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Abstract. We reconsider the study of optimal dividend strategies in the Cramér-
Lundberg risk model. It is well-known that the solution of the classical dividend problem
is in general a band strategy. However, the numerical techniques for the identification of
the optimal bands available in the literature are very hard to implement and explicit nu-
merical results are known for very few cases only. In this paper we put a gradient-based
method into place which allows to determine optimal bands in more general situations.
In addition, we adapt an evolutionary algorithm to this dividend problem, which is not
as fast, but applicable in considerable generality, and can serve for providing a competi-
tive benchmark. We illustrate the proposed methods in concrete examples, reproducing
earlier results in the literature as well as establishing new ones for claim size distributions
that could not be studied before.

1. Introduction

Consider the optimal dividend problem for an insurance company whose surplus pro-
cess evolves according to the Cramér-Lundberg model (see e.g. [2]). The company pays
dividends to shareholders in continuous time according to some admissible strategy π,
and the objective is to identify the strategy that maximizes the expected sum of dis-
counted dividend payments until the event of ruin. If there are no constraints on the size
of the payments, Gerber [11] showed that such a strategy always exists and is given by a
band strategy that partitions the interval [0,∞) into three sets B0,Bc and B∞: whenever
the current surplus level is in B0, no dividends are paid, when the current surplus level
is in Bc, all incoming premium is paid as dividends so that the same surplus level is
maintained until the next claim arrives, and when the current surplus level is in B∞, a
lump sum payment to the first surplus level outside of B∞ is carried out. This leads to a
cascading strategy towards ruin (see e.g. the sample path illustration in Figure 1 later).
Since Gerber’s result, the optimal dividend problem and variants have been studied under
many different and more general model assumptions and under various constraints (see
for instance Avanzi [3] and Albrecher & Thonhauser [1] for surveys).

For many claim size distributions of practical relevance, the above band strategy turns
out to collapse to a barrier strategy (i.e., |Bc| = 1), see e.g. Gerber & Shiu [13], and
Avram et al. [4] and Loeffen [20] for sufficient conditions on the Lévy measure under
which a barrier strategy is optimal in the general framework of spectrally negative Lévy
processes. In such a case the determination of the respective optimal barrier is rather
straight-forward, if the scale function corresponding to the underlying surplus process
is explicitly available (see e.g. Hubalek & Kyprianou [14]). In contrast, already for the
classical Cramér-Lundberg model it turns out to be surprisingly challenging to (even nu-
merically) identify the sets B0,Bc,B∞ for more involved claim size distributions.
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The value function of the optimal dividend problem has been identified as a viscosity
solution of the corresponding Hamilton-Jacobi-Bellman equation by Azcue & Muler [6],
which led to an iterative procedure for the numerical determination of the optimal bands
(cf. [6, 7] as well as Schmidli [25] and Berdel [8]). However, when following the respective
algorithm, one faces two main difficulties:

(1) There is no complete understanding of the internal mechanism which furnishes the
sets B0,Bc and B∞ given an arbitrary set of parameters of the Cramér-Lundberg
model, so that, as of now, concrete numerical solutions are known only for very
few concrete and simple claim distributions.

(2) The numerical approaches suggested in the literature require the solution of several
differential equations, which can be very expensive in terms of computation time.

While the numerical algorithms suggested so far were a by-product of the meticulous
study of the existence and uniqueness of the solution of the optimal dividend problem
and its characterization, in this paper we would like to take a different route. Relying on
the fact that a band strategy is optimal and assuming that there are only finitely many
such bands, we are interested to see if there are numerical alternatives to determine these
optimal bands more efficiently and/or generally. In particular, we propose two respective
numerical algorithms that differ from previous approaches.
The first one exploits the ’cascading’ nature of band strategies and establishes a method
based on gradients, when the value function is considered as a function of all band levels
rather than the initial surplus level. This will lead to a rather fast numerical routine
that can also be tailored to work for cases in which the scale function is not explicitly
available, but its Laplace transform is (which is the case in general, since that Laplace
transform is defined as the reciprocal of the (shifted) Laplace exponent of the underlying
spectrally negative Lévy process). For every fixed number of bands, one then obtains an
iterative procedure and can finally compare whether increasing the number of bands still
improves the solution.
The second method also uses the explicit iterative formula for the expected discounted
dividend payments for given band levels and uses it as the objective function in a general
evolutionary algorithm. Evolutionary strategies (ES) have been applied in the past with
some success in reinsurance problems where the evaluation of the function to optimize is
only possible through numerical procedures due to the non-existence of explicit algebraic
expressions (see, for example, Salcedo-Sanz et al. [23] and Roman et al. [21]). In our
context, we propose the use of an evolutionary self-adaptive strategy based on the algo-
rithm originally proposed in the survey paper by Beyer & Schwefel [10] which does not
use the derivatives of involved functions and which can be easily implemented in common
programming languages. This genetic algorithm is rather flexible and works particularly
well in high-dimensional problems. We will hence adapt such an algorithm to the needs
of our dividend problem, and indeed get to the same solutions as the other methods do.
While in reasonably low dimension (like the dividend problem typically is, as there are
only a few bands to consider) the computation time using this algorithm is not favorable
when compared to the gradient-based approach, it is applicable in very general setups
and can nicely serve as a benchmark for numerical procedures. Furthermore, it can also
be useful in other application areas in risk theory, and since the idea and implementation
of evolutionary algorithms may not be so commonly familiar in the risk theory commu-
nity, we present the underlying principle and implementation variants in some detail in
a separate section.
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The rest of the paper is organized as follows. Section 2 contains some definitions and
preliminaries on the model assumptions and the nature of the dividend band strategies.
In Section 3 we summarize the previously available numerical procedures for the deter-
mination of optimal dividend bands. Section 4 then provides the expressions for the
expected discounted payments that will be used in the numerical algorithms, in particu-
lar with respect to the ’cascading’ view. Section 5 develops the gradient-based algorithm
and discusses issues of its implementation. In Section 6 we give a general account of
the idea behind evolutionary algorithms, and the necessary adaptations to the optimal
dividend problem are discussed in Section 7. Finally, in Section 8 we provide numerical
illustrations. We first re-derive the known optimal bands for the well-known example of
an Erlang(2) claim size distribution derived in Azcue & Muler [6] as well as the mixture of
Erlang claim size distribution established in Berdel [8]. We then establish a new instance
of a mixure of Erlang distributions for which a 4-band strategy is optimal. Subsequently
we use our algorithms to derive the optimal barrier level in a risk model with Pareto claim
sizes (where a barrier is known to be optimal due to Loeffen [20]). We also implement
an example with a mixture of Erlang and Pareto claims, which could not be handled
with previously existing techniques and for which also two bands turn out to be optimal.
Section 9 concludes.

