

b) the correlated with 1zt shifted (second heatmap) includes target genes that oscillate 
approximately 4 hours later than their RXR peaks; 
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  We tackled the amplitude obstacle by applying statistical tests on the oscillating amplitude 

of the whole peak set to retain only those with significantly cycling signal. The fit score from 

cosinor also alerted us to several cases of fitting where neither 24 hours nor 12 hours period fitted 

well to the data although the data did display rhythmic pattern. Hence, the restriction of period using 

only to 24 or 12 hours seemed too stringent. Thus, we used the MetaCycle package (Wu et al., 

2016), whose combination of time-domain and frequency-domain provided us with flexibility in 

periodic analysis while introducing a more stringent F-test probability. The MetaCycle incorporates 

ARSER (ARS) (Yang and Su, 2010), JTK_CYCLE (JTK) (Hughes et al., 2010), and Lomb-Scargle 

(LS) (Glynn et al., 2005) properly for periodic signal detection. 

 Based on our study time scheme, we used the suggested function meta2d (Fig.21A). We set 

the periodic prediction with lower limit at 8 hours and upper limit at 26 hours based on prior 

observation from other studies (Veen and Gerkema, 2017, Castellana et al., 2018, Houben et al., 

2014, Krishnaiah et al., 2017). JTK reset upper limit as 24 for its own algorithm. ARS produced 

multiple fits for some of our peaks, which resulted in NULL p-values. For each of these events, we 

applied a hierarchical selection for the period which produced fitted values with highest match 

amplitude, highest correlation compared to the true values, and the least distance from the periods 

c) the correlated with 2zt shifted (third heatmap) includes target genes that oscillate 
approximately 8 hours later; 

d) the Anti-correlated (fourth heatmap) show RXR peaks are anti-synchronized with their 
targeted genes; 

e) the Anti-correlated with 1zt shifted (fifth heatmap) includes target genes that reverse-
oscillate approximately 4 hours later than their RXR peaks; 

f) the Anti-correlated with 2zt shifted (bottom heatmap) includes target genes that reverse-
oscillate approximately 8 hours later. 

The curve plots (right panel) show examples of the above 6 correlation groups, using the fitted 
sinusoid curves for RXR peaks tag density, Pol-II intensity and mRNA expression, showing the 
shifting/delaying of oscillation phases of the corresponding genes compared to the RXR peaks. 
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produced by JTK and LS. In truth, integrated p-values for these events had lower degree of freedom, 

hence were less creditable. However, this permitted the discovery of a small group of RXR peaks 

fitting to rhythms shorter than 12 hours (around 8 hours), while retaining the classical period range 

of 12h and 24h (Fig.21B). The integrated p-values and Benjamini-Hochberg (BH) adjusted q-

values generated (FDR) by MetaCycle only partially indicated the rhythmic of RXR signal and 

unequally reflected the degree of fit across the period range. Upon detailed inspection, q-values up 

to ~ 0.6 still produced nicely fitted sinusoid curves for 12 and 24 hours period rhythmic RXR signal 

(Fig.21C,D). For shorter periods, however, q-values stringently correlated with the degree of fit 

(Fig.21E,F), but even with the most significant q-value the amplitude of signal oscillation were not 

great. This was one of the short-coming of having low time resolution and no (biological) replicate 

data, because the prediction of rhythmic period become unreliable. Thus, although having wide 

range of period prediction brought new perspective for circadian analysis, the significances by FDR 

produced by this method seemed to be not suitable for our data set.  

 We decided next to test the significance of signal oscillation without imposing a periodic 

fit. For time course data, we used the recommended piecewise-cubic splines function of the limma 

package, although the advantages of applying splines were not up to their potential due to the lack 

of replicate and low time point resolution of our RXR data set. With the FDR of 0.05, about 10% 

of our dataset presented a significant oscillation, matching the percentage reported for previous 

circadian studies (Akhtar et al., 2002, Bozek et al., 2010, Vollmers et al., 2009). For this subset of 

data, we retrieved back the sinusoidal fits and the period fits from previous analyses for the 

downstream functional analysis. 
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Figure 21: MetaCycle analysis 
A. Integrating methods of MetaCycle 
B. Histogram of periods produced by meta2d function 
C. Example case of RXR tag density well fitted to 24 hours period with q-value ~0.6 
D. Example case of RXR tag density well fitted to 12 hours period with q-value ~0.6 
E. Example case of RXR tag density well fitted to 16 hours period with very stringent q-value 
F. Example case of RXR tag density well fitted to 8 hours period with very stringent q-value 

 
  



Results 

 89 

3.5.3 Circadian functional analyses  

 About 10% of our RXR peaks were considered as cycling. Among them, 3517 presented a 

circadian periodicity and 532 cycled with a periodicity of about 12 or less hours (the ultradian) 

(Fig.22A). The distributions of their phases are presented in circular histograms in Fig.22B. 

Interestingly, we observe different phases distributions for the gated (e.g. RXR signal with 

concomitant Pol-II signal, see section 3.4.2) and kept RXR peaks (RXR peaks devoid of Pol-II 

signal). The kept circadian RXR peaks (Fig.22B.a) are mainly observed around the transition of 

light-dark ZT0, which may suggest the influence of the core clock factors, namely the ZT22-ZT01 

by the CLOCK-BMAL1 pair. The gated circadian RXR peaks (Fig.22B.b), on the other hand, are 

observed mainly before or at the beginning of feeding-fasting period, when the liver transcriptions 

were reportedly more abundant (Takahashi, 2017). The ultradian peaks mainly phase around ZT01-

ZT02 with an additional population at ZT06 and ZT11 (Fig.22B.c-d) that may reflect the second 

(12h rhythms) and even third (8h rhythm) signal peaking during the 24h course.  

 The RXR peak annotations for these rhythmic peaks were enriched for promoter-dominant 

for the gated and intragenic for the kept (Fig.22C). Since the distinction of phase distribution 

between gated and kept RXR peaks was so clear, and that a large proportion of gated peaks was 

located at promoter, and that gated peaks are, by definition, jointly occupied by RXR and Pol-II, 

we investigated the rhythmic signal of Pol-II at the promoters of all transcripts. With the same 

circadian analysis, more than 4000 promoters had significant rhythmic Pol-II signal, whose phases 

distribution for circadian and ultradian rhythms are presented in Fig.22D. There were two 

populations of phases present for both circadian and ultradian groups: around ZT08 and ZT18 for 

circadian, ZT02 and ZT6 for ultradian. By splitting these promoters into groups with or without 
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RXR peaks, we found that promoters devoid of RXR peaks had a Pol-II signal peaking at ZT08 for 

circadian, (Fig.22D.c) and ZT1 and ZT5 for ultradian (Fig.22D.g). 

 

Figure 22: RXR circadian analysis 
A. Pie chart showing the proportions of RXR peaks cycling in 24-hours (circadian) period, in less 

than 24h period (ultradian) and of those with constant density (non-cycling).  
B. Circle histograms of phases distributions for circadian (a,b) and ultradian (c,d) kept peaks (a,c) 

and gated peaks (b,d) 
C. Annotation distribution of cycling RXR peaks  
D. Circle histograms of phases distribution for circadian (top) and ultradian (bottom) Pol-II signal 

at the 2262 promoters:  
a) the total genes with circadian Pol-II at promoter 
b) genes with circadian Pol-II with RXR peaks located at promoter 
c) genes with circadian Pol-II without RXR peaks located at promoter 
d) the total genes with ultradian Pol-II at promoter 
e) genes with ultradian Pol-II with RXR peaks located at promoter 
f) genes with ultradian Pol-II without RXR peaks located at promoter 
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 These distributions interestingly coincided (with 1-2 hours anticipation) with the 

distributions of gated RXR peaks (Fig.22B.b,d). The promoters with RXR peaks, on the other hand, 

had Pol-II signal peaking toward the end of day, around ZT19-20 for circadian and at beginning of 

day ZT01 for ultradian. These two patterns of Pol-II, segregated by the presence or absence of RXR 

peaks at the promoters, are astonishingly very similar to two patterns reported for poise and active 

epigenetic state by a study on full circadian landscape of mammals core clock (Takahashi, 2017, 

Koike et al., 2012). This suggests that the role of RXR binding at gene promoters might not be 

simply to initiate transcription but also to keep the ready state of genes for flexible and fast 

regulation by its partners. 

