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Inferring recent migration rates from individual genotypes
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Abstract

We present a novel and straightforward method for estimating recent migration rates
between discrete populations using multilocus genotype data. The approach builds upon
a two-step sampling design, where individual genotypes are sampled before and after
dispersal. We develop a model that estimates all pairwise backwards migration rates (m,,
the probability that an individual sampled in population i is a migrant from population )
between a set of populations. The method is validated with simulated data and compared
with the methods of BayesAss and Structure. First, we use data for an island model and
then we consider more realistic data simulations for a metapopulation of the greater white-
toothed shrew (Crocidura russula). We show that the precision and bias of estimates primarily
depend upon the proportion of individuals sampled in each population. Weak sampling
designs may particularly affect the quality of the coverage provided by 95% highest posterior
density intervals. We further show that it is relatively insensitive to the number of loci
sampled and the overall strength of genetic structure. The method can easily be extended
and makes fewer assumptions about the underlying demographic and genetic processes
than currently available methods. It allows backwards migration rates to be estimated

across a wide range of realistic conditions.
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Introduction

Migration plays a key role in determining the demographic
and genetic future of fragmented populations because it
governs the isolation of local demes. This is especially true
when population sizes are small because demographic
stochasticity and the loss of diversity induced by genetic
drift will be important factors determining the extinction
risk of isolated populations (Lande 1993; Frankham ef al.
2002). Estimating migration rates in these systems on a
short-term, ecological timescale will therefore not only
document interesting aspects of a species” ecology but will
also provide key information for guiding conservation.
Quantifying migration in the wild has proven extremely
difficult. Approaches based on mark-recapture or telemetry
allow individual dispersal behaviour to be explored in
great detail, but the logistics often become intractable when
estimating average migration rates for an entire population
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(Koenig et al. 1996; Berry et al. 2004). Population genetics
provides several alternative approaches that are less reliant
on intensive data collection, but suffer from the addition of
confounding factors such as genetic drift and assumptions
of equilibrium. These approaches fall into two broad
classes: indirect estimation of migration from its effect on
genetic variation between populations and direct estimation
of migration from genetic data.

Indirect approaches for estimating migration rates focus
on the consequences of migration upon the apportionment
of genetic variation among populations. A variety of methods
based on F-statistics, rare alleles, cladistics, coalescence or
allelic covariance have been developed (reviewed in Slatkin
& Barton 1989; Neigel 1997; Sork et al. 1999; Rousset 2001).
All these indirect methods have properties in common.
First, they all rely on population genetic models in order
to relate genetic variation to migration rates and other
demographic parameters. These population genetic models
often make important simplifications based on strong
assumptions (e.g. island model, Wright 1931; Whitlock &
McCauley 1999), or weight the migration rates by additional
parameters, such as the effective population size or the rate
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of mutation (Hey & Nielsen 2004). If not known a priori,
the value of these parameters can in some cases be jointly
estimated (e.g. Beerli & Felsenstein 2001; Vitalis & Couvet
2001; Wang & Whitlock 2003). Second, all indirect methods
measure effective gene flow. Effective gene flow only meas-
ures migrants that participate in local reproduction, because
only these individuals affect the dynamics of the local gene
pool. Finally, almost all these methods yield long-term,
equilibrium estimates rather than recent, intrageneration
measures of migration (but see Erwing et al. 2004).

Direct methods, on the other hand, focus either on the
detection of migrants or on the consequences of migration
rates upon changes in genetic structure over a short time
interval (e.g. within one generation). These methods yield
short-term estimates of (non-effective) dispersal (i.e. the
proportion of immigrants in a population, irrespective of
whether they will be reproductive). One approach towards
estimating short-term, non-effective migration rates between
pairs of populations is assignment, which aims to detect
immigrants and assign them to potential source populations
(reviewed in Manel et al. 2005). This approach is mainly
limited by the level of genetic structure in the system,
because the structure has to be high enough for assignment
statistics to be powerful while migration itself tends to
reduce genetic structure (Paetkau et al. 2004). Vitalis (2002)
and Fontanillas et al. (2004) presented another approach
which requires populations to be sampled at two time
points which span the migration events that are of interest.
With these data, the change in genetic structure between
the two sampling events can be directly linked to average
immigration rate, assuming that migration probabilities
are homogeneous (i.e. island model for migration). Finally,
mixture analysis can directly estimate pairwise rates of
migration (Pella & Masuda 2001; Wilson & Rannala 2003;
Reynolds & Tremplin 2004). For example, Wilson & Rannala
(2003) used observed multilocus genotypes from each
population to estimate the proportion of immigrants, as
well as the inbreeding coefficient, allele frequencies in each
population, and the ancestry of each individual (i.e. the origin
of its immigrating ancestors and the number of generations
since immigration occurred). One limitation of this method
is that it assumes low migration rates and negligible drift
over the last two generations.

