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Abstract

How gene function evolves is a central question of evolutionary biology. It can be investigated by comparing functional
genomics results between species and between genes. Most comparative studies of functional genomics have used
pairwise comparisons. Yet it has been shown that this can provide biased results, as genes, like species, are phylogenet-
ically related. Phylogenetic comparative methods should be used to correct for this, but they depend on strong assump-
tions, including unbiased tree estimates relative to the hypothesis being tested. Such methods have recently been used to
test the “ortholog conjecture,” the hypothesis that functional evolution is faster in paralogs than in orthologs. Although
pairwise comparisons of tissue specificity (s) provided support for the ortholog conjecture, phylogenetic independent
contrasts did not. Our reanalysis on the same gene trees identified problems with the time calibration of duplication
nodes. We find that the gene trees used suffer from important biases, due to the inclusion of trees with no duplication
nodes, to the relative age of speciations and duplications, to systematic differences in branch lengths, and to non-
Brownian motion of tissue specificity on many trees. We find that incorrect implementation of phylogenetic method in
empirical gene trees with duplications can be problematic. Controlling for biases allows successful use of phylogenetic
methods to study the evolution of gene function and provides some support for the ortholog conjecture using three
different phylogenetic approaches.
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Introduction
The “ortholog conjecture,” a standard model of phylogenom-
ics, has become a topic of debate in recent years (Koonin
2005; Studer and Robinson-Rechavi 2009; Nehrt et al. 2011;
Altenhoff et al. 2012; Chen and Zhang 2012; Gabald�on and
Koonin 2013; Rogozin et al. 2014; Kryuchkova-Mostacci and
Robinson-Rechavi 2016; Dunn et al. 2018; Stamboulian et al.
2020). The ortholog conjecture is routinely used by both ex-
perimental and computational biologists in predicting or un-
derstanding gene function. According to this model,
orthologs (i.e., homologous genes which diverged by a speci-
ation event) retain equivalent or very similar functions,
whereas paralogs (i.e., homologous genes which diverged by
a duplication event) share less similar functions (Studer and
Robinson-Rechavi 2009). This is linked to the hypothesis that
paralogs evolve more rapidly. This hypothesis was challenged
by results suggesting that paralogs would be functionally
more similar than orthologs (Nehrt et al. 2011). Such findings
not only raised questions on the evolutionary role of gene
duplication but also questioned the reliability of using ortho-
logs to annotate unknown gene functions in different species
(Sonnhammer et al. 2014). Several studies (Altenhoff et al.
2012; Chen and Zhang 2012; Rogozin et al. 2014; Kryuchkova-

Mostacci and Robinson-Rechavi 2016) later found support for
the ortholog conjecture, mostly based on comparisons of
gene expression data.

Although all previous studies of the ortholog conjecture
had used pairwise comparisons of orthologs and paralogs, a
recent article suggested that this was flawed, and that phylo-
genetic comparative methods should be used (Dunn et al.
2018). Phylogenetic structure can violate the fundamental
assumption of independent observations in statistics, and
thus ignoring it can lead to mistakes (Felsenstein 1985). A
solution is to use phylogeny-based methods. Phylogenetic
independent contrast (PIC) (Felsenstein 1985) and phyloge-
netic generalized least square (Martins and Hansen 1997;
Grafen 1989; Rohlf 2001) are the most commonly used phy-
logenetic comparative methods. They were developed under
a purely neutral model of evolution, that is, Brownian motion
(BM). Such Brownian processes have been extended under
maximum likelihood, to allow different rates of evolution on
different branches of a phylogeny (O’Meara et al. 2006;
Thomas et al. 2006) and to include stabilizing selection in
which the trait is shifted toward a single fitness optimum,
or multiple different adaptive optima (i.e., “Ornstein–
Uhlenbeck” or OU process) (Hansen 1997; Butler and King
2004; Beaulieu et al. 2012). Such phylogenetic modeling
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requires a priori knowledge of different states on the tree.
Alternatively, Markov chain Monte Carlo (MCMC) sampling
in a Bayesian framework has been used to accurately estimate
the number, location, and magnitude of shifts in evolutionary
rates, or in optimal trait values without a priori assignment of
states (Eastman et al. 2011; Pennell et al. 2014; Uyeda and
Harmon 2014; Catal�an et al. 2019). Bayesian approaches are
time consuming, whereas OU modeling with phylogenetic
lasso algorithm allows a faster detection of shifts in optimal
trait value (Khabbazian et al. 2016). Moreover, OU has been
used to model gene expression evolution (Rohlfs and Nielsen
2015; Chen et al. 2019).

Among phylogenetic methods, PIC is widely adopted for
its relative simplicity and its applicability to a wide range of
statistical procedures (Cooper, Thomas, FitzJohn, et al. 2016;
Dunn et al. 2018). The performance of PIC relies on three
basic assumptions: a correct tree topology, accurate branch
lengths, and trait evolution following BM (where trait vari-
ance accrues as a linear function of time) (Felsenstein 1985;
Garland 1992; Garland et al. 1992; D�ıaz-Uriarte and Garland
1998; Freckleton and Harvey 2006; Cooper, Thomas, FitzJohn,
et al. 2016). If any of these assumptions is incorrect, this can
lead to incorrect interpretation of results, unless biases are
controlled for (D�ıaz-Uriarte and Garland 1996, 1998).
Although previous applications of PIC studied multivariate
traits on pure speciation trees, Dunn et al. (2018) took an
innovative approach in applying PIC to compare the diver-
gence rates of a univariate trait between two different node
events (“speciation” and “duplication”), to test the ortholog
conjecture. They performed extensive analyses in support of
their results. However, such an application might be prob-
lematic because the time of occurrence of gene duplication,
one of the two types of events compared, is unknowable by
external information (e.g., no fossil evidence). Therefore, fur-
ther study is required to understand why Dunn et al. (2018)
obtained results which are inconsistent with previous studies.
It is possible that all the conclusions drawn by previous stud-
ies on gene duplication are incorrect due to overlooking phy-
logenetic tree structure. If so, it should be well supported.

