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Abstract. Climate projection studies of future changes in
snow conditions and resulting rain-on-snow (ROS) flood
events are subject to large uncertainties. Typically, emis-
sion scenario uncertainties and climate model uncertainties
are included. This is the first study on this topic to also
include quantification of natural climate variability, which
is the dominant uncertainty for precipitation at local scales
with large implications for runoff projections, for exam-
ple. To quantify natural climate variability, a weather gen-
erator was applied to simulate inherently consistent climate
variables for multiple realizations of current and future cli-
mates at 100 m spatial and hourly temporal resolution over a
12 x 12km high-altitude study area in the Swiss Alps. The
output of the weather generator was used as input for sub-
sequent simulations with an energy balance snow model.
The climate change signal for snow water resources stands
out as early as mid-century from the noise originating from
the three sources of uncertainty investigated, namely uncer-
tainty in emission scenarios, uncertainty in climate mod-
els, and natural climate variability. For ROS events, a cli-
mate change signal toward more frequent and intense events
was found for an RCP 8.5 scenario at high elevations at the
end of the century, consistently with other studies. However,
for ROS events with a substantial contribution of snowmelt
to runoff (> 20 %), the climate change signal was largely
masked by sources of uncertainty. Only those ROS events
where snowmelt does not play an important role during the
event will occur considerably more frequently in the future,
while ROS events with substantial snowmelt contribution

will mainly occur earlier in the year but not more frequently.
There are two reasons for this: first, although it will rain more
frequently in midwinter, the snowpack will typically still be
too cold and dry and thus cannot contribute significantly to
runoff; second, the very rapid decline in snowpack toward
early summer, when conditions typically prevail for substan-
tial contributions from snowmelt, will result in a large de-
crease in ROS events at that time of the year. Finally, nat-
ural climate variability is the primary source of uncertainty
in projections of ROS metrics until the end of the century,
contributing more than 70 % of the total uncertainty. These
results imply that both the inclusion of natural climate vari-
ability and the use of a snow model, which includes a physi-
cally based process representation of water retention, are im-
portant for ROS projections at the local scale.

1 Introduction

The future decrease in snow depth and snow water equiva-
lent in mountainous environments due to global warming has
been shown in several studies (e.g. Musselman et al., 2017;
Marty et al., 2017; Verfaillie et al., 2018; Willibald et al.,
2020). The frequency and intensity of rain-on-snow (ROS)
events are also foreseen to alter due to changes in the snow
cover, the precipitation phase, and the rain frequency and in-
tensity (e.g. Beniston and Stoffel, 2016). Despite a decreas-
ing snow cover, ROS events have been predicted to become
more frequent and intense at high elevations (Surfleet and
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Tullos, 2013; Beniston and Stoffel, 2016; Moran-Tejeda et
al., 2016; Musselman et al., 2018; Ohba and Kawase, 2020;
Sezen et al., 2020). A contrary study found that ROS events
as a cause of annual runoff maxima will disappear at lower
elevations and slightly decrease at higher elevations by the
end of the century (Chegwidden et al., 2020). They anal-
ysed only annual runoff maxima, identifying this as a key
difference in methodology from Musselman et al. (2018),
which may cause the difference in findings. Furthermore,
process-based hydrological models were used to investigate
ROS events, thus encompassing a wider range of processes
than the former studies, which were limited to the coinci-
dence of snow and rain. When analysing historic observa-
tions, Sikorska-Senoner and Seibert (2020) found a decreas-
ing number of ROS events also in highly elevated catch-
ments.

Different sources of uncertainty were considered in some
of these ROS studies; however, the relative importance of
internal climate variability compared to other uncertainty
sources has not been previously assessed. The latter is largely
a consequence of the chaotic nature of the atmosphere (Deser
et al., 2012a). It is a result of purely periodic external forc-
ing, a non-linear interplay of feedbacks within the climate
system, and random fluctuations in physical or chemical fac-
tors in the atmosphere (Ghil, 2002). For climate change anal-
yses, the role of internal climate variability on projections
of air temperature and precipitation has been quantified to-
gether with other uncertainty sources, e.g. emission scenario
and climate model uncertainty (Hawkins and Sutton, 2009,
2011; Deser et al., 2012b; Fatichi et al., 2016; Lehner et
al., 2020). In general, the smaller the scale and the shorter
the time horizon of the projections, the more important the
relative contribution of internal climate variability to overall
uncertainty (e.g. Hawkins and Sutton, 2011). Projections of
precipitation are generally more affected by natural climate
variability than those of air temperature (Hawkins and Sut-
ton, 2009, 2011; Peleg et al., 2019). For mean and extreme
precipitation at local scales (i.e. weather stations) internal cli-
mate variability is the dominant source of uncertainty, not
only for short time horizons but also through the end of this
century (Fatichi et al., 2016). While it is possible for future
research to reduce the amount of uncertainty if climate mod-
els are improved or emission scenarios are constrained, the
amount of natural climate variability is not reducible. These
findings raise the question of how informative climate pro-
jections based only on climate model outputs are and will be
at local scales (Fatichi et al., 2016).

Willibald et al. (2020) studied the effects of internal cli-
mate variability on the change in mean and maximum snow
depth at eight stations in the Swiss Alps and concluded that
it is a major source of uncertainty for time horizons up to
50 years and more. The effects of internal climate variability
on projected runoff have been highlighted in several stud-
ies. For instance, the climate change signals for the mean,
frequency and seasonality of runoff in the middle of this
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century are masked by natural climate variability (Fatichi et
al., 2014), while they will emerge by the end of the century
(Addor et al., 2014). The signal varies with elevation and is
dependent on the hydrological components (e.g. snowmelt,
evapotranspiration) that drive runoff (Moraga et al., 2021).
Lafaysse et al. (2014) concluded that internal climate vari-
ability is capable of exacerbating, moderating or even revers-
ing a climate change signal of streamflow. These studies indi-
cate the importance of including internal climate variability
in studies of climate change impacts on catchment-scale hy-
drologic response.

In this study, the uncertainty in future projection of snow
water resources and rain-on-snow characteristics at local
scales were quantified in relation to natural climate variabil-
ity and climate model and scenario uncertainty at the local
scale. We hypothesize that snow water resources are less
affected by internal climate variability than rainfall-driven
runoff because they are more dependent on air temperature.
The frequency and intensity of ROS events are hypothe-
sized to be more influenced by natural precipitation varia-
tions compared to snow water equivalent (SWE), as they may
be less dependent on air temperature. The research questions
are as follows:

— How important is internal variability for future projec-
tions of snow resources and rain-on-snow events?

— When is the time of emergence of changes in snow re-
sources and rain-on-snow events?

We explore whether the commonly found increase in ROS
frequency and intensity holds for future climates when nat-
ural climate variability is considered. To this end we used
simulations of a high-resolution weather generator, AWE-
GEN-2d, generating multiple stochastic ensembles of future
climate projections that have been shown to realistically rep-
resent natural climate variability (Peleg et al., 2017). To ac-
count for the complexity of snow accumulation and melt pro-
cesses and their response to a changing climate (in line with
the discussion in Clark et al., 2016), we used in our analysis
an energy balance snow model at high spatial and temporal
resolution.