Here we present a novel, direct method for estimating
non-effective migration rates, which is related both to
Vitalis” two-step sampling and to mixture analyses. Building
upon the approaches of Vitalis (2002) and Fontanillas et al.
(2004), we propose a model for estimating recent pairwise
backwards migration rates between sampling locations.
The method is the first to allow recent pairwise migration
rates to be estimated over a clearly defined time period
(the period between the two samples) with a minimum of
assumptions (no requirements for an island model, migration—
drift equilibrium, Hardy—-Weinberg equilibrium or stationary
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parameters). We investigate the method’s performance
using simulated data from both Wright’s island model
and a realistic metapopulation model of the greater white-
toothed shrew (Crocidura russula), and compare it to results
from BayesAss (Wilson & Rannala 2003) and Structure
(Pritchard et al. 2000). The generation of simulated, yet
realistic, data allows the statistical properties of our method
tobe tested across a range of scenarios commonly encountered
with field data.

The model

Our goal is to estimate M, the matrix of backward rates of
migration between times t and T (where t occurs before T)
for all pairs of populations in a system of P populations.
Specifically, we will estimate m,, which is the proportion of
individuals sampled in population y at time T that were
present in population x at the earlier time t. We refer to time
t as pre-dispersal and time T as post-dispersal. When
relevant, we will use lower- and uppercase for variables
sampled at time t and T, respectively. Following Vitalis
(2002) and Fontanillas et al. (2004), we start with the genotype
data, g and G, from 1 and N individuals sampled at times
t and T, respectively. The main assumptions of our method
is that drift is negligible between times t and T, and that the
P populations form a closed system (i.e. no immigrants
from outside the system). The former is best fulfilled when
the two data sets (¢ and G) are collected within one
generation (Vitalis 2002; Fontanillas et al. 2004): in this case,
we would have a sample of pre-dispersal genotypes (i.e.
genotypes of individuals sampled in the population where
they were born) and a sample of post-dispersal genotypes
(i.e. genotypes of older individuals sampled after natal
dispersal). The method is therefore best suited to inferring
recent migration events.

Each individual is genotyped at L loci that are assumed
to be independent. Locus [ is observed to have A, alleles,
and therefore, has a total of S; = A/(A; + 1)/2 possible states
[A; homozygous states and A, (A;—1)/2 heterozygous
states], which need not be at Hardy-Weinberg equilibrium.
The observed locations (or population identities) of the n
pre-dispersal individuals (sampled at time t) are recorded
in the vector z. Similarly, the locations of the N post-dispersal
individuals (sampled at time T) are recorded in the vector
Z. In contrast to these observed data, the pre-dispersal
locations are unknown for the N post-dispersal individuals
that were only sampled at time T. Let these unknown loca-
tions be contained in the vector, Z, with N elements (one for
each individual sampled at time T). Finally, let ®” be an
S5, x P matrix containing the frequency of genotype states
for locus [ in each population at time ¢ (data on all loci are
represented by ®). The location data z and Z, along with
genotypes ¢ and G, are observations, while Z and ®° are to
be inferred from the observed data. The discrepancy
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between inferred pre-dispersal locations Z vs. the observed
post-dispersal locations Z will give us an estimate of the
backwards migration rates (see equation 6).

Under the assumptions of our model, the genotypes of
our sampled individuals at times t and T are independent
draws from a distribution which is completely specified by
Pr(g| @, Z) and Pr(G|®,Z), respectively. The posterior dis-
tribution of Z and ® in light of the observed genotypes g
and G and the observed sampling locations z at time ¢ is
given by Bayes rule

Pr(Z, ®|g,G, z)=Pr(G|®, Z)Pr(g | @, z)Pr(®)Pr(Z), (eqn1)

where Pr(®) and Pr(z) are the prior distributions for the
frequency of genotype states and the individual locations
at time t. The likelihoods Pr(g|®,z) and Pr(G|®,Z) in
equation 1 are given by

Pr(g|®,z)= ﬁ Pr(g! | @0, z) (eqn2)
1=1,i=1
LN
PrG|®,2)= [] PrG"|@?, 2), (eqn 3)
1=1,i=1
where
Pr(g =s|®0,2)= f,, (eqn 4)
Pr(G =s|®",2)=f, , (eqn 5)

where z; and Z; are the ith elements of vectors z and Z
respectively, and f,;, is the frequency at time ¢ of state s on
locus I in population x. Since it is assumed that the
dispersal of all individuals can be described by the same
backwards migration rate matrix, the probability model for
Z; can be written in terms of the backwards migration rate
matrix

Pr(Z,=x|®,M,Z, :y):mxy (eqn 6)

where Z,is the ith element of vector Z. Equation 6 considers
the observed location, Z, of the ith individual sampled at
time T and the inferred location, Z;, of that individual at the
earlier time ¢. It defines the backwards migration rate, m,,,
as the probability of an individual being in population x at
time t given that it was sampled in population y at time T.
Equation 6 therefore provides the link between the data, Z,
and inference, Z, upon individuals and the backwards
migration rates which we wish to estimate.

To complete the model it remains necessary to specify the
distributions for ® and M. We note that @ is the distribution
of marker frequencies, which are the frequencies of geno-
type states as we have described here. However, the same
model can be used for many different types of markers (e.g.

allele frequencies, allozymes, morphological traits) and
each type of marker will have its own particularities when
selecting a distribution for ®. A common choice for a
distribution of frequencies is the Dirichlet distribution. For
allele frequency data, this choice would have theoretical
support (Balding & Nichols 1995). Another possible choice,
which gives more flexibility than the Dirichlet, is the logistic-
normal distribution (Aitchison 1986). For simplicity, we
take @ to be the observed frequency of genotype states in
our pre-dispersal data, g, for each locus and population.
This assumes a good sampling of possible states, and any
biases in the sampling of genotype states will lead to biases
in the estimates of migration rates. For poor sampling, the
number of states can be reduced by considering allele
rather than genotype frequencies since there are fewer
allelic states compared to genotype states. In general, however,
the use of allele frequencies does not capture all the infor-
mation from the data, because there are fewer allelic states
compared to genotype states. For data where the number
of genotype states is low (e.g. single nucleotide polymor-
phism data), it would be feasible to extend the method so
as to estimate the parameters of @’s distribution as part of
the model, similar to the parameters for M’s distribution.