We re-examined the data of Dunn et al. (2018), after
reproducing their results using the resources and scripts pro-
vided by the authors. We have uncovered problems with the
use of PIC on biased calibrated gene trees, violation of the
underlying assumptions, and the inclusion of pure speciation
gene trees. We used PIC on gene trees after fixing the calibra-
tion bias for old duplication nodes. With proper controls, the

phylogenetic method supports the ortholog conjecture. To
verify this result, we also applied data modeling approaches
using a maximum likelihood framework, and using a
reversible-jump Bayesian MCMC algorithm. Support for the
ortholog conjecture still holds with proper controls.

Results

Issues with Straightforward Application of PICs
Dunn et al. (2018) have made a relevant argument that the
ortholog conjecture test should be done in a phylogenetic
framework, as closely related species or genes tend to share
more similar traits. They applied PIC to 8,520 time-calibrated
trees (table 1) and reported evidence against the ortholog
conjecture for tissue specificity s (median: PICspeciation ¼
0.0072, PICduplication ¼ 0.0051, one-sided Wilcoxon test
P¼ 1). Yet, the same data supported the ortholog conjecture
when analyzed by pairwise comparisons both in Kryuchkova-
Mostacci and Robinson-Rechavi (2016) and in the re-analysis
by Dunn et al. (2018). To understand the incongruence be-
tween PIC and pairwise comparisons, they performed simu-
lations of s on their trees under the ortholog conjecture and
under a null of uniform BM. Both methods should be able to
distinguish the null from the ortholog conjecture for diverse
trees (supplementary fig. S1, Supplementary Material online).
Under the simulations of Dunn et al. (2018), pairwise com-
parisons could not distinguish the two scenarios, whereas the
PIC could. As their results on empirical data resembled those
on the null simulation, they questioned both the use of pair-
wise comparisons and the support for the ortholog conjec-
ture from tissue specificity data.

To understand their results, we first reproduced and rean-
alyzed the data of Dunn et al. (2018), focusing on the phylo-
genetic approach. Dunn et al. reported a nonsignificant result
(P¼ 1) for the PIC under the null simulation as well as for the
empirical data, using a Wilcoxon one-tailed rank test to check
whether the contrasts of duplication events are higher than
the contrasts of speciation events. Surprisingly, our reanalysis
with a Wilcoxon two-tailed rank test on the same data shows
that the PIC rejects the null hypothesis on the null simula-
tions (fig. 1A), with significant support for higher contrasts
after speciation than duplication. This means that the PIC
method supports a trend opposite to the trend expected
under the ortholog conjecture, in a null simulation. This
was robust to repeating the simulations with different ran-
dom seed number (supplementary fig. S2, Supplementary
Material online). This indicates that neither of the

Table 1. Information on Different Tree Sets, Number of Internal Node Events, and Node Ages Used in This Reanalysis.

Data Sets
Number
of Trees

Number of
Speciation

Events

Number of
Duplication

Events
Number of
NA Events

Maximum
Speciation Node

Age (My)

Maximum
Duplication Node

Age (My)

Dunn et al.: full set 8,520 67,911 21,071 26,794 296 11,799,977
Dunn et al.: trees with strong phylogenetic signals 2,082 13,118 4,056 5,186 296 1,342
This study: after excluding pure speciation trees 4,288 38,882 15,274

(8,556 young
1 6,718 old)

15,201 296 1,175

NOTE.—My, million years; young, age � 296 My; old, age > 296 My.
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approaches, PIC or pairwise, worked properly for these cali-
brated trees, as both the approaches reject the null hypothesis
when simulations are performed under the null. Moreover,
when we used a Wilcoxon two-tailed rank test instead of a
one-tailed test on the empirical data, the result was also sig-
nificant (P< 2.2e�16), in the same unexpected direction.

Statistical nonindependence among species trait values
because of their phylogenetic relatedness can be measured
by phylogenetic signal (Pagel 1999; Freckleton et al. 2002;
Blomberg et al. 2003; Münkemüller et al. 2012; Molina-
Venegas and Rodr�ıguez 2017). Use of the PIC is mainly im-
portant for the data sets with strong phylogenetic signal,
where it allows to recover phylogenetically independence.
Dunn et al. (2018) used Blomberg’s K. Its value ranges from
0 to1 for each tree, where a value of 0 indicates no phylo-
genetic signal for the trait studied, and a value close to 1 or
higher indicates strong phylogenetic signal (Pagel 1999;
Freckleton et al. 2002; Blomberg et al. 2003; Münkemüller
et al. 2012; Molina-Venegas and Rodr�ıguez 2017). With a
cutoff of K> 0.551, Dunn et al. (2018) obtained only 2,082
trees (table 1), 24.4% of the total, with strong phylogenetic
signal. The phylogenetic method still rejects the null hypoth-
esis under null simulations for those 2,082 trees using a
Wilcoxon two-tailed rank test (fig. 1B), showing that the

problem is not simply due to low phylogenetic signal. Using
a cutoff of P< 0.05 together with K> 0.551 leads to 1,135
statistically significant trees with strong phylogenetic signals,
for which we obtained a similar result (supplementary fig. S3,
Supplementary Material online). This means that the bias is
not limited to the selection of tree sets, or to the number of
speciation or duplication events used for the analyses. As the
trend was similar for these 1,135 trees, we continued analyses
with the 2,082 trees of Dunn et al. (2018) for consistency.