2 Methods
2.1 Study area

The “Gletsch” area in central Switzerland, with altitudes be-
tween 1400 and 3500 m a.s.]. and with an extent of 144 km?
(Fig. 1), has been selected as the study area. It has a mean
annual air temperature of —1.3 °C and a mean annual precip-
itation of 1700 mm. Nival conditions prevail at these eleva-
tions today, yet the area is low enough that climate change
may affect the current snow regime (e.g. Marty et al., 2016).
The study area was chosen to encompass the elevation range
for which an increase in the number of ROS events has been
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shown in other studies. Observational data for training the
weather generator and validating the model chain in and near
the study area were available as detailed in Table 1. Note
that the Rhone glacier is located within the study area, but
its receding effect was not considered. In this study, we do
not intend to investigate the combined effects of snow and
glacier retreat on mean snow water resources or ROS proper-
ties, but only the climatic effects on seasonal snow. The study
area can therefore be considered more as an example area, as
opposed to modelling the situation in situ.

2.2  Modelling set-up

The model chain consists of a two-dimensional weather gen-
erator and an energy balance snow model (squares in Fig. 2).
The data used or delivered by these models (ellipses in Fig. 2)
are described in the following subsections.

2.2.1 Climate model data

Regional climate models from the EURO-CORDEX archive
(Jacob et al., 2014) were used to obtain the CH2018 climate
scenarios (CH2018 Project Team, 2018), which was used in
this study to calculate factor of change (FC) (Anandhi et
al., 2011) needed to re-parameterize the weather generator
AWE-GEN-2d in order to generate downscaled ensembles
of future-climate variables (see Sect. 2.2.2). The 10 EURO-
CORDEX model chains with the highest spatial resolution
of 11km were used (Table S1 in the Supplement). Factors
of change were calculated following Peleg et al. (2019) for
mean temperature, mean and variance of precipitation inten-
sity based on seasonal projections (3-month average of the
climate models) and for precipitation occurrence based on
annual projections (see Appendix). The FC consists of grid-
ded values for precipitation (cf. Fig. 3b in Peleg et al., 2019)
and a single value for the entire model region for tempera-
ture. They were calculated for two emission scenarios (i.e.
RCP 4.5 and RCP 8.5) and two time horizons (i.e. a mid-
century period from 2030 to 2059 and an end-of-century pe-
riod from 2070 to 2099). A control period of 30 years (1981—
2010) was used to compute the FC. Finally, the FC was lin-
early interpolated to our 100 m resolution.

2.2.2 Weather generator

The AWE-GEN-2d model (Peleg et al., 2017) was used
to stochastically generate gridded climate variables for the
study area at 100m spatial and hourly temporal resolu-
tion. The model was developed to simulate climate variables
in complex terrain by combining physical and stochastic-
statistical methods that enable the preservation of physical
and observed dependencies between climate variables. The
weather generator is capable of reproducing both princi-
pal climate statistics and the natural climate variability for
the climate variables needed for subsequent energy balance
snow modelling. A short description of the model structure
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is given here; the readers are referred to the paper by Peleg et
al. (2017), where the model and its equations are described in
detail. The model first simulates a time series of dry and wet
periods based on a simple renewal process, then simulates
the cloud cover and precipitation (together) for each wet time
step and the cloud cover during dry periods based on the time
passes from/to the closest wet period. Wind speed and direc-
tion are then simulated independently and enable the two-
dimensional advection of the precipitation fields. The near-
surface air temperature is simulated next, conditioned on the
cloud cover of each time step. Shortwave radiation is also
directly dependent on cloud cover and on the relative humid-
ity and dew-point temperature, which are simulated as an it-
erative procedure with the near-surface air temperature and
vapour pressure at each time step. The longwave radiation is
last computed for each time step, based on the cloud cover
and near-surface air temperature.

The weather generator requires observational data for cal-
ibration, which are summarized in Table 1. Different sets of
parameters are assigned for each month to consider the sea-
sonality. The spatial structure of precipitation fields, the areal
intensity and the wet fraction of precipitation are calibrated
using the radar data at fine space-time scales. The storm re-
newal process is calibrated based on precipitation data from
the Grimsel station, also at fine temporal scale. Correction
to the precipitation intensities, to reduce errors due to high
uncertainties in the radar estimation, are conducted at the
grid cell scale using the MeteoSwiss RhiresD product. In
general the calibration procedure follows the procedure pre-
sented in Peleg et al. (2017); two important adjustments were
made to ensure a realistic input for the energy balance mod-
elling: first, the filter used in AWE-GEN-2d to account for
orographic precipitation effects was adjusted to overcome
the typical problem of undercatch by rain gauges in moun-
tainous terrain. For this purpose, the methods described by
Magnusson et al. (2014) were used to assimilate daily snow
depth sensor data into the Swiss gridded precipitation prod-
uct RhiresD (Schwarb, 2000; MeteoSwiss, 2019). With opti-
mal interpolation, a precipitation partitioning method and a
daily gridded temperature field (see Magnusson et al., 2014,
for details), the solid precipitation fraction was adjusted. The
final product consists of fields of total precipitation in a 1 km
resolution for more than 20 years for the whole of Switzer-
land. This final product also benefits from the much denser
station network of snow depth sensors at high elevations in
Switzerland compared to the rain gauge network used for
RhiresD. The weather generator used these gridded fields to
model the spatial distribution of total precipitation on an an-
nual basis. Second, the wind speed was spatially adjusted to
match the de-biased wind speeds of a numerical weather pre-
diction model in this region (Winstral et al., 2017).

The weather generator is used in two ways: first in the
trained set-up with the above-mentioned data as input to
generate current-climate conditions and second in a re-
parameterized set-up using an FC approach (see Sect. 2.2.1)
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SWE [mm]

Figure 1. Location of the study area in Switzerland (46.56° N, 8.36° E; WGS 84) (a) and map showing the extent of the model domain
(source: Federal Office of Topography swisstopo) (b). Example of modelled SWE on 1 April of a random year during current-climate

conditions (c).
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Figure 2. Flow chart of the modelling set-up.

to generate future-climate conditions (Peleg et al., 2019).
FC directly affects air temperature, precipitation occurrence
and intensity. Moreover, when these climate variables are re-
parameterized, they indirectly influence other variables based
on the interdependencies between the variables implemented
in the model (Peleg et al., 2017). Note that for generating
current-climate conditions, no information of the regional
climate models was used (Fig. 2; Peleg et al., 2017). For both
set-ups, a spatial resolution of 100 m was chosen to account
for small-scale processes that are imperative for capturing
the spatial variability in snowmelt dynamics in small moun-
tain catchments (e.g. terrain shading of direct radiation). A
resolution of 1km was chosen for precipitation, but simu-
lations were subsequently linearly resampled to 100 m. The
model domain consists of 120 x 120 grid points. A total of
50 realizations of 30 years each, representing the same cli-
matic period, were used to explore the natural climate vari-
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ability. This is consistent with the set-up presented by Pe-
leg et al. (2017, 2019), while for future-climate conditions,
the weather generator was re-parameterized using factors of
change (see Sect. 2.2; Peleg et al., 2019).