The distribution of backwards migration rates for popu-
lation y (the vector m., with P elements) could also take
a Dirichlet distribution (e.g. Pritchard et al. 2000; Pella &
Masuda 2001). However, we use a logistic-normal distribution
(Aitchison 1986) to describe m., because it performs well
and allows our method to be generalized to describe
covariances between migration rates when data are
collected from more than two time points. The Dirichlet
distribution is unable to describe such covariance (Aitchison
1986). Our prior for m., is therefore

P —1
Pr(m., | n, I, :[ [(2m)P-L det(l"y)gmxy J

(eqn 7)
1
exp[—§<¢(m.y) )T, (0(m.y) - uy>],
where ¢(m.,,) is the log-ratio transform of m,,,
T
m m
(])(m.y) =|log v ..., log Py (eqn 8)
Mp, Mp,

while u, and I, are hyperparameters giving the mean and
precision matrix of ¢(m.,). The hyperparameter p, can be
related to parameters of a Dirichlet distribution in a certain
limit (the Kullback-Leibler logistic normal approximation
Aitchison 1986), while I'; describes the covariance among
the pairwise migration rates, which are parameters not
available for a Dirichlet distribution. The hyperprior for p,
is taken to be a non-informative multivariate normal
distribution, meaning that we intend parameter estimates
to be only affected by the data, with negligible effect of the
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prior. An objective method for constructing a non-informative
prior is still a problematic area (Kass & Wasserman 1996;
Gelman et al. 2004; Ghosh et al. 2006). If non-informative
priors are to be used, each analysis should verify that the
chosen prior has little effect upon the estimates by varying
the prior distribution, although this approach also has its
problems (Kass & Wasserman 1996). However, the quality
of the estimates as evaluated through simulations can
ultimately confirm that the prior truly had little influence.
For I, an inverse Wishart distribution is used,
I‘;l ~ Wishart(aQ, P - 1), (eqn9)
where Q is a matrix set to specify a correlation structure
where the compositions are independent, apart from the
summation constraint (i.e. the Kullback-Leibler logistic
normal approximation to a Dirichlet, Aitchison 1986;
Billheimer 2001). Following Billheimer (2001), we set a
diffuse prior by using a2 = 0.1.

Our model was written and analysed with openBUGS
(Thomas et al. 2006) and R (R Development Core Team
2005) using the BRugs interface (Thomas et al. 2006). We
performed three Markov chain Monte Carlo (MCMC) runs
with over-dispersed initial conditions, each with a burn-in
period of 20 000 iterations. Convergence of the chains was
analysed using the R package CODA (Plummer et al. 2006).
After the burn-in period, backwards migration rates, My,
were recorded for a further 2000 iterations (with a thin
of 100, resulting in a total chain length of 200 000 after
burn-in). The Gelman and Rubin convergence diagnostic
(Gelman & Rubin 1992), trace plots of the variables, and
comparison of the migration estimates from each chain
independently were used to detect obvious chain conver-
gence problems. Each backwards migration rate estimate is
taken to be the median of the m,,, reported along with 95%
highest posterior density interval (HPDI). While real
migration rates can take the values of 0 or 1, the high level
of numerical precision used throughout MCMC sampling
makes it unlikely for HPDI region to include these extreme
exact values. HPDI limits were thus rounded to three
decimal places (e.g. a lower HPDI of 0.0004 was rounded
to zero). The lowest possible non-zero HPDI is therefore
0.001, which, given our population sizes, corresponds to
less than one migrant. We define the ‘coverage quality’
of our method as the proportion of HPDI that include true
migration values for each simulation scenario. R scripts are
available from the authors on request.

Data simulation

Island model data

We first tested our method with Wright’s island model at a
migration—drift equilibrium (Wright 1931). This allows us
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to test the method across a range of expected migration
rates and levels of population structure. It also helps us to
compare our method with previously published methods
that were only tested on island simulations. Assuming
that each locus carries two alleles (e.g. single nucleotide
polymorphic markers) and the overall frequency of allele 1
at locus i is g, then under Wright’s island model, the
stationary distribution of frequencies for allele 1 is
approximated by a beta distribution,

r(4Nm) 4ANmg;-1 ANm(1—-g:)—
)= INmg=L (g AN (g1,
)= FaNmgyranmi—gp " 7P

(egn 10)

where N is the effective population size and m is the
migration rate (migration is isotropic and homogeneous).
We generated pre-dispersal allele frequencies for three
populations by sampling from equation 10 for 20 inde-
pendent loci, assuming g; = 0.5 (other values of g, gave very
similar results). Post-dispersal genotypes were then generated
for a sample of 100 individuals assuming all migration
rates are equal to m. Migration rate took values of 0.01, 0.05,
0.1 and 0.2 while the expected Fs; =1/(4Nm + 1) took
values of 0.01, 0.05, 0.1 and 0.25. A migration rate of
m = 0.01 implies that on average, one individual among the
sample of 100 will be a migrant. Simulations were performed
for all combinations of m and Fgy, and simulations for each
parameter set were replicated 20 times. The migration rate,
m, was estimated from the estimated philopatry across the
three populations.