The accuracy and performance of the PIC method largely
depend on proper branch length calibration in absolute time
(e.g., in million years—My) (Garland 1992; D�ıaz-Uriarte and
Garland 1998; Cooper, Thomas, FitzJohn, et al. 2016). We thus
investigated possible biases created during calibration of gene
trees. Due to nonavailability of external references for dupli-
cation time points (e.g., no fossils), Dunn et al. (2018) used
only seven speciation time points to calibrate substitution
rate trees. The ages of other node events are estimated using
penalized likelihood (Sanderson 2002) and vary for the same
duplication clade labels even within the same gene trees. The
oldest speciation age for their calibrated trees was 296 My
(table 1), corresponding to the use of chicken as the out-
group. Surprisingly, the calibrated node age of the oldest du-
plication event was 11,799,977 My (table 1 and

FIG. 1. Reanalyses of phylogenetic simulation data of Dunn et al. (2018). P values are from Wilcoxon two-tailed tests. Values inside boxplots denote
median PIC values of the corresponding events. In null simulations, there should be no difference in contrasts between events. In OC (ortholog
conjecture) simulations, contrasts are expected to be higher for duplication than for speciation. (A) Higher contrasts for speciation than dupli-
cation reject the null hypothesis under null simulation scenario for all empirical time calibrated gene trees. (B) Results are similar with a subset of
trees with strong phylogenetic signal for s.
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supplementary table S1, Supplementary Material online), that
is, 2,600 times older than the Earth. This is indicative of issues
with time calibration. It is due to the fact that pruning was
done prior to the time calibration in Dunn et al. (2018).
Pruning to species with s data leads to trees with many du-
plication (or NA) nodes older than 296 My. If there were older
(>296 My) speciation events before pruning, they are also
removed (supplementary fig. S4A, Supplementary Material
online). If the root node of a pruned tree is a speciation,
the duplication ages are constrained by this speciation.
Otherwise, there are no constraints for the duplication events
older than the oldest speciation events (supplementary fig. S4
and table S1, Supplementary Material online), which can in-
troduce a calibration bias. This unreliable branch length esti-
mation for the old duplication nodes eventually led to much
larger expected variances for gene duplication events than for
speciation events (supplementary fig. S5A and B,
Supplementary Material online).

PIC of a node is a ratio of changes in trait values (s here) for
descendant nodes to their expected variance, that is, the
lengths of the two branches that connect the node to its
two descendants. In this study, lower contrasts refer to lower
PIC values, whereas the lower contrasts variance means lower
calibrated branch lengths. This means that similar changes in
s for two nodes can produce different PIC values, with the
lower contrast for the node with higher expected variance
(i.e., calibrated branch length). In the null simulations only the
s values are simulated, whereas the branch lengths (hence the
expected variances) are taken from the empirical data, and
thus share its biases. This explains why contrasts are lower for
duplications than for speciations under null simulations as
well as with empirical data. Such calibration bias in branch
lengths violates the second assumption of PIC applicability
and inflates type I error rates (D�ıaz-Uriarte and Garland 1996,
1998).

Randomization Tests to Assess the Performance of
Phylogenetic Method
We used randomization tests to assess bias in different anal-
yses of the empirical data set. Our expectation is that the
trend of the empirical result should differ from the random-
ized ones. In a first randomization test, we permuted the s
values across the tips of each tree without altering the node
events of the trees. By such randomization, the real phyloge-
netic relationships between trait values are removed for each
tree. When we compared the node contrasts of the speciation
and duplication events computed based on these 8,420 ran-
domized s trees (fig. 2A), we found the same pattern as
reported for the empirical gene trees by Dunn et al. (2018),
contrary to expectation. It confirms that results are driven by
their large differences in branch lengths (i.e., in expected
variances) (fig. 2B), as on simulated null data. Any effect of
trait divergence rates of speciation and duplication events is
always masked by this branch length difference of node
events. This violates the basic assumption of applicability of
the PIC method to Brownian trait evolution. To remove the
problem of difference in expected variances of the two events,
we performed a second randomization test: We kept the

original s value for tips but randomly shuffled the events
(duplication, speciation, or NA) of internal nodes of the
8,420 empirical gene trees to maintain the original propor-
tions of speciation and duplication events. The resulting trend
(fig. 2C) still resembled the empirical gene trees data. This
appears due to the fact that the majority of the nodes are
speciations (fig. 2D and table 1) with node ages � 296 My.
Most of the trees with many duplication events on the other
hand have ancient duplication events for which the evolu-
tionary rates of duplication are often masked by the effect of
longer branch lengths. Opposite to our expectation, the cal-
ibrated trees with no or few duplications have higher overall
nodes contrast (apparent fast evolution) than trees with
many duplications (apparent slow evolution). This might be
due to greater difficulty in detecting paralogs for fast-evolving
genes. Therefore, reshuffling of events may not change the
observed pattern of higher speciation contrasts than dupli-
cation contrasts.

Out of 8,520 calibrated trees, 2,990 were pure speciation
trees with no duplication events. For these 2,990 trees, ran-
dom shuffling of events had no impact. To avoid this bias, we
removed those 2,990 speciation trees as well as trees with
negative branch lengths and randomized the trait or the in-
ternal node events 100 times on the remaining 5,479 trees.
However, we still always obtained significantly higher con-
trasts of speciation than of duplication (supplementary fig.
S6A and B, Supplementary Material online). The randomiza-
tion pattern is the same restricting to 2,082 trees with strong
phylogenetic signal (supplementary fig. S6C and D,
Supplementary Material online).

All these analyses indicate that the results reported by
Dunn et al. (2018) are biased by the calibrated phylogeny
structures and that this bias is not easy to correct. We pro-
pose three approaches to correct for this bias and recover a
proper phylogenetic signal of trait evolution.

Approach 1: PIC with Diagnostic Tests
Diagnostic tests for each tree are essential to ensure phylo-
genetic independence of node contrasts, especially as there is
evidence of bias in the calibrated trees. This can be verified by
absence of correlation between the absolute value of PICs and
their standard deviations, node height, node age, or node
depth (Garland 1992; Garland et al. 1992; D�ıaz-Uriarte and
Garland 1996, 1998; Freckleton 2000; Freckleton and Harvey
2006; Cooper, Thomas, FitzJohn, et al. 2016). A statistically
significant negative or positive correlation in any of the diag-
nostic tests confirms that the PICs for that tree are noninde-
pendent (Garland 1992; Garland et al. 1992; D�ıaz-Uriarte and
Garland 1996, 1998; Freckleton 2000; Freckleton and Harvey
2006; Cooper, Thomas, FitzJohn, et al. 2016); in practice, we
used P< 0.05 for significance.