In summary, the weather generator was used to (1) provide
hourly data for the full set of required inputs for the energy
balance snow model (see next section), (2) generate climate
variables with intervariable consistency, (3) downscale and
de-bias regional climate model output, and (4) generate mul-
tiple realizations of current- and future-climate periods.

2.2.3 Snow model

The snow model used in this study is an energy balance
snow model, an evolution of the Jules Investigation Model
(JIM; Essery et al., 2013). Only a single model configuration
from this multi-model framework was used, determined by
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comparison against comprehensive data sets including snow
lysimeter data (Magnusson et al., 2015). This model was
advanced by integrating a seasonal algorithm for the frac-
tion of snow-covered area (Helbig et al., 2015, 2021), a lo-
cal adjustment of the albedo routine that better reflects the
observed elevation dependency of the albedo decrease rate
in Switzerland, and a subgrid precipitation adjustment that
takes into account the influence of topography on the dis-
tribution and redistribution of snow in mountainous terrain.
Correction functions depending on aspect and slope were
trained with a set of high-resolution snow depth maps from
airborne lidar images in the European Alps as described in
Griinewald and Lehning (2015). This method provides an ac-
curate derivation of mean snow depths from snow and precip-
itation measurements at flat sites. This model set-up is used
for the Operational Snow Hydrological Service in Switzer-
land to predict snowmelt runoff and has been thoroughly
developed through several studies (Griessinger et al., 2019;
Winstral et al., 2019; Helbig et al., 2021). The snow model
requires total precipitation (Precip), air temperature (74 ), in-
coming shortwave radiation (ISWR), incoming longwave ra-
diation (ILWR), wind, air pressure and relative humidity in
an hourly resolution which was provided by the weather gen-
erator (see Sect. 2.2.2). Precipitation was split into solid and
liquid phases using an adaptation of the method presented
in Magnusson et al. (2014) originally developed for daily
data. The snow model was run on the same resolution as the
weather generator (i.e. 120 x 120 grid points with a 100 m
spatial resolution).

2.3 Verification

The weather generator was evaluated similarly to Peleg et
al. (2017), with an emphasis on precipitation extremes as
this is considered to be relevant to study ROS events. An ex-
ample for the precipitation validation between observed data
(RhiresD, i.e. single time series of 30 years; see Table 1) and
simulated data (ensemble, multiple time series representing
the same 30-year period), with an emphasis on the extreme
precipitation intensities, for a random grid cell in the domain
is illustrated in Fig. S2. Additionally, monthly values at sta-
tions within the study area (see Table 1) of air temperature
(OBW 1, OBW 2) and incoming longwave and shortwave
radiation (GRH) were compared to the output of the weather
generator.

For evaluating the ability of the energy balance model to
simulate snow depth (HS) and SWE with measured input, the
station GUE was selected providing all required meteorolog-
ical input data for energy balance snow modelling without
major gaps and in good quality during 2 subsequent years
(see Sect. 2.2.3). This station is located 2286 m a.s.l. about
13 km from the study area (see Table 1). Except for precip-
itation, all input data were used without any preprocessing.
For precipitation, a method similar to that used to train the
weather generator using optimal interpolation was chosen
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(see Sect. 2.2.2 and Magnusson et al., 2014, for more details).
Since optimal interpolation is not able to handle structural bi-
ases (i.e. site-specific undercatch in the background field), a
correction factor of 1.3 (cf. Egli et al., 2009) was chosen to
correct for local undercatch and achieve better HS compar-
ison during accumulation phases. Note that this correction
factor was only used for the above point-scale simulations at
GUE.

To demonstrate that the combined model chain is capable
of providing reasonable HS and SWE values, observed HS
data and derived SWE from the OBW 2 station are avail-
able. Derived SWE was determined using observed HS and
a parametric model (HS2SWE) that accumulates, compacts
and melts snow layer by layer (Magnusson et al., 2014).

For all three verification steps grid points were selected
to compare them with observed station data, either by ex-
act location when the station is located within the study area
(OBW1, OBW 2, GRH) or by selecting a similar grid point
(elevation, slope, shading) if the station is outside the study
area (GUE). Root mean square errors (RMSEs) and an ad-
ditive bias were calculated for all comparisons. The stations
for validation were selected to be as close as possible to the
study area and to provide all relevant data in good quality.

2.4 Rain-on-snow definition

Based on the high-resolution results, a “contributing area” of
a ROS event can be defined. This procedure realistically de-
scribes the elevation-dependent effects on the phase of the
precipitation in combination with the presence and condi-
tion of the snowpack. For a single ROS event, these parame-
ters vary in space; i.e. they delineate an area of varying size
that contributes significantly to a ROS event (“contributing
area”). Four pixel-based criteria were applied for daily val-
ues to define a contributing area and can be found in Table 2.
The criteria differ in the amount of daily rainfall and whether
there is a substantial contribution of snowmelt to surface wa-
ter input (SWI) or not. SWI is calculated with the energy bal-
ance snow model (Sect. 2.4) and is the water input available
at the ground surface through either snowpack runoff, rain in
case of snow-free conditions or a mixture of both in case of
fractional snow cover. Snowmelt is defined here as SWI mi-
nus rainfall, i.e. the portion of surface water input that comes
from the melting process. Note that criterion 1 in Table 2 is
the same as that of Musselman et al. (2018). A “ROS day”
can then be defined as a day with a contributing area exceed-
ing a size threshold, which may depend on the application or
the user. As ROS frequency we define a yearly exceedance
probability as a function of the event size (see Sect. 3.2.3).
In contrast, the analysis of the intensity of a ROS event and
its contribution of snowmelt was only done for a predefined
minimum size of a ROS event, which we chose to be 1/3 of
the total area.

The Cryosphere, 16, 3469-3488, 2022
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Table 1. Overview of observational data used for calibration and validation. The italic inputs are weather stations either within or with
shown distance to the study area. T is air temperature, RH is relative humidity, ISWR is incoming shortwave radiation, ILWR is incoming
longwave radiation, P is air pressure, Precip is total precipitation, and HS is snow depth.

Input Variable Spatial Temporal  Calibration Distance
resolution resolution  purpose in kilometres
Calibration
Grimsel Hospiz (1980 m) Precip Point 10 min (Inter-)Storm duration 0
Engelberg (1036 m) Ta Point 1h Ta lapse rate 18
Titlis (3040 m) Ta Point 1h T lapse rate 13
Grimsel Hospiz (1980 m) Ta, RH, ISWR Point lh T lapse rate, vapour pressure 0
Weather radar Precip 2km x2km  Smin mean areal precipitation, wet area ratio 0
MERRA-2 reanalysis 0.5°x0.66° 1h cloud area ratio 0
RhiresD Precip 2km x 2km  Daily mean areal precipitation 0
Optimal interpolated precipitation  Precip 1km x 1km  Annual mean areal precipitation 0
Verification
Grimsel Hospiz (GRH, 1980 m) ISWR, ILWR Point Monthly 0
Oberwald 1 (OBWI, 2733 m) N Point Monthly 0
Oberwald 2 (OBW2, 2432 m) Ta, HS Point Monthly 0
Guetsch (GUE, 2286 m) Ta, RH, P, ISWR, ILWR,  Point lh 13
Guetsch (GUE, 2286 m) HS Point Daily 13
RhiresD Precip 2km x 2km  Daily 0

Table 2. Four alternative pixel-based criteria for ROS events.