Realistic metapopulation data

The data from an island model is quick to generate and
has few parameters, but few populations in the field are
expected to behave like an island model. Moreover, the
beta distribution of underlying allelic frequencies used
above for the island model is a very special case, which
need not be assumed with our method. To further test our
method, we generated realistic genetic data sets from
individual-based simulations of a greater white-toothed
shrew (Crocidura russula) metapopulation (parameters shown
in Table 1). These data include realistic descriptions of
the life cycle for a diploid species with zygotic dispersal,
microsatellite markers, population sizes, and the stochastic
variation due to the individual-based nature of simulations.
The metapopulation was based upon 10 of the villages
studied by Ehinger et al. (2002) and Fontanillas et al. (2004)
(the 10 low-altitude villages in figure 1 of Ehinger et al.
2002). We took the shrew life cycle to be: birth, dispersal,
population regulation, reproduction and death. Generations
were non-overlapping, mating was random within each
village with a Poisson distribution of fecundity, and
population regulation was by truncation according to a
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Table 1 Details of life-cycle parameters used in simulations of a shrew metapopulation

Parameters

Default value Range

Dispersal*
Probability of leaving a villaget,c
Preference for dispersal to nearby villages, 8
Survival rate during dispersal, o

Population regulation
Carrying capacity

Reproductiont
Mean fecundity
Sex ratio of offspring

Sampling
Number of demes sampled (simulated)
Proportion of juveniles (adults) sampled
Number of microsatellite loci§

03 (3); 043 (9)

1/2/km™

1/3/km™

50

35 3.5-28

05

10 (10) 4-10 (10-16)

100% (100%) 25-100% (25-100%)
7 2-8

*parameters reproduce average dispersal rates found by Fontanillas et al. (2004).
tfemale (?) and male (3) values according to Favre ef al. (1997) and Fontanillas et al. (2004).
tvalues based upon data from Churchfield (1990), Genoud & Perrin (1994), Favre et al. (1997), Bouteiller & Perrin (2000), Duarte ef al. (2003).

§values based upon the study by Fontanillas et al. (2004).

village’s carrying capacity. Each juvenile individual has
a probability of leaving village i and dispersing towards
village j given by

P, = CeXp(—Bdf,-)/Z exp(-Bd,.), (eqn 11)

k#i

where d;; is the distance from village i to village j (which has
a median of 3.7 km for our landscape, and ranges from 0.8
to 9.8 km), ¢ is the probability of leaving a village, and f is
the preference for dispersing to nearby villages. Increasing
B therefore increases the preference for migration to nearby
villages. The probability of surviving dispersal between
villages i and j was given by
S;; =exp(—oudy), (eqn 12)
where o is the survival rate during dispersal. The expected
number of migrants dispersing from village i to village j is
therefore given by the number of juveniles produced in i
multiplied by the product of P; and S;. Dispersal parameters,
0, B and ¢, were chosen to reproduce the average dispersal
rates found by Fontanillas et al. (2004, average immigration
probability = 0.15 for males and 0.24 for females). This
gave a maximum of 13 migrants between two populations
(median = 0, mean = 1.1).

Imitating the genetic data collected by Fontanillas et al.
(2004), each individual had a diploid genotype with seven
biparentally inherited microsatellite loci (meiosis and
syngamy are simultaneously simulated at the reproduction
step, during which each offspring receives randomly chosen
alleles from each of its parents). Each locus had a maximum

of 18 alleles and a mutation rate of 10~ (stepwise mutation
model). We started the simulations with each population at
its carrying capacity and a random assignment of alleles
for each individual. The default parameters gave an
average population size of 80 individuals before dispersal
and 50 individuals after dispersal and population regulation.
Unless otherwise stated, we ran all simulations for 25
generations, and each parameter set was replicated 20
times (parameter sets shown in Table 1). We recorded the
genotypes of juveniles (i.e. before dispersal) and adults (i.e.
after dispersal and population regulation) from the final
generation. The pairwise rates of backwards migration
were estimated and compared to the simulation’s true
migration rates. All simulations were performed with
Ecogenetics (individual-based model, version 1.5.3.60, Hirzel
& Jaquiéry 2007).

Sampling issues

It is unlikely that a whole metapopulation can be perfectly
sampled. Using the shrew metapopulation simulations,
we therefore recreated four sampling issues that will be
commonly encountered in the field. First, we indepen-
dently reduced the sampling proportion of pre-dispersal
individuals or post-dispersal individuals (i.e. reducing the
proportion of one category of individuals while sampling all
individuals from the other), and the sampling proportion of
both pre- and post-dispersal individuals together. Second,
we investigated the effect of not sampling all of the
populations by either sampling a subset of the 10 villages,
or introducing additional ‘ghost” populations but only
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sampling the original 10 villages (with perfect sampling
within each village in both cases). Third, since time and
money commonly limit the total sampling effort, we
simulated a trade-off between the proportion of populations
sampled and the proportion of individuals sampled per
population. Finally, we varied the intensity of the genetic sam-
pling by changing the number of microsatellite loci used
in the analysis. The availability of molecular markers may
differ among specific study cases, and it may greatly affect the
performance of the method since it controls the amount of
genetic information for distinguishing different populations.