We performed such diagnostic tests on 4,288 trees, for
which calibration biases are fixed for old duplication nodes
(see Materials and Methods, table 1). Among them only 2,088
(48.7%), which includes 15,321 speciation and 6,213 duplica-
tion nodes, passed all four diagnostics tests for s evolution.
We performed our PIC analyses separately for 3,948 young
(�296 My, the oldest speciation in the trees) and 2,265 old
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(>296 My) duplication events. Analyses on young duplicates
after diagnostic tests provided support for the ortholog con-
jecture (fig. 3), but old duplicates did not. Randomization
tests showed patterns distinct from real data only for the
young duplicates (supplementary fig. S7A and B,
Supplementary Material online), indicating a biological pat-
tern rather than a data bias. Thus PIC on the trees after
diagnostic plot tests supports the ortholog conjecture for
young duplicates, whereas the inference remains biased for
older duplicates.

Approach 2: PIC with Branch Length Transformation
Most phylogenetic methods are developed for the Brownian
model of trait evolution, including PIC (Felsenstein 1985;
Cornwell and Nakagawa 2017). Deviations from pure BM
violate the fundamental assumptions of PIC applicability
and can affect its performance for testing hypotheses about
correlated evolution (Garland 1992; Garland et al. 1992; D�ıaz-

Uriarte and Garland 1996, 1998). Using model fitting (see
Materials and Methods), we found that 75.6% gene trees
(supplementary fig. S8, Supplementary Material online) sup-
ported the OU model. Remedial measures, such as branch
length transformations and diagnostic tests, can substantially
recover the performance of the PIC methods when character
evolution is not BM, or when contrasts are nonindependent
of the phylogeny (Garland et al. 1992; D�ıaz-Uriarte and
Garland 1996, 1998).

We thus applied branch length transformation on all 4,288
trees, along with diagnostic tests for consistency. The 4,190
trees (97.7%) which pass diagnostic tests after branch length
transformation support the ortholog conjecture (fig. 4A). Due
to the lack of absolute age for these transformed trees, we did
not distinguish young and old duplicates. Applying such
branch length transformation then diagnostic tests to the
gene trees of Dunn et al., we also found support for the
ortholog conjecture in 98.8% (8,417 out of 8,520)

FIG. 2. Analyses on calibrated empirical gene trees of Dunn et al. (2018). P values are from Wilcoxon two-tailed tests. (A) Randomly shuffling the s
values of the tips for 8,520 gene trees does not alter the empirical trend of an opposite trend to the ortholog conjecture. (B) The expected variance
is much higher for duplication than speciation events irrespective of the number of tips considered for the study. (C) Using the original s data, if we
permute the events (Speciation or Duplication or NA) of the nodes, the trend of result remains. (D) The proportion of speciation events is much
higher than duplication events for all time-calibrated trees; the dotted line represents the median proportion of both events; a high proportion of
trees have no duplication events.
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FIG. 3. The ortholog conjecture test on s for trees passing diagnostic plot tests. P values are from Wilcoxon two-tailed tests. Values inside boxplots
denote median PIC values of the corresponding events. Young duplicates: age� 296 My, the maximum speciation age; old duplicates: age >296
My.

FIG. 4. The ortholog conjecture test for contrasts standardized branch transformed trees. P values are from Wilcoxon two-tailed tests. Values inside
boxplots denote median PIC value of the corresponding event. (A) Using 4,190 out of 4,288 calibrated trees that passed diagnostic tests following
branch length transformation. (B) Permuting s and (C) permuting internal events on contrasts standardized branch length transformed trees
produce distinct patterns compared with the empirical gene trees of (A).

Special Care Is Needed in Applying Phylogenetic Comparative Methods . doi:10.1093/molbev/msaa288 MBE

1619



(supplementary fig. S9A, Supplementary Material online), as
well as for 99.9% (2,080 out of 2,082) of their trees with strong
phylogenetic signal (supplementary fig. S10A, Supplementary
Material online). Randomization tests on all these sets of trees
following branch length transformations clearly showed dis-
tinct patterns compared with the empirical data (fig. 4B and
C; supplementary figs. S9B, S9C, S10B, and S10C,
Supplementary Material online), indicating that results are
not due to inference bias once the data are properly
transformed.

Approach 3: Phylogenetic Data Modeling
State-dependent model fitting allows to compare the evolu-
tionary rates (r2) and the changes in adaptive optimum value
(h) associated with specific states (speciation or duplication)
for each tree (Beaulieu et al. 2012; Clavel et al. 2015). Under
the ortholog conjecture, our expectation is that there should
be more shifts in optimum value of s between paralogs than
between orthologs. Moreover, the evolutionary rates after
duplication should be higher than after speciation (r2

duplica-

tion > r2
speciation). Of course, trends on empirical data should

differ from randomized ones. When we modeled the evolu-
tion of s (see Materials and Methods), 32 out of 4,288 trees
failed to fit any model due to invariance in s. Among the
others, 308 supported BM1, 704 BMM, 2,874 OU1, and 370
OUM, as the best-fit models (supplementary fig. S8,
Supplementary Material online). We performed our analyses
separately for young and old duplicates.

On the 8.6% multi optima trees (OUM) the optimum
value are significantly higher for duplications, both young
and old (hdup > hspe) (supplementary table S2,
Supplementary Material online). Thus, paralogs shift toward
higher tissue specificity. These results are not observed on
randomized trees, supporting a biological pattern in the
data (supplementary table S2, Supplementary Material
online).

We also applied a Bayesian method (Uyeda and Harmon
2014) to quantify the number of adaptive optimum shifts, as
suggested for small trees (Cooper, Thomas, Venditti, et al.
2016). Unlike the other approach, such detection of evolu-
tionary shifts in a phylogeny does not need a priori knowledge
of different states on the tree. Using a strict posterior prob-
ability threshold of�0.7 with this method, we find that most
optimum shifts per branch for s follow duplications (median
after speciation: 0%, after duplication: 12.5%, paired two-sided
Wilcoxon rank-sum test P< 2.2e�16). An OU model can of-
ten be incorrectly favored over a BM model in a maximum
likelihood framework when applied to trees with <200 tips
(Cooper, Thomas, Venditti, et al. 2016). Our gene trees have a
median of only 15 tips. We thus applied a conservative
Bayesian approach on all of the 3,244 trees for which OU
was the preferred model (OU1þOUM). Even with such a
strict posterior probability threshold of �0.7, 1,101 trees
(33.9%) still supported the OUM model, including 901 trees
identified as OU1 by maximum likelihood. We detected the
same trend of optimum shifts per branch (median after spe-
ciation: 2.3%, after duplication: 10%, paired Wilcoxon rank-
sum test P< 2.2e�16). These results are largely consistent for

both young and old duplicates (table 2; supplementary table
S3, Supplementary Material online). However, the rates of
optimum shifts are faster only for young duplicates (table 2;
supplementary table S3, Supplementary Material online).