2. Definitions and preliminaries

Consider the surplus process of an insurance portfolio in a Cramer-Lundberg model

Ct = u+ pt−
Nt∑
k=1

Yk, t ≥ 0,

with (Nt)t≥0 a homogeneous Poisson process with rate λ representing the arrival of claims,
(Yk)k≥0 a sequence of absolutely continuous i.i.d. claim size random variables with density
fY and finite mean µ, and the premium rate p satisfying the positive safety loading
condition p = (1 + η)λµ for some η > 0. Let (Ft)t≥0 be the usual augmentation of the
filtration generated by (Ct)t≥0.
The dividend strategy π is represented by the process (Ut)≥0, where Ut are the dividends
paid up to time t. A dividend strategy is called admissible if the associated process (Ut)t≥0

is adapted to (Ft)t≥0, non-decreasing and càglàd. Denote by Π the set of all admissible
strategies.
For an admissible strategy π ∈ Π we denote by Xt = Ct − Ut the surplus after dividend
payments. Let

τD = inf{t ≥ 0 | Xt < 0}
be the time until ruin, then

Vπ(u) = E
[∫ τD

0

e−δtdUt|X0 = u

]
is the expected value of the aggregated discounted dividends paid until ruin, where δ > 0
is the force of interest. The objective is then to identify the strategy that maximizes V
over all admissible strategies, that is, to find a strategy π∗ such that

(1) Vπ∗ = sup
π∈Π

Vπ(x).

As pointed out in the introduction, the class of band strategies is known to be optimal
in this case (cf. [11]). A band strategy is defined by a partition of the positive half-line
R = B0 ∪Bc ∪B∞ with the following properties:

• If x ∈ B0, there exists ε > 0 such that [x, x+ ε) ⊂ B0.
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• Bc is compact.
• B∞ is open in [0,∞).
• If x 6∈ B∞ and there is a sequence (xn) ⊂ B∞ such that xn → x, then x ∈ Bc.
• (sup Bc,∞) ⊂ B∞.

B0 corresponds to all surplus levels for which dUt = 0 (no dividends are being paid), Bc is
the set of surplus levels for which dUt = p dt (all incoming premium is paid as dividends)
and B∞ is the set of surplus levels at which Ut+ − Ut = Xt − sup{b ∈ Bc | Xt > b} is
applied (the smallest possible lump sum is paid with which one leaves the set B∞). As
the focus of this paper is to provide alternatives to numerically identifying the optimal
bands, we restrict ourselves to finitely many bands, i.e., for given levels a0 = 0 ≤ b0 ≤
a1 ≤ · · · ≤ bm−1, the band strategy is given by

B0 = [0, b0) ∪
m−1⋃
k=1

[ak, bk), Bc =
m−1⋃
k=1

{bk}, B∞ =
m−2⋃
k=0

(bk, ak+1) ∪ (bm−1,∞).

We refer to this strategy as an m-band strategy (see Figure 1 for an illustration of a sample
path with a 2-band strategy).

We conclude this section by making some remarks about notation: for a set A ⊂ Rn,

Figure 1. A sample path with a 2-band strategy

a function f : A → R, and a limit point x ∈ A, we denote by f(x1, . . . , xj−, . . . , xn)
the limit limy→x f(y) through points y for which yj < xj, given that this limit exists
and similarly for f(x1, . . . , xj+, . . . , xn). The function f is then continuous at x if and
only if f(x1, . . . , xj−, . . . , xn) = f(x1, . . . , xj+, . . . , xn) for each j = 1, . . . , n, provided all
right-hand and left-hand limits exist. Finally, in order to avoid cumbersome notation, we
denote the partial derivative in the i-th variable by Dif .