Effect of the level of genetic structure

The amount of genetic structure present in a metapopu-
lation is an important factor affecting the performance of
genetic-based migration estimates (e.g. Paetkau et al. 2004).
A very high level of structure may indicate isolated
populations with very low migration rates that will be
difficult to detect. On the other hand, a low level of structure
makes it difficult to identify individual populations from
the genetic data, which then makes migrants difficult to
identify even if they are common. We tested for the effect
of genetic structure on our migration estimates for the
shrew metapopulation simulations while keeping all other
parameters constant (with 50% of pre- and post-dispersal
individuals sampled in each population). Genetic structures
(measured by global Fs;) of 0.015, 0.03, 0.04 and 0.05 were
simulated. These values correspond to simulations of 2, 4,
8 and 25 generations (because initial allelic frequencies
followed the same uniform distribution within each
population at the onset of a simulation, reducing simulation
time allows us to simulate data with identical life-cycle
parameters but reduced genetic differentiation). Since our
method compares pre- and post-dispersal individuals from
the same generation, the number of simulated generations
prior to data collection is not a confounding factor. There isno
alternative way to vary the level of structure in the system
while keeping everything else constant (except in an island
case, where Fs; depends entirely on N, and m; see above).

Comparison with other methods

First, we compared the results obtained with our approach
to that obtained using the method of Vitalis (2002). While
this method is based on the island model and therefore
aims at estimating the average migration in a system of
populations, the comparison is interesting since Vitalis
pioneered the idea of using a two-sample design. We then
compared the efficiency of our method to that of two
published methods that can estimate recent pairwise
migration events: Structure (Pritchard et al. 2000) and
BayesAss (Wilson & Rannala 2003). Our goal here was not
to test all available methods in a wide range of conditions,
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but to provide a comparison of our method with some of
the ‘state of the art’ methods in average conditions. We
chose to test the different approaches by re-analysing five
replicates from a simulation with 50% sampling of pre- and
post-dispersal data (from the realistic metapopulation case
described above). Both methods were intended for use
with samples taken at a single time point, but Structure can
actually make use of both pre- and post-dispersal data sets
using the following approach. Pre- and post-dispersal data
must appear in the same input file, but with distinct
population labels. Then, options must be defined so that
only the population information from pre-dispersal data
is used to update allelic frequencies (set USEPOPINFO
selection flag to 1 for the pre-dispersal genotypes only;
select “use population information’, ‘no admixture model’
and set MIGRPRIOR to 0 in the ancestry model options;
and select ‘update allele frequencies with POPFLAG =1
data’ in the advanced options). Following this procedure,
estimates of pairwise migration rates are given by the
‘proportion of membership of each pre-defined population
(i.e. pre-dispersal) in each of the clusters’ (post-dispersal).
The length of the burn-in period was set to 50 000 repeats,
and the number of MCMC iterations used in the estimation
was 10° The software BayesAss was run using the simulated
post-dispersal data only with all parameters set to their
default values.

Simulation results

Island model data

We quantified the bias and precision of our estimates with
the median and the 95% interquantile range of the absolute
error, respectively. When the genetic structure is strong
(Fsr = 0.1 and 0.25), the method gives excellent estimates of
migration rate, with a slight underestimation for all but the
strongest migration rate (Fig. 1C, D). The precision of the
estimates increased as migration rate decreased, due to
the fact that migration rates are bounded between zero and
one. For example, whenm = 0.1 and F¢; = 0.01 (Fig. 1A), the
distribution of errors is concentrated at —0.1 because our
method finds no evidence of migration for the vast
majority of the data. Decreasing Fs; makes the population
allele frequencies more similar, and thus harder for migration
to be detected. Consistent with this, we found that the
precision of our estimates decreased with decreasing Fs;
and that this decrease was most severe for the smallest
migration rates (Fig. 1). The bias also became more negative
with decreasing Fs; due to an overestimation of philopatry.
For instance, for an Fs; = 0.05 (Fig. 1B), only the estimates
of m =0.2 were reliable. Most estimates returned by our
method for lower migration rates (m = 0.01, 0.05 and 0.1,
respectively) were equal to zero, which makes the absolute
error equal to the migration rate (for instance for m = 0.01,
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Fig. 1 The error in the estimation of the expected migration rate,
m, from three populations of an island model. (A) Fs; = 0.01, (B)
Fsr=0.05, (C) Fsy = 0.1, (D) Fsy = 0.25 (4Nm = 1/Fs; — 1 where N is
the population effective size). In each of the three populations
100 post-dispersal individuals are sampled. Results are for 20
simulations, giving 60 estimates of m. The solid line in each box
shows the median of the error distribution, while whiskers show
the full error range, the box shows the 5% and 95% quantiles, and
the notch shows 25% and 75% quantiles.

the method returned a majority of estimates equal to 0, and
thus an error of —0.01, meaning that m is not properly
estimated). This is shown by the corresponding boxplots in
Fig. 1B where the lower half of the distribution of errors is
condensed (e.g. when i = 0.01 the lower half of the boxplot
is condensed to -0.01; see also Fig. 1A for a similar pattern
with F = 0.01).