Criterion SWE Rain  Snowmelt

[mm] [mmd~']  [%SWI]
1 > 10 > 10 > 20
2 > 10 > 10 —
3 > 10 >20 > 20
4 > 10 > 20 —

2.5 Quantification of climate change in relation to
uncertainty sources

For the sake of consistency, we compared only simulated val-
ues of current and future climates without analysing climate-
related changes between the model and observed data. How-
ever, the model was verified against observed data under
current-climate conditions in Sect. 2.3. Climate period mean
values of 50 and 500 (i.e. 50 realizations times 10 climate
models) of simulated current- and future-climate periods,
respectively, were analysed. The 5th-95th percentile range
of the 50 (500) climate period mean values was chosen to
quantify natural climate variability (and climate model un-
certainty for future-climate conditions, respectively), consis-
tent with other studies (e.g. Fatichi et al., 2016; Peleg et al.,
2019). Note that this procedure does not quantify the natu-
ral interannual variability (e.g. a high-snow year vs. a low-
snow year), but how different entire climate periods are (e.g.
a high-snow climate period vs. a low-snow climate period).

The Cryosphere, 16, 3469-3488, 2022

2.6 Uncertainty partitioning

To obtain the relative contribution of the investigated sources
of uncertainty (i.e. natural climate variability I, climate
model uncertainty M and emission scenario uncertainty S)
to the total uncertainty 7', the partitioning method presented
by Yip et al. (2011) was applied (see Appendix).

3 Results and discussion
3.1 Verification
3.1.1 Weather generator

Peleg et al. (2017) showed for a nearby mountainous region
that the weather generator can reproduce principle statis-
tics of climate variables. A similar verification to Peleg
et al. (2017) was conducted. Annual precipitation achieved
a comparable quality as the calibration that was done to
a nearby Alpine catchment (Peleg et al., 2017), as is ex-
pected since annual mean values are used for calibration (not
shown). A comparison of daily precipitation intensities with
a focus on extremes are shown in Fig. S2, which indicates
that extremes are better captured than other intensities, which
is considered important for a ROS study. Figure 3 shows
a comparison for air temperature (7 ), incoming shortwave
radiation (ISWR) and incoming longwave radiation (ILWR)
with measured data at two stations in the study area. Note
that for Grimsel Hospiz (GRH), ISWR was indirectly used
for calibration of the weather generator. Specifically, the data
were used to calibrate the vapour pressure, but not for the
variable itself. It should also be noted that the data availabil-
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ity for the stations spans only a few years and may not rep-
resent the long-term distribution well. Apart from these lim-
itations, it can be seen that T}y is slightly colder at the lower
station OBW2 in AWE-GEN-2d (bias of —0.8 °C), while it
is quite well represented at the higher station OBW1. ISWR
is underestimated in winter months, while ILWR is overesti-
mated in spring. However, it is our understanding that the
quality of the output is sufficient to analyse deviations of
simulated future-climate conditions from current ones; i.e.
no climate-related changes are compared between the model
and observed data. Note that the range plotted is inter-year
variability, in contrast to Sect. 3.2 and the following, where
inter-climate period variability is discussed.

3.1.2 Snow model

Recent publications demonstrate the quality of point-based
snow depth modelling (Winstral et al., 2019), of spatial
modelling results as inputs to a hydrologic runoff model
(Griessinger et al., 2019), or in comparison to lidar-derived
snow depth (HS) data and satellite-derived snowpack frac-
tion data (Helbig et al., 2021). Using only measured sta-
tion data as meteorological forcing, Magnusson et al. (2015)
have already quantified the quality of the original JIM models
with lysimeter data. In addition to these results, it is shown
here that the improved model can accurately reproduce snow
depth at the GUE station near the study area (Fig. 4). A
good agreement was achieved in the 2 years studied, with an
RMSE of 20 cm and a positive bias of 13 cm, calculated for
days when either the model or the observations show positive
snow depth (Fig. 4).

3.1.3 Combined verification

Figure 5 shows mean values and a spread of 1500 years sim-
ulated by the model chain and (pseudo) observations of HS
and SWE of 20 years. The good agreement indicates that
the model chain is capable of reproducing both the interan-
nual variability and mean properties. The comparison shows,
however, a slight underrepresentation of years with early in-
tense snowfall. Note that the range in the case of the obser-
vations is determined by minimum and maximum, compared
to the 5th-95th percentiles of the generated data. In addition,
the model typically simulates an earlier onset of melting, and
subsequent slower melting is typically modelled, which com-
pensates and finally results in a mean meltout that is consis-
tent with observations. These small inconsistencies notwith-
standing, the results show a level of performance that does
not compromise the use of the model combination to study
the effects of climate change based on simulated current and
future climate periods.

3.2 Climate change impact

In this section, we first provide an overview of how natural
climate variability and model uncertainty affect key inputs
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to snowpack modelling; second, we show projections of fu-
ture seasonal SWE curves; third, we discuss changes in ROS
properties; and finally, we provide a quantification of sources
of uncertainty.

3.2.1 Natural climate variability and climate model
uncertainty

Figure 6 shows the annual and spatial means of T4, precipita-
tion and SWE on 1 April for the current- and future-climate
conditions. Natural climate variability is shown with error
bars, while climate model uncertainty can be interpreted with
the differences between climate model chains. For Ty, cli-
mate model uncertainty dominates, while for precipitation,
natural climate variability dominates. This result is consis-
tent with those presented in other studies (Hawkins and Sut-
ton, 2009, 2011; Fatichi et al., 2016; Peleg et al., 2019). The
total uncertainty range of SWE on 1 April is mainly gener-
ated by natural climate variability for the mid-century, while
at the end of the century both sources of uncertainty con-
tribute similarly. A more quantitative analysis of the specific
uncertainty contributions can be found in Sect. 3.2.7. Note
that all of the following figures show uncertainty ranges of
climate period averages to illustrate how different equally
likely realizations of a future-climate period are. The inter-
annual uncertainty range is much larger (not shown) and is
not the subject of this paper.

3.2.2 Change in seasonal SWE

Figure 7 shows the seasonal evolution of areal mean SWE
for different emission scenarios and periods. The uncertainty
range for current climate (blue) is, by definition, only deter-
mined by natural variability, while for future climate (red) it
is influenced by a composite of natural variability and cli-
mate model uncertainty. From May on, the changes in SWE
for all emission scenarios and time horizons are larger than
the uncertainty range (i.e. no overlap of uncertainty ranges).
During the accumulation period, only the extreme emission
scenario RCP 8.5 at the end of the century shows no overlap,
while overlaps of up to 50 % are achieved for the other cases.
At the time of the SWE maximum in this region (1 May), the
overlap is already close to zero due to the onset of melting
in the future scenarios. Similar to Verfaillie et al. (2018), the
uncertainty in the emission scenarios is only relevant at the
end of the century, as discussed in detail in Sect. 3.2.7.

