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1 Introduction

In this article we are interested in boundary non-crossing probabilities

Pf ,u := P
(
∀t ∈ T Xt + f (t)≤ u(t)

)
.

Here X is a continuous centered Gaussian process defined on a compact separable
metric space T, u : T→ R (boundary) and f : T→ R (trend) are some deterministic
functions1. The continuity assumption is motivated by the observation that in order
for the probability to be well defined, the corresponding event has to be generated by
values of X on some countable subset of T. Two most natural situations when this
happens are the case of countable T (which we will study elsewhere) and the case of
a continuous process defined on a separable metric space, studied here. We further
restrict ourselves to the more tractable case of compact T (and we also show how the
case of locally compact T can be reduced to it). Sufficient conditions for continuity
of Gaussian process are given in e.g. [23, Chapter 10].

Explicit formulas for Pf ,u are known only for very special X and particular u, f
with most prominent example X being a Wiener process and u, f being piece-wise lin-
ear functions, see e.g., [22,26,28]. In the absence of explicit formulas, several authors
have obtained upper and lower bounds for the non-crossing probabilities of Gaussian
processes with trend and/or their asymptotic behavior. We list just few references on
such question: Wiener process was considered in [4,11,18]; Brownian bridge, in [3,
5,7]; Brownian pillow and Brownian sheet in [19,8]; additive Wiener field, in [20];
fractional Brownian motion, in [21]; for closely related investigations, see [24,27].

In the case where T = [0,T ] the boundary non-crossing probabilities Pf ,u are
related to survival probabilities

P
(
∀t ∈ T Xt + f (t)< u(t)

)
= P(τu > T ),

where τu = inf{t ≥ 0 : Xt + f (t)≥ u(t)} is the hitting time of a moving boundary u.
Such probabilities (typically their asymptotic behavior as T → ∞) are studied in the
now very active topic of persistence probabilities. We refer to [2] for a comprehensive
review of the topic.

Under the continuity assumption, the process X can be regarded as a centered
Gaussian element in the separable Banach space (equipped with supremum norm)

C0(T;T0) := {g ∈C(T) : ∀t ∈ T0 g(t) = 0}

of continuous functions vanishing on the zero set T0 := {t ∈ T : Xt = 0 a.s.} of X .
The zero set of the process is emphasized since the crucial role in asymptotic results
is played by the injectivity of the covariance operator, which is defined on the dual
space. In case of C0(T;T0) its dual is the space M(T1) of signed finite measures on
T1 =T\T0. If the process were considered as an element of C(T), the dual would be
M(T), and the kernel of the covariance operator will contain the measures supported

1 Further we impose stronger assumptions on the drift than on the boundary and also consider the
asymptotics of Py f ,u when y→ +∞, and for this reason we do not write the probability in question as
P
(
∀t ∈ T Xt ≤ g(t)

)
with g(t) = u(t)− f (t).
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by T0. So such a setting is chosen to allow for the greatest generality (and note that
T0 may be empty).

Our approach to getting bounds for Pf ,u is based on the change of measure with
the help of Cameron–Martin theorem. For this reason we assume that P0,u ∈ (0,1)
and the drift f belongs to the Cameron–Martin space (or reproducing kernel Hilbert
space, RKHS) HX of X . The latter is defined in terms of the covariance function

R(t,s) = E [XtXs ] , t,s ∈ T

as the completion of the space spanned by R(t, ·) with respect to the scalar product
defined as a linear extension of(

R(t, ·),R(s, ·)
)
HX

= R(t,s).

The Cameron–Martin space can be also described in terms of the covariance operator,
defined by

〈Rµ,ν〉= E [〈X ,µ〉〈X ,ν〉 ] ,µ,ν ∈M(T1),

where 〈·, ·〉 denotes the duality pairing.
A general lower bound for Pf ,u follows from [1, Proposition 1.6]. For any f ∈HX ,

let f̃ be the metric projection of zero to the closed convex set C f := {h ∈HX ,h≥ f}.
Then, applying [1, Proposition 1.6] with S =C f − f and the drift f − f̃ , we get

Pf ,u ≥ Pf− f̃ ,u exp
{
−1

2

∥∥ f̃
∥∥2
HX
−
∥∥ f̃
∥∥
HX

√
−2logPf− f̃ ,u

}
. (1)

We note in passing that comparable lower bounds to (1) follow also by [22, Theorem
1.1’] or [23, Theorem 7.3]. From the above, if further P0,u ∈ (0,1), then

logPy f ,u ≥−
y2

2

∥∥ f̃
∥∥2
HX

+O(y), y→+∞. (2)

The main (and a hard) problem is the derivation of an accurate upper bound for Py f ,u
(which matches (2)) valid for all large y. One approach goes through the general large
deviation principle for Gaussian measures, it is explained in detail in Subsection 2.4.

In this contribution we show that a sharp upper bound for Pf ,u can be determined
if there exists a non-negative finite measure γ̃ ∈ M(T1) such that f̃ = R γ̃ ≥ f and(

f − f̃ , f̃
)
HX
≥ 0. In this case we establish in Theorem 1 the following upper bound:

Pf ,u ≤ P0,u exp
{
−1

2

∥∥ f̃
∥∥2
HX

+Θ(γ̃,u)
}
,

where
Θ(γ̃,u) =

∫
T1

u(t)γ̃(dt),

and a similar lower bound. Under the additional assumption that the operator R is
injective and some special assumption on HX , we identify f̃ with the aforementioned
projection and prove that

logPy f ,u =−
y2

2

∥∥ f̃
∥∥2
HX

+ yΘ(γ̃,u)+o(y), y→+∞, (3)
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which implies an equality in (2) and further refines the asymptotics.
In the special case where X is a standard Wiener process, f̃ is the least non-

decreasing concave majorant of f , and the above asymptotics agrees with the known
results for Brownian motion, see e.g. [4].

The paper is organized as follows. The main results of the article are displayed
in Section 2, which starts with a brief introduction to Gaussian processes. In Sub-
section 2.1, we establish both upper and lower bounds for Pf ,u. The obtained results
are then used to derive logarithmic asymptotics of non-crossing probabilities in Sub-
section 2.2. Subsection 2.3 shows how the results can be extended to the case of a
locally compact parameter space. In Subsection 2.4, we show how an asymptotic up-
per bound matching (16) can be derived using the general large deviation principle for
Gaussian measures. In Section 3, we illustrate the findings of Section 2 considering
several important Gaussian processes. Section A contains some auxiliary results.

2 Main results

Throughout the paper, (Ω ,F ,P) is a complete probability space carrying all objects
under consideration.

As in the Introduction, X = {Xt , t ∈ T} is a continuous centered real-valued Gaus-
sian process defined on some compact separable metric space (T,τ), with covariance
function R(t,s), which (thanks to continuity of X) is continuous in both t and s. The
zero set T0 = {t ∈ T : Xt = 0 a.s.} of X is closed and can be given in terms of the
covariance function:

T0 = {t ∈ T : R(t, t) = 0}= {t ∈ T : ∀s ∈ T R(t,s) = 0} .

Recall that the process X is a Gaussian element in the separable Banach space C0(T;T0)
of functions vanishing on T0, whose dual is M(T1). Hereafter 〈·, ·〉 shall denote the
duality pairing between C0(T;T0) and M(T1) i.e.

〈x,µ〉=
∫
T

x(t)µ(dt), x ∈C0(T;T0),µ ∈M(T1)

as well as between other spaces and their duals. We slightly abuse notation here since
µ is not defined on T0; there is no danger since x(t) = 0 for t ∈ T0.