Shrew metapopulation data

Figure 2 shows the migration estimates using all individuals
from each simulation of the shrew metapopulation
(average Fg; = 0.05, average immigration rate = 0.2, average
backwards migration rate between two given distinct
populations m,, = 0.022). Since dispersal events are a
stochastic process, the true migration rates show consider-
able variation from one generation to the next, which is
well estimated by the method. Figure 2(B) shows that the
bias in both philopatry and immigration is negligible,
although the estimates are slightly skewed towards lower
immigration (and hence higher philopatry).

e |
A

© | Philopatry ——>

o
[]
S
& «© |
g o
k=)
1S
e
o <
T o]
£
»
w

N

&

Vel
o y <—— Pairwise immigration
S
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
True migration rate

e

°l B
S g
g o !
o S !
= ! ‘
| o i
3 2 ‘
< o —
= 3
®? !
(] i
- 8 :
5 2- N
w |

e

CI).,

Pairwise Philopatry
immigration

Fig. 2 Backwards migration rate estimates for a shrew meta-
population. Data from 20 simulations are shown. (A) Estimated
backward migration rates against the true simulated values with
95% highest posterior density intervals. Each black dot represents
the backwards migration m,, between two given populations of
a given replicate (philopatry data refer to m,, values, i.e. the
proportion of individuals in a given population that originate
from the same population). (B) The error in the estimation of
philopatry (grey box) and immigration (clear box). The solid line
in each box shows the median of the error distribution, while
whiskers show the full range of the errors, the box shows the 5%
and 95% quantiles, and the notch shows 25% and 75% quantiles.

Sampling issues

Using the data simulated from the shrew metapopulation,
we found that the sampling intensity in each population
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Fig. 4 The error in philopatry (grey bars) and immigration (clear
bars) estimations for various numbers of sampled populations. On
the left hand side, the 10 populations are sub-sampled (on the far
left, four out of 10 populations are sampled). On the right hand
side, additional ghost populations are added but not sampled (on
the far right, six ghost populations are added). Box plots as in
Fig. 2B.

strongly affected both the bias and precision of the
backwards migration rate estimates (Fig. 3). Imperfect
sampling of pre-dispersal individuals caused an underesti-
mation of philopatry and decreased the precision of both
immigration and philopatry estimates (Fig. 3A). Imperfect
sampling of post-dispersal individuals decreased the
precision of the estimates but introduced no bias (Fig. 3B).

© 2009 Blackwell Publishing Ltd

The effects of pre- and post-dispersal sample intensity
combined additively, implying no interaction between the
two sampling periods (Fig. 3C). Also, the proportion of
HPDI containing the true value (i.e. the coverage quality)
decreased as the proportion of individuals sampled within
each population got smaller (e.g. coverage quality was
100% in case of perfect sampling, and decreased to 87%
when half of the individuals were sampled in each
population).

Unsampled populations did not have a strong effect
upon the precision of the migration estimates but they did
result in a slight overestimation of philopatry (Fig. 4). This
positive bias depended more upon the number of unsampled
populations, rather than their proportion (i.e. sampling
four populations out of 10 gave a higher bias in both philo-
patry and migration than sampling 10 populations out of
18, despite the latter case having many more parameters
to estimate). The same statement applies to HPDI cover-
age, which remained larger than 96% in all but the case
where four populations out of 10 were sampled (HPDI
coverage = 80%).

Comparing Figs 3 and 4 shows that our method is more
sensitive to the sampling of individuals rather than the sam-
pling of populations. Given a fixed sampling effort (i.e.
a constant number of sampled individuals across the meta-
population), our method had the greatest precision when
sampling intensity was focused upon sampling many
individuals within a few populations (Fig. 5). However, the bias
was least (and HPDI coverage highest: 92%) when approxi-
mately 60% of individuals and populations were sampled.

Finally, decreasing the number of microsatellite loci
had surprisingly little effect on the quality of migration
estimates (Fig. 6). As expected, the precision of the estimation
increased as the number of loci increased, but this effect
was negligible for more than six loci. The bias (coming
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Fig. 7 The error in philopatry (grey bars) and immigration (clear
bars) estimations for different genetic structures. An Fg; of 0.015
is a weak genetic structure for a real metapopulation, while an Fg;
of 0.05 is an average value commonly observed in field studies.
These analyses use 50% sampling of pre- and post-dispersal
individuals. Box plots are as in Fig. 2B.

from 50% subsampling of post-dispersal data) only started
to increase for estimates of philopatry with four loci, while
HPDI coverage quality remained unaffected.

Population-genetic issues

For our default parameters, the equilibrium genetic structure
in our realistic metapopulation was moderate (pre-dispersal
Fsr ~ 0.07; post-dispersal Fs; ~ 0.05). Reducing the level of
structure had very little effect on the precision and bias of
estimated migration rates (Fig. 7). Even the lowest level
of genetic structure (pre-dispersal Fs; ~ 0.024; post-dispersal
Fsr ~0.015) gave no noticeable decrease in the accuracy and
precision of the estimates, and only a slight reduction in
the quality of HPDI coverage (it dropped from 87 to 85% for
post-dispersal F¢; values of 0.05 and 0.015, respectively).