  A similar proportion of the mRNA microarray was considered circadian or ultradian cycling 

by the same analysis (Fig.23A). This proportion is consistent with many previous circadian studies 

(Akhtar et al., 2002, Panda et al., 2002), another study reported a higher proportion (22% of 

transcriptome) but the experiment was performed under other conditions, at different level of 

mRNA maturity (Benegiamo et al., 2018). In contrast to RXR, the peaking of expression of these 

genes distributed quite evenly along the day (Fig.23B), at least for circadian. In our study, not all 

rhythmic RXR peaks resulted in a rhythmic of transcription activity. Indeed, the majority of RXR 

target transcripts (11’905 from ~15’000 in Fig.13A) are not cycling. 1848 transcripts harbored 

rhythmic RXR bindings but expressed stable transcription. On the other hand, 738 transcripts are 

rhythmically transcribed whereas their associated RXR binding is stable. Only 219 genes are 

cycling both at their RXR binding level and at their mRNA transcription level (Fig.23C). The RXR 

peak annotations of these rhythmic peaks is again enriched for promoter-dominant (Fig.23D). 
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Figure 23: RXR target genes expression circadian analysis 
A. Pie chart showing proportions of expressed genes that cycling in 24-hours (circadian) period, 

in less than 24h period (ultradian) and of those with constant density (non-cycling).  
B. Circle histograms of phases distributions for circadian (left) and ultradian (right) expressed 

genes  
C. Table showing number of genes with cycling or not cycling RXR peaks and expression levels 
D. Annotation distribution of those 219 genes for which both RXR peaks and mRNA levels are 

cycling 
E. Circle histograms presenting the phases of 84 genes for which promoter Pol-II signal, promoter 

RXR signal, and expression all present a circadian rhythmicity. Left circle is for genes without 
RXR at the promoters. Two-heads arrows indicate the expression phases of 3 RXR isoforms 

 

 The circadian core gene BMAL1 is considered cycling by our analysis, but the CLOCK 

gene is not, because the change in transcript expression value is low and statistically insignificant. 

The same mild rhythmic changes were also found for RXR and its partners. RXRa,b (Fig.23E), 

PPARg expressions peaked at ZT06-10, while RARa, g have the opposite rhythm with level peaks 
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at ZT14-ZT18. FXR expression peaked at ZT12 and RXRg peaked around ZT20. Most of these 

patterns are consistent with other studies (Yang et al., 2006, Ma et al., 2009); except for RARa, 

which peaked at ZT14 in our analysis but at ZT8 in (Yang et al., 2006), and LXR, which has the 

same 1.3 fold change as RARa in our analysis but was considered non-rhythmic in (Yang et al., 

2006). However, with expression changes less than 1.5-fold change between the highest and lowest 

level, these genes fall in the grey area just below the 1.5x fold change threshold usually set to be 

considered rhythmic in most circadian studies.  

 By overlaying the phases distributions of the promoter Pol-II signal, RXR signal and the 

mRNA expression levels of the 84 genes with cyclic RXR, Pol-II at promoters and mRNA, with 

the indications of the time when the three RXR isoforms gene expression peaked (Fig.23E), we 

could see that overall the phase oscillation of RXR, when present in promoters, peaks at ZT10 and 

ZT18, roughly +/- 8 hours away from the peak of mRNA production. However, the number of genes 

fitted to this ideal downstream regulation were very small. These analyses indicated that the 

rhythmic recruitment of one partner to RXR binding at the promoters alone is not sufficient to drive 

rhythmic transcription for the majority of its target genes, but by further regulated by diversion 

interplay with other partners. 

3.6 Motif search identifies nuclear receptor consensus binding sites  

3.6.1 Unbiased motif searches 

 Transcription factors bind to DNA through the recognition of specific nucleotide patterns. 

In the case of RXR, studies (Leid et al., 1992a, Mangelsdorf and Evans, 1995, Bastien and 

Rochette-Egly, 2004) have revealed the presence of the consensus sequence AGGTCA. RXR is 

capable of heterodimerization with several other nuclear hormone receptors, which results in the 
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recognition a various specific nucleotide patterns (Fig.2). We first performed motif analysis of all 

sequences below RXR peaks using HOMER v4.7 findMotifsGenome with default parameters and 

mm9 for genome. The result displayed variations from the known consensus of RXR which 

indicated that our ChIP-seq antibody worked well. The two most significant motifs matched the 

known consensus of RXR heterodimer with PPARg and FXR from Homer motif databases, which 

comprises two hexamers separated by one nucleotide spacer, either as direct repeat, DR1 or inverted 

repeat, IR1 (Fig.24 – motif 1,2). Beside DR1 and IR1, the other most abundant motifs retrieved, 

were the GC-rich motif of SP1 marking the promoters (Fig.24 – motif 4) reflecting the high 

proportion of RXR peaks at promoter (Fig.12A), the motif of CCAAT-enhancer binding protein 

(Fig.24 – motif 5), and several Homeobox motifs (Fig.24 – motif 3,6,8). Expecting to find different 

RXR partners heterodimers at different time, we ran Homer function on different RXR timepoints 

peak groups (described in section 3.5.1, Fig.18). However, all groups showed variations from the 

motifs from the total peak set analysis, just with different order and roughly similar target 

percentages. We did not observe any particular peak group with significantly different motifs from 

the others. 

 

Figure 24: HOMER motif analysis result for total RXR peaks 
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 However, the annotation system of Homer depends on a set of customized motif position 

weight matrices that the developers collected and curated from only ChIP-seq studies, and the 

correlation hierarchy of “best-scores”. But not all RXR partners have been equally studied using 

ChIP-seq, while PPAR and RAR were extensively studied in various conditions from genome-wide 

to target search, the other partners were less so. Moreover, RXR binding motifs are well known and 

extensively explored, and the goal of our motif analysis ultimately was to assign each (and 

hopefully every) RXR peaks with a specific RXR heterodimer partner. Hence, matching our data 

set motifs with other ChIP-seq studies motifs with completely different sequence content and 

number, conditions, cell lines, tissues, species, was inequitable.  

 Thus, we changed to MEME suite, which uses a combination of different motif databases 

not restricted to only ChIP-seq studies and capable of de-novo motif detection. We used the MEME-

ChIP tool, which by default called two different motif discovery algorithms: multiple EM for motif 

elicitation - MEME, and discriminative regular expression motif elicitation – DREME, to discover 

novel sequence motifs enriched in particular set of sequences compared to control set. We used 

default parameters of the DREME motif discovery, which results in short motif 5-8 nts long, while 

by default MEME searches for motifs between 6 and 30 nucleotides, and obtains longer motifs 

(Fig.25A). The short motifs from DREME identified as top hit the canonical RXR binding hexamer 

RGGTCA. The MEME suite also directly invokes TOMTOM (Gupta et al., 2007) to annotate the 

de novo motifs identified and assign them to known TF when possible. Nevertheless, we chose to 

re-annotate using more databases. We collected the known consensus of all the candidate TFs 

predicted by TOMTOM from JASPAR, SwissRegulon, Jolma, HOCOMOCO databases (Fig.25A) 

to build a complete reference of known NR binding motifs and incorporate it with the newly 

discovered motifs from DREME and MEME. We used pairwise Pearson correlation coefficient to 
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calculate the distances between motifs position weight matrices, then used UPGMA from 

DECIPHER package to create a motif tree. We manually curated them into 25 motif signatures that 

represented the most enriched consensus of RXR peaks (Fig.25B).  

 

Figure 25: MEME discovered motifs 
A. MEME discovery framework and results 
B. Method of grouping MEME results and known motifs into 25 significant motif patterns within 

RXR peaks 
C. Distribution of three representative motif patterns around peak summit 



Results 

 97 

 We then re-scanned the sequence under each of our peaks specifically for the identification 

of the motifs found in newly built database. The distributions of 25 motif signatures around peak 

summit congregated into 3 patterns: both the canonical AGGTCA motifs and the GC-rich motifs 

accumulated more toward the peak summit, while the AT-rich motifs clustered more toward the 

flaking of other motifs (Fig.25C). 

 Despite our efforts of tuning the parameters of different tools, using preset pre-annotated 

motif databases brought the promiscuousness of RXR heterodimer partners into the context of motif 

construction. Thus, the process of assigning RXR peak with specific distinct motif then grouping 

distinct motif-peaks together were obscured and hindered by the cross-section between similar 

motifs. We therefore decided to customize our analysis. 

3.6.2 Searching for RXR heterodimer consensus-derived binding sites 

 Since our motif analysis method using pre-designed algorithms to search for enriched 

consensus have many times skewed our analysis towards undesirable motifs, we decided to restrict 

our search with customized scanning. In previous studies, the rule of core half site RGKTCA (Leid 

et al., 1992a, Mangelsdorf and Evans, 1995, Bastien and Rochette-Egly, 2004), and the affinity of 

RXR and its partners to certain variations of this hexamer have been tested (Munoz-Canoves et al., 

1990, Duester et al., 1991, Suva et al., 1994, Vansant and Reynolds, 1995, Balmer and Blomhoff, 

2005). RXR-partner heterodimers have the ability to bind response elements formed of a tandem 

repeat composed of two hexamer half-sites. These repeats, that we henceforth deemed hetero-

dimerization binding modes, can be either direct repeat–DR, inverted repeat–IR or everted repeat–

ER with 1 to 8 nucleotides spacing between each half site. To identify the potential RXR 

heterodimer binding mode present under each peak, we chose to scan each peak for the presence of 

these customized patterns. Since a degenerate hexamer sequence will be found many times under a 
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given peak, we utilized the advantage of pair-ended ChIP-seq to know precisely the fragment that 

was immunoprecipitated and only search the binding motifs under the region of the peak covered 

by most of the fragments (Fig.26A). We allowed one mismatch for the AGGTCA hexamer 

scanning, and attempted to determine for each peak which of the various binding modes (Fig.2) 

was the most likely. The least conserved position was the fourth nucleotide of the hexamer (Fig.26B 

– the most frequent hexamer was AGGNCA). With the allowance of at most three mismatches in 

the 12mer resulting from both hexamers, we could identify at least one binding mode in about 91% 

of RXR peaks (Fig.26C). Using a window of 15 nucleotides flanking peak summits reduced the 

number of peaks containing at least one binding mode to only ~45%.  