Analyses on the trees where r2 varies between events
(BMM) also support the ortholog conjecture for young dupli-
cates (table 3). Randomized data showed distinct patterns
from empirical data. However, again there was neither sup-
port for the ortholog conjecture nor signal relative to ran-
domization for the old duplicates.

Discussion
We agree with Dunn et al. (2018) that evolutionary compar-
isons should be done considering a phylogenetic framework
when possible. However, this does not imply that phyloge-
netic methods can be applied easily to phylogenomics. To get
a clear picture, we limited our study to the same gene trees
used by Dunn et al. (2018). Our reanalysis identified problems
generated by the time calibration of old duplication nodes of
pruned trees, the inclusion of pure speciation gene trees, and
violations of the Brownian model. The strongest bias was for
duplication nodes preceding the oldest speciation nodes.
This, in turn, introduced several biases in the analyses and
influenced results.

When we identified and controlled for such biases, PIC
results changed to support the ortholog conjecture, consis-
tent with our previous pairwise analysis (Kryuchkova-
Mostacci and Robinson-Rechavi 2016) on the same s data.
Our fundamental point is that the conclusions drawn by
Dunn et al., but also by anyone else who will have followed
the same approach of applying PIC to gene trees, are not
reliable unless extreme care is taken. This is because gene
trees with orthologs and paralogs have more complex evolu-
tionary histories, and different sampling biases, than species
trees for which these methods were developed.

To date, a few studies have applied phylogenetic compar-
ative methods to understand the effect of gene duplication
on functional evolution (Oakley et al. 2005, 2006; Eng et al.
2009; Rohlfs and Nielsen 2015; Dunn et al. 2018; Fukushima
and Pollock 2020). None before Dunn et al. applied PIC
method to compare speciation and duplication events on
the same trees using a single continuous trait. Such applica-
tion requires thorough testing of the fundamental assump-
tions of the method on such time-calibrated trees (Garland
1992; Garland et al. 1992; D�ıaz-Uriarte and Garland 1996,
1998; Freckleton 2000; Freckleton and Harvey 2006; Cooper,
Thomas, FitzJohn, et al. 2016). Hence, we explored whether
the application of a phylogenetic method might inflate errors
if applied without assumption testing, typically by rejecting of
the null hypothesis under the null (simulations or random-
izations). Indeed, it is the case (fig. 1A and B). Along with the
calibration bias for old duplication nodes, the relative ages of
the speciation and duplication events strongly differ in these
trees due to the choice of species. Using such trees without
control for biases may bring about lack of statistical power to
detect the signal of ortholog conjecture, and even bias toward
an opposite pseudosignal.
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Time calibration of ancient duplication events is one of the
major issues we uncovered. The approach of Dunn et al. con-
sidered pruned trees with available trait (s here) data for time
calibration using speciation time points (see Materials and
Methods). Such pruned trees often have many duplication
nodes older than the oldest speciation nodes. Sequence-
based evolutionary rate (e.g., dN/dS) analyses in different spe-
cies have found higher sequence evolutionary rate following
gene duplication (Conant and Wagner 2003; Kim and Yi 2006;
Scannell and Wolfe 2007; Han et al. 2009; Studer and
Robinson-Rechavi 2009; Panchin et al. 2010; Pegueroles
et al. 2013; Pich i Rosell�o and Kondrashov 2014; Holland
et al. 2017). Therefore, calibration bias is not surprising for
those duplication nodes in the absence of time constraints
(supplementary fig. S4A–C and table S1, Supplementary
Material online). Instead, we performed time calibration be-
fore pruning, so that the oldest speciation time points can
provide upper age limits and reduce calibration bias (supple-
mentary fig. S4D–F, Supplementary Material online). This is
strongly recommended because the performance of the phy-
logenetic methods relies on accurate branch length informa-
tion, especially for multistate univariate trait analysis.

Dunn et al. (2018) performed several analyses (e.g., added
random noise in the speciation calibration time points,

extended terminal branch length, removed old duplication
nodes) to take into account issues with branch lengths, but
their simulations and our randomization tests show that they
were insufficient to correct for this bias (fig. 2A and C). Dunn
et al. also provided the hutan::picx() R function to compute
PIC for OU trees. In their simulation-based function, they
estimated ancestral states by the “GLS_OUS” method using
the bias calibrated phylogeny. Therefore, their method does
not add anything specific to deal with the OU trees. As they
did not control for phylogenetic independence of the con-
trasts, and did not consider the relative ages of the speciation
and old duplication events, they always obtained lower PIC of
duplication events. Due to such phylogenetic internal param-
eter dependence, their PIC analyses produced similar trends
with real or randomized data.

Assumptions of proper branch length information and of
BM of trait evolution are related, so that modifications of
branch lengths can change the evolutionary model (D�ıaz-
Uriarte and Garland 1996, 1998). Contrasting a single rate
OU to BM models, Dunn et al. (2018) identified 99.9% gene
trees which favored an OU model, more explicitly an OU1
model. This appears to be 67% when we performed multi-
variate data modeling in a maximum likelihood framework
on trees with less or no calibration bias (supplementary fig. S8,

Table 2. Summary Statistics on 1,101 OUM Trees Passing a Posterior Probability Cutoff of �0.7 in a Bayesian Framework.