Comparison with other approaches

The approach of Vitalis (2002) appears to introduce a
positive bias on philopatry estimates compared to our
method of approximately 25% (data not shown). The bias
and precision of the results from Structure and BayesAss is
nearly indistinguishable from our method (Fig. 8). Our
method gave slightly more accurate results than Structure,
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while BayesAss returned the least-biased estimates
(especially for philopatry). However, for BayesAss, the
confidence intervals for the estimates with the largest error
were often too small, which meant that they did not
include the true value (this occurred in 17% of immigration
estimates and 58% of philopatry estimates, as compared to
13% and 14%, respectively, with our approach).

Discussion

Method's performance

Our results show that backward migration rates can be
satisfactorily estimated under a wide range of realistic
conditions. These estimates are for a clearly defined time
period, making them of interest for ecological and
conservation studies. Furthermore, breeding populations
need not be identified since the method makes no
assumptions about the distribution of genotypes in alocal
population (e.g. HW equilibrium). Therefore, for the
purposes of the method, the spatial locations of the genetic
samples can be used to define what we call a ‘local
population’. With the realistic data from the simulated
shrew metapopulation, the estimated migration rates
correctly tracked the stochastic variation in migration
rates between populations and between replicates,
showing the power of a two-step sampling design for
estimating recent migration rates. Estimates for the island
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model data were of lower quality than those from the
realistic metapopulation data. Further simulations showed
this to be due to the smaller number of segregating alleles
used in the island simulations (data not presented). Using
the island model to study a range of migration rates and Fg;
values showed a trade-off between the amount of genetic
structure between populations and the minimum amount
of immigration that can be detected. With an Fs; of ~ 0.05,
the minimum detectable immigration rate was approximately
m ~ 0.2. Further simulations (not presented) showed that
this trade-off could be significantly improved by using
more bi-allelic loci.

Sampling intensity was by far the most important
determinant of estimation quality. Pre- and post-dispersal
sampling intensity of individuals had distinctly different
effects. Poor pre-dispersal sampling reduced the probability
of correctly associating post-dispersal individuals with
their source population. At worst, association of individuals
will be random, which for 10 populations would give a
philopatry of 0.1. This low value of philopatry for random
association explains the negative bias in philopatry as
pre-dispersal sampling intensity declined (Fig. 3A). On the
other hand, poor post-dispersal sampling reduced the
sample size of immigrants, which decreased precision but
introduced no bias into the estimates (Fig. 3B, and see
Fontanillas et al. 2004 for discussion). Poor individual
sampling also strongly decreased HPDI coverage quality, a
point that deserves special attention. When the sampling is
poor the 95% HPDI should not be used.

Unsampled populations introduce a positive bias in
philopatry because some migrants from ghost populations
will be incorrectly identified as nonmigrants. A similar, but
weaker effect is seen for pairwise immigration estimates.
Empirical studies on Crocidura russula report local capture
rates of almost 100% (e.g. Favre et al. 1997; Vogel 1999;
Bouteiller & Perrin 2000; Fontanillas et al. 2004). However,
such high capture rates are obtained in local sampling units
(classically in gardens around human habitations) that
are smaller than the populations considered in our
simulations. Our reduced sampling intensities are realistic
for population-scale studies (e.g. a sampling intensity of
25% gives 20 pre- and 13 post-dispersal individuals per
population).

Estimating migration in the wild using our approach
requires a proper sampling design in space (i.e. a few focal
populations intensively sampled) and time (i.e. capture
of pre- and post-dispersal individuals, although each
particular individual need not be caught twice). It can
be applied to any species that can be sampled at two
well-identified life stages and for which variable markers
are available (although a limited number of microsatellite
loci will be enough). Our two-step sampling design has
the advantage that it allows our method to associate the
migration rate estimates with a precise time period, and to
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work with any distribution of genotype frequencies (i.e.
there is no need to make assumptions such as Hardy-
Weinberg, migration—drift, or linkage equilibrium). The
method is, therefore, very general for estimating short-term
migration rates, it is not limited to genetic markers (i.e. any
set of measurable traits that show variation between
populations), and can use information from several types of
marker in the same analysis. More importantly, migration
can be estimated without the usual confounding factors
(e.g. genetic drift), because with an appropriate sampling
of pre- and post-dispersal individuals, migration will be
the main force affecting the genetic state of the system. If
this sampling scenario cannot be respected (e.g. in species
with overlapping generations or asynchronous reproduction
and dispersal), there is a risk that genetic drift may affect
short-term changes in genotype frequency. In such cases,
our method may still perform acceptably and method
validation is possible by a simulation-based pilot study for
the specific species of interest.

The two-step sampling also has limitations. While our
method makes no assumptions about the pre-dispersal
genotype frequencies, this also makes it hard for our
method to correct any sampling errors in the pre-dispersal
genotype frequencies. If a multinomial distribution were
used for genotype counts, then the variance of the estimated
genotype frequencies could be estimated from the distri-
bution. For more general distributions, variances and
covariances of the genotype frequencies can be estimated
from repeated sampling. This information could be incor-
porated directly into the estimation model (e.g. by using a
logistic normal distribution for the genotype frequencies
and estimating the covariance matrix). The error introduced
by imperfect sampling of pre-dispersal populations can
be seen in our simulations because we can vary the pre-
dispersal sampling effort (Fig. 3A). This shows that esti-
mates of philopatry are more sensitive to the pre-dispersal
sampling intensity compared to estimates of immigration.