 Using the coordinates of the hexamers, we constructed a library of sequences for the 

different binding modes with a number of space-between each hexamer ranging from 0 to 8. All 

the sequences constituted to each binding modes were pooled to create a position weight matrix and 

create a custom binding mode loci library. These matrices were used to scan the loci library with 

FIMO (Grant et al., 2011) from the MEME suite to score the significance of each locus.  

 The overlapping between the binding modes were extensive, which resulted in multiple 

potential binding modes within one RXR peak/one locus. In order to simplify the overall statistic 

without leaving out too many peaks, the selection of one single binding mode for each peak was 

made based on the proximity to peak summit and the lowest FDR produced by Fimo (examples in 

Fig.26D). The most common binding mode is DR1 (heterodimerization with RAR or PPAR), which 

is present in ~16% of the peaks, closely followed by DR4 (heterodimerization with TR, LXR, 

CAR).  
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No significant difference in annotation and distance-to-peak-summit distribution could be found 

between different binding modes (Fig.26E), except for all the binding modes with a spacing of 0, 

6, 7, or 8 nucleotides between each hexamer, which were very infrequent and are most likely false 

positives. The detailed classification of binding modes by DR, IR, ER with 1-8 nucleotides spacing 

encompassed every motif consensus that had been reported in previous studies for RXR and its 

partners. However, these specific studies using DNA gel electrophoresis in combination with 

Figure 26: Customized binding modes scanning 
A. Illustration of the diverse fragment sizes and positions of all precipitated fragments within 

one representative RXR peak. The fragments were arranged by coordinates of their 5’-end 
(left to right) and 3’-end (right to left), which created the borders (black lines) almost fitted 
with the peak shape (red line). The region with most coverage around peak summit was 
used for motif assignment. 

B. Characteristics of each hexamer with 1-mismatch variations found with RXR peaks: 
number of peaks, tag enrichment, distance to peak summit, distance to nearest TSS, cluster 
versus solo peaks proportions, and annotation fractions 

C. Bar-plot showing the number of RXR peaks (percentage on each bar) containing at least 
one tandem repeat with increasing mismatch threshold for the hexamers 

D. Examples of occurrences of multiple binding modes within each RXR peak and the 
assignment of one mode to one peak was based on presence of the mode with lowest FDR 
reported by FIMO within peak summit (grey band). Top plots show RXR tag density of the 
sites. Bottom plots show the exact identified loci of different binding modes within the 
peaks. Each binding mode loci were aligned on each row. When there are multiple loci of 
a single binding mode, the FDR on the right is the lowest FDR of all the loci within each 
row, and the corresponding locus was marked black. The row order corresponding to the 
lowest FDR of all the rows. 
a) Intragenic RXR peak from Fig.15a shows simple assignment for IR1 (red arrow) within 

summit and has lowest FDR 
b) RXR peak at TSS of Hgfac gene with complicated assignment because DR7 has lower 

FDR but ER6 is closer to the summit (red arrow). DR4 is little further away from the 
summit but has lower FDR than the other two. 

E. Detail of each repeat consensus found within our peaks, with filters favored for spacing of 
1-5 nucleotides. The “before” or “after” indicates the relative position of the hexamer with 
the lowest mismatch. 
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sequencing, at very specific target genes and/or genomic loci, were done for only a few specific 

binding modes. The everted repeats ER0, ER7, ER8 especially, which we did not identify in this 

study, were only reported from computational scanning studies. In our case, the reported observed 

consensus only encompass the DR1-5, ER1-5 and IR1-5, because one of these binding mode could 

always be attributed to an RXR peak with a higher confidence than half-sites with spacers 0, 6,7 or 

8. Pairwise overlapping permutation test showed the extensiveness of the overlapping between each 

binding mode sites identified under the same RXR peak (Fig.27A). As expected, the DR loci were 

more clustered within themselves and less with the IR and ER. The ER sites interestedly overlapped 

more significantly with DR and IR sites (redder cells) than within themselves (more yellow cells). 

With this pattern of overlapping across binding modes, we performed pairwise comparative motif 

enrichment analysis for each pair of all binding modes loci libraries, using all the signature motifs 

from the earlier analysis (in Fig25.B). Only the a few DR and IR loci libraries had resulted enriched 

motifs consistent with their binding modes (Fig.27B.a-c). The loci denoted for DR1-5 and IR1-2 

were affirmatively enriched with the correct motif signatures. The loci of other DR and IR showed 

less significance in the matching signature motifs. The results for ER were especially negative, 

because there were always pattern of DR and IR signature motifs within loci denoted for ER binding 

modes (examples in Fig.27B.d). This confirmed that for these ER binding modes, even when we 

can find an ER within a locus, there would always be another DR or IR mode overlapped. Therefore, 

we reformulated the customized scan for only 7 binding modes, which matched the 7 known 

consensuses of RXR partners and minimized the list of binding modes (Fig.27C). Delightfully, this 

reformulation scan did not reduce the annotated RXR peaks population. For example, the RXR 

peak in Fig.26D.b with this reduced binding modes list was re-assigned with DR4 other than 

DR7/ER6, and ultimately was gated out from analysis due to overlapping with TSS. 
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Figure 27: Binding modes comparative analysis  
A. Heat-map showing all pairwise overlapping sites between each pair of all binding modes. 

Intensity of the cell colors toward red indicated higher z-score produced by permutation test, 
meaning that the overlap between the sites were not occurring by chance.  

B. Examples of the enriched motifs at DR1, DR4, IR1 and ER1 loci when compared with other 
binding modes loci. The motifs were consistent with the binding mode for DR1, DR4 and IR1. 
ER1 loci were enriched not with ER1-pattern motif, but with DR4- and DR2-pattern motifs 

C. Table of set binding modes we reformulated scanning on RXR peaks sequences and their 
corresponding reported partners identities. 
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3.6.3 Distribution of motif patterns across RXR peak groups, time points 

and annotations 

 At each evolution of our analysis, we looked at the general distribution of the resulting 

motifs across various aspects of RXR peaks and peak groups in the expectation to observe specific 

motif pattern dominantly displayed within certain profile peak group or certain time point. 

However, the disproportionally high promoters within RXR binding sites casted a strong effect not 

only on the target gene expression and rhythmic profiles (described in previous sections 3.3.2, 3.4, 

3.5.3) but also on the discovered motif patterns. Half of RXR peaks clustered more toward 

promoters (Fig.12A), promoter sequences are generally GC-rich, hence promoter RXR peaks were 

enriched with high GC-content motif (Fig.28A). When we analyzed the distribution of variations 

of the canonical AGGTCA hexamer around RXR peak summits across different profile peak groups 

(described in section 3.5.1, Fig.18B), various AGGTCA variations were found clearly within 

groups containing less promoter annotation, and the occurrence stood abundant even with zoomed 

in ±15nts window at peak summits. Within groups containing a high proportion of promoter 

annotation, we found less hexamer occurrences (Fig.28B). 