Duplication Age Proportions of Regime
Shifts per Branch

Paired Two-Sided
Wilcoxon Rank Sum Test

Regime Shift Rates
(shifts/My)

Two-Sided Wilcoxon
Rank Test

After Speciation After Duplication After Speciation After Duplication

Young 3.1% 4.5% 3.4e212 0.013 0.031 1.7e211

Old 2.6% 10% <2.2e216 0.013 0.0023 <2.2e216

NOTE.—Above analyses include 13,824 speciation, 3,027 young, and 2,814 old duplication events. Values shown in the table indicate median values. The difference in
proportions of regime shifts per branch after speciation events for two types of duplications is due to the different sets of trees used. Few trees shared both types of duplicates.
Proportion of regime shifts per branch of events is estimated for each tree, and thus paired Wilcoxon test is used to compare the difference. A single gene tree can have multiple-
optima shift rates for events, and thus two-sided Wilcoxon rank test was used for comparison.

Table 3. Summary Statistics for Brownian Trees.

Duplication Age Data r2
Speciation r2

Duplication r2
Duplication/r

2
Speciation P-value

Young Empirical
(nSpeciation5 4,642;
nDuplication 5 1,742)

9e25 1.4e24 1.5 5e212

Randomized s

(nSpeciation5 4,618;
nDuplication 5 1,723)

6.9e24 2.2e24 0.32 1.4e213

Randomized events
(nSpeciation5 3,215;
nDuplication 5 1,438)

1.7e24 8.5e25 0.5 0.02

Old Empirical
(nSpeciation5 5,356;
nDuplication 5 1,295)

1.7e24 2e29 1.2e25 <2.2e216

Randomized s

(nSpeciation5 5,337;
nDuplication 5 1,291)

9.1e24 2.5e210 2.7e27 <2.2e216

Randomized events
(nSpeciation5 2,788;
nDuplication 5 800)

1.8e24 2.1e29 1.2e25 <2.2e216

NOTE.—Median values of r2 are shown; P-value from paired two-sided Wilcoxon test.
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Supplementary Material online). PIC analyses with diagnostic
tests provided weak support for the ortholog conjecture for
the young duplicates (fig. 3A–C), in contrast to previous
results of Dunn et al. A small effect size in our inference is
not surprising as PIC is applied on OU trees. Similar patterns
of results from empirical and randomization tests for the old
duplicates indicate that one should be extremely careful be-
fore integrating them into a phylogenetic analysis. Branch
length transformation attempts to transform the OU trees
to BM trees to meet the underlying assumption of phyloge-
netic comparative method (Butler and King 2004). Hence, it
can address the issue of low power when underlying assump-
tions of phylogenetic methods are violated (D�ıaz-Uriarte and
Garland 1996, 1998). Following this approach along with the
diagnostic tests, we obtained substantial support for the
ortholog conjecture (fig. 4A–C; supplementary figs. S9 and
S10, Supplementary Material online).

Phylogenetic data modeling also appears to be a powerful
tool for such hypothesis testing, where one can estimate the
trait evolutionary rates or optima shift rates per event with-
out transforming OU trees to BM trees. More support for the
OU trees (supplementary fig. S8, Supplementary Material on-
line) could be due to the fact that we performed multivariate
evolutionary model fitting mostly on small trees (Cooper,
Thomas, Venditti, et al. 2016). Among them only 8.6% trees
supported the OUM model. Following the recommendation
of Cooper, Thomas, Venditti, et al. (2016), we applied a
Bayesian approach on small trees to identify multi optima
trees. Although previous studies (Uyeda and Harmon 2014;
Khabbazian et al. 2016; Uyeda et al. 2017) have suggested a
liberal cutoff of �0.2 to detect an optimum shift with a
Bayesian approach, we used a strict posterior probability cut-
off of�0.7. We performed our analyses on the 33.9% of OUM
trees passing such a strict posterior probability threshold. Our
results from the PIC analyses with controls were also sup-
ported by the maximum likelihood and Bayesian data model-
ing approaches. This shows that once proper precautions are
taken, the empirical trends do not depend on the number of
selected gene trees or of internal node events included.

Empirical support for the ortholog conjecture has been
mixed, with some studies supporting it (Koonin 2005;
Studer and Robinson-Rechavi 2009; Altenhoff et al. 2012;
Chen and Zhang 2012; Gabald�on and Koonin 2013;
Rogozin et al. 2014; Kryuchkova-Mostacci and Robinson-
Rechavi 2016; Fukushima and Pollock 2020), and a few failing
to do so (Nehrt et al. 2011; Dunn et al. 2018; Stamboulian
et al. 2020). Our results provide additional support for the
ortholog conjecture using tissue specificity data in a phyloge-
netic framework after controlling for biases. Due to lack of
detailed functional information, many studies are still limited
to gene expression data as a proxy of function. Recently, using
a functional replaceability assay, experimental studies
(Kachroo et al. 2015; Laurent et al. 2020) have shown that
orthologous genes can be swapped between essential yeast
genes and human, although this is rarely the case for all the
members of expanded human gene families (Laurent et al.
2020), validating one prediction of the ortholog conjecture.

Materials and Methods

Data Reproducibility Details
Our analyses are based on 21,124 gene trees obtained from
ENSEMBL Compara v.75 (Herrero et al. 2016) as used by
Dunn et al. (2018). We used the same random seed number
as in Dunn et al. (2018) to reproduce the simulation results
for reanalysis. All reproduced data of Dunn et al. were stored
in the “manuscript_dunn.RData” file (https://doi.org/10.5281/
zenodo.4003391). We used the results stored in the “data” or
“phylo” slot of the trees for further analyses. To differentiate
our own function from theirs (Dunn et al. 2018), we renamed
the original function script of Dunn et al. from “functions.R”
to “functions_Dunn.R.” We made separate scripts for PIC
analyses (Premanuscript_run_TMRR.R) and data modeling
analyses (Model_fitting.R). Some of the analyses were time
consuming, so we stored our outputs in
“Analyses_TMRR.RData” and “Model_fitting_TMRR.Rdata”
files (https://doi.org/10.5281/zenodo.4003391) to load during
analyses. All the details of different functions are provided
inside the scripts. We supply all the previously stored data
(to reduce computation time during reproduction of result)
and function files including our own (functions_TM_new.R)
with this study. All scripts are available on GitHub: https://
github.com/tbegum/Testing_the_ortholog_conjecture.