Methodological issues

Since our approach makes few assumptions, it is possible
to modify the model over a wide range of possibilities. For
instance, the model can be modified to estimate only
philopatry by averaging pre-dispersal genotype frequencies
from nonfocal populations. Such a model may be more
robust to missing populations and data imperfections, and
since there is only one parameter, it is quick and simple to
estimate. Increasing the number of loci does not seem to be
a promising way to improve significantly the quality of the
estimates. Although this result must be taken with caution
since we did not simulate large numbers of loci (and the
number of loci was varied only for one simulation scenario),
the genetic information content seems to quickly reach an
optimum, depending upon loci polymorphism. Alternatively,

allele frequencies rather than genotype frequencies can
be used, with some loss of information at the level of
individuals but greater sample sizes in the allelic counts.
However, we found that these simplified models gave no
improvement in philopatry estimates for all but the
weakest sampling intensities (data not presented).

Performing MCMC analysis of a mixture model is
notoriously difficult because sampling the Markov chain
can be inefficient, especially for small migration rates
(Gelman & Rubin 1992). This can lead to excessive com-
putational time, poor convergence of the Markov chains, and
ultimately a poor estimation of the posterior distribution. It
is likely that the most severely underestimated migration
rates from our model (those where estimates and HPDI
values were erroneously close to zero) were due to inefficient
sampling of the Markov chain. Specific strategies for
overcoming these problems have been developed (Neal
2000; Jain & Neal 2004), but are not implemented in the
version of openBUGS (release 2.1.1, Thomas et al. 2006)
used in this study. Another refinement of the method
would be to use reversible jump Markov chain methods
(Gelman & Rubin 1992; Brooks 2001) to remove populations
that have provided no immigrants (i.e. populations that do
not contribute to the mixture of individuals). This should
improve the convergence of the Markov chains and provide
better migration rate estimates. All these issues require that
great care be taken to ensure that estimations are based
upon Markov chains that have properly converged.

Comparison with other approaches

While it was not our intention here to identify the advantages
and weaknesses of each method in a wide variety of
conditions, applying different approaches for one basic
simulation set allowed us to evaluate the performance of
our method relative to others. Vitalis (2002) and Fontanillas
etal. (2004) showed that the average immigration in an
island system can be estimated from the genetic differentiation
between pre- and post-dispersal individuals. Our method
builds upon this approach, allowing estimates to be found
for all pairwise migration rates and philopatry to be
estimated with less positive bias. However, the estimation
quality of our method is expected to decrease when pre-and
post-dispersal samples are not from the same generation.
This is partly because genetic drift will be more important
across generations and partly because migration rate will
generally be more variable between generations compared
to within a generation. In contrast, this is not a problem for
the approach of Vitalis, provided the genetic structure is at
equilibrium (see Fontanillas et al. 2004 for an example).
Recent pairwise migration can also be estimated with
BayesAss (Wilson & Rannala 2003) and Structure (Pritchard
et al. 2000). Like our approach, these methods ignore the
effect of genetic drift for short-term estimates of migration
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rates. All methods performed with comparable precision.
The strengths of each method lie in the implicit assumptions
and the required data. Compared to our method, BayesAss
requires only one sample, although at the cost of assuming
that migration is weak and constant over the last two
generations. In agreement with the study by Faubet et al.
(2007), the confidence intervals from BayesAss were unre-
liable (in the particular conditions simulated here). Our
method makes few assumptions about the pre-dispersal
genotype distribution and gives migration estimates
over a well-defined time period. Although Structure was
not written with migration rate estimation in mind, its
logic is very similar to our method. It provides a user-
friendly interface, albeit at the expense of an assumption
about Hardy-Weinberg equilibrium and greater underesti-
mation of philopatry. Finally, other individual assignment
techniques can estimate pairwise rates of migration
(Paetkau et al. 2004; Manel et al. 2005). These techniques
only require one sample, but their power decreases when the
genetic differentiation between populations becomes weak.

Perspectives

We have presented a new method that gives a detailed
description of the recent migration rates within a
fragmented population. We have compared our approach
with other published methods and find that all give
acceptable results. Our approach is distinguished by few
underlying assumptions, migration estimates for a clearly
defined time period and its ease of adaptability to new
scenarios. For instance, ghost populations could be taken
into account by introducing unsampled populations (see
Beerli 2004 and Slatkin 2005 for discussion), or estimation
of sex-specific migration rates (as in Vitalis 2002) and
migration at several levels of spatial hierarchy (Fontanillas
et al. 2004) could be added, giving further ecologically
relevant information on migration.

Genetic-based methods of migration inference offer a
set of tools that are complementary to more field-intensive
approaches, such as mark-recapture or telemetry. Applica-
tion of genetic-based methods to complex landscape is
commonly limited by the simplicity of their underlying
population-genetic models. However, methods such as the
one presented here can give detailed quantitative information
about a species’ recent migration in a complex landscape.
This information can be used to guide the conservation
of fragmented populations and opens up the interesting
possibility of quantifying the relative effects of landscape
features upon a species’ dispersal behaviour.
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