C. Boxplot of %GC content of RXR peaks across the cosinor-fitted phases (section 3.6.2), 
separated by promoter annotation 

D. Distribution of 4 representative signature motifs (section 3.7.1) along the cosinor fitted 
RXR peaks’ phases: 
- Top: the DR1 and IR1 signature 
- Bottom: The GC-rich signature 

E. Pie charts showing differences of annotation and clustering proportions based on the 
peaks gating. 

F. Comparative enriched motif analysis between gated versus non-gated RXR peaks showed 
enrichment of GC-rich motifs, which confirmed our gating analysis 
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Figure 28: Motif distribution patterns 

A. Differences in GC-content of the sequences under RXR peaks, Promoter peaks have 
significantly higher %GC under their sequences. Because RXR accumulates more around 
promoters, the most frequent motif discovered resulted in a high GC-content motif 

B. Example of two different peak groups (from section 3.6.1) with distinct annotation contents:  
- Top: group with low Promoter annotation (pie chart), has strong accumulation of variations 

of the AGGTCA hexamer at peak summits (middle density plot), and even more visible when 
we zoom in ±15nts around peak summit 

- Bottom: group with high Promoter proportion, has only few occurrences of the two 
hexamers at peak summit 



Results 

 105 

 For the cosinor-fitted phases peak groups (described in section 3.5.2), population of RXR 

peaks that reached highest intensity at mid-day had significantly higher GC content (Fig.28C). We 

observed slight trend of the GC-rich signature motifs (from 3.6.1) more prominent among the mid-

day RXR peak from the sinusoidal fit; while an opposite decrease mid-day trend displayed for those 

motifs with AGGTCA content (Fig.28D). This corresponded well with the higher promoter 

annotated proportion of RXR peaks within this population. And the phases distribution of promoter 

Pol-II signal described in section 3.5.3 and Fig.22D showed the same pattern with the GC-rich 

motif. These results further confirmed the effect of the co-localization with Pol-II on the signal of 

RXR: whether these RXR peaks were considered significantly rhythmic or not, the highest RXR 

signal at these promoters coincided exactly with the signal of Pol-II. And with this involvement of 

RXR motif in the transcript machinery, any analysis taking these regions into account would be 

heavily affected by the high GC content of these sequences, clearly displayed through the three 

signature patterns in Fig.25C. In fact, we looked at the effect of the gating strategy described in 

3.4.2, which essentially gated out all the RXR peaks at the TSS, and thus highly “contaminated” by 

GC content. Since RXR peaks clustered more at the promoters, this gating created two populations 

with very different proportions of solo/cluster peaks (Fig.28E). Comparative motif enrichment 

analysis using all the motifs collected from section 3.6.1, showed that the gated RXR peaks’ 

sequences were enriched with GC-rich motifs such as SP1 and MYOD1 motifs and mostly depleted 

in AGGTCA RXR binding motifs, compared to the kept RXR peaks’ sequences (Fig.28F), which 

confirmed the necessity of the gating. 

 Taking into account the gating strategy and the simplified binding modes list, we reanalyzed 

binding modes of the kept RXR peaks. The most abundant binding modes found was DR1, same 

as earlier. DR2-5 presented similar relative abundances but the number of IR1 peaks dropped from 
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the third most abundant category to the sixth (Fig.29A). There were still no significant differences 

between these various binding modes concerning the genomic, annotation, distance-to-peak-

summit, distance-to-TSS (Fig.29D-G). However, the distance-to-peak-summit clearly showed 

more concentrated motifs toward the peak summits than before (Fig.29F). 

 

Figure 29: Characteristics of simplified binding modes within kept RXR peaks 
A. Distribution of motif among RXR peaks: number of RXR peak with each specific binding mode 
B. The motif logos derived from all the sequenced assigned with each specific binding mode 
C. Cluster/Solo pie charts for each binding mode (cluster peaks: black, solo peaks: white) 
D. Annotation pie charts for each binding mode (reference colors on Fig.1) 
E. Distribution of the distance between found binding mode to its peak’s summit 
F. Distribution of the distance between found binding mode to nearest TSS 

 
 Numerous properties of protein-DNA binding “motif” have been under scrutiny, from base 

compositions, structures, thermodynamic properties (Ahmad et al., 2008, Ahmad et al., 2004), 

expressions (Pham et al., 2005), to bonding and force types, TF conservation and mutation 

(Luscombe and Thornton, 2002) and bending of the DNA (Jones et al., 1999). In addition, machine 

learning methods, such as neural networks, support vector machines (Ofran et al., 2007) and 

regressions (Zhou and Liu, 2008) have been proposed. Often, each method was set under one 
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specific protein and a particular data set inspection, as was our method. It has been proposed that 

multiple transcription factors can compete for binding site in regulating gene transcription 

(Carlberg and Seuter, 2010); on the other hand, the present/or not present of certain motifs can 

contribution to searching-binding dynamics of transcription factors (Dror et al., 2016). Thus, it is 

highly possible that multiple partners can equally and/or alternately contribute to the transcriptional 

regulatory at one binding site (examples in Fig.26D). Assigning one heterodimer binding mode to 

one RXR peak, and extrapolation from binding modes to partners obscured such interplay. Here we 

demonstrated the equal distributions among heterodimer binding modes, and conclude that the 

various RXR heterodimers do not show any preference for a particular genomic binding location 

such as promoter or intergenic. 

3.6.4 Distribution of the different Nuclear receptor binding modes across 

target genes  

 In further attempts to infer which partner coupled with RXR to regulate which gene, we 

annotated the binding modes using the same hierarchy as the peaks (Fig.12A). Before gating and 

simplified binding modes, the analysis showed that only 38.7% (about 5000 – Fig.30A) of the 

putative RXR target genes were associated with only one unique binding mode, whose abundance 

and annotation patterns are similar to the analysis within peaks. About 8000 remaining genes were 

associated with at least 2 binding modes or more (Fig.30A). The increased number of binding 

modes associated with a given gene shifted the genomic annotation proportions from promoter 

dominant toward Intragenic-dominant, and interestingly, Tukey Honest Significant Differences test 

in conjunction with One-Way ANOVA showed that the average expression levels significantly 

increased with the number of associated binding modes (Fig.30B).  
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Figure 30: Distribution of binding modes among RXR target genes 
A. Number of genes regulated by different number of binding mode combinations. Pie chart above 

each column details the relative proportion of genomic annotations as described in Fig.10A.  
B. Boxplot of maximum gene expression level for each group of genes based on the number of 

regulating binding modes. 
C. Same as panel A but for only kept RXR peaks with simplified binding modes 
D. Same as panel B but for only kept RXR peaks with simplified binding modes 
E. Number of genes regulated uniquely by each specific binding mode for only kept RXR peaks 

with simplified binding modes. Annotation pie chart for each column 
F. Boxplot of maximum genes expression for each group based on specific regulating binding 

modes, for only kept RXR peaks with simplified binding modes 
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 After gating and simplified binding modes, the results showed the same distribution trend 

as before where half of the genes presented a unique binding mode (Fig.30C). The distribution of 

genomic annotation in function of the specific binding mode of this group did not show any 

difference than before. The increased number of binding modes associated with a given gene also 

shifted the genomic annotation proportions from promoter dominant toward Intragenic-dominant. 

However, we no longer observed the correlation between number of associated binding modes with 

the average expression levels (Fig.30D), nor between different binding modes of the monotypic-

binding mode genes with their expression levels (Fig.30E,F). 

 The only slight difference was observed for IR1–binding mode, characteristic of FXR-

regulated genes, which were overall less expressed than any other binding modes, which is 

consistent with general repression effect proposed for FXR target genes (Lee et al., 2012). Further 

phase distribution analysis for individual binding modes within the rhythmic components, however, 

did not yield any distinct pattern. The relative enrichment of motifs among cyclic genes are 

comparable to the total genes, thus none of the heterodimer partner dominantly contribute to the 

transcriptional rhythmicity. 

3.7 Enriched pathways analyses  

3.7.1 The highly expressed – high plateau genes 

 To explore in which liver functions the RXR target genes were involved, we inspected the 

small group of short and highly expressed genes containing the RXR high plateaus described in 

section 3.4.1. The plateau genes can be categorized into 4 main functional families (Fig.31): the 

cytochrome P450 genes playing a role in oxidoreductase and oxygenase activity; the Serpin genes 

with serine-type endopeptidase inhibitor activity; the Apolipoproteins genes; and crucial genes 
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related to glucose and lipid metabolism (Acox1, Ass1, Alb, Cps1, Fabp1, Hnf4a, Glud1, Mat1a, 

Pck1). Because of their involvement with such core functions of liver metabolism, it is interesting 

but not entirely unexpected to find they have significantly higher expressions compared to other 

genes (Fig.15C). In particular, the cytochrome genes family has been shown to be highly RXRa-

dependent in male mice (Cai et al., 2003). The core glucose and lipid metabolism genes are 

notorious reported targets of RXR partners. The other three gene families are putatively regulated 

by other transcription factors who do not hetero-dimerize with RXR, for examples: the 

Apolipoproteins genes are regulated by the orphan receptor RORα (Vu-Dac et al., 1997, Park et 

al., 2006, Jetten, 2009), the Cytochrome genes by HNF4A, STAT5B (Park et al., 2006, Jover et 

al., 2009), Serpin genes by NF-IL6 (Morgan and Kalsheker, 1997). 

 
Figure 31: Gene families of the Plateau genes and their functions 
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3.7.2 Comparative pathways enrichment among RXR binding modes 

 To compare the targets of RXR different binding modes, we performed pathway enrichment 

analyses using the expression levels of the ~15 thousands expressed genes putatively regulated by 

RXR. With the various binding modes assigned to these RXR peaks and their putatively associated 

target genes, we sought to determine patterns of regulation present within the RXR regulatory 

network. Pathway enrichment analyses were performed using enricher and clusterCompare from 

clusterProfiler R package, using one group of genes containing the total genes in the database as 

control, or using multiple groups of genes in comparison. From the motif analysis, we observed 

that one target gene can be associated with one RXR binding mode – the monotypic-binding mode, 

or with many – the multiple-binding modes (Fig.30A).  