For all scenarios, the altitude effects are similar. At the
lowest altitudes (1400-1950ma.s.l.), the climate signal is
large enough to emerge clearly from the uncertainty ranges,
while the largest overlap is achieved at the highest altitudes
(3050-3600 ma.s.l.) (Fig. S1 in the Supplement). Only for
the most extreme scenario, RCP 8.5 at the end of the century,
is no overlap achieved even at the highest altitude range. This
is generally consistent with the results of Marty et al. (2017),
who also found a weakening of the climate change signal at
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Figure 4. HS observed (obs) and modelled (JIM) with station input
at station GUE.

higher elevations. Furthermore, the results are mostly consis-
tent with Willibald et al. (2020), who found a similar eleva-
tion effect in how natural climate variability can mask trends
in mean and maximum snow depth, although the role of natu-
ral climate variability seems to be larger in their study than in
our results. While at a low-altitude site only 15 % of 50 real-
izations of future-climate conditions under RCP 8.5 showed
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insignificant trends for time horizons until the middle of the
century, at a high-altitude site (Weissfluhjoch, 2540 m) it was
still 80 %. For the latter station, they still found 20 % of all
realizations with insignificant trends until the end of the cen-
tury. For our data for RCP 8.5 at the end of the century, no
overlap is found for SWE for no time of the year and also
not for the highest altitude range. Also, for low elevations
at the middle of the century, hardly any overlap is exhibited
(Fig. S1a).

In summary, these results suggest that the climate change
signal for the area-averaged SWE is generally larger than the
associated uncertainty. Only for elevations above 2000 m and
for the months between January and April are there likely re-
alizations of future climate with an equal amount of SWE
as today. These exceptions can be characterized as situations
where precipitation variability can strongly influence SWE
amounts, i.e. when most of the precipitation falls as snow,
and melt is negligible. However, the later onset of SWE ac-
cumulation in future climate prevents natural variability from
being able to fully mask the climate change signal in the ac-
cumulation season, as is the case with precipitation (Peleg et
al., 2019) or runoff (Fatichi et al., 2014; Moraga et al., 2021).
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3.2.3 Frequency of rain-on-snow events

Figure 8 presents the exceedance probability of contributing
area sizes of ROS events for all different pixel-based criteria
(see Table 2) for RCP 8.5 at the end of the century. For ex-
ample, in Fig. 8a, using criterion 1, approximately nine ROS
events per year (exceedance probability of 0.0247) are sim-
ulated with a contributing area greater than 20 % of the to-
tal area for current- and future-climate conditions. For this
most extreme scenario, there is a climate change signal to-
ward more frequent events for most of the contributing area
size thresholds. However, whether or not the climate signal
emerges from uncertainty ranges depends on the pixel-based
criterion to define a ROS event. For criterion 4 and partially
for criterion 2 (see Table 2) the signal of change is apparent,
while this is not the case for criteria that also require 20 %
of the SWI contribution from snowmelt (criteria 1 and 3).
Increasing the rainfall threshold results in a clearer climate
change signal, likely because rainfall in higher precipitation
intensities is more frequent at the end of the century (Fig. S3)
due to more total precipitation (Fig. 6) and due to warmer air
temperatures, which increase the liquid fraction. The reason
why the increase in ROS frequency is masked when the ad-
ditional melt demand is used to define a ROS event can be
found in the change in seasonality of ROS events and is dis-
cussed in Sect. 3.2.4. For other emission scenarios and ROS
definitions, the overlap is even more pronounced (Fig. S4).

It is also worth noting the altitude dependence of this anal-
ysis for RCP 8.5 at the end of the century. At high elevations
typically above 2500 m a.s.l., the increase in ROS events is
pronounced for criteria 2 (not shown) and 4 (Fig. S5). For
all other criteria defining ROS events and all other emission
scenarios and periods, an increase at high altitudes above
2500 ma.s.l. is also observed, but this is masked by the
sources of uncertainty (e.g. Fig. S6 for criterion 1).
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In summary, natural climate variability and climate model
uncertainty question the claim that ROS events will become
more frequent in a future climate in this high-elevation study
area, except for the most extreme scenario RCP 8.5 at the
end of the century at high elevations above 2500 m if the
ROS definition does not include a snowmelt contribution. If
a ROS event is defined such that there must be a substan-
tial snowmelt contribution (> 20 %), then a future increase
in ROS frequency is masked by the sources of uncertainty
included in this study without any exceptions.

Thus, our results confirm our initial hypothesis that ROS
events are strongly influenced by natural climate variability
because they are more driven by precipitation than by sea-
sonal SWE curves. However, some studies do find an in-
crease in ROS frequency at higher elevations (e.g. Beniston
and Stoffel, 2016; Musselman et al., 2018), and a discussion
on this can be found in Sect. 3.2.6.

3.2.4 Rain-on-snow seasonality

In this section, we discuss why the climate change signal is
more pronounced for frequencies of ROS events with only
minor snowmelt contribution versus substantial contribution.
Following the definition of criterion 2, each ROS event can
spatially consist of pixels that will also satisfy criterion 1, i.e.
with snowmelt contribution > 20 % to SWI (see Fig. S7 for
a spatial example). Figure 9 shows in a histogram the num-
ber of ROS events per month and their spatial characteristic
computed as the ratio ¢ of pixels obeying criterion 1 over
pixels obeying criterion 2. During current-climate conditions
(Fig. 9a), most ROS events occur from May to July, typically
with large ¢, i.e. a large spatial proportion of pixels with sub-
stantial snowmelt contribution. In January, for example, only
a small number of ROS events occur, and most are charac-
terized by a low ¢, i.e. a small spatial proportion of pix-
els with substantial snowmelt contribution. This is consistent
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with the results of Wiirzer et al. (2016), who found that ROS
events with a substantial snowmelt contribution typically oc-
cur in late spring and early summer, when the snowpack is
wet and warm at the onset of the event. Conversely, a low
snowmelt contribution is expected when the initial snowpack
is drier and colder (Wiirzer et al., 2016). Similar to Wiirzer
et al. (2016), conditions for a substantial contribution from
snowmelt are typically found under initially wet and warm
snowpack conditions (Fig. S8a and b). This is indicated by
the red arrow in Fig. 9, which points to large ¢, which is as-
sociated with typically wet and warm initial snowpack con-
ditions.

For RCP 8.5 at the end of the century (Fig. 9), the peak
of ROS events shifts to earlier in the season, with typically
large . There is also a higher number of early and midwin-
ter events, with typically small spatial ratios, and almost no
ROS events from July through September due to nonexistent
snowpack.

The increase in ROS events in March and April with large
¢ values contrasts with a large decrease in June and July
(Fig. 9¢). This means that the ROS events with spatially a
large number of pixels with substantial snowmelt are not

The Cryosphere, 16, 3469-3488, 2022

largely changing in the future with regards to their frequency
but rather shifted to earlier in the season. Only the frequency
of events with small ¢ will increase in the future. This may be
seen as counterintuitive at first because warm and wet con-
ditions are expected to occur more frequently in a future-
climate state. Indeed, this is generally the case at the onset
of ROS events (Fig. S8c and d). However, rain in early and
midwinter will fall on snow that will — even in this extreme
warming scenario — be typically too cold and too dry to allow
a significant contribution from snowmelt. This result implies
that warmer air temperatures due to a changing climate can
change the phase of precipitation more often than they can
change the state of the snowpack to substantially contribute
to runoff. This fact explains the limited increase in early and
midwinter ROS events frequency with a large spatial propor-
tion of substantial snowmelt contribution. Towards summer,
the drastically reduced snow cover summer in a future cli-
mate explains the much faster decrease in the number of ROS
events in this time, when ROS events have typically large ¢,
compared to the current climate.