The covariance operator R : M(T1)→C0(T;T0) corresponding to X can be equiv-
alently defined by

Rµ(t) =
∫
T

R(t,s)µ(ds),µ ∈M(T1),

or

〈Rµ,ν〉= E [〈X ,µ〉〈X ,ν〉 ] =
∫
T

∫
T

R(t,s)µ(ds)ν(dt),µ,ν ∈M(T1). (4)

Since R is a non-negative definite function, (4) defines an inner product on the quo-
tient of M(T1) modulo kerR. The completion of the latter with respect to this inner
product is the Hilbert space of so-called measurable linear functionals, which will
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be denoted by HX , and the corresponding inner product will be denoted by (·, ·)HX
.

Moreover, thanks to (4), the operator R can be extended to HX by continuity so that

(µ1,µ2)HX
= 〈Rµ1,µ2〉 ,µ1 ∈HX ,µ2 ∈M(T1).

Again, by continuity, the above duality pairing can be extended to µ1,µ2 ∈HX . Sim-
ilarly, by (4), 〈X , ·〉 can be extended to an isometry between HX and some subspace
of L2(Ω).

It is also worth noting that for any µ ∈HX , the random variable 〈X ,µ〉, being
a mean square limit of centered Gaussian random variables, is a centered Gaussian
random variable with variance E

[
〈X ,µ〉2

]
= ‖µ‖2

HX
.

Remark 1 We slightly abuse rigor here, because the space HX is a completion of
the quotient M(T1)/kerR, not a completion of M(T1). For example, the book [23]
goes through I∗ : M(T1)→M(T1)/kerR. However, we decided to keep this slightly
ambiguous notation for the sake of clarity and simplicity and in view of the fact that
the main results of this article are formulated for the case where R is injective.

Further, R defines an isometry between HX and its image HX =RHX equipped
with the inner product

(Rµ1,Rµ2)HX
= (µ1,µ2)HX

.

Defining for t ∈ T the Dirac measure δt by 〈x,δt〉= x(t), x ∈C0(T;T0), we have

(R(t, ·),R(s, ·))HX
= (Rδt ,Rδs)HX

= (δt ,δs)HX
= R(t,s) (5)

for all t,s∈T, so the space HX is indeed the reproducing kernel Hilbert space (RKHS)
of X , since it is unique with respect to the covariance reproducing property (5).

We present below the classical Cameron–Martin theorem for X , see [23, Theorem
5.1]. The formulation in [23] is given in terms of push-forward measures induced by
X and X + f and is slightly different from the one given below, but it is easily seen to
be equivalent.

Lemma 1 (Cameron–Martin theorem) If f = Rµ ∈ HX , then the distribution of
X + f with respect to P is the same as that of X with respect to the measure P f with

dP f

dP
= EX (µ) := exp

{
〈X ,µ〉− 1

2
‖µ‖2

HX

}
= exp

{
〈X ,µ〉− 1

2
‖ f‖2

HX

}
.

2.1 Bounds for non-crossing probabilities

In this section, we study the boundary non-crossing probability

Pf ,u := P
(
∀t ∈ T Xt + f (t)≤ u(t)

)
.

Here f ∈ HX and u : T→ R is a lower semicontinuous function such that P0,u > 0.
The assumption of lower semicontinuity of u does not harm the generality. Indeed, in
view of the continuity of X and f , for any bounded function u : T→ R we have

{∀t ∈ T Xt + f (t)≤ u(t)}= {∀t ∈ T Xt + f (t)≤ u∗(t)} ,
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where u∗ is the lower semicontinuous envelope of u.
Further we derive lower and upper bounds for Pf ,u for any trend f ∈HX . Denote

by M+(T1) the set of finite non-negative measures on T1 and recall that Θ(γ̃,u) =∫
T1

u(t)γ̃(dt).

Theorem 1 Let f ∈HX and suppose that f̃ = R γ̃ with γ̃ satisfying condition

(G1) γ̃ ∈M+(T1).

1. If the condition

(G2)
〈

f − f̃ , γ̃
〉
≥ 0

is satisfied, then

Pf ,u ≤ Pf− f̃ ,u exp
{
−1

2

∥∥ f̃
∥∥2
HX

+Θ(γ̃,u)
}
. (6)

2. Let u− : T→ R be a continuous function such that u−(t) < u(t) for all t ∈ T. If
further

P0,u,u− := P
(
∀t ∈ T u−(t)≤ Xt ≤ u(t)

)
> 0

and condition

(G3) f̃ ≥ f , i.e. f̃ (t)≥ f (t) for all t ∈ T

holds, then

Pf ,u ≥ P0,u,u− exp
{
−1

2

∥∥ f̃
∥∥2
HX

+Θ(γ̃,u−)
}
. (7)

Proof 1. Using Lemma 1 we have

Pf ,u = E
[
1∀t∈T Xt+ f (t)≤u(t)

]
= E

[
1∀t∈T Xt+ f (t)− f̃ (t)≤u(t)

dP f̃

dP

]

= E
[
1∀t∈T Xt+ f (t)− f̃ (t)≤u(t) exp

{
−1

2

∥∥ f̃
∥∥2
HX

+ 〈X , γ̃〉
}]

.

(8)

Note that

〈X , γ̃〉 ≤
〈
X + f − f̃ , γ̃

〉
=
∫
T1

(
Xt + f (t)− f̃ (t)

)
γ̃(dt)≤

∫
T1

u(t)γ̃(dt) =Θ(γ̃,u) (9)

on
{
∀t ∈ T Xt + f (t)− f̃ (t)≤ u(t)

}
thanks to (G1) and (G2). Thus, we get

Pf ,u ≤ E
[
1∀t∈T Xt+ f− f̃≤u(t) exp

{
−1

2

∥∥ f̃
∥∥2
HX

+Θ(γ̃,u)
}]

= Pf− f̃ ,u exp
{
−1

2

∥∥ f̃
∥∥2
HX

+Θ(γ̃,u)
}

establishing the claim.
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2. From assumption (G3), namely f̃ ≥ f , we obtain similarly to (8)

Pf ,u = E
[
1∀t∈T Xt+ f (t)≤u(t)

]
≥ E

[
1∀t∈T Xt+ f̃ (t)≤u(t)

]
= E

[
1∀t∈T Xt≤u(t) exp

{
−1

2

∥∥ f̃
∥∥2
HX

+ 〈X , γ̃〉
]

≥ E
[
1∀t∈T u−(t)≤Xt≤u(t) exp

{
−1

2

∥∥ f̃
∥∥2
HX

+ 〈X , γ̃〉
]
.

Also, similarly to (9), we obtain

〈X , γ̃〉 ≥Θ(γ̃,u−)

on {∀t ∈ T u−(t)≤ Xt ≤ u(t)}, whence

Pf ,u ≥ P0,u,u− exp
{
−1

2

∥∥ f̃
∥∥2
HX

+Θ(γ̃,u−)
}
.

Remark 2 From (G1) and (G3) it follows that
〈

f − f̃ , γ̃
〉
≤ 0, so (G2) holds as an

equality whenever (G1)–(G3) are satisfied simultaneously for some γ̃ and f̃ (not nec-
essarily equal to R γ̃). Moreover, in this case γ̃ and f̃ − f must be “orthogonal” in the
sense that γ̃ is supported by the set

{
t ∈ T1 : f̃ (t)− f (t) = 0

}
.

Now we turn to the question of identification of f̃ and γ̃ satisfying (G1)–(G3). To
this end, for any f ∈HX , consider the following minimization problem:

minimize ‖h‖HX
for all h ∈HX ,h≥ f ; (10)

here the comparison is understood, as usual, in the pointwise sense, i.e. h≥ f means
h(t)≥ f (t) for all t ∈ T.

Lemma 2 The set C f := {h ∈HX | ∀t ∈ T h(t)≥ f (t)} is a closed set in HX .

Proof Since HX consists of continuous functions, we can consider the identity op-
erator idHX as acting from HX to C0(T;T0). It is obviously closed, so by the con-
tinuous graph theorem it is continuous. Consequently, the set C f , which is closed in
C0(T;T0), is also closed in HX .