 

Figure 32: Comparative pathways enrichment shows distinct patterns of functions for genes with 

unique binding mode (blue) compared to genes with multiple binding modes (red). 

 
 Pathway comparative enrichment analysis between the monotypic mode genes and the 

multiple modes genes showed a clear distinction in the regulatory pathways in which these genes 

were involved. Genes participating in general metabolic pathways contained multiple binding 
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modes, consistent with the well-known lipid, glucose regulation functions of RXR and the circadian 

rhythm maintenance. In contrast, genes participating in very specific pathways, such as cell cycle 

checkpoints tend to be controlled by monotypic-binding mode (Fig.32). We ascertained that the 

majority of regulatory genes of the liver that are modulators for gene expression across different 

pathways are in fact influenced by many TFs (hence, multiple motifs), and that RXR binding occurs 

mainly on the promoter and gene body. On the other hand, genes with unique binding mode are in 

charge of specific pathways. However, we also observed the tight correlation between RXR and 

Pol-II within the transcription machinery (section 3.4). This led to the suggestion that some group 

of genes presenting RXR binding precisely at their TSS or covering the whole transcript unit were 

perhaps not specific targets of RXR, but rather the product of the bulky transcription machinery in 

which RXR participated. The gating strategy described in 3.4.2 helped us separate these genes from 

the total RXR target genes.  

3.7.3 The gating effect on pathway analysis 

 Pathway comparative enrichment analysis on the three genes groups, the gated, the kept and 

the mixed (Fig.16D) showed that we could associate distinct pathways patterns for each genes 

group (Fig.33). Interestingly, the pathways enriched for the gated genes were very similar to the 

pathways specifically enriched for the monotypic binding mode genes before gating (Fig.32), These 

pathways, including cell cycle regulations, cell senescence, apoptosis, etc. are mainly general 

cellular sustaining functions. Diversely, the pathways enriched for the mixed and the kept genes are 

signaling pathways essential for hepatocyte metabolic functions. Indeed, after gating, pathway 

comparative enrichment analysis between the monotypic mode genes and the multiple modes genes 

(from Fig.30C among the mixed and kept genes) no longer showed the clear pathways distinction. 

While the same general metabolic pathways with the well-known lipid, glucose regulation functions 



Results 

 113 

of RXR and the circadian rhythm maintenance were still enriched for the multiple binding modes 

groups, consistent with the previous analysis (Fig.32), the monotypic binding mode genes group 

was no longer enriched for any clear pathway pattern.  

 The gated out monotypic mode genes analyzed earlier in Fig.32 had higher Pol-II signal 

and bore many GC-rich RXR peaks due to the TSS contamination (demonstrated in Fig.28F). 

However, we can still retrieve well-defined binding modes under the sequences of one third of the 

gated peaks. An example for these monotypic genes is the Hgfac gene that has only one RXR peak 

at the TSS (Fig.26D.b) with valid DR4 binding mode. This gene was gated out from the analysis 

only due to the overlapping of RXR peak at TSS. Thus, these analyses showed that RXR binds to 

target sites in a restricted manner with unique binding mode and highly overlapped Pol-II signal 

upon the genes involving in general cell sustaining functions. This suggested the selective 

partnering of RXR with other nuclear receptors for these cell sustaining/survival functions that 

required no tinkering. For other genes that involved diverse metabolic regulation functions of the 

liver, RXR heterodimers with various partners for more crosstalk, co-regulated signaling pathways. 

Such flexible regulation effects are required for the cellular capability to adapt to different 

modulations such as lightning and feeding. These effects may not always be transcription activities 

but repression or inhibition, thus the signal of Pol-II were less enriched upon these RXR binding 

sites. 

 

Figure 33: Comparative pathways differences between 3 gene groups: gated, kept and mixed. 

Colors of points indicate q-values, sizes the number of genes participated within specific 
pathway.  
Number after each pathway name indicate the number of genes present in the database for a 
given pathway. Number under group names indicate the total number of genes included for the 
analysis. Numbers on top give the number of genes present within the pathways identified for 
each group. 
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4.1 Peak-callers are not one-size-fit-all tools  

 In the realm of ChIP-seq data analysis, there are many currently available peak caller tools. 

The choice can be made considering the DNA-binding nature of the protein, the presence of 

replicates, of appropriate controls or external set of regions of interest (Steinhauser et al., 2016). 

But in general, this decision is a matter of preferences, since most of the tools are built with flexible 

parameters to make themselves compatible with various experimental conditions. However, these 

methods are mostly built to compare 2 conditions at most, and the input protocol requires feeding 

data one-by-one or pair-by-pair. When handling multiple conditions, most methods usually perform 

an individual analysis of each sample followed by different means of overlapping the features of 

each sample. In our opinion, this workflow is quite heavy computationally and also complicates the 

data handling, since numerous genomic features are excluded and then re-introduced during the 

overlapping process. Furthermore, the possible pairwise combination between 7 conditions (time 

points) in our study, each accompanied by a control sample, leads to over 5000 ways to combine 

the data and may cumulate errors. The in-house method we employed, which process all the data at 

the same time has the great advantage of being simple, eliminates the issue raised by the necessity 

to overlap peaks detected in various samples, saves time and computational power while filtering 

noisy peaks.  

 Our comparison with MACS, described in chapter 3.1, established that the majority of peaks 

falsely called by RXR originate from a low RXR/input ratio. Inevitably, one may argue that with 

the right parameters, MACS would perform better. For example, one could follow the example 

instructions on MACS github from the author, which gives quite detailed steps to advance the 

analysis using subcommands. However, depending on the informatics knowledge depth of the 

investigator, these customized commands can either be too restricted or too detailed. The newer 
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version of MACS and other peak caller usually have options for paired-end ChIP-seq, which bypass 

the strand-shift prediction step and takes into account the advantage of whole fragments. However, 

based on the distribution of peak widths in our study and the presence of high plateau peaks found 

in our study by our method, we observed that the profile of RXR binding can be narrow peaks (as 

general transcription factors), cluster of multiple peaks, as well as broad peaks like those found for 

histone marks; thus, using a MACS parameter to target only one of these instances would be at the 

detriment of the detection of the others. A study conducted a benchmark analysis to compare 

between different peak calling algorithms (Thomas et al., 2017) and concluded that methods 

incorporating input tend to perform worse than the others. As we observed during the comparison, 

MACS bases its prediction from the deviation from the mean signal of a given sample to model the 

signal distribution, which leads to the false discovery of peaks also present in the input. Our method 

accesses the true signal ratio of RXR over input within each chromatin bin to avoid this problem. 

Thus, the advantage of using the input is to give more weight on the filtering steps without impairing 

the detection of the real peaks. The author from this study (Thomas et al., 2017) also showed that 

peak callers that use windows of various sizes are more powerful than the ones that do not. Due to 

the relatively wide peak shapes of RXR bindings, the fixed scanning window size used by MACS 

might also contribute to its shortcomings. Although we also used a fixed window size for the 

chromatin bins, this is compensated by the fact that we scanned the genome twice with bins shifted 

by half the bin size, and merged contiguous significant peaks to create longer regions, which is 

somewhat equivalent to using various window sizes. This process not only overcame the difficulty 

raised by the presence of various peak sizes and shapes, but also allows to work using the same 

referential for all samples, thus eliminating the need to reconcile peaks that would be identified in 

various samples with slightly different coordinates. This again accentuates the role of detecting 
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different shapes of transcription factors binding, where the concept of narrow TF peaks versus broad 

histone marks peaks is too overgeneralized and should be used with caution. 

 In retrospect, in our case, it might have been sufficient to pool the signal of all time points 

into one sample and use a conventional peak-caller with extra ratio filtering step. However, this 

method is only valid if the RXR binding signal is mostly constant across timepoints. Since we 

expected detecting many RXR binding sites where the RXR signal would change between time 

points, the pooling of all time points to detect peaks would inevitably have favoured the detection 

of peaks with high signal present at all the time points and missed the peaks presenting binding at 

only one or two specific time points. We thus devised a method that could detect at a good resolution 

peaks present at only one time point as well as peaks present in multiple time points without the 

need to merge or align peaks between timepoints. Whether this method is versatile remains to be 

benchmarked, but it served well our specific needs as well those from other projects of our lab with 

different ChIP-seq experiment scheme. So, the development of our method, which took up an 

important proportion of the work, was necessary, sufficient and successful for our study. 

4.2 Association of an RXR peak with its target gene is not perfect  

 With the well-developed and fitted methods, we have explored in detail the characteristics 

of RXR binding in mouse liver within the framework of the diurnal rhythm. We used multiple 

ChIP-seq signals including Pol-II, H3K4me3, H3K36me3 and DNase-I to probe the epigenetic 

stage, as well as mRNA microarrays to inspect the transcriptional outcome upon RXR bindings. 