In summary, the occurrence of rain falling on an initially
warm and wet snowpack will likely not increase in the fu-
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ture. This explains that the climate change signal of ROS
frequency shown in Fig. 8a and c are masked by uncer-
tainty sources when a ROS event is defined by a substantial
snowmelt contribution. However, a significant climate signal
with varying signs is expected within individual months, e.g.
March and June. These findings imply the need for a process-
based snow model that can adequately model snowpack re-
tention, as shown in this study.

3.2.5 Rain-on-snow intensity and snowmelt
contribution

Since rain intensity is expected to increase significantly in a
future climate for all scenarios studied, also during ROS con-
ditions (Fig. S3), one can expect SWI to increase for rain-
on-snow events as well. However, the conclusions are very
similar to those for ROS frequency. An increase in high SWI
intensities is observable but is masked by the sources of un-
certainty quantified in this study for all emission scenarios
and time horizons (see Fig. S9 for RCP 4.5 at the end of the
century), except for the most extreme scenario (Fig. 10), i.e.
RCP 8.5 at the end of the century, still depending, however,
on the ROS definition criteria. If the ROS criterion implies
a substantial contribution of snowmelt to SWI, again, the in-
crease is masked by uncertainty, whereas without this condi-
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tion this is not the case. The elevation dependence is also
very similar to the ROS frequency (not shown): at higher
elevations, the increase is pronounced for criteria 2 and 4
for elevations above 3000 and 2500 m, respectively. For all
other definitions of ROS events and all other emission sce-
narios and time horizons, this increase is also observed but is
masked by sources of uncertainty.

Since snow cover decreases massively at the end of the
century in the most extreme climate scenario RCP 8.5 (see
Fig. 7d), it can be expected that the contribution of snowmelt
to SWI also decreases, and the observed increase in ROS
events is mainly driven by an increase in rain intensity. How-
ever, this depends on the pixel-based definition of whether
a positive or negative climate signal can be observed. When
substantial snowmelt contributions are required, the signal is
largely masked by sources of uncertainty (Fig. S10). These
results show that despite a dramatic decrease in snowpack
by the end of the century in an RCP 8.5 scenario, the role
of snow in contributing to runoff does not largely change for
ROS events.

3.2.6 Comparison with other studies on ROS frequency

The results obtained here are based on a more complex ap-
proach than those of existing studies on this topic (e.g. Benis-
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ton and Stoffel, 2016; Mordn-Tejeda et al., 2016; Musselman in the number of ROS events occurred with 2—4 °C warmer
et al., 2018; Ohba and Kawese, 2020; Sezen et al., 2020), as temperatures than today at elevations of 2000 and 2500 m.

we have added two new dimensions, i.e. internal climate vari- For altitudes of 1500 m and below, a decrease in the num-
ability and the ROS definition. Beniston and Stoffel (2016) ber of ROS events was obtained. Except for two climate
reported that in the Swiss Alps, an increase of nearly 50 % models, this temperature increase corresponds to the most
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extreme scenario RCP 8.5 at the end of the century (see
Fig. 6a). Moran-Tejeda et al. (2016) came to very similar
conclusions. Beniston and Stoffel (2016) and Moran-Tejeda
et al. (2016) did use, however, empirical snow models with-
out the capability that water retention can depend on the
state of the snowpack. Ohba and Kawase (2020) did not use
snowmelt in their definition of ROS events, and Sezen et
al. (2020) defined ROS events with a very small amount of
snowmelt (0.1 mmd~"). Thus, reporting more ROS events at
high elevations is consistent with our results using a crite-
rion that does not imply a substantial snowmelt contribution.
We claim, however, that the ROS definition must account for
the runoff perspective and should not be based only on the
occurrence of liquid precipitation on snowpack because of
the pronounced risk in flood potential due to excess runoff
from snowmelt (Wiirzer et al., 2016). Thus, it is important to
note that our results using ROS definitions, which require a
substantial snowmelt contribution, differ from existing stud-
ies, suggesting that more frequent rain on snow in the future
does not result in a more frequent combination of rain and
snowmelt, as highlighted in Sect. 3.2.4.

Musselman et al. (2018) defined ROS events identically
to the criterion 1 chosen here (i.e. > 10 mm of rain per day,
> 10mm SWE and > 20 % snowmelt contribution to SWI).
They analysed spatial energy balance model runs on a 4 km
grid in western North America. Similar to the studies in
Switzerland, they achieved a decrease in the number of ROS
events at lower elevations and an increase at higher elevations
for an RCP 8.5 emissions scenario by the end of the century
as well as an increase in ROS intensity and a decrease in the
contribution of snowmelt. These results can also be found in
our study case, but they are largely obscured by sources of
uncertainty (Figs. 10a and S10a). When natural climate vari-
ability is artificially suppressed in our analysis by plotting
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only the first realization of a climate period (Fig. S11; note
that the first realizations of the current and future climates
are initialized with the same parameters in the weather gen-
erator), one can more clearly follow the conclusions of Mus-
selman et al. (2018) of an increase in intensity and a decrease
in snowmelt contribution.

The following two studies found a decrease in ROS events
also in highly elevated catchments: Chegwidden et al. (2020)
found that ROS events as a cause of annual runoff maxima
will disappear at lower elevations and slightly decrease at
higher elevations by the end of the century. They discussed
their differences to Musselman et al. (2018), who modelled a
similar domain, with having climate model differences and,
mainly, analysing only annual runoff maxima, while Mus-
selman et al. (2018) analysed all event magnitudes. In our
study, we see an increase in ROS frequency independent of
the event size for all except one ROS criterion (Fig. 8b—d).
Cheggwidden et al. (2020) used energy-balance-based hy-
drological models to investigate ROS events, thus encom-
passing as well the role of soil in changing high flows.

Sikorska-Senoner and Seibert (2020) analysed historic ob-
servations and found a decreasing number of ROS events
also in highly elevated catchments in Switzerland using a
degree-day snow model with a fixed degree-day factor and
threshold temperature. The difference in findings can also be
found in the ROS definitions. Sikorska-Senoner and Seibert
(2020) used for example a quite small snowmelt threshold of
1 mmd~!, which classifies alongside other criteria a flood as
a ROS event. Chegwidden et al. (2020), however, used the
same ROS definition as Musselman et al. (2018), which is
identical to criterion 1 in our study.