Since the set C f is convex and closed in HX , then by [17, Chapter 1], there exists
a unique element f̃ solving the minimization problem (10). Moreover, the following
proposition holds.

Proposition 1 The solution to the minimization problem (10) satisfies(
f − f̃ , f̃

)
HX

= 0. (11)

Proof Since f̃ is a metric projection of 0 to the set C f , the solution f̃ is characterized
by the well-known variational inequality (see e.g., [12, Lemma] or [25, Lemma 2.2])∥∥ f̃

∥∥2
HX
≤
(

f̃ ,h
)
HX

∀h ∈C f . (12)

Plugging h = f to (12), we get
(

f − f̃ , f̃
)
HX
≥ 0; plugging h = 2 f̃ − f , we obtain(

f − f̃ , f̃
)
HX
≤ 0, establishing the claim.
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In other words, any γ̃ such that R γ̃ = f̃ satisfies (G2) and (G3). To ensure the
validity of (G1), we need an additional assumption.

(P) If g ∈HX is such that 〈 f ,g〉 ≥ 0 for all f ∈ H+
X := { f ∈HX | f ≥ 0}, then g ∈

M+(T1).

Proposition 2 Under the assumption (P), the solution f̃ = R γ̃ to the minimization
problem (10) satisfies (G1)–(G3).

Proof If k ∈H+
X , then f̃ + k ∈C f , hence by (12)∥∥ f̃

∥∥2
HX
≤
(

f̃ , f̃ + k
)
HX

=
∥∥ f̃
∥∥2
HX

+
(

f̃ ,k
)
HX

,

whence
〈k, γ̃〉=

(
k, f̃
)
HX
≥ 0.

Since k ∈ H+
X is arbitrary, then γ̃ ∈ M+(T1) by assumption (P), i.e. we have (G1).

(G2) follows from Proposition 1, whereas (G3) follows from the definition of f̃ .

2.2 Asymptotics

In this section we derive expansions for logPy f ,u as y tends to infinity. We will need
the following additional assumption.

(D) R is injective on M(T1).

Remark 3 Condition (D) is equivalent to the distribution of X having full support,
i.e. the support of the distribution of X coincides with C0(T;T0). Indeed, it is well
known (see e.g. [29, Lemma 5.1]) that the support of distribution of X is the closure of
RM(T1). If the latter were not C0(T;T0), then by Hanh–Banach theorem there would
exist non-zero γ ∈ M(T1) such that 〈 f ,γ〉 = 0 for all f ∈ RM(T1). In particular,
〈Rγ,γ〉 = 0, which would contradict the injectivity. On the other hand, if Rγ = 0
for some non-zero γ , then 〈 f ,γ〉 = 0 for all f ∈RM(T1), hence, for all f from the
support of X , which then cannot be full.

We have chosen the injectivity assumption because we believe it is easier to verify
than the full support property.

Now we state the assumptions on the boundary function u.

(U) There exists a sequence (un,n≥ 1) of continuous functions such that
1) un(t) ↑ u(t), n→+∞, for all t ∈ T1;
2) P0,u,un = P

(
∀t ∈ T un(t)≤ Xt ≤ u(t)

)
> 0 for all n≥ 1.

Remark 4 Under assumption (D), a sufficient condition for a lower semicontinuous
u : T→ R to satisfy (U) is that u(t) > 0 for all t ∈ T0. Indeed, in this case for any
u− ∈C(T) such that u−(t)< 0 for all t ∈ T0 and u−(t)< u(t) for all t ∈ T, the set

Au,u− = {g ∈C0(T;T0) | ∀t ∈ T u−(t)< g(t)< u(t)}
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is non-empty and open in C0(T;T0). Therefore, since the support of distribution of X
is C0(T;T0), then we have

P0,u,u− = P(X ∈ Au,u−)> 0.

Consequently, (U) holds for any sequence of continuous functions un ∈ C(T) such
that un(t)< 0, t ∈ T0, and un(t) ↑ u(t), n→+∞, for any t ∈ T1.

We believe that (U) holds whenever u(t) ≥ 0 for t ∈ T0 and P0,u > 0. However,
the above argument fails, as the set Au,u− can be empty. Considering the set

Bu,u− := {g ∈C0(T;T0) | ∀t ∈ T1 u−(t)≤ g(t)≤ u(t)}

will not help, as it is not open in general. One could consider a finer topology to
overcome this problem, but then the dual space would be larger and perhaps not as
tractable as M(T1).

Theorem 2 Assume that (D) holds, f ∈ HX and let u : T→ R be a lower semicon-
tinuous function satisfying (U). If there exists f̃ = R γ̃ ∈ HX satisfying (G1)–(G3),
then

logPy f ,u =−
y2

2
‖γ̃‖2

HX
+ yΘ(γ̃,u)+o(y)

=−y2

2

∥∥ f̃
∥∥2
HX

+ yΘ(γ̃,u)+o(y), y→+∞.

(13)

Remark 5 It follows from (13) that all γ̃ ∈HX satisfying (G1)–(G3) must have equal
norms. Therefore, since the set of such functions is convex, they all must coincide in
HX implying that such γ̃ ∈HX is unique.

Proof Denote the right-hand side of (13) by r(y, γ̃,u). Since P0,u > 0, the inequality
(6) yields

limsup
y→+∞

(
logPy f ,u− r(y, γ̃,u)

)
≤ limsup

y→+∞

logPy( f−R γ̃),u ≤ 0,

so it remains to establish the lower bound.
Next, take the sequence (un,n≥ 1) satisfying (U). It is clear that one can choose

positive integers (k = k(y),y ≥ 0) growing to +∞ as y→ +∞ sufficiently slowly so
that y−1 logP0,u,uk → 0, y→+∞. Then for any n≥ 1, by (7) we get

liminf
y→+∞

y−1( logPy f ,u− r(y, γ̃,uk)
)
≥ liminf

y→+∞
y−1 logP0,u,uk = 0.

Consequently,

liminf
y→+∞

y−1( logPy f ,u− r(y, γ̃,u)
)

≥ liminf
y→+∞

y−1( logPy f ,u− r(y, γ̃,uk)
)
+ liminf

y→+∞
y−1(r(y, γ̃,uk)− r(y, γ̃,u)

)
≥ liminf

y→+∞

(
Θ(γ̃,uk)−Θ(γ̃,u)

)
= liminf

y→+∞

∫
T1

(
uk(t)−u(t)

)
γ̃(dt).
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Thanks to the dominated convergence limy→+∞

∫
T1

(
uk(t)−u(t)

)
γ̃(dt) = 0 implying

liminf
y→+∞

y−1( logPy f ,u− r(y, γ̃,u)
)
≥ 0,

hence the proof is complete.

We are now ready to state the main result of this section.

Theorem 3 Let (D) and (P) hold, f ∈HX and let u be a lower semicontinuous func-
tion satisfying (U). If further γ̃ is the projection of 0 to the set C f , then (13) holds.

Proof The statement follows from Proposition 2 and Theorem 2.

In general, it is difficult to identify γ̃ . But there are cases where it is possible, e.g.
if the drift is the covariance operator applied to a non-negative measure. Namely, the
following result follows from Theorem 3 immediately.

Corollary 1 Assume that (D) holds and u is a lower semicontinuous function satisfy-
ing (U). Then for any γ ∈M+(T1) and f = Rγ the asymptotic expansion (13) holds
with γ̃ = γ .

2.3 Locally compact parameter space

Let now the continuous centered Gaussian process X be indexed by a separable metric
space T, which we will assume here to be non-compact, but locally compact. We want
to reduce our problem to its counterpart with compact (separable) parameter set. To
this end, denote by T= T∪{t∞} the one-point compactification of T. We first show
that X can be multiplied by some positive function so that the product vanishes at
infinity.