Our main interest was to associate the motifs found under RXR peaks to a specific RXR 

heterodimer partner, and identify the associated patterns of regulatory signal and or coordinated 

transcription oscillations. 
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 The function of transcription factors at promoter sites is largely described as recruitment 

signal for the transcription initiation complex to form (or to be re-cycled) (Cosma, 2002). It is not 

surprising to find abundance of RXR binding at the promoter of many highly expressed genes in 

the liver. However, recent epigenomics studies have shown that transcription factors may assert 

their action on target genes not only by direct contact or by close distance; their influence may reach 

far beyond their point of DNA binding, for instance via a looping chromatin (MacQuarrie et al., 

2011). When trying to link RXR binding and gene activation, 4987 genes —to which at least one 

RXR peak was associated—were not detected in our mRNA microarray (Fig.13A). One possible 

explanation could be that RXR represses these genes. However, approximately 1000 of these 4987 

genes were pseudo-genes, which could hardly be considered evidence for RXR “silencing” 

function. Albeit we cannot rule out the possibility that some of these associated genes were not 

probed by the microarray, the simplest explanation is that we used the conventional genome-wide 

annotation system, that associates peaks to the nearest gene promoter. Because of the chromatin 

looping mentioned above, the RXR peaks detected on the gene body (intragenic) or very further 

away (intergenic, upstream gene start) might not directly control the expression of the nearest 

promoter, but rather regulate different gene(s). On the other side, around eight thousand genes that 

expressed without RXR binding sites (Fig.13A) might really be under influence of RXR trans-

regulation. The mechanism of gene regulation via transcription factor binding to promoter is well 

established. However, the complexity of regulatory mechanism is also highlighted by evidences of 

enhancers, silencers, not to mention the emerging trans-regulation mechanism. Hence this very 

simplified annotation method has obvious shortcomings. 
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4.3 Chromatin – regulators organization for co-expressed/co-

regulated genes 

 In quest of exploring the mechanism underlying transcription factors binding sites 

architecture regulation on transcription, many studies have focused on the structure of cis-

regulatory elements specially around promoters. One of the most commonly described structure is 

the homotypic cluster, a group of adjacent binding sites for the same transcription factor. These 

“homotypic clustering” of binding sites has been demonstrated in many organisms (bacteria (Ezer 

et al., 2014b, Hermsen et al., 2006), fruit fly (Lifanov et al., 2003), human (Sinha et al., 2008, Gotea 

et al., 2010) and mouse, rat (Zhang et al., 2006) genomes). Furthermore, as mentioned earlier, 

several studies have reported the “hotspots” where several ChIP-seq binding sites of multiple 

transcription factors overlapped. This contribution to transcription regulation of the order and 

spacing of transcription factors binding sites has been demonstrated by several synthetic studies 

(Cox et al., 2007, Gertz et al., 2009, Sharon et al., 2012, Smith et al., 2013). This is consistent with 

the trend of modeling gene regulation considering not only the regulatory sequence but also the 

architecture and abundance of TFs (Ezer et al., 2014a). Similarly, a study (Cremona et al., 2015) 

demonstrated a small percentage of binding loci that were extensively shared by many transcription 

factors with very high tag density occupancy. The target genes of these loci are expressed in a 

highly transcription factors binding-dependent manner. With the promiscuous nature of RXR and 

our observation of RXR peaks clustered densely around promoter-rich regions, it is plausible to 

consider the intersection between the “homotypic clustering” and the “HOT-spot” concepts. This 

leads to two hypotheses: first, this kind of binding is a property of every transcription factor, or at 

least of those which act as ancillary factors requiring association with other transcription factors. 

The second hypothesis is that these bindings represent the “signature sites” of each cell type, where 
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multiple transcription factors share their roles in regulation. The two scenarios may co-exist or may 

exclusively exist. It may be a general principle, but what we could observe in our case, is that the 

presence of cluster of RXR peaks increases the gene transcription. 

 The concept of nucleus compartmentalization showed that similar functional genes are 

arranged together in the three-dimensional space and share the transcription regulation machinery. 

Corresponding to cellular energy conservation, transcription factors converge via weak protein-

protein interaction (potentially by low-complexity domains), their high concentrations act in 

reciprocity and in competition to regulate transcription activity of the local chromatin. This modern 

transcription factors hub model is consistent with the presence of regions which bear highly 

overlapped ChIP-seq signals, from which stemmed the definition of HOT-spot. RXR with its 

promiscuous heterodimer capability would thus have its share upon these magnetizing spots. The 

role of RXR in recruiting and regulating transcription activity goes beyond the concentration-

dependent kinetics. The ability of RXR to selectively recruit genes to the transcription factory hub 

was observed through the difference of RXR signal amplitudes in promoter-clusters of highly 

expressed genes. 

 The studies of co-regulated genes have uncovered the structure of transcription factories, 

where transcription factors play pivotal role. Whether factories pre-assemble before active genes 

migrate in (Mitchell and Fraser, 2008, Ferrai et al., 2010), or the genes create the docking sites for 

dynamic factories to assemble (Darzacq et al., 2007, Yao et al., 2007) is still debated with 

contrasted evidences. Nevertheless, it has been evidenced that transcription factors are specialized 

for some factories (Xu and Cook, 2008, Schoenfelder et al., 2010). With binding of specific 

transcription factors, genes gain access to the transcription factories. Thus, with multiple bindings 

of RXR, the target genes are tethered more efficiently at the factories, maintaining the open 
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chromatin conformation, increasing frequency of transcription activation and initiation, which in 

turn results in higher produced mRNA. RXR could be bound tightly within a stable factory, the 

DNA will go through this factory and be extruded. The RXR DNA binding will eventually be 

disrupted as the initial binding site goes away, and the RXR DNA binding domain may randomly 

land on other part of the DNA being extruded and be crosslinked at that time. This concept could 

explain the special profile of the high plateaus. 

4.4 Pol-II: the unexpected expected journey  

 It has been established that some transcription factors exert their action not by binding to 

chromatin but to RNA polymerase (Zenkin and Yuzenkova, 2015, Stepanova et al., 2009). Also the 

kinetics of formation from the initial transcription complex to the productive transcription complex 

is shown to be highly dynamic (Engel et al., 2018), involving multiple players, co-activator, 

inhibitor, etc. Moreover, one of the crucial kinetic of nuclear receptors is to attract co-regulators: 

coactivators and corepressors at the promoter sites of target genes. However, the high percentage 

(38%) of RXR bound at promoter we found within our data does not match with the proportion 

reported by other studies. A ChIP-seq study of PPAR:RXR heterodimer study reported only 10% 

of peaks located from TSS to 5kb upstream in mouse adipocyte (Nielsen et al., 2008), the same 

percentage was reported in mouse liver for LXR:RXR binding sites (Boergesen et al., 2012). 

Without giving percentage another ChIP-seq study of VDR:RXR heterodimer stated that the 

bindings can localize more frequently at multiple sites many kilobases from target gene promoters 

than the exact promoters (Pike et al., 2010); the same observation was reported for RXR binding in 

macrophages (Daniel et al., 2014). The only ChIP-seq study emphasizing the high proportion of 

RXR binding in promoters, similar to our study was reported on RAR:RXR in F9 embryonal 

carcinoma cells (Chatagnon et al., 2015). Although different cell lines, tissues, antibodies used for 
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different studies can contribute to the discordant percentages, this high promoter attribution is still 

an interesting phenomenon. Another aspect of RXR binding that we did not explore in our study is 

the effect of possible ligands. As we listed in the Introduction, the presence of endogenous RXR 

ligand in vivo is still debatable. Lefebvre showed that dephosphorylation decreases the DNA 

binding of RXRα (Lefebvre et al., 1995). Another study later highlighted that, upon retinoid acid 

treatment, RARα recruitment to the target gene promoters was increased and this phenomenon was 

controlled by phosphorylation cascades initiated by the rapid RA activation of the 

p38MAPK/MSK1 pathway (Bruck et al., 2009). The relationship with the RA signaling pathway 

to this promoter targeting and the high promoter percentage in RAR:RXR binding may indicate 

that these association is specific for the heterodimer of RXR with RAR. However, we did not 

observe any preference toward RAR motif in promoter peaks within our data set. This later study 

also demonstrated the co-recruitment of general transcription factor TFIIH with RXRα to the 

promoters. This could contribute to the accumulation of RXR at promoters and particularly at TSS 

with its high correlation with Pol-II occupancy, that we observed in our data. The co-occurrence of 

Pol-II and RXR could be explained by the possibility of a crosslink of RXR and Pol-II during 

immunoprecipitation steps, or of a cross-reaction of the antibody. However, we identified several 

promoter enriched regions with Pol-II but devoid of RXR signal (Fig.16B), which would in theory 

exclude a systematic cross-reaction of the antibody, although in fairness, the regions enriched with 