Fixing Time Calibration Bias of Duplication Nodes
We first present the approach that Dunn et al. (2018) used,
for clarity. When two speciation nodes had the same label in
the gene tree, Dunn et al. edited the more recent one to “NA”
rather than “speciation.” Indeed the presence of the same
clade names at different node depths forces all the interven-
ing branches to have length zero when the tree is time cal-
ibrated, leading to failure of calibration (Dunn et al. 2018). For
trait evolution, they annotated the tips of these modified
trees with precomputed tissue specificity data, s from eight
vertebrate species (human, gorilla, chimpanzee, macaque,
mouse, opossum, platypus, and chicken) (from Kryuchkova-
Mostacci and Robinson-Rechavi [2016]). s is a univariate in-
dex between 0 and 1 that measures tissue specificity of gene
expression (Yanai et al. 2005): s close to 1 indicates high tissue
specificity, whereas close to 0 indicates more ubiquitous ex-
pression. Here, s was computed across six tissues: brain, cer-
ebellum, heart, kidney, liver, and testis, based on the RNA-seq
data of Brawand et al. (2011). Dunn et al. pruned the gene
trees to remove tips with missing s data and then time cal-
ibrated them using speciation clade ages in the chronos()
function with the “correlated” model from the R package
“ape” (Paradis et al. 2004). The modified NA clades were
not used for this calibration. They used seven speciation
time points with a maximum age of 296 My. Thus, they
obtained 8,520 calibrated gene trees having at least four
tips with nonnull trait data (table 1; supplementary fig.
S4A–C, Supplementary Material online). Among these trees,
2,990 were pure speciation trees, which include 12,919 speci-
ation events, or 19% of all speciation nodes.

Relative to Dunn et al., we exchanged the order of pruning
and time calibration steps, that is, we first time calibrated the
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21,124 modified (i.e., with NA added) gene trees, followed by
pruning to have at least four tips with s data. This makes use
of all 32 available speciations time points and helps to limit
the calibration bias of the old duplication events (supplemen-
tary fig. S4D–F, Supplementary Material online). Calibration
fails for some trees, and we obtained 7,336 calibrated gene
trees. The maximum node age of old duplication events is
1,175.2 My for these trees, as opposed to 11,799,977 My (older
than the universe) for the trees obtained by the original ap-
proach (table 1; supplementary table S1, Supplementary
Material online). Among these 7,336 gene trees, we kept
4,288 which have at least one speciation and one duplication
events; we removed 39 pure duplication and 3,009 pure spe-
ciation trees. This 4,288 gene tree set is our basis for evaluating
phylogenetic methods’ capacity to test the ortholog conjec-
ture (table 1): We compare the evolutionary rates, r2, or PICs
of speciation and duplication events of the same genes.

Model Selection for s Evolution
We followed a state-dependent model-fitting approach to
identify BM or OU trees. We classified time-calibrated gene
duplication nodes as “young” (�296 My, the maximum spe-
ciation age) or “old” (>296 My) before model fitting. We
performed stochastic mapping of our gene trees by assigning
discrete states (“speciation,” “young-duplication,” “old-
duplication,” and “NA”) to the branches based on the corre-
sponding ancestral node events using the simmap() function
of the phytools R package (Revell 2012). For each mapped
tree, we fitted four different models of s evolution using
maximum likelihood: 1) BM1, a single BM rate of evolution
(i.e., r2

speciation¼ r2
young-duplication¼ r2

old-duplication); 2) BMM,
a BM with multiple rates of evolution for different events (i.e.,
different r2 are allowed); 3) OU1, a single optimum OU
model (i.e., hspeciation¼ hyoung-duplication¼ hold-duplication, r

2
spe-

ciation¼ r2
young-duplication¼ r2

old-duplication, a speciation¼ ayoung-

duplication ¼ a old-duplication), and 4) OUM, a multi optimum
OU model with identical strength of selection and rate of drift
acting on all selective regimes (i.e., like OU1 but hspeciation 6¼
hyoung-duplication 6¼ hold-duplication).

We used both the mvMORPH (Clavel et al. 2015) and
OUwie (Beaulieu et al. 2012) R packages to perform model
fitting. Sometimes the information contained within a tree is
insufficient with respect to the complexity of the fitted mod-
els. This can lead to poor model choice by returning a log-
likelihood that is suboptimal and may provide incorrect esti-
mation of one or more model parameters for that tree
(Beaulieu et al. 2012). Hence, we included the diagnostics
(diagnostic¼T or diagn¼T) during model fitting. The Eigen
values of the Hessian matrix of the diagnostics indicate
whether convergence of the model has been achieved or
whether the parameter estimates are reliable (Beaulieu et al.
2012). For the BM1, BMM, OU1, and OUM models, we first
fitted the model using mvMORPH for each gene tree. If any of
the models failed to converge for the tree or if the Eigen
values of the Hessian matrix indicated that it was not reliable,
we refitted that model using OUwie to include it in model
comparison. If still it failed, we removed that model for that
tree. For model comparisons on each gene tree, we calculated

the Akaike weights (x) for each fitted model by means of the
second-order Akaike information criteria (AICc), which
includes a correction for small sample sizes (Akaike 1974;
Burnham and Anderson 2002). The model with highest x
was selected as the best-supported model of s evolution for
the tree (Burnham and Anderson 2002; Gearty et al. 2018).
We estimated model parameters for each tree based on the
best-fit model.

Bayesian Modeling to Detect Phenotypic Optimum
Shift
Regime shifts, that is, shifts of optimal s values, in OU models
were detected by a Bayesian phylogenetic approach of the
bayou R package (Uyeda and Harmon 2014). The reversible-
jump phylogenetic comparative approach was used to per-
form MCMC sampling of locations, magnitudes and numbers
of shifts in multiple-optima OU models. We ran MCMC
chains for 100,000 generations, and the first 30% of samples
were dropped as burn-in. We used a strict threshold of pos-
terior probability �0.7 to detect an adaptive shift at a given
branch of the phylogeny. For each event (“speciation” or
“duplication”), we used a ratio of the number of optimum
shifts to the number of branches for that event to estimate
the proportions of shifts in a phylogeny.