Lemma 3 There exists a continuous function v : T→ (0,∞) such that v(t)Xt → 0,
t→ t∞ a.s.

Proof Being a separable metric space, the space T is Lindelöf, so in view of local
compactness there exists a countable family {Tn,n≥ 1} of compact sets such that
T =

⋃
n≥1Tn and Tn is contained in T◦n+1, the interior of Tn+1, for each n ≥ 1 (see

e.g. [16, Chapter XI, Theorem 7.2]).
Since X is continuous and for each n≥ 1, Tn is compact, then clearly

P(sup
t∈Tn

|Xt |< ∞) = 1.

Therefore, there exists some an > 0 such that P
(
supt∈Tn

|Xt |> an
)
< 2−n. Without

loss of generality, we can assume that an < an+1 for each n≥ 1 and an→∞, n→+∞.
For any n≥ 1, denote bn = a−2

n+1 and Dn = ∂Tn := Tn \T◦n. Since Tn ⊂ T◦n+1, we
have ∂Tn∩∂Tn−1 =∅. Then by Urysohn’s lemma, there exists a continuous function
vn : Tn+1 \T◦n→ [bn+1,bn] such that vn(t) = bn, t ∈Dn, vn(t) = bn+1, t ∈Dn+1. Now
set

v(t) = a11T1(t)+
∞

∑
n=1

vn(t)1Tn+1\Tn(t), t ∈ T.
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By construction, this is a continuous function with supT\Tn
v(t)≤ bn, n≥ 1.

On the other hand, by the Borel–Cantelli lemma, with probability 1 there exists
n0(ω) such that supt∈Tn

|Xt | ≤ an, n≥ n0(ω). Therefore, for n≥ n0(ω)

sup
t∈Tn+1\Tn

∣∣v(t)Xt
∣∣≤ sup

T\Tn

v(t) · sup
t∈Tn+1

|Xt | ≤ a−2
n+1 ·an+1 = a−1

n+1.

Consequently, for all n≥ n0(ω)

sup
t∈T\Tn

∣∣v(t)Xt
∣∣≤ a−1

n+1→ 0

as n→+∞ establishing the proof.

Remark 6 The above lemma is valid for any continuous process on T, since the Gaus-
sian distribution of X is not used in the proof.

Now we are ready to state the main result about reduction to the case of compact
parameter space.

Namely, set below

X t = v(t)Xt , f̄ (t) = v(t) f (t), ū(t) = v(t)u(t)

and putting
X t∞ = f̄ (t∞) = 0, ū(t∞) = (liminf

t→t∞
v(t)u(t))∧0

we have the following statement.

Theorem 4 The process X is a continuous centered Gaussian process on T and for
any f ∈ HX and any lower semicontinuous u : T→ R, we have that f̄ ∈ HX , ū is
lower semicontinuous and further

P(∀t ∈ T Xt + f (t)≤ u(t)) = P
(
∀t ∈ T X t + f̄ (t)≤ ū(t)

)
. (14)

Remark 7 It is important e.g. for asymptotic results like (3) that X , f̄ , and ū depend
linearly (and in a rather simple way) on X , f and u, respectively.

Proof The process X is obviously centered Gaussian, and Lemma 3 immediately
implies that X is continuous. The fact that f̄ ∈HX is a consequence of the following
well-known characterization of the Cameron–Martin space. Namely, it consists of
functions f such that the distribution of X + f is absolutely continuous w.r.t. that of
X . That said, for any A ⊂ C(T) such that P(X ∈ A) = 0, define A =

{
h|T/v,h ∈ A

}
and write

P(X ∈ A) = P
(
X ∈ A

)
= 0.

Hence, since f ∈HX we have

P
(
X + f̄ ∈ A

)
= P(X + f ∈ A) = 0,

whence we derive that f̄ ∈HX . Equation (14) is obtained similarly.
It remains to remark that ū is lower semicontinuous by definition. (It is possible

that ū(t∞) = −∞, but in this case, and more generally in the case where u(t∞) < 0
both probabilities in question are equal to zero.)
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2.4 Relation to the large deviation principle

The asymptotics (3) is also closely related to the large deviation principle. Since for
process X is a centered Gaussian element in the separable Banach space C0(T;T0),
we can apply the general large deviation principle by Donsker and Varadhan [15] (see
also [13, Section 3.4], [14, Theorem 4.5]): for any Borel set A⊂C0(T;T0),

− inf
A◦

I(x)≤ liminf
ε→0+

ε
2 logP(X ∈ A)≤ limsup

ε→0+
ε

2 logP(X ∈ A)≤− inf
A

I(x), (15)

where A◦ and A are the interior and the closure of A, respectively. If we assume, as
before, the injectivity of the covariance operator, the rate functional can be identi-
fied through the concept of Wiener quadruple (see [13, p. 88]): the Banach space
C0(T;T0) together with the Hilbert space HX , the identity map S : HX →C0(T;T0)
(which is injective thanks to our assumption) and the distribution of X forms a Wiener
quadruple, so the rate functional is given by [13, Theorem 3.4.12]:

I(x) =

{
1
2 ‖x‖

2
HX

, x ∈HX ,

∞, x /∈HX .

To relate the large deviation extimates (15) to the boundary non-crossing proba-
bility Py f ,u, denote ε = y−1,

A f = {g : T→ R | ∀t ∈ T g(t)≤− f (t)} .

Then the boundary non-crossing probability can be written as Py f ,u = P
(
εX ∈A f−εu

)
,

however, (15) is not directly applicable since the target set A f−εu depends on ε . To
overcome this problem, one may fix some ε0 > 0 and write

limsup
ε→0+

ε
2 logP

(
εX ∈ A f−εu

)
≤ limsup

ε→0+
ε

2 logP
(
εX ∈ A f−ε0u+

)
≤− inf

A f−ε0u+

I(x) =− inf
A f−ε0u+

I(x),

where u+(t) = max{u(t),0}. Then, letting ε0→+0, we get

limsup
ε→0+

ε
2 logP

(
εX ∈ A f−εu

)
≤− inf

A f
I(x).

But it is clear that

inf
A f

I(x) =
1
2

inf
{
‖g‖2

HX
: g≤− f

}
=

1
2

inf
{
‖h‖2

HX
: h≥ f

}
=

1
2

∥∥ f̃
∥∥2
HX

,

where f̃ is, as before, the solution to the constrained minimization problem (10). As
a result, going back to our notation,

lim
y→+∞

y−2 logPy f ,u ≤−
1
2

∥∥ f̃
∥∥2
HX

. (16)
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However, in the case where T0 6=∅, there is no clear way how to get a lower bound
from (15): when u is non-negative, the same approach gives

limsup
ε→0+

ε
2 logP

(
εX ∈ A f−εu

)
≥ limsup

ε→0+
ε

2 logP
(
εX ∈ A f

)
≥− inf

A◦f
I(x).

Since both X and f vanish on T0, A f has empty interior, so infA◦f I(x) = ∞; the lower

estimate given by the large deviation principle sharp, as P
(
εX ∈ A f

)
= 0 in many

cases, e.g., for Brownian motion on [0,T ].
As it was mentioned in Introduction, there is another (simpler) way to derive a

lower bound, leading to (2), which, combined with (16), yields

logPy f ,u ∼−
y2

2

∥∥ f̃
∥∥2
HX

, y→+∞.