Pol-II but devoid of RXR signal could also be explained by a batch effect since different sets of 

mice were used for RXR and Pol-II immunoprecipitations. That being said, inspecting the 27 amino 

acids sequence used to raise our RXR antibody, did not reveal any similarity with any proteins 

present in the transcription machinery that could have elicited a cross-reaction.  
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 Many studies have demonstrated great overlapping between RXR and Pol-II, or a high 

correlation between RXR signal and Pol-II signal (Nielsen et al., 2008, Daniel et al., 2014, Kosters 

et al., 2013, Boergesen et al., 2012). This relationship was never taken as anything else other than 

as evidence of RXR transcription regulatory ability due to the assumption that determination of the 

activity of Pol-II is a reliable indicator of transcriptional activation (Koch and Andrau, 2011, Wang 

et al., 2011, Bonn et al., 2012). But is there more than just correlation of the two very dependent 

transcription drivers? Beside the theory of randomly crosslinked factors at the site where DNA is 

being extruded, is it possible that RXR actually binds to, or at least attaches somehow to the 

productive transcription machinery in action? Or the signal of RXR along the gene bodies simply 

resulted from RXR probing the chromatin and the transcription machinery on its own act? The 

coincidence theory is becoming unlikely if we consider how synchronized the oscillation of signal 

between RXR and Pol-II were. Initial inspection of highly transcribed genes showed that less than 

half of RXR binding have similar binding pattern along the genes, from TSS to PAS with the pattern 

of Pol-II. During the process of clustering PPAR-RXR target genes, a study identified two classes 

of genes: first class with decreased Pol-II during adipocyte differentiation including genes involving 

in cell cycle and cell proliferation; second class with increased Pol-II during adipocyte 

differentiation including genes involving in lipid and glucose metabolism signaling pathways 

(Nielsen et al., 2008). These two classes are remarkedly similar to what we observed in our study: 

different pathway enrichment analyses have proven that there were clearly distinct functions for the 

genes where RXR tag along Pol-II, versus those where RXR and Pol-II are uncorrelated (Fig.32). 

Which factor(s) determine(s) when and where RXR attaches to Pol-II and what is the function of 

such behavior are still to be discovered. One possible theory is that RXR is bound and poised at 

promoters of crucial, constantly high expressed genes, necessary for cellular survival functions such 
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as cell-fate/cell-phase check-points, apoptosis, etc. In contrast, other genes involved in adaptation 

to daily metabolism are governed by different manner that would not need such constant “pre-

activated” state. 

4.5 What is the function of high plateaus 

 Several algorithms have been developed for ChIP-seq peak shape identification, mainly for 

the purpose of merging positive and negative strands peaks produced by single-ended ChIP-seq, or 

for the comparison between different ChIP-seq marks or cell lines (Hower et al., 2011, Mendoza-

Parra et al., 2013, Schweikert et al., 2013, Rezaeian and Rueda, 2014, Strino and Lappe, 2016). 

Nevertheless, few studies have pointed out different biological significance governed by the 

different shapes of transcription factor bindings (Cremona et al., 2015). Hence, it is astounding that 

a profile similar to our high plateaus has never been reported so far for any transcription factors. 

The observation of the phenomenon of plateau signal of Pol-II was mentioned in subfigure from an 

earlier study, which they termed the “waviness” and contributed them to presence of numerous 

repeat sequences scattered around the genome and is commonly observed in profiles of Pol-II or 

histone marks (Nielsen et al., 2008). This profile may contribute to too small bindings percentage 

of most ChIP-seq studies and thus usually are discarded as outliers; or the peak-callers algorithms 

tend to cut around the tops of these plateaus and report them as individual normal peaks. These are 

possible explanations for why this profile is still “flying under the radar” within ChIP-seq studies. 

Nevertheless, the observation of the high plateaus definitely brought more supporting evidence for 

the linkage of RXR with the Pol-II machinery. The usually observed profile of Pol-II machine is 

described as follow: highly accumulated at the promoters during the poise state when transcription 

machinery is assembled, then slightly stretched out on the gene body during transcript elongation, 

and finally a second accumulation site after the PAS when the machinery pauses for 3'-end 
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processing factor recruitment. The RXR signal mimics precisely this action of Pol-II along the gene. 

For the short high plateau genes, the tight involvement of RXR within the transcription factory 

discussed above can explain this imitation profile. 

 Interestingly, using the genome-wide ChIP-seq track provided in GSM864674 data set 

where they used sc-553 RXRa antibody from Santa Cruz on female mice (Boergesen et al., 2012), 

we could observe similar high plateau profiles on several high plateau genes detected in our study. 

The presence of high plateau profiles in another study using a different RXR antibody further 

supports the conclusion that these plateaus were not the product of a cross-reaction with Pol-II. In 

more details, the high plateaus can be found on the groups of some fibrinogen and apolipoprotein 

genes. However, on the serpin and cytochrome genes, this profile was inconsistent with our data. 

As described by (Cai et al., 2003), the transcription of cytochrome genes family has been shown to 

be RXRa-dependent in male mice. The RXRa genome-wide profile, using LG268 as ligand, was 

reported to be sexually dimorphic and to determine male-female differences in the expression of 

hepatic lipid processing genes in mice (Kosters et al., 2013). The use of LG268 ligand was shown 

to increase RXR binding sites in female mice, as wells as the expression of many of these “newly” 

target genes (including Pnpla3 and Elovl6). Given that Boergesen used female mice for their study 

(Boergesen et al., 2012), and that we used male mice, the inconsistency of high plateaus on 

cytochromes genes between our studies could be due to the sex-dimorphism. Of course, further 

experiments must be conducted to test this theory, but our list of high plateau genes might act as 

guideline for future RXR (or other nuclear receptors) target gene studies to focus their search. 
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4.6 Circadian rhythms 

 Although many circadian studies have been experimented before, and many have 

established the rhythmic landscape of liver epigenetic and transcriptional activity (Wager-Smith 

and Kay, 2000, Akhtar et al., 2002, Panda et al., 2002, Storch et al., 2002, Ueda et al., 2002, Yang 

et al., 2007, Yang et al., 2006, Bozek et al., 2010, Koike et al., 2012, Hughes et al., 2009), there has 

been no golden path for biologic rhythms analysis. A guideline provided by Hughes group can be 

considered as initial practices consensus to analyze biologic rhythmic data (Hughes et al., 2017). 

There is large discordance in findings of which genes are considered cycling between different 

studies. This depends on many experimental factors, such as the stability of mRNA, the time 

sampling resolution, and also on the analysis method, for example which harmonic regression or 

threshold is being used. The conclusion of rhythmic cycling of biologic data can shift drastically 

between studies. For example, the circadian rhythms of three isotypes of RXR genes reported by a 

study using real-time PCR of the same mouse line with similar age and gender showed only RXRa 

to be rhythmic and RXRb,g were deemed non-rhythmic (Yang et al., 2006); while in our microarray 

data set, RXRg has the most significant expression level change through time compared to the other 

two. Extending the cycling analysis to the realm of binding signal of transcription factors is a big 

reach. Not dwelling into the fact that there is not much correspondence between the strength of 

transactivation effect with the amplitude of TF signal at binding sites, the distributions of signal 

amplitude oscillation of different DNA-binding proteins never follows the same normal 

distribution. Thus, applying the same false discovery rate threshold as 0.05 may not be the optimal 

choice. Despite the best efforts made to standardize the biological data of time-wise analyses, we 

remain dependent on increasing replicates and sampling time points to minimize and compensate 

the errors raised by analysis methods. Given the lack of replicates and the relatively low time 
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sampling resolution of our study scheme, our circadian results could not fully represent the full 

image of RXR circadian and ultradian rhythms in mouse liver. Nevertheless, we did observe in our 

data some overlapping pathways with the liver circadian and ultradian transcriptome reported by a 

study from M.E. Hughes (Hughes et al., 2009). Also, the occurrence of different cycling patterns 

might only be expressed under certain conditions, especially for the ultradian (van der Veen et al., 

2006). Hence, experiments with alternative perturbations on one or more liver cycles may bring 

forth more information on the circadian/ultradian regulation of RXR. Although the report from 

Hughes et al. proposed that the 8 and 12 hours ultradian might be the result of combination of 

opposite-phase circadian cycles in cultured cell, and not be intrinsic for cellular functions (Hughes 

et al., 2009), more and more later studies have proven the autonomous of ultradian rhythm with 

respect to cellular clock-maintaining functions (Isomura and Kageyama, 2014, Blum et al., 2014, 

Guzmán et al., 2017, Veen and Gerkema, 2017).  

 A recent study showed the interconnection of the cellular clock and nutrient cycle, where 

more than 70% of the cycling mouse liver transcriptome loses rhythmicity under arrhythmic feeding 

(food provided in day time only) (Greenwell et al., 2019). Interestingly, Rxra expression rhythm 

became arrhythmic with the arrhythmic food intake, while Rxrg normally arrhythmic expression 

became rhythmic under arrhythmic feeding, and Rxrb expression rhythm became arrhythmic even 

when the mice had food access all day. The three Rxr genes were shown to be clock-independent 

(Wang et al., 2018), while in different study Rxrg was shown to be among the genes that lose 

rhythm in Bmal1-/- mice (Sobel et al., 2017). Regardless of how the RXR genes change their 

expression rhythms, it is clear that the perturbation of the cellular clock and of the food intake cycle 

affects the rhythmic expression of RXR isoforms. This emphasizes the importance of experiment 
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control and normalization for any comparison of RXR regulation effects between different 

conditions. 