3. The identification of bands in previous literature

As mentioned in the introduction, the explicit identification of optimal bands has
proved challenging even in the classical Cramér-Lundberg risk model. In the following
we briefly summarize the available approaches in the literature. The typical approach is
to derive the Hamilton-Jacobi-Bellman (HJB) equation

(2) max{1− V ′(x),L(V )(x)} = 0,

related to the stochastic control problem (1), where

(3) L(f)(x) = pf ′(x)− (λ+ δ)f(x) + λ

∫ x

0

f(x− y)fY (y) dy, x > 0
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is the infinitesimal generator of the discounted surplus process (see e.g. Azcue and Muler
[6, 7]). Since V is typically not sufficiently regular to satisfy the needs of (2) as a classi-
cal solution, one needs to look for viscosity solutions, and it can be shown that V (x) is
the unique viscosity solution of (2) satisfying a growth condition and a particular initial
condition [6]. The numerical approach to find this solution is then an iterative procedure.
In particular, Schmidli [25] proposed an algorithm for finding the levels of the optimal
bands. This algorithm was formalized by Berdel [8], who considered the problem for the
general case of phase-type claim distributions (cf. Algorithm 1). Here, Wδ is the scale

Input : Scale function Wδ and infinitesimal generator L.
Output: Levels B∗ = (b∗0, a

∗
1, . . . , b

∗
M−1) of the best band strategy.

1 begin
2 m := 0;

3 b0 := sup

{
x ≥ 0 | W ′

δ(x) = inf
y≥0

W ′
δ(y)

}
;

4 V0(x) :=

{
Wδ(x)/W ′

δ(b0) x ≤ b0

V0(b0) + x− b0 x > b0

;

5 while L(Vm)(x) > 0 for some x > bm do
6 Gm := {fam+1, a > bm | fam+1(x) = Vm(x), x ≤ a and

L(f)am+1(x) = 0, x > a};
7 am+1 := inf

{
a > bm | inf

x>a
fa′m+1(x) = 1

}
;

8 bm+1 := sup
{
x > am+1 | fam+1′

m+1 (x) = 1
}

;

9 Vm+1(x) :=

{
f
am+1

m+1 (x) x ≤ bm+1

f
am+1

m+1 (bm+1) + x− bm+1 x > bm+1

;

10 m := m+ 1
11 end
12 end

Algorithm 1: Schmidli’s algorithm

function (see e.g. [2, Ch.XI]). When the optimal strategy is in fact a finite band strategy,
Algorithm 1 is guaranteed to converge. However, depending on the particular distribu-
tion of the claims, the procedure can be computationally complex, as can be seen from
Lines 6 to 8. In each iteration of the algorithm, a family of functions Gm parametrized
by the interval (bm,∞) is defined in such a way that for each a > bm, the function fam+1

solves (2) on x > a with boundary condition fam+1(a) = Vm(a). Apart from some cases
where this can be done explicitly, (2) has in general to be solved numerically. While this
might not represent a problem for a couple of values of a > bm, the difficulty arises when
we consider Lines 7 and 8, since they presuppose a full knowledge of the solutions in
the entire interval (bm,∞) in order to compute the necessary extrema. As stated in [8],
one can define ām+1 = inf {x > bm | L(Vm)(x) > 0} and restrict the family to the interval
(bm, ām+1). However, this introduces another extremum to be computed and one still has
to consider the trade-off that arises at each step of the procedure when choosing a grid
fine enough to discretize this new interval.

An alternative iterative algorithm for finding the optimal bands is proposed in Avram
et al. [5], using stochastic sub- and super-solutions of (2) (their approach is formulated
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for general spectrally negative Lévy processes and the inclusion of fixed transaction costs
with every dividend payment). Similarly to Algorithm 1, optimal levels are found in
a sort of “upwards” approach finding higher band levels at each step of the procedure.
However, instead of solving integro-differential equations, each step consists of solving
a stochastic control problem expressed through Gerber-Shiu functions. The advantage
of this is that the problem is then reduced to finding the extrema of a low-dimensional
function at each iteration, and there is no need for a full set of solutions of (2) as seen in,
for example, Lines 7 and 8 of Algorithm 1. The Algorithm 2 presented later in this paper
sets out from a top-down approach, and then also leads to a bottom-up procedure that
is formulated via discounted deficit densities explicitly (rather than general Gerber-Shiu
functions), so that it eventually can be interpreted as a particular customization and
implementation of the algorithm by Avram et al., see the details below.

4. Properties of the Value Function

In this section we recollect some properties of Vπ, which will form the basis for the
implementation of the numerical algorithms presented later.
For a fixed set of levels a0 = 0 ≤ b0 ≤ a1 ≤ · · · ≤ bm−1 of an m-band strategy π, we
observe the following: for any 0 ≤ k ≤ m − 1 and initial capital u in [ak, ak+1) (here
a0 = 0 and am = ∞), the amount of dividends paid in a realization of the process will
be the same as in a process with a barrier strategy with initial capital u− ak and barrier
bk − ak, up until a claim makes the original process go below ak. Denoting by Vb the
value function of a barrier strategy with barrier b, space-homogeneity and the Markov
property imply that

(4) Vπ(u) = Vbk−ak(u− ak) + E [Vπ(ak −D(u− ak, bk − ak))] , ak ≤ u < ak+1,

where D(u−ak, bk−ak) denotes the deficit at ruin of a process with initial capital u−ak,
for which a barrier strategy with barrier bk − ak is applied. In many cases, the density of
the deficit at ruin can be computed by means of Gerber-Shiu functions (see [13, 17]) and
the dividends-penalty identity (see [19, 12]). Assume henceforth that D(u− ak, bk − ak)
has a density, which we denote by fD(·, u − ak, bk − ak). We observe that the variable
inside the expectation in (4) is non-zero only when the deficit is at most ak. We can
therefore rewrite (4), for any k = 0, . . . ,m− 1, as

(5) Vπ(u) = Vbk−ak(u− ak) +

∫ ak

0

Vπ(ak − y)fD(y, u− ak, bk − ak)dy, ak ≤ u < ak+1.