Unfortunately, this gives only the main term of asymptotic expansion (3). The next
term of the asymptotics comes from the following heuristics: the target set A f−εu is
almost A f with slightly perturbed boundary. Therefore, denoting by Λ(A) the “rate
functional” corresponding to the set A, and assuming some smoothness, one might
expect that for ε → 0+,

Λ(A f−εu)≈Λ(A f )− ε
〈
u,Λ ′f (A f )

〉
=

1
2

∥∥ f̃
∥∥2
HX
− ε
〈
u,Λ ′(A f )

〉
, (17)

where Λ ′f is the derivative in some sense of Λ(A f ) with respect to f , and this relation
looks similar to (3). In certain situations, this heuristic argument may be given a
precise meaning: see, for example, [10, Theorem 9.3.2]. However, in our case such
argument would most likely fail. Indeed, if it were possible to validate, it would
also work for negative “perturbations”. However, if T0 6= ∅ and u is positive, then
P(X ∈ A f+εu) = 0, since X and f both vanish on T0, so (17) cannot provide correct
logarithmic asymptotics.

On the other hand, the large deviation estimates may be used to derive the asymp-
totic behavior of the probabilities P(εX ∈ A f−δu) when ε → 0+ and then δ → 0+,
similarly to the results for random walks, established in [9], but such questions are
beyond the scope of our article.

3 Applications

In this section we specialize the general results of Section 2 to several one-parameter
processes. In all the examples, we skip the routine verification of assumptions (P) and
(D) while putting more emphasis on relevant details.

Throughout the section, W = {Wt , t ∈R} is a standard Wiener process on (Ω ,F ,P).
By AC([a,b]) we will denote the set of absolutely continuous functions defined on
[a,b], and for f ∈ AC([a,b]), f ′ will denote its weak derivative.
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3.1 Wiener process on [0,b]

Let T= [0,b] and X =W . Now T0 = {0}, T1 = T\T0 = (0,b]. The primary space is
C0([0,b]) = {x ∈C([0,b]) : x(0) = 0} with dual M((0,b]), the space of finite signed
measures on (0,b]. The covariance operator is given by

Rµ(t) =
∫ T

0
min(t,s)µ(ds) =

∫ T

0

∫ t

0
1[0,s](u)du µ(ds)

=
∫ t

0

∫ T

0
1[0,s](u)µ(ds)du =

∫ t

0
µ([u,b])du =

∫ t

0
Jµ(u)du,

(18)

where Jµ(u) = µ([u,b]), u ∈ [0,b), Jµ(T ) = µ({T}). Similarly, for µ,ν ∈M((0,b])

〈Rµ,ν〉=
∫ b

0

∫ b

0
min(t,s)µ(ds)ν(dt) =

∫ b

0

∫ b

0

∫ b

0
1[0,t](u)1[0,s](u)du µ(ds)ν(dt)

=
∫ b

0

∫ b

0
1[0,s](u)µ(ds)

∫ b

0
1[0,b](u)ν(dt)du =

∫ b

0
Jµ(u)Jν(u)du =

(
Jµ,Jν

)
L2[0,b].

Consequently, J extends to an isomorphism between HX and L2[0,b]; the image is
full since Jµ can be arbitrary left-continuous bounded variation function. Therefore,
in view of (18), the image of HX under the covariance operator consists of functions
of the form

∫ t
0 h(u)du, where h ∈ L2[0,b], which is the well-known description of

the Cameron-Martin space of W . It is worth mentioning that for µ ∈ M((0,b]) and
f = Rµ we have∫ t

0
f ′(t)dWt =

∫ b

0
Jµ(t)dWt =

∫ b

0
µ([t,b])dWt =

∫ b

0

∫ b

t
µ(ds)dWt

=
∫ b

0

∫ s

0
dWt µ(ds) =

∫ b

0
Ws µ(ds) = 〈W,µ〉 ,

so the Cameron-Martin density can be transformed to its more familiar form:

EW (µ) = exp
{
〈W,µ〉− 1

2
‖µ‖2

HX

}
= exp

{∫ t

0
f ′(t)dWt −

1
2
‖Jµ‖2

L2[0,b]

}
= exp

{∫ t

0
f ′(t)dWt −

1
2

∥∥ f ′
∥∥2

L2[0,b]

}
.

Further, the image of a non-negative finite measure on (0,b] is an absolutely con-
tinuous function f with f (0) = 0 and with a non-increasing non-negative deriva-
tive. Equivalently, this is a concave non-decreasing function with f (0) = 0. There-
fore, in order to identify the function f̃ from Theorem 2, which corresponds to the
drift f = Rγ , we need to find a concave non-decreasing function f̃ ≥ f such that
γ̃ = R−1 f̃ satisfies (G2). The latter is equivalent to

(Jγ− Jγ̃,Jγ̃)L2[0,b] ≥ 0,

which, in view of (18), reads (
f ′− f̃ ′, f̃ ′

)
L2[0,b] ≥ 0.
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Thanks to Theorem 4, this property (even with equality) is satisfied by the least non-
decreasing concave majorant of f , which also is a solution to the minimization prob-
lem (10). This is not surprising, as we recover the well-known results for the Wiener
process (see e.g. [4]), which we summarize below. Note also that, by definition of
Jγ , we should define f̃ ′ to be left-continuous on (0,b] and continuous at zero, so we
should take the left derivative for t ∈ (0,b] and the right derivative at 0.

Theorem 5 Let u : [0,b]→ R be lower semicontinuous, f ∈ AC([0,b]) be such that
f (0) = 0 and f ′ ∈ L2[0,b], f̃ be the least non-decreasing concave majorant of f , and
f̃ ′−(t) be its left derivative (right derivative for t = 0).

1. The probability Pf ,u = P(∀t ∈ [0,b] Wt + f (t)≤ u(t)) admits the upper bound

Pf ,u ≤ Pf− f̃ ,u exp
{
−1

2

∥∥ f̃ ′−
∥∥2

L2[0,b]+
∫ b

0
u(t)d

(
− f̃ ′−(t)

)}
.

2. For any u− ∈C([0,b]) such that u−(t)< u(t) for all t ∈ [0,b] and

P0,u,u− := P
(
∀t ∈ [0,b] u−(t)≤Wt ≤ u(t)

)
> 0,

the probability Pf ,u admits the lower bound

Pf ,u ≥ P0,u,u− exp
{
−1

2

∥∥ f̃ ′−
∥∥2

L2[0,b]+
∫ b

0
u−(t)d

(
− f̃ ′−(t)

)}
.

3. If u(0)> 0, then the following asymptotics holds:

logPy f ,u =−
y2

2

∥∥ f̃ ′−
∥∥2

L2[0,b]+ y
∫ b

0
u(t)d

(
− f̃ ′−(t)

)
+o(y), y→+∞.

3.2 Wiener process on [a,b]

Let again X = W , but T = [a,b] with a < b, ab 6= 0. There are two different cases
depending on whether 0 ∈ [a,b] or not.

3.2.1 0 /∈ [a,b]

In this case T0 =∅, T1 = [a,b]. The primary space is C([a,b]) with dual M([a,b]), the
space of finite signed measures on [a,b]. Without loss of generality, we can assume
a > 0.