 Thus far, we have seen evidences of static RXR binding and of the involvement of RXR 

within the transcription machinery. This concept is on apparent contradiction with the well-known 

hit-and-run mechanism generally described for transcription factors. However, the question of the 

ligand effect must be brought up here. The association of RXR with ligand has been discussed as a 

mean to increase the number of RXR binding sites. This indicates that the kinetic of RXR activity 

changes with the presence of ligand. The underlying mechanism was explored in a study using 

single cell imaging on HeLa cells (Brazda et al., 2014) which showed that the fraction of RXRs 

static chromatin-bound population immediately and reversibly increased from 15% to 43% upon 

agonist LG100268 treatment. This redistribution was observed throughout the nucleus and involved 

a major contribution from coactivator binding. These results indicated that RXR has a distinct, 

highly dynamic nuclear behavior and follows hit-and-run kinetics which is reduced by LG100268. 

So, although our study probed the in vivo status of RXR binding on a tissue rather than a cell line, 

it is evident that each static RXR binding site has the innate potential for dynamic change. Whether 

or not we agree with the existence of endogenous ligand for RXR, if RXR binding kinetic changes 

with induced retinoids, we might anticipate that the same change may occur with some metabolites, 

who might act as endogenous RXR ligands. Given the fluctuation of metabolites during the cycle 

of food intake, it is possible that some of RXR static bindings might turn to dynamic bindings in 

rhythmic fashion. We observed that the high tag density level of RXR observed at the promoters, 

especially at TSS, did not change through time as much as in other genomic regions. Thus, the 

different response of reduced RXR mobility to LG100268 in (Brazda et al., 2014) may correspond 

to the static signal of RXR bound at gene promoters. The effect of this ligand on RXR was further 
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explored in angiogenic activity in macrophages (Daniel et al., 2014) where it was found that the 

RXR cistrome binding sites were not impacted by ligand. Among these binding sites, a subset of 

liganded RXR-bound sites presented PU.1 binding, an increase of enhancer RNA, and P300 

recruitment, thus allowing to assign these sites to active enhancers. These sites were shown to 

predominantly reside in CTCF/cohesin-limited functional domains, and were validated using 

chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq). These 

enhancers were shown to communicate with promoters via stable or RXR-induced loops and some 

of these enhancers interact with each other, forming an inter-chromosomal network, and provides 

the macrophage with a novel inducible program. This finding is concordant with several studies 

where they showed RXR may modulate the accessibility of DNA (Martens et al., 2010, Menendez-

Gutierrez and Ricote, 2017). Such studies that established pioneer-like function of RXR as well as 

a recent study showing the same regulation mechanism for the core pacemaker CLOCK/BMAL1 

(Trott and Menet, 2018), make plausible the hypothesis that RXR function as a circadian keeper 

with the same permissive but pilot role of priming the target genes for flexible stimulations. Hence, 

it is tempting to postulate that the mobility of RXR play part in the modulation of circadian 

management to ensure a flexible daily metabolism adaptation. 

4.7 The heterodimer partners: public playground (with rules) 

 With the single-ended ChIP-seq, only a short section at one end of the immunoprecipitated 

DNA fragment is sequenced, which makes it impossible to know the exact size of the 

immunoprecipitated fragment. The peak-caller methods have added computational steps to 

calculate the mean of the true lengths of such fragments, and use it to shift and combine reads from 

both DNA strands (Landt et al., 2012) in order to assign the signal to the DNA region likely 

associated with the protein binding site (example tool https://ccg.epfl.ch/chipseq/). However, since 
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the shift is global, this presupposes that the average fragment length at each site is the same, which 

is not necessarily the case. The paired-end sequencing technology resolved those ambiguities and 

provided us with precise, high resolution binding sites, an advantage that we exploited for our motif 

analysis. Compared to ChIP-exo, which allows high resolution binding sites detection but requires 

a complex procedure, our exploitation of paired-end ChIP-seq is more practical, putting weight on 

downstream dedicated analysis rather than putting weight on the precision of laboratory procedure. 

 The ChIP-seq study using RXR antibody (in conjunction with PPARg) in 3T3-L1 cells 

showed that the shared percentage of genome-wide profiles jointly occupied by RXR and PPARg 

increased during adipocyte differentiation (Nielsen et al., 2008). However, the shared target genes 

analysis mainly showed concordance with the PPAR lipid regulation function. The later genome-

wide profiling study for RXRa along with LXR and PPARα in mouse liver, exploited the effect of 

bexarotene – a retinoid selectively activating RXR (Boergesen et al., 2012). Even though they 

observed extensive overlap of binding sites between these factors, they also showed relatively 

selective binding of PPARα-RXR to DR1 and of LXR-RXR to DR4. RXR binding sites in mouse 

liver showed little overlap with bindings sites in 3T3-L1 from Nielsen study, indicating a different 

repertoire of RXR regulated targets between the liver and this cell line. They showed the capacity 

of LXR-agonist T0901317 to induce PPAR-associated genes involved in lipogenesis and fatty acid 

oxidation, and to repress PPAR-associated genes involved in lipoprotein metabolism. This 

suggested that a cross talk exists between hepatic LXR- and PPAR-regulated pathways. A different 

profiling of RXR coupled with that of RARα was designed, in the presence of all-trans RA as a 

ligand for RAR, in acute promyelocytic leukemia (APL) cell line and in two APL primary blasts 

(Martens et al., 2010). They found great colocalization of PML-RARα with RXR, and showed that 

all-trans RA treatment induces changes in H3 acetylation, but not H3K27me3, H3K9me3, or DNA 
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methylation at the PML-RARα/RXR binding sites or at nearby target genes. This suggested that 

PML-RARα/RXR carry important functions as a local chromatin modulator for hematopoietic 

differentiation, RAR signaling, and epigenetic control. Profiling of RXR in heterodimer with RAR 

were later described again in mouse embryonic cells, also using all-trans RA as ligand (Chatagnon 

et al., 2015). They showed that, similar to the finding reported by Nielson (Nielsen et al., 2008), 

RXR binding sites were found to be more constant during cell differentiation than binding sites of 

its partner RAR. The shared binding sites of RAR/RXR, however changed significantly. In 

undifferentiated cells, these regions were characterized by binding of pluripotency-associated 

factors and a high prevalence of the non-canonical DR0 response element. In differentiated cells, 

these regions are enriched in functional Sox17 binding sites and are characterized with a higher 

frequency of the canonical DR5 motif. These suggested that the RAR/RXR action is mediated via 

two different sets of regulatory regions tightly associated with cell differentiation status. A quite 

different heterodimer partner of RXR, the constitutive androstane receptor (CAR) was studied 

recently. CAR-linked genes were showed to be involved in not only the main known function of 

detoxification, but also in regulating lipid, carbohydrate, and energy metabolism (Tian et al., 2018). 

They also found enriched DR4 motif for the CAR:RXR bound sites. Similar to Nielsen study, they 

also found certain degree of occurrence of C/EBP motif within the shared binding sites. 

 As described above, the multiple functions of RXR has been thus far overshadowed by the 

shared pathways with its partners, to the extent that some researchers called RXR a “silent” partner 

(Castillo et al., 2004, Botling et al., 1997, Evans and Mangelsdorf, 2014). Some studies sought to 

characterize unique RXR profile, but always under effect of ligand inducement (Kosters et al., 

2013, Daniel et al., 2014, Brazda et al., 2014). However, the motifs and pathways reported in all 

of these studies that claimed to be specific might be the products of “you see what you seek”. The 
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most common finding across all RXR ChIP-seq and its partners ChIP-seq studies are the high 

overlap of not only the known consensus RXR heterodimer partners, but also consensus of other 

nuclear receptors and transcription factors. This is similar to the extensive overlapping of binding 

modes and motifs we found within our studies using different analyses methods. The difficulty we 

encountered while attempting to extrapolate specific binding modes to specific pathways hinted at 

the complexity of the regulation networks. Future studies that use target gene approaches may take 

their regulator-target results with a grain of salt, especially for those core metabolomic genes who 

displayed multiple binding modes in our analysis. Because they are most likely driven not by a 

single factor, but by multiple factors and layers of regulation. It is likely that there is no central 

node of regulation as we hoped, but rather a cooperative function, where RXR acts as a 

gateway/scaffolding member that prime the targets for all the regulators of the consortium. In 

response to diverse stimuli, transcription factors alter their interactions with RXR to varying 

degrees, thereby rewiring the regulation network. 
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