This set of equations provides the central formulas for computing the value of Vπ given a
fixed set of levels: For 0 ≤ u < a1, the value of Vπ(u) is equal to Vb0(u), which is given in
terms of the scale function of the process. We can then plug in these values in the integral
in Equation (5) to obtain the value of Vπ(u) for a1 ≤ u < a2 and repeat this procedure
in an iterative way to obtain the value of Vπ(u) for every u. The problem of evaluating
Vπ(u) is therefore reduced to the computation of the scale function Wδ and the density
fD. However, with knowledge of the scale function, the latter can be computed by means
of the formula

fD(y, u, b) = λ

∫ ∞
0

(
Wδ(u)W ′

δ(b− z)

W ′
δ(b)

−Wδ(u− z)

)
fY (y + z) dz.(6)

see, e.g., [17, Ch.X]. The setting in this last reference is that of general Lévy processes.
A more basic approach is to consider first the density fD0(y, u) of the deficit at ruin

with initial capital u in the absence of a dividend strategy. Let f̂Y (s) denote the Laplace
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transform of the claim size density fY . Following e.g. [2, Ch.XII], we know that fD0(y, u)
can be obtained as the inverse Laplace transform of∫ ∞

0

e−sufD0(y, u) du =
λ(ŵ(y, ρ)− ŵ(y, s))

ps− δ − λ+ λf̂Y (s)
,(7)

where ŵ : [0,∞)2 → R is given by

(8) ŵ(y, s) =

∫ ∞
0

e−sufY (y + u) du.

From the dividends-penalty identity [12] we then have

(9) fD(y, u, b) = fD0(y, u)− Wδ(u)

W ′
δ(b)

D2fD0(y, b).

Note that we require Wδ to be differentiable in order to be able to use these formulas.
Nonetheless, if for some α < 1 and C > 0, we have fY (x) ≤ Cx−1−α for x in some
neighbourhood of the origin, then Wδ ∈ Cq+2(0,∞) whenever fY ∈ Cq(0,∞) (see [16]),
where Cq(0,∞) refers to the set of q-times continuously differentiable functions on the
real positive line. A formula similar to (6) shows that the statement is also valid whenever
we replace Wδ by fD0 .
Equation (5) also reveals further properties of Vπ when we shift the focus from the initial
capital u to the band limits: for m ≥ 1, we can identify the set of m-band strategies with
the set

Bm = {x ∈ R2m−1 | 0 ≤ x1 ≤ · · · ≤ x2m−1},
and, for fixed u > 0, we can consider the function V m : Bm → [0,∞) given by x 7→ Vx(u).
We have the following:

Proposition 1. If fY ∈ Cq(0,∞), q ≥ 2, the function V m is continuously differentiable
in the interior of the set

Cm = Bm ∩ {x ∈ R2m−1 | x2j−2 6= u, j = 1, . . . ,m}.

When m = 1, we take {x ∈ R2m−1 | x2m−2 6= u} to be equal to R.

Proof. We proceed by induction on m. For m = 1, C1 = [0,∞) and D1 = [0, u) ∪ (u,∞).
For 0 ≤ u < b, we have

V 1(b) =
Wδ(u)

W ′
δ(b)

, V 1′(b) = −Wδ(u)W ′′
δ (b)

W ′
δ(b)

2
,

while for 0 ≤ b < u,

V 1(b) = u− b+ Vb(b) = u− b+
Wδ(b)

W ′
δ(b)

, V 1′(b) = −Wδ(b)W
′′
δ (b)

W ′
δ(b)

2
.

Since V 1(u−) = V 1(u+) = Wδ(u)/W ′
δ(u) and V 1′(u−) = V 1′(u+) = Wδ(u)W ′′

δ (u)/W ′
δ(u)2,

the claim follows. Now, assume the claim is true for some m ∈ N. We can write Cm+1 as
Cm+1 = A ∪B ∪ C, where

A = {x ∈ Cm+1 | u < x2m−2},
B = {x ∈ Cm+1 | x2m−2 < u ≤ x2m−1},
C = {x ∈ Cm+1 | x2m−1 < u}.

We observe the following: on A, V m+1 = V m ◦ π, where π : R2m+1 → R2m−1 is the
projection onto the first 2m−1 coordinates. Since π maps the interior of A into the interior
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of Cm, by the induction hypothesis, it follows that V m+1 is continuously differentiable in
that set. Now, from (5) we have, for b = (b0, a1, . . . , bm) in B

V (b) =
Wδ(u− am)

W ′
δ(bm − am)

+

∫ am

0

V m
y (b)fD(am − y, bm − am, bm − am)dy,

while for b in C,

V (b) = u− bm +
Wδ(bm − am)

W ′
δ(bm − am)

+

∫ am

0

V m
y (b)fD(am − y, bm − am, bm − am)dy.

From (7) and (9) we see that under the assumptions of the proposition, fD is twice
continuously differentiable. Hence, using the induction hypothesis once again, it follows
that V is continuously differentiable in the interiors of B and C. Moreover, since

V (b0, a1, . . . , u−) = V (b0, a1, . . . , u+),

D2mV (b0, a1, . . . , u−) = D2mV (b0, a1, . . . , u+),

and

D2m+1V (b0, a1, . . . , u−) = D2m+1V (b0, a1, . . . , u+),

we conclude that V is continuously differentiable in the interior of Cm+1, concluding the
proof. �

Remark 4.1. By considering instead the set

Dm = Bm ∩ {x ∈ R2m−1 | xj 6= u, j = 1, . . . , 2m− 1},

we can, in a similar manner, conclude that if fY ,Wδ, fD0 ∈ Cq(0,∞), q ≥ 2, then V m is
q − 1 times differentiable in the interior of Dm, since in this case one does not have to
consider the “pasting” at the points where bj = u.