Similarly to (18), the covariance operator is given by

Rµ(t) =
∫ b

a

∫ t

0
1[0,s](u)du µ(ds) =

∫ t

0

∫ b

a
1[0,s](u)µ(ds)du

=
∫ t

0
µ([u∨a,b])du =

∫ t

0
Jaµ(u)du, t ∈ [a,b],

(19)

where Jaµ(u) = µ([u∨a,b]); also for µ,ν ∈M([a,b]) we have

〈Rµ,ν〉=
∫ b

a
Jaµ(u)Jaν(u)du =

(
Jaµ,Jaν

)
L2[0,b].
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As above, the operator Ja extends to an isomorphism between HX and some subspace
of L2[0,b]. The image is now not full, since, for each µ ∈M([a,b]), Jaµ is constant
on [0,a]; in fact, it is easy to see that JaHX consists of square integrable functions
which are constant on [0,a]. Then, by (19), the image of HX under the covariance
operator consists of absolutely continuous functions on [a,b] with square integrable
derivative. The image of M+([a,b]) is a bit trickier. As in the previous example, by
(19), it contains concave non-decreasing functions, but not all of them. In fact, it is
easy to see from (19) that we must have f ′+(a) = µ((a,b])≤ µ([a,b]) = f (a)/a≥ 0;
also every concave non-decreasing function with such property belongs to the image.
Now the function f̃ from Theorem 2 corresponding to the drift f = Rγ is a concave
non-decreasing function such that f̃ ′+(a) ≥ f̃a(a) ≥ 0 and γ̃ = R−1 f̃ satisfies (G2).
As in the previous example, it is possible to identify this function. Namely, thanks to
the isomorphism property of Ja, we can rewrite (G2) as

(Jaγ− Jaγ̃,Jaγ̃)L2[0,b] ≥ 0. (20)

We have Jaγ(t) = f ′(t) for t ∈ [a,b], and Jag is constant on [0,a] with
∫ a

0 Jaγ(t) =
f (a). So, if we extend f to [0,a] linearly, i.e. f (t) = t f (a)/a, t ∈ [0,a], then we have
Jaγ(t) = f ′(t) for t ∈ [0,b]. Then, for the least concave non-decreasing majorant f̃ of
f , we have by Theorem 4 that (

f ′− f̃ ′, f̃ ′
)

L2[0,b] = 0.

Moreover, f̃ ′ is clearly constant on [0,a], so we have f̃ ′− = Jaγ̃ , where γ̃ is the non-
negative measure on [a,b] given by γ̃([t,b]) = − f̃ ′−(t), t ∈ [a,b], and (20) follows.
Hence we arrive at the following result.

Theorem 6 Let u : [a,b]→ R be lower semicontinuous and f ∈ AC([a,b]) be such
that f ′ ∈ L2[a,b]. Define f (t) = t f (a)/a for t ∈ [0,a], let f̃ : [0,b]→ R be the least
non-decreasing concave majorant of f on [0,b] and f̃ ′− be its left derivative.

1. The probability Pf ,u = P(∀t ∈ [a,b] Wt + f (t)≤ u(t)) admits the upper bound

Pf ,u ≤ Pf− f̃ ,u exp
{
−1

2

∥∥ f̃ ′−
∥∥2

L2[0,b]+
∫ b

a
u(t)d

(
− f̃ ′−(t)

)}
.

2. For any u− ∈C([a,b]) such that u−(t)< u(t) for all t ∈ [a,b] and

P0,u,u− := P
(
∀t ∈ [a,b] u−(t)≤Wt ≤ u(t)

)
> 0,

the probability Pf ,u admits the lower bound

Pf ,u ≥ P0,u,u− exp
{
−1

2

∥∥ f̃ ′−
∥∥2

L2[0,b]+
∫ b

a
u−(t)d

(
− f̃ ′−(t)

)}
.

3. The following asymptotics holds:

logPy f ,u =−
y2

2

∥∥ f̃ ′−
∥∥2

L2[0,b]+ y
∫ b

a
u(t)d

(
− f̃ ′−(t)

)
+o(y), y→+∞.
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Remark 8 Actually, this example can be compared with the previous one. Namely,
we can informally write

Pf ,u = P
(
∀t ∈ [a,b] Wt + f (t)≤ u(t)

)
≈ P
(
∀t ∈ [0,b] Wt + f (t)≤ u(t)

)
,

with some f , which has large negative values on [0,a). Of course, the latter is im-
possible if f (a) > 0, since f must be continuous, but with suitable approximation
argument it is possible to derive Theorem 6 from Theorem 5.

3.2.2 0 ∈ [a,b]

Now a< 0, b> 0, T0 = {0}, T1 = [a,0)∪(0,b]. The primary space is C0([a,b];{0})=
{ f ∈C([a,b]) : f (0) = 0} with dual M([a,0)∪ (0,b]).

The covariance function is equal to R(t,s) = t∧s, for t,s > 0,−(t∨s) for t,s < 0,
and 0 if ts≤ 0. Then for t ≥ 0 the covariance operator is

Rµ(t) =
∫ b

a
R(t,s)µ(ds) =

∫ b

0

∫ t

0
1[0,s](u)duµ(ds) =

∫ t

0
µ([u,b])du =

∫ t

0
Jµ(u)du,

where Jµ(u) = µ([u,b]), u ∈ [0,b]. Similarly, for t ∈ [a,0)

Rµ(t) =
∫ 0

t
µ([a,u])du,

where Jµ(u) = µ([a,u]), u ∈ [a,0), and

〈Rµ,ν〉=
(
Jµ,Jν

)
L2[a,b].

Consequently, the operator J extends to an isomorphism between HX and L2[a,b]
and

HX =
{

f ∈ AC([a,b]) : f (0) = 0, f ′ ∈ L2[a,b]
}
.

As a result, we get a similar situation as for [0,b]. The difference is that now the
function f̃ is non-decreasing and concave on [0,b] but non-increasing and concave on
[a,0], so it can be “glued” together from the least non-decreasing concave majorant
of f on [0,b] and the least non-increasing concave majorant on [a,0]. The bounds
and the asymptotic behavior we obtain are similar to the previous statements, so we
skip the formulation. The important fact we should mention is that the values of W
on [a,0] and [0,b] are independent, so we can write

P(W + f ≤ u on [a,b]) = P(W + f ≤ u on [a,0]) ·P(W + f ≤ u on [0,b])

and apply Theorem 5. The results will agree with those obtained by direct application
of the general theory, since∥∥ f̃ ′

∥∥2
L2[a,b] =

∥∥ f̃ ′
∥∥2

L2[a,0]+
∥∥ f̃ ′
∥∥2

L2[0,b]

and ∫ b

a
u(t)d

(
− f̃ ′(t)

)
=
∫ 0

a
u(t)d

(
− f̃ ′(t)

)
+
∫ b

0
u(t)d

(
− f̃ ′(t)

)
.
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3.3 Brownian bridge

For convenience in this example we work with T = [0,1]. Let Xt = B0
t := Wt − tW1,

t ∈ [0,1], be a Brownian bridge, which is a centered Gaussian process with covariance
function R(t,s) = min(t,s)− ts. The primary space is now

C0,0([0,1]) = {x ∈C([0,1]) : x(0) = x(1) = 0} ,

with the dual space M((0,1)). Further, similarly to (18) the covariance operator is
given by

Rµ(t) =
∫ 1

0

(
min(t,s)− ts

)
µ(ds) =

∫ t

0
µ([s,1))ds− t

∫ 1

0

∫ s

0
du µ(ds) =∫ t

0
µ([s,1))ds− t

∫ 1

0
µ([u,1))du =

∫ t

0

(
µ((s,1))−

∫ 1

0
µ([u,1))du

)
ds =

∫ t

0
J0µ(s)ds,

(21)
where J0µ(s) = µ([s,1))−

∫ 1
0 µ([u,1))du. Using simple transformations, we obtain

〈Rµ,ν〉=
∫ b

0
J0µ(u)J0ν(u)du =

(
J0µ,J0ν

)
L2[0,1].

Consequently, J0 extends to an isometry between HX and the completion of image
of J0 in L2[0,1], which easily seen to be

L2
0[0,1] :=

{
f ∈ L2[0,1] :

∫ 1

0
f (t)dt = 0

}
.

Hence, in view of (21), the Cameron–Martin space HX =RHX consists of absolutely
continuous functions having square integrable derivative and vanishing at 0 and 1,
which agrees with the well known description of this RKHS, see e.g. [23, Example
4.9]. Similarly to the previous example, the drift f̃ from Theorem 2.9 should satisfy
f̃ ≥ f and (

f ′− f̃ ′, f̃ ′
)

L2[0,1] ≥ 0.

By Lemma 5, this is true for the least concave majorant of f , which is also a solution
to (10). So again we reproduce the known results for Brownian bridge, see [3,5,7].