In summary, similar conclusions compared to the cited lit-
erature would be drawn if our approach were simplified; i.e.
(1) one does not distinguish between substantial and non-
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substantial snowmelt contribution based on snowpack con-
ditions, and/or (ii) natural climate variability was not ac-
counted for. This study shows that the inclusion of both nat-
ural climate variability and a snow model capable of mod-
elling liquid water retention based on physical process repre-
sentations provides new insights, particularly that only ROS
events with no significant snowmelt contribution will occur
more frequently in the future, while ROS events with signif-
icant snowmelt contribution will mainly shift towards earlier
in the year.

3.2.7 Uncertainty partitioning

Figure 11 shows the seasonal SWE (ASWE) climate change
signal and the partitioning of uncertainty into the individual
sources for the middle and end of the century. Note that the
individual sources in Fig. 11a and b are shown symmetri-
cally around the mean climate change signal for illustrative
purposes only and that the ratio is equal to the square root
of the fractions shown in Fig. 11c and d. The climate change
signal and also total uncertainty are the largest around 1 May,
which corresponds to the date when snow accumulation reg-
ularly ends under current-climate conditions (cf. Fig. 7). In
absolute terms (Fig. 11a and b), natural climate variability
remains roughly the same between mid-century and the end
of the century, which has also been noted by others (e.g. for
air temperature projections by Yip et al., 2011).

The relative contributions can be assessed with Fig. 11c
and d. At mid-century, natural climate variability is the dom-
inant source of uncertainty, accounting for more than 50 %
during the main winter season. Climate model uncertainty
is the second-largest source, while scenario uncertainty and
model—-scenario interaction account for only a few percent-
age points. This picture changes for the end of the century,
where emissions scenario uncertainty is the main source, ac-
counting for 40 % to 60 % during the main winter season.
Climate model uncertainty is the second-largest source, with
a contribution of about 30 %, followed by natural climate
variability, whose contribution steadily decreases to just over
10 % in May. At the beginning and end of the snow season,
natural climate variability has a larger relative contribution
than is normally observed during the season, which means
that natural climate variability is particularly important for
studies focusing on the duration of the snowpack. The in-
creasing role of emissions scenario uncertainty in SWE pro-
jections towards the end of the century means that efforts to
reduce uncertainties in snow projections should focus on lim-
iting uncertainties associated with emissions scenarios, sim-
ilar to efforts to improve climate models.

The larger role of scenario uncertainty at the end of the
century was already visible in Fig. 7 and is mentioned by
Verfaillie et al. (2018). Verfaillie et al. (2018) also quantified
snow model uncertainty and concluded that physical snow
modelling has a contribution of up to 20 % of the simulated
results after mid-century, which they considered secondary
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to climate model spread. It was mentioned that its influence
on trends (or climate change signals) is likely much smaller
but was not quantified more precisely. In this study, we were
not able to quantify this additional source of uncertainty, but
comparing these two studies, we can assume that natural cli-
mate variability and snow model uncertainty may be similar
at the end of the century. This assumption needs to be proven
by future studies that include all four types of uncertainty
sources.

Figure 12 shows the fractional contribution of uncertainty
sources for the variables “contributing area” and SWI de-
termined with pixel-based criterion 3. Natural climate vari-
ability is the most dominant uncertainty source, with in-
creasing contributions for larger event sizes and larger runoff
intensities with values larger than 70 % of the total uncer-
tainty range for event sizes larger than a third of the total
area (Fig. 12b) or total area-averaged intensities larger than
20mmd~! (Fig. 12d) or with snowmelt contributions larger
than 30 % (Fig. S12), even at the end of the century. These
ratios depend on the pixel-based criterion, with the smallest
contributions from natural climate variability obtained when
using criterion 4, although still above 50 % (Fig. S13). The
larger contribution from the other sources of uncertainty may
be explained by a clearer climate change signal for this crite-
rion (see Fig. 8).

For the climate change signal of the ROS metrics studied
here, natural climate variability is more important compared
to ASWE, in agreement with our initial hypothesis, because
the frequency of future ROS events depends more on pre-
cipitation and less on air temperature. Precipitation is more
influenced by natural climate variability compared to air tem-
perature at this spatial scale (Fatichi et al., 2016; Peleg et
al., 2019). In fact, the relative contribution of the uncertainty
sources of the ROS metrics studied here compares quite well
on a local scale with the purely precipitation-based metrics
in Fatichi et al. (2016). This is in contrast to the continental
scale studied in Hawkins and Sutton (2011), where the role
of natural climate variability in decadal mean precipitation
diminishes, and climate model uncertainty dominates toward
the end of the century.

In summary, the total uncertainty in projections of the
studied variables is composed of natural climate variability,
climate model uncertainty and emission scenario uncertainty,
in this order for SWE projections only up to mid-century and
for all other variables up to the end of the century. The large
contribution of natural climate variability demonstrates the
need to quantify this source of uncertainty to prevent avoid-
able biases by end-users and decision-makers.

3.3 Limitations and generalizations
The weather generator AWE-GEN-2d is a hybrid approach
that combines physical and statistical methods to derive cli-

mate variables, leading to intervariable dependence. Single-
model initial-condition large ensembles (SMILEs) (Maher et
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al., 2021) are alternatives to weather generators that quantify
natural climate variability based solely on physical princi-
ples. However, for the use of studies similar to the one pre-
sented here, this method has significant disadvantages com-
pared to weather generators. First, a SMILE depends on a
single climate model with sometimes limited RCP availabil-
ity (Lehner et al., 2020; Mabher et al., 2021), which does
not allow the combined effect of natural climate variabil-
ity, climate model uncertainty and scenario uncertainty to
be studied. To overcome this problem, Lehner et al. (2020)
used seven SMILEs and combined them with the CMIP5
and CMIP6 archives of the Coupled Model Intercomparison
Project, which include multiple climate models but not mul-
tiple initial conditions, to distribute climate projection un-
certainty. Willibald et al. (2020) downscaled a single SMILE
with a single RCP 8.5. for their assessment of natural climate
variability in snow cover in the Swiss Alps and thus were not
able to include the uncertainty in the emission scenarios and
climate models as well. A third problem is the coarse spatial
and temporal resolution; the resolution of the RCM SMILEs
is on the order of 10km (Maher et al., 2021). Willibald et
al. (2020), for example, have downscaled, de-biased and dis-
aggregated the RCM output to a sub-daily station scale using
a univariate quantile mapping approach, which mitigates the
initial advantage of benefiting from a purely physical vari-
able interdependence in the climate model ensemble.
Besides the limitations in the physical description of the
intervariable dependencies in AWE-GEN-2d, the large num-
ber of data needed to train the model can be problematic, es-
pecially in ungauged areas; an alternative to using observed
data can be the use of climate reanalysis data, as was demon-
strated by Peleg et al. (2020). In addition, not all parameters
in AWE-GEN-2d can be re-parameterized in the context of
climate change. For example, we do not have the informa-
tion of how to change the lapse rate of air temperature for
future-climate scenarios as the resolution of the physical cli-
mate models (e.g. RCMs) is too coarse in space, which is
certainly a limiting factor. But also empirical downscaling
and de-biasing methods like the widely used quantile map-
ping approach suffer from similar limitations. Another lim-
iting point is that typical temporal dependencies in the data,
e.g. due to synoptic patterns in a region, cannot be mapped in
AWE-GEN-2d. Heavy winter precipitation can be related to
cold frontal passages in certain regions, which can lead to a
correlation between low temperatures and high precipitation
intensity. This can have a significant impact on the precipi-
tation phase and the resulting snow cover. It is questionable
whether relatively coarse-scaled RCMs can model these de-
pendencies in complex regions like the Alps. Moreover, if
data are needed at a sub-daily and local scale, these depen-
dencies may be lost with univariate downscaling routines. In
summary, we think that a two-dimensional weather genera-
tor is a good alternative to using multiple SMILESs in combi-
nation with a downscaling routine when the complete chain
of uncertainties is needed together with a very high (sub-
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kilometre and sub-daily) resolution. Note that the weather
generator is only capable of detecting frequencies of natural
variability on the order of the training period (i.e. 30 years).
Lower frequencies however, which may arise from processes
within the coupled ocean—atmosphere system via dynamic
and thermodynamic interactions (Deser et al., 2012b), can-
not be detected. Therefore, the relative contribution of natu-
ral climate variability might be underestimated in this study.