5. A gradient-based method

From Proposition 1 and its proof, we can compute the gradient of the value function
when we fix the initial capital u and we look at it as a function of the levels. Assuming
that Wδ and fD0 are twice differentiable and setting

Em = Bm ∩ {x ∈ R2m−1 | x2m−2 < u},



OPTIMAL DIVIDEND BANDS REVISITED 9

we have for b ∈ Em and u < bm−1,

D2m−1V
m(b) = −Wδ(u− am−1)W ′′

δ (bm−1 − am−1)

W ′
δ(bm−1 − am−1)2

+

∫ am−1

0

D3fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy,

(10)

D2m−2V
m(b) =

Wδ(u− am−1)W ′′
δ (bm−1 − am−1)−W ′

δ(u− am−1)W ′
δ(bm−1 − am−1)

W ′
δ(bm−1 − am−1)2

+

∫ am−1

0

D1fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy

−
3∑
i=2

∫ am−1

0

DifD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy

+ fD(0, bm−1 − am−1, bm−1 − am−1)V m−1
y (am−1),

(11)

while for u > bm−1

D2m−1V
m(b) = −Wδ(bm−1 − am−1)W ′′

δ (bm−1 − am−1)

W ′
δ(bm−1 − am−1)2

+

∫ am−1

0

D3fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy,

(12)

D2m−2V
m(b) =

Wδ(bm−1 − am−1)W ′′
δ (bm−1 − am−1)

W ′
δ(bm−1 − am−1)2

− 1

+

∫ am−1

0

D1fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy

−
3∑
i=2

∫ am−1

0

DifD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy

+ fD(0, bm−1 − am−1, bm−1 − am−1)V m−1
y (am−1),

(13)

and, in both cases, for 1 ≤ i < 2m− 2,

(14) DiV
m(b) =

∫ am−1

0

fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)DiV
m−1
y (b)dy.

We can solve these equations in an iterative manner to find candidate levels for the
optimal band strategy whenever it is finite: call b∗0 < a∗1 < . . . < b∗M−1 the levels of the
optimal strategy and assume for the moment that b∗0 > 0. Since the first level has to occur
at the largest global minimum of W ′

δ, we have b∗0 = sup{x ≥ 0 | W ′
δ(x) = infy≥0W

′
δ(y)}.

We observe that W ′′
δ (b∗0) = 0, so D1V

1(b∗0) = 0, independently of u.
If the barrier strategy at b∗0 is not optimal and u is such that b∗1 < u < a∗2, b∗0, a∗1 and
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b∗1 solve (12) to (14) when m = 2, since the global maximum is attained at the 2-band
strategy with levels b∗0, a∗1 and b∗1. Hence, since (14) is zero regardless of a1 and b1 when
b0 = b∗0, we see that a∗1 and b∗1 are within the solutions to (12) and (13). Moreover, these
equations can be solved without regards to u, and, if we optimally choose the solution
(so that we end up obtaining a∗1 and b∗1) we will see that b∗0, a∗1 and b∗1 solve (10) to (14)
regardless of the value of u > a∗1.
Continuing in this fashion, if a two-band strategy is not optimal, for m = 3 and i = 2, 3,
we have,

DiV (b) =

∫ a2

0

fD(a2 − y, b2 − a2, b2 − a2)DiV
2
y (b)dy

=

∫ a∗1

0

fD(a2 − y, b2 − a2, b2 − a2)DiV
2
y (b)dy

+

∫ a2

a∗1

fD(a2 − y, b2 − a2, b2 − a2)DiV
2
y (b)dy.

On the interval (0, a∗1), V 2(b) = V 1(b) as functions of the initial capital, so DiV
2(b) = 0.

By the remarks of the previous paragraph, we also have V 2
y (b) = 0 for all y > a∗1, so we

see that (14) is always zero regardless of the value of a2 and b2. Hence, we can proceed
again by solving (12) and (13), choosing an optimal solution and test whether we proceed
further with another band. At the m+ 1-th step, the equations that we need to solve can
be written in a simpler form as

0 =
Wδ(bm − am)W ′′

δ (bm − am)

W ′
δ(bm − am)2

−
∫ am

0

D3fD(am − y, bm − am, bm − am)V m
y (b∗)dy,

(15)

1 = fD(0, bm − am, bm − am)V m
am(b) +

∫ am

0

D1fD(am − y, bm − am, bm − am)V m
y (b∗)dy

(16)

where b∗ = (b∗0, a
∗
1, . . . , b

∗
m−1).

If b∗0 = 0, we can discard the equation for D1V
m and work instead on the interior of the

set
E ′m = {x ∈ R2m−2 | b∗0 ≤ x1 ≤ · · · ≤ x2m−3 ≤ min(u, x2m−2)}

by realizing that (10) to (14) for 2 ≤ i < 2m − 2 carry over verbatim to this situation.
The same argument then shows that we can use the same procedure for obtaining the
optimal levels. The procedure is described in Algorithm 2.