Theorem 7 Let u : [0,1]→ R be lower semicontinuous, f ∈ AC([0,1]) be such that
f (0) = f (1) = 0, f ′ ∈ L2[0,1], f̃ be the least concave majorant of f , and f̃ ′− be its
left derivative (right derivative at 0).

1. The probability Pf ,u = P(∀t ∈ [0,1] B0
t + f (t)≤ u(t)) admits the upper bound

Pf ,u ≤ Pf− f̃ ,u exp
{
−1

2

∥∥ f̃ ′−
∥∥2

L2[0,1]+
∫ 1

0
u(t)d

(
− f̃ ′−(t)

)}
.

2. For any u− ∈C([0,1]) such that u−(t)< u(t) for all t ∈ [0,1] and

P0,u,u− := P
(
∀t ∈ [0,1] u−(t)≤ B0

t ≤ u(t)
)
> 0,
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the probability Pf ,u admits the lower bound

Pf ,u ≥ P0,u,u− exp
{
−1

2

∥∥ f̃ ′−
∥∥2

L2[0,1]+
∫ 1

0
u−(t)d

(
− f̃ ′−(t)

)}
.

3. If u(0),u(1)> 0, then we have

logPy f ,u ∼−
y2

2

∥∥ f̃ ′−
∥∥2

L2[0,1]+ y
∫ 1

0
u(t)d

(
− f̃ ′−(t)

)
+o(y), y→+∞.

3.4 Brownian motion on [0,+∞)

Let X = W , T = [0,+∞). Now T is locally compact, so we should use the ideas of
Subsection 2.3. But first we transform the parameter space conveniently, setting

Yt =Wt/(1−t), t ∈ [0,1).

Now we should multiply Y by some positive function v∈C([0,1)) so that v(t)Yt → 0,
t→ 1−. It is not hard to see that v(t) = 1− t works. As a result, we can write

P
(
∀t ≥ 0 Wt + f (t)≤ u(t)

)
= P
(
∀t ∈ [0,1] Zt + f̄ (t)≤ ū(t)

)
,

where

Zt = (1− t)Wt/(1−t), f̄ (t) = (1− t) f
(
t/(1− t)

)
, ū(t) = (1− t)u

(
t/(1− t)

)
.

It appears that the process Z is a Brownian bridge on [0,1], so we reduce the problem
to the previous example; the solution f̃ to the constrained optimization problem is
now a least non-decreasing concave majorant, as in Example 3.1 (see also [6, Lemma
5.1]).

3.5 Volterra process

Consider Xt =
∫ t

0 K(t,s)dWs, t ∈ [0,T ], where the Volterra kernel K is such that
supt∈[0,T ]

∫ t
0 K(t,s)2ds < ∞ and X has continuous sample paths. In this case for any

finite signed measure µ on [0,T ]

Rµ(t) =
∫ T

0
R(t,s)µ(ds) =

∫ T

0

∫ t∧s

0
K(t,u)K(s,u)du µ(ds)

=
∫ t

0
K(t,u)

∫ T

u
K(s,u)µ(ds)du.

Consequently, the covariance operator admits the following decomposition R =K K ∗,
where

K f (t) =
∫ t

0
K(t,s) f (s)ds, K ∗

µ(s) =
∫ T

s
K(t,s)µ(dt).
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Moreover, we have

〈µ,ν〉=
∫ T

0

∫ T

0
R(t,s)µ(ds)ν(ds) =

∫ T

0

∫ T

0

∫ t∧s

0
K(t,u)K(s,u)du µ(ds)ν(ds)

=
∫ T

0

∫ T

u
K(t,u)µ(dt)

∫ T

u
K(s,u)ν(ds)du =

(
K ∗

µ,K ∗
ν
)2

L2[0,T ].

As a result, HX can be identified with a preimage of L2[0,T ] under K ∗, and HX , with
the image of L2[0,T ] under K . Despite the seemingly clear, as in the previous ex-
amples, description of the Cameron–Martin space, it is in general hard to identify the
solution of the minimization problem (10). (See, for example, the article [21], which
considers the boundary non-crossing probabilities for fractional Brownian motion, in
particular Theorem 3.1 and Corollary 3.2 therein.) Of course, there is a viable case
contained in Corollary 1: for any γ ∈M([0,T ]) and f =Rγ , the asymptotic expansion
(13) holds, however, the Volterra structure does not really help here.

3.6 Brownian sheet

Let X be a Brownian sheet, i.e. a centered Gaussian process indexed by T = [0,T ]2

and having the covariance function

R
(
(t1, t2),(s1,s2)

)
= min(t1,s1) ·min(t2,s2),(t1, t2),(s1,s2) ∈ T.

Now T0 = ({0}× [0,T ])∪([0,T ]×{0}), T1 =T\T0 = (0,T ]2. The primary space is
C0([0,T ]2;T0)= {x ∈C([0,T ]) : ∀t ∈ [0,T ] x(0, t) = x(t,0) = 0}with dual M((0,T ]2),
the space of finite signed measures on (0,T ]2. Similarly to Example 3.1, the covari-
ance operator is

Rµ(t1, t2) =
∫ T

0

∫ T

0
min(t1,s1)min(t2,s2)µ(ds1,ds2)

=
∫ t1

0

∫ t2

0
µ
(
[u1,T ]× [u2,T ]

)
du2du1 =

∫ t1

0

∫ t2

0
J2µ(u1,u2)du2du1,

where J2µ(u1,u2) = µ
(
[u1,T ]× [u2,T ]

)
, and

〈Rµ,ν〉=
(
J2µ,J2ν

)
L2([0,T ]2),

so J2 extends to an isomorphism between HX and L2
(
[0,T ]2

)
. Therefore, HX consists

of functions of the form
∫ t1

0
∫ t2

0 h(u1,u2)du1 du2, where h ∈ L2
(
[0,T ]2

)
, so again we

get the well-known description of the Cameron-Martin space of Brownian sheet.
We do not know the solution to the optimization problem (10) in general, only in

two particular case. The first case is where f is itself the solution, then we have an ad
hoc version of Corollary 1.
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Theorem 8 Let X be a Brownian sheet, u : [0,T ]2 → R be a lower semicontinuous
function such that u(0, t) > 0 and u(t,0) > 0 for all t ∈ [0,T ], γ be a finite non-
negative measure on (0,T ]2, and

f (t1, t2) =
∫ t1

0

∫ t2

0
J2γ(u1,u2)du2 du1 =

∫ t1

0

∫ t2

0
γ
(
[u1,T ]× [u2,T ]

)
du2du1.

Then, the following asymptotics holds:

log P
(
∀t1, t2 ∈ [0,T ] Xt1,t2 + y f (t1, t2)≤ u(t1, t2)

)
=−y2

2

∥∥J2γ
∥∥2

L2([0,T ]2) + y
∫ T

0

∫ T

0
u(t1, t2)γ(dt1,dt2)+o(y), y→+∞.

The second case is f (t1, t2) = f1(t1) · f2(t2) with non-negative f1, f2 belonging to
the RKHS of Wiener space, i.e., fi =

∫ t
0 hi(s)ds with hi ∈ L2[0,T ], i = 1,2. In this

case, the solution to the optimization problem is f̃ (t1, t2) = f̃1(t1) · f̃2(t2), where f̃i
is the smallest non-decreasing concave majorant of fi, i = 1,2. Indeed, f̃ ≥ f and,
thanks to Lemma 4 ∫ T

0
f̃ ′i (s)

(
f ′i (s)− f̃ ′i (s)

)
ds = 0, i = 1,2,

hence ∫ T

0

∫ T

0
f ′1(s1) f ′2(s2) f̃ ′1(s1) f̃ ′2(s2)ds1ds2

=
∫ T

0
f ′1(s1) f̃ ′1(s1)ds1

∫ T

0
f ′2(s2) f̃ ′2(s2)ds2

=
∫ T

0
f̃ ′1(s1)

2ds1

∫ T

0
f̃ ′2(s2)

2ds2 =
∫ T

0

∫ T

0
f̃ ′1(s1)

2 f̃ ′2(s2)
2ds1ds2,

equivalently,∫ T

0

∫ T

0

(
f ′1(s1) f ′2(s2)− f̃ ′1(s1) f̃ ′2(s2)

)
f̃ ′1(s1) f̃ ′2(s2)ds1ds2 = 0.