Randomization Test of s Values
For each tree, we used s data (column name “Tau” in each
tree “data” object) across the tips to carry out our random-
ization test. To randomize, we permuted the actual s data
without altering internal node events. The pic() function of
the “ape” package (Paradis et al. 2004) was used to compute
PIC of nodes for each tree using permuted s of tips. For each
run, we compared the contrasts of speciation and duplication
events of the whole set of randomized trees to estimate dif-
ference in event contrasts based on Wilcoxon signed rank
test. For 100 runs, we repeated the above process 100 times to
obtain a distribution plot of 100 independent P values. For
our model-fitting approach, we used the same empirical sim-
map trees with permuted s data at the tips. We reestimated
the model parameters of the randomized s trees using the
best-fit model chosen for the corresponding empirical gene
trees.

Randomization Test of Node Events
Some of the speciation nodes had daughters with same clade
names in the gene trees we used for our study. Dunn et al.
changed such node events to “NA” to avoid problems during
time calibration of the trees. Such annotated node event
information (“Speciation,” “Duplication,” “NA”) for each
tree was available as “Event” in the tree “data” slot. To ran-
domize, we permuted the internal node events (added as
column name “event_new” in the “data” slot) by maintaining
the actual proportion of events for each tree. Then, we used
the PIC of actual s at tips to estimate contrasts difference
between newly assigned speciation and duplication node
events by Wilcoxon rank tests. For 100 independent runs,
we repeated the same procedure to obtain 100 independent
P values. As the internal node events were changed after such
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randomization, we reclassified gene duplication nodes as
“young” or “old” on the event modified trees and repainted
the trees. We reestimated the model parameters for the dis-
crete states of the randomized event trees using the best-fit
model chosen for the corresponding empirical gene trees.

Checking for Contrasts Standardization by Diagnostic
Tests
We used several additional diagnostic tests on those trees to
identify adequate independent nodes contrast standardiza-
tion before drawing any inference by PIC method, as recom-
mended in several studies (Garland 1992; D�ıaz-Uriarte and
Garland 1996, 1998; Freckleton and Harvey 2006; Cooper,
Thomas, FitzJohn, et al. 2016). The most usual method for
contrasts standardization is to check a correlation between
the absolute values of PICs and their expected standard devi-
ations (i.e., square root of sum of branch lengths) (Garland
et al. 1992; D�ıaz-Uriarte and Garland 1998; Cooper, Thomas,
FitzJohn, et al. 2016). Under BM, there should be no correla-
tion. This correlation test and another between the absolute
values of PICs and the logarithm of their node age are model
diagnostic tests in the caper (Comparative Analyses of
Phylogenetics and Evolution in R) package (Purvis and
Rambaut 1995; Cooper, Thomas, FitzJohn, et al. 2016; Orme
2018; R Core Team 2018). We used both of them by using the
“crunch” algorithm of the caper package, which implements
the methods originally provided in CAIC (Purvis and
Rambaut 1995; Cooper, Thomas, FitzJohn, et al. 2016; Orme
2018; R Core Team 2018). Correlation of node heights with
absolute values of contrasts or PICs has also been reported to
be a reliable indicator of deviation from the Brownian model
(Freckleton and Harvey 2006). Hence, we computed node
height for each node in a tree using the ape package
(Paradis et al. 2004). We also used the correlations of node
height and node depth to the absolute value of nodes con-
trasts to rule out significant trend in any of the four tests. We
used P< 0.05 to assess a significant correlation for the diag-
nostic tests. A significant trend (positive or negative) indicates
phylogenetic dependence for that tree (Garland 1992;
Garland et al. 1992; D�ıaz-Uriarte and Garland 1998;
Freckleton and Harvey 2006; Cooper, Thomas, FitzJohn,
et al. 2016), and we removed those trees from our analysis.
Contrast calculation on negative branch lengths is not desir-
able, so we removed trees with negative branch lengths be-
fore applying the crunch() function. To assure that nodes
contrast standardization is independent of the phylogeny,
we considered sets of trees passing all four diagnostic tests
for further analyses.

Branch Length Transformation
Transformation of branch lengths has been proposed to re-
store the performance of PIC method when the true evolu-
tionary model is not BM or is unknown, or when branch
lengths are in error (Garland et al. 1992; D�ıaz-Uriarte and
Garland 1996, 1998). In such cases, branch lengths are trans-
formed by raising a family power of branch length ranging
from 0 to 2 in intervals of 0.1, plus the log10 of the branch
lengths (D�ıaz-Uriarte and Garland 1996, 1998). For each

transformation, the program computes the correlation be-
tween the absolute value of the standardized contrasts and
their standard deviations until no significant correlation is
obtained, to ensure adequate independent contrasts stan-
dardization (D�ıaz-Uriarte and Garland 1996, 1998). Finally,
we excluded trees for which adequate contrasts standardiza-
tion is not achieved even after raising the branch length
power to 2 (D�ıaz-Uriarte and Garland 1996, 1998).

Details of Other Packages Used in This Study
We used phylosig function() of the phytools package (Revell
2012) to identify trees with phylogenetic signal (P< 0.05)
using Blomberg’s K (Blomberg et al. 2003; Münkemüller
et al. 2012; Revell 2012). Analyses and plotting were per-
formed in R version 3.5.1 (R Core Team 2018) using treeio
(Guangchuang 2018), ggtree (Guangchuang et al. 2017),
stringr (Wickham 2019), digest (Antoine Lucas et al. 2018),
dplyr (Wickham et al. 2017), tidyverse (Wickham 2017), ggre-
pel (Slowikowski 2018), gtools (Warnes et al. 2018), ggplot2
(Wickham 2016), cowplot (Wilke 2019), easyGgplot2
(Kassambara 2014), gridExtra (Auguie 2017), and png
(Urbanek 2013) libraries.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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