Algorithm 2 starts by obtaining the first level b∗0 of the optimal band strategy. If
the barrier strategy at b∗0 is optimal, the algorithm finishes. Otherwise, the algorithm
enters into its main loop. After updating the number of bands, the loop proceeds to an
application of an abstract solve function in Line 7, which is used to solve simultaneously
Equations (12) and (13) (or equivalently, (15) and (16)) when the first 2m− 1 variables
of D2mV and D2m+1V are fixed. In Line 8, the best levels a∗m−1 and b∗m−1 are chosen by
selecting the couple that produces the best value for the value function when the initial
capital is set to b∗m−1. Line 9 uses the function defineV for creating the value function
of the strategy with the levels (b∗0, a

∗
1, . . . , b

∗
m−1) found so far, finalizing the loop.

As explained before, Algorithm 2 can be considered as a particular implementation of the
algorithm proposed by Avram et al. [5] but obtained after trying to solve the gradient
equations in a sort of ”backward” way. It is similar to Algorithm 1 and Algorithm 4 in
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Input : Scale function Wδ and density of deficit fD.
Output: Levels B∗ = (b∗0, a

∗
1, . . . , b

∗
M−1) of the best band strategy.

1 begin
2 m := 0;

3 b0 := sup

{
x ≥ 0 | W ′

δ(x) = inf
y≥0

W ′
δ(y)

}
;

4 V 0(x) :=

{
Wδ(x)/W ′

δ(b0) x ≤ b0

V 0(b0) + x− b0 x > b0

;

5 while L(V m)x > 0 for some x > bm do
6 m := m+ 1;
7 B∗ = solve(D2mV (b∗0, a

∗
1, . . . , b

∗
m−1, am, bm) = 0,

D2m+1V (b∗0, a
∗
1, . . . , b

∗
m−1, am, bm) = 0);

8 a∗m, b
∗
m := select(B∗);

9 V m := defineV(b∗0, a
∗
1, . . . , b

∗
m);

10 end
11 end

Algorithm 2: Gradient-based algorithm for optimal dividends

the sense that it is not possible to determine beforehand whether a finite band strategy
is optimal or not. The advantage is, however, that one avoids having to fully specify
the solutions to the HJB equation as in Algorithm 1 while also avoiding the randomness
involved in Algorithm 4.

Remark 5.1. Note that, in principle, one could derive explicit expressions that the
optimal band levels should satisfy by means of equations (15) and (16). However, even in
the simple case of the claims following an Erlang(2) distribution, one already arrives at
rather complicated expressions which involve combinations and products of exponentials
and polynomials, and the resulting levels cannot be given in terms of elementary functions.
However, these equations can still be solved through numerical methods, which is the basis
of the gradient-based technique that is going to be introduced in the sequel.

6. Evolutionary Strategies

Evolutionary strategies belong to a class of nature-inspired optimization algorithms
which intend to mimic biological evolution by means of procedures roughly categorized as
mutation, recombination and selection procedures which incorporate tasks that resemble
the way evolution is carried out in nature. Starting with a set of candidate solutions
(called the parental population), one produces a new set of candidate solutions by means
of recombination and, through mutation, randomly alters it to form a second set of
candidate solutions (called the offspring population). One then uses selection to filter
out the best candidate solutions from these two populations and iterates the process,
replacing the previous parental population with the new population thus obtained. In
general, recombination, mutation and selection tasks are problem-dependent and adjusted
according to a diverse set of criteria. ES are classically referred by the way the offspring
population is generated, and the notation for expressing it is the (µES/ρES+, λES)-notation
(the subscripts ES are used here to differentiate these symbols from the previously defined
µ and λ in earlier sections). In this notation, µES refers to the size of the parental
population at the beginning and end of each iteration, ρES refers to the amount of parents
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involved in the creation of one single offspring, randomly chosen without replacement,
and λES refers to the number of offsprings created in each iteration. The symbols “+”
and “,” refer to the way selection is carried out: the first one indicates that the µES

members of the new parental population are going to be extracted from a set obtained
by merging the parental population together with the offspring population, while the
symbol “,” indicates that the parental population is discarded after the creation of the
λES offsprings (so that in a (µES/ρES, λES) strategy we necessarily require λES ≥ µES).

The pseudo-code for the algorithm from Beyer [10] is presented below in Algorithm 3,
formulated in terms of a maximization problem. As suggested before, the basic objects
handled by ES are populations, which in this strategy are modeled by tuples of the form
(x, s, f(x)). In this representation, x is simply a candidate solution belonging to the
search space X. The element s is used as a set of parameters aiding in the mutation
procedure of the members of the population and leading the self-adaptive properties of
the strategy. The last element is the value of the function to optimize at x, which needs
to be stored in order to select elements in each iteration.

Input : Function f to maximize in unconstrained object space E.
Output: Solution to problem x∗ = argmax

x∈E
f(x)

1 begin
2 g := 0;

3 initialize(P(0) := {(x0,k, s0,k, f(x0,k)) | k = 1, . . . , µES});
4 repeat
5 for l := 1 to λES do
6 Sl := sample(P(g), ρES);
7 s̃l := s recombination(Sl);
8 x̃l := x recombination(Sl);
9 s̃′l := s mutation(s̃l);

10 x̃′l := x mutation(x̃l,s̃
′
l);

11 F̃l := F (x̃′l);
12 end

13 O(g) := {(x̃′l, s̃′l, F̃l) | l = 1, . . . , λES};
14 P(g+1) := Selection(P(g),O(g),µES);
15 g := g + 1
16 until terminal condition;
17 end