As in Example 3.1, assuming that f = Rγ , f̃ = R γ̃ , the last equality is equivalent to
(G2). Thus, noting that

‖γ̃‖HX
=
∥∥ f̃
∥∥

L2([0,T ]2) =
∥∥ f̃1
∥∥

L2[0,T ] ·
∥∥ f̃1
∥∥

L2[0,T ],

we arrive at the following statement.

Theorem 9 Let X be a Brownian sheet, u : [0,T ]2 → R be a lower semicontinuous
such that u(0, t) > 0 and u(t,0) > 0 for all t ∈ [0,T ]. Let also f1, f2 ∈ AC([0,T ]) be
non-negative functions such that fi(0) = 0 and f ′i ∈ L2[0,T ], i = 1,2, and f̃1, f̃2 be
their least concave non-decreasing majorants. Then, the following asymptotics holds
as y→+∞:

log P
(
∀t1, t2 ∈ [0,T ] Xt1,t2 + y f1(t1) f2(t2)≤ u(t1, t2)

)
=−y2

2

∥∥ f̃1
∥∥2

L2[0,T ] ·
∥∥ f̃2
∥∥2

L2[0,T ]+ y
∫ T

0

∫ T

0
u(t1, t2)d f̃ ′1(t1)d f̃ ′2(t2)+o(y).
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A Auxiliary statements

The following lemma summarizes properties of the least non-decreasing concave majorant. They are prob-
ably well known, but here we write them for completeness.

Lemma 4 For a function f ∈ AC([0,T ]) with f (0) = 0, its least non-decreasing concave majorant f̃ exists
and is also absolutely continuous with f̃ (0) = 0. Moreover, if f ′ ∈ L2[0,T ], then f̃ ′ ∈ L2[0,T ] and∫ T

0

(
f ′(s)− f̃ ′(s)

)
f̃ ′(s)ds = 0, f̃ = argmin

g∈HW ,g≥ f

∥∥g′
∥∥

L2 [0,T ] ,

where

HW =

{
g : [0,T ]→ R : f (t) =

∫ t

0
h(s)ds, h ∈ L2[0,T ]

}
is the RKHS of a standard Wiener process W.

Proof Let t0 = argmax[0,T ] f . The least non-decreasing concave majorant is non-decreasing on [0, t0] and
constant on [t0,T ] with f̃ (t0) = f (t0), so it is enough to prove the statement on [0, t0] given t0 > 0. To
simplify the notation, we will assume t0 = T .

Since f̃ is non-decreasing on [0,T ] and exceeds f , it is not less than the least non-decreasing majorant
f̂ (t) = maxs∈[0,t] f (s) of f . Further, for all x < y, f̂ (y)− f̂ (x) does not exceed the variation of f on x,y,
which is equal to

∫ y
x | f ′(s)|ds. Therefore, f̂ is absolutely continuous with | f̂ ′(t) ≤ | f ′(t)| a.e., in partic-

ular, | f̂ ′| is square integrable. Consequently, it is enough to prove the statement for a non-decreasing f
(equivalently, for non-negative f ′).

Let h denote the monotone rearrangement of f ′ (i.e. h(t) = sup{x : λ ({s ∈ [0,T ] : f ′(s) ≥ x}) ≤ t},
t ∈ [0,T ]). It is well-known that

∫ T
0 h(t)2dt =

∫ T
0 f ′(t)2dt and for all t ∈ [0,T ]∫ t

0
h(s)ds≥

∫ t

0
f ′(s)ds = f (t). (22)

Since h is non-increasing, g(t) :=
∫ t

0 h(s)ds is a non-decreasing concave majorant of f . Moreover, g is
continuous with g(0) = 0 and g(T ) = f (T ). Therefore, f̃ , being the least non-decreasing concave majorant,
lies between f and g, so it is also continuous at 0 and T with f̃ (0) = 0, f̃ (T ) = f (T ). Since f̃ is non-
decreasing, it can only have jump discontinuities, which, however, would condradict concavity, so it is
continuous.

Now let Z = {t ∈ [0,T ] : f̃ (t) = f (t)}. Since f and f̃ are continuous, this set is closed with {0,T}⊂ Z.
Its complement is an open set, so it is a union of disjoint open intervals, say,

⋃
n≥1(an,bn). Now for

any n ≥ 1, f̃ is affine on [an,bn] with f̃ (an) = f (an), f̃ (bn) = f (bn). Therefore, denoting for any n ≥ 1
f̄n =

f (bn)− f (an)
bn−an

, we have

∫ bn

an

(
f ′(s)− f̃ ′(s)

)
f̃ ′(s)ds = f̄n

∫ bn

an

(
f ′(s)− f̄n

)
ds = 0,

whence ∫ T

0

(
f ′(s)− f̃ ′(s)

)
f̃ ′(s)ds =

∫
Z

(
f ′(s)− f̃ ′(s)

)
f̃ ′(s)ds

+ ∑
n≥1

∫ bn

an

(
f ′(s)− f̃ ′(s)

)
f̃ ′(s)ds = 0.

Since for each n≥ 1,
∫ bn

an
f̃ ′(s)2ds≤

∫ bn
an

f ′(s)2ds by Jensen’s inequality, then f̃ ′ ∈ L2[0,T ] follows.
Further, since

∥∥ f̃ ′
∥∥

L2 [0,T ] ≤ ‖ f ′‖L2 [0,T ], the minimiser of ‖g‖L2[0,T ] for all g ≥ f ,g ∈ HW belongs to

the set Ag := {g ≥ f̃ ,g ∈ HW } and g is concave, non-decreasing. Consequently, it belongs also to the set
A∗g = {g ∈ Ag,g(T ) = f̃ (T )}. For any g ∈ A∗g we have

∫ T

0

(
g′(s)− f̃ ′(s)

)
f̃ ′(s)ds =

∫ T

0

(
g(s)− f̃ (s)

)
d(− f̃ ′(s))≥ 0,
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hence ∥∥g′
∥∥2

L2 [0,T ] =
∥∥g′− f̃ ′

∥∥2
L2 [0,T ]+

∥∥ f̃ ′
∥∥2

L2 [0,T ]+
∫ T

0

(
g′(s)− f̃ ′(s)

)
f̃ ′(s)ds≥

∥∥ f̃ ′
∥∥2

L2 [0,T ]

and therefore the minimizer is unique and equals f̃ establishing the claim.

The following statement for Brownian bridge is proved similarly and therefore we omit its proof.

Lemma 5 For an absolutely continuous function f : [0,T ]→ R, with f (0) = f (T ) = 0, its least concave
majorant f̃ is also absolutely continuous with f̃ (0) = f̃ (T ) = 0. Moreover, if f ′ ∈ L2[0,T ], then f̃ ′ ∈
L2[0,T ] and ∫ T

0
f̃ ′(s)

(
f̃ ′(s)− f ′(s)

)
ds = 0, f̃ = argmin

g∈HB0 ,g≥ f

∥∥g′
∥∥

L2 [0,T ] ,

where

HB0 =

{
g : [0,T ]→ R : f (t) =

∫ t

0
h(s)ds,h ∈ L2[0,T ],

∫ T

0
h(t)dt = 0

}
is the RKHS of a Brownian bridge B0.
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