The transferability of the results to other areas found in
the limited extent of our study area is complex. ROS events
depend on a non-trivial interaction of the spatial distribution
of liquid precipitation and the existing snow cover and its
condition. The transferability to other regions is limited, as
precipitation and temperature dependencies differ strongly
from mountain region to mountain region. The different de-
pendence between air temperature and shortwave radiation
in mountain regions at other latitudes will also limit trans-
ferability. However, we expect that the dominance of natural
climate variability over other sources contributing to overall
uncertainty that was found at a small spatial scale will persist
at larger scales. We therefore believe that the well-described
increase in ROS frequency due to a changing climate in high-
altitude areas from the western US to Europe and Japan is
questioned with this study. This study motivates making such
results more robust by quantifying natural climate variability.

4 Conclusions

The climate change signal of snow water resources and of
ROS frequency and intensity was investigated with their
climatic uncertainties. For the exemplarily selected high-
altitude study area in the Swiss Alps, the climate change sig-
nal towards fewer snow water resources during the ablation
period was found to emerge clearly from the sources of un-
certainty for all scenarios investigated. However, given sig-
nificant uncertainties, there is some overlap during the accu-
mulation period for all but the most extreme scenario (RCP
8.5, end of the century).

For ROS events, previous studies have shown that they will
become more frequent and intense at higher elevations due
to a shift toward liquid precipitation and despite a decreasing
snowpack. The additional inclusion of natural climate vari-
ability in the uncertainty assessment revealed that this source
is responsible for 70 %—90 % of the overall uncertainty, sim-
ilar to purely precipitation-based metrics. As a result, for all
scenarios, including RCP 8.5 at the end of the century, the cli-
mate change signal of ROS frequency and intensity is larger
than the uncertainty range only for events with no significant
contribution of snowmelt to runoff (< 20 %). For events with
a significant contribution of snowmelt to runoff, the climate
change signal is too small and could potentially only be ex-
plained by natural climate variability. These events regularly
occur during conditions with an initial warm and wet snow-
pack. The very rapid decline in snowpack toward early sum-
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mer in future climate, when conditions typically prevail for
substantial contributions from snowmelt, will result in a large
decrease in such ROS events that cannot be compensated for
at other times of the year: in early and midwinter, when rain
is expected to fall more often in a future climate, it will fall
on snow that will be typically too cold and too dry to allow a
significant contribution from snowmelt. Warmer air temper-
atures due to a changing climate are more likely to change
the phase of precipitation than the condition of the snowpack
to contribute significantly to runoff. This implies that ROS
events with a significant contribution of snowmelt to runoff
will occur earlier in the year, but not more frequently under
future climate.

These additional results were possible only with increased
model complexity, first by using a snow model that repre-
sents water retention in snow based on physical processes,
and second by accounting for natural climate variability to
quantify the signal-to-noise ratio of climate at the local scale.
Natural climate variability, climate model uncertainty and
emission scenario uncertainty, in this order, comprised the
total uncertainty for SWE projections up to mid-century and
for ROS projections up to the end of the century. Therefore,
it is vital to quantify natural climate variability in snow pro-
jections to avoid bias among end-users and decision-makers.

Appendix A

Factor of change (FC) was calculated following Peleg et
al. (2019) with

pur | PCLMFUT
P = pCIm. cor P (Al)

T[l:UT — TISBS + (TCLM FUT

TACLM,CUR) , (A2)

where P stands for precipitation variables (mean and vari-
ance of precipitation intensity and precipitation occurrence)
and T for mean air temperature; FUT and CUR denote
future- and current-climate realizations (respectively), CLM
denotes the climate model, and OBS denotes the observed
data.

To obtain the relative contribution of the investigated
sources of uncertainty (i.e. natural climate variability 7, cli-
mate model uncertainty M and emission scenario uncertainty
S) to the total uncertainty 7', the partitioning method pre-
sented by Yip et al. (2011) was applied, following Eqs. (A3)—
(A7):

Nyn N5 N,
V(it)= —— NNN, ZZZ[x(m,s,r,t)
m=1s=1r=1

—x(m,s, -,t)] (A3)

N
M@ =—" [x(m,--0)—x(,-0F (A4)
m m=1
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—x(m, -, 1) —x (.8, - D) (A6)
Nu N;_ N,

T(t) = NNV ——— >3 > x(m.s.rn)

m=1s=1r=1

X D =VO+M@O+SO+11), (A7)

where x (m, s, r,t) is a climate period mean climate change
signal for model m, scenario s, replication » and time hori-
zon t; x(-,-, -, t) is the overall mean at time horizon f;
x (m, s, -, t) is the mean over all replications; and x (m, -, -, t)
and x (-, s, -, t) are the mean over the scenarios and replicates
and the mean over the models and replicates, respectively.
Replications are the N, = 50 realizations of a climate period,
N, = 10 for the 10 climate model chains and Ny = 2 for the
two emission scenarios. The interaction term takes into ac-
count that climate model uncertainty and emission scenario
uncertainty might be correlated, e.g. that the warmest model
for RCP 4.5 does not need to be the warmest in RCP 8.5.

Fractional uncertainties were calculated by scaling each
individual source with the total uncertainty. Additionally,
we followed the method of Hawkins and Sutton (2011) and
Lehner et al. (2020) to obtain 90 % quantile ranges of uncer-
tainty sources, assuming symmetry around the overall mean
X (., e t):

Oy @t)y=x(,-, ',t):|:1.645\/Tv, (A8)
Ovim(@®)=x(,-, ~,t):|:1.645w (A9)
\% M S
Ovimes () =x(.n, ~,r>i1.645¢ (A10)
14 M S
Ovines ) =x(.-, -,r>i1.64sw (A1)
Ort) = Qvim+s+1 (@) =x (-, -, 1)
i1.645ﬁ+m:ﬁ+ﬁ, where (A12)
FZ\/V+\/M+\/§+«/7' A13)
NVA+M+S+1

Since the assumption of symmetry does not necessarily hold,
the corresponding figures (Fig. 11a and b) are for illustrative
purposes only.

Data availability. Daily data of simulated current-
and future-climate periods are publicly available at
https://doi.org/10.16904/envidat.339 (Schirmer et al., 2021).
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