Algorithm 3: The basic ES-algorithm

After initialization of the algorithm, which is usually carried out randomly, the algo-
rithm enters into the main loop of the strategy for generating subsequent populations.
This loop can roughly be described as an alternation of creating offsprings out of the
parental population and selecting the replacing parental population out of these off-
springs.
The process for creating offsprings is carried out from Line 5 to 13. Lines 6 to 8 carry
out the recombination procedure by first extracting a subsample from P(g) of size ρES

without replacement. In real-valued spaces, a common recombination operator is the
arithmetic mean, so, for example, s recombination(Sl) = ρ−1

ES

∑
S s

l
sgk where S s

l is the

set of sgk that belong to some tuple in Sl. The mutation operator is then applied in lines
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9 to 10 by first mutating the strategy parameters and then the candidate solutions after-
wards. While there is no established methodology for choosing the mutation operator,
in [9], Beyer suggests that any operator should satisfy three requirements for a success-
ful implementation of ES: scalability (the ability to tune the strength of the mutation),
reachability (the ability to reach any other state (x, s) within a finite number of steps)
and unbiasedness. Scalability is achieved by allowing the mutation of the object states,
x, to be dependent on s. For N -dimensional real-valued search spaces, the parameter s is
generally used for controlling the variance of the mutation and in this regard, theoretical
and practical considerations lead to a common mutation operator given by

(17) s mutation(sl)
j = sjl exp (τNj) , j = 1, . . . , N,

where τ is the learning-rate parameter and Nj is a standard normally distributed random
variable. Given the current parental state, the unbiasedness requirement simply means
that the mutation procedure should not introduce any bias, and following the so-called
maximum entropy principle, this requirement immediately leads to mutation operators
given by

(18) x mutation(xl, s̃l)
j = xjl + s̃jlZj, j = 1, . . . , N

with Zj a standard normal random variable independent from the variables used to mu-
tate s. However, Yao et al. suggest in [26] and [18] that, more generally, allowing Zj
to have other kinds of stable distributions improves convergence speed and deals better
with problems where several local extrema exist, dealing at once as well with a better
handling of the reachability requirement.
The creation of the offspring is finalized in Line 11 by evaluating the objective function
in the mutated objects x and the offspring population is gathered in Line 13. The last
step of the main loop is achieved in Line 14, where the desired selection (plus or comma)
takes place and the new parental population is created.
Figure 2 illustrates one iteration of a (10/5+5) evolutionary strategy in a two-dimensional

real space for the function f(x, y) =
√

max{10− (x− 10)2/2− (y − 10)2/2, 0}. Muta-
tions for the parameters occur as in equations (17) and (18) with Nj independent standard
normal variables. Figure 2a represents the state of the population at the beginning of
the iteration, where, in the notation of Algorithm 3, the xgk are shown as the center of
the ellipses, the sgk as their axes and, using a blue-black-red scale, each point and ellipse
is colored according to the value of f at xgk. Figure 2b shows the first step in the creation
of a single offspring: after randomly selecting 5 individuals from the original population
(marked by the 5 darkest ellipses), the olive-colored ellipse is created after applying the
recombination operator. In this case, recombination is given by the arithmetic mean,
so that the olive point and the axes of the olive ellipse are the arithmetic means of the
other 5 points and the ellipses’ axes respectively. After recombination, mutation takes
places, which is represented in Figure 2c. Here, the axes of the olive ellipse are mutated
according to equation (17), generating the green ellipse. Sampling from the normal distri-
bution centered in the olive point and variance given by the green ellipse, the green dot is
created. Conclusion of the offspring individual’s creation is depicted in Figure 2d, where
the olive point and ellipse are deleted and the green ellipse is “associated” with the green
point. After all offspring individuals have been created and their values according to f
have been computed, the parent and offspring population are merged, which is shown in
Figure 2e. Finally, the plus selection operator is used to discard the individuals with the
lowest values of f , which finishes the iteration.

The presentation of the evolutionary strategy given so far raises two questions. First,
in the case of real search spaces with the mutations defined in (18), Algorithm 3 does
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(a) Initial Population (b) Recombination

(c) Mutation 1 (d) Mutation 2

(e) Evaluation (f) Selection

Figure 2. Illustration of a (10/5 + 5) ES.

not consider possible constraints imposed on the search space. A solution to this is the
incorporation of restriction-handling techniques, like the inclusion of penalty functions,
reparation of offspring, multiobjective optimization, etc., and the algorithm has to be
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adapted accordingly to the technique used (see [15] for an overview of several constraint-
handling techniques in the context of ES).
The second question concerns the convergence of the algorithm. While theoretical results
exist ensuring the almost sure convergence of the iterations (see, e.g., [22]), the assump-
tions used in the statements of such results are usually quite restrictive or require a deep
knowledge of the explicit form of the objective function, which leads to difficulties at the
moment of the implementation. Despite this, evolutionary algorithms have been tested
in a wide set of scenarios, proving to be effective tools for solving optimization problems.

7. ES for the optimal dividend bands problem

It is now of interest to see how competitive evolutionary strategies for the numerical
determination of optimal band levels are in the present context. Following the consider-
ations from the previous section, in Section 8 we will use a (µES/ρES + λES) evolutionary
algorithm to find the optimal band strategy for three distinct claim distributions: mix-
tures of Erlang distributions, a shifted-Pareto and a mixture of shifted-Pareto and Erlang
distributions. As discussed earlier, only very few instances of explicit non-barrier opti-
mal band strategies have been identified. In a what has become a classical example by
now, Azcue and Muler [6] identified a 2-band strategy for a case with Erlang(2,1) claims.
Adding to this, in [8] Berdel managed to expand this work by developing an algorithm for
identifying non-barrier band strategies in the case of a mixture of Erlang distributions
and some more general phase-type distributions. Our selection of mixtures of Erlang
distributions for testing the ES was therefore made to compare its efficacy against an es-
tablished baseline. Further, as can be seen from Section 8.1, the lack of explicit formulas
for the scale function in the case of Pareto claims imposes the need of numerical approx-
imations to the evaluation of Vπ. As shown in Loeffen [20], for any choice of parameters,
a barrier strategy is the optimal one for a Cramér-Lundberg model with shifted-Pareto
claims. The second choice of claim distribution for the present work was then made to
test the ES in a numerically-driven situation and test its respective efficacy. Finally, the
mixture of Erlang and shifted-Pareto claim distribution was used as a means of testing
the algorithm in uncharted territory.
Algorithm 4 displays the ES-algorithm adapted for the dividend-bands optimization,
where � stands for the element-wise multiplication operator, and 1̄k and 0̄k are the k-
dimensional vectors of ones and zeros, respectively.
Algorithm 4 is a (µES/µES + λES)-ES based on the basic strategy described in [10] for
a search in a real unconstrained object space. We chose to use µES = ρES since this
facilitates implementation and, as seen in [10] after the study of optimization problems
in real spaces, this provides the best performance.
Initialization is carried out in Lines 4 to 6, where the function initialize stands for
random initialization of the candidate levels. Recombination of the parental population
is done in Lines 8 and 9 using the arithmetic mean. In Lines 10, 12 and 13 the call of the
function random normal(k) represents the creation of an independent vector of dimension
k of standard normal random variables. Lines 14 to 17 show the implementation of the
mutation operator, where each parent individual produces one offspring individual using
log-normal multiplicative mutations for the exogenous parameters and normal mutations

for the object parameters. The coefficients 1/
√

4m− 2 and R · 1̄2m−1/
√

2
√

4m− 2 are
learning rates which depend on the dimension of the search space and are based on both
theoretical and empirical investigations. After the offspring has been created, repairing is
carried out to ensure that the levels satisfy the condition 0 ≤ b0 ≤ a1 < · · · ≤ bm−1. Line
16 sorts the s parameters according to the increasing order of B, while Line 17 sorts the
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Input : Initial capital u0, upper bound on number of bands M , number of
generations G and variance bound ε and value function V·.

Output: Levels B∗ = (b∗0, a
∗
1, . . . , b

∗
M−1) of the best M -band strategy.

1 begin
2 for m := 1 to M do
3 g := 0;
4 initialize({B0,k | k = 1, . . . , µES});
5 s0,k := 1.0, k = 1, . . . , µES;

6 P(0) := {(B0,k, s0,k, VB0,k
(u0)) | k = 1, . . . , µES};

7 repeat
8 s = 1

µES

∑µES

i=1 sg,i;

9 B = 1
µES

∑µES

i=1 Bg,i;

10 R := random normal(1);
11 for l := 1 to λES do
12 sR := random normal(2m− 1);
13 BR := random normal(2m− 1);

14 s̃′l := s� exp
(
sR/
√

4m− 2 +R · 1̄2m−1/
√

2
√

4m− 2
)

;

15 B̃′l := max(s̃′l �BR +B, 02m−1);

16 s̃′′l := sort(s̃′l,order(B̃
′
l));

17 B̃′′l := sort(B̃′l);

18 Ṽl := VB̃′′l
(u0);

19 end

20 O(g) := {(B̃′′l , s̃′′l , Ṽl) | l = 1, . . . , λES};
21 P(g+1) := selection(P(g),O(g),µES);
22 g := g + 1
23 until g = G or max(sg,0) < ε;
24 end
25 end

Algorithm 4: ES-algorithm for optimal dividends

object parameters in increasing order. Finally, the function in Line 21 performs plus selec-
tion and outputs the population P(g+1) := {(Bg+1,k, sg+1,k, VBg+1,k

(u0)) | k = 1, . . . , µES}
ordered in decreasing order according to the value of V , so when the terminal condition
in Line 23 is evaluated, sg,0 holds the variances of the levels with the best fit.
Notice that the algorithm requires a value for the initial capital. While in principle this
is a technical condition for the evaluation of Vπ, caution should be taken: in case the
optimal band strategy π∗ is finite with levels b∗0 ≤ a∗1 < · · · < b∗m−1, for b∗i ≤ u ≤ ai+1, any
other band strategy π with first i + 1 bands given by b∗0 ≤ a∗1 < · · · < b∗i and u0 < ai+1

will satisfy Vπ∗(u0) = Vπ(u0). Therefore, unless we can ensure b∗m−1 ≤ u0, any such π
will be the output of any optimization algorithm for which the initial capital is fixed.
Following Lemma 3.3.1 in [24], the inequality b∗m−1 ≤ u0 can be guaranteed by taking
u0 = pλ/(δ(λ+ δ)), which is the value that we use for all the iterations of the algorithm.
At this point, it is worthwhile to mention a key difference between the search method
employed by this algorithm and the iterative algorithm discussed in, for example, [6] or
[7]: given that the dimension of the search space has to be kept constant during the
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procedure, one has to fix in advance the number of bands for which the ES will try
to identify the optimal levels. By observing that one can “collapse” levels in a band
strategy, the n-bands strategies can be thought of as m-band strategies for n ≤ m and
hence the algorithm would identify at once the best levels for all n-band strategies for
n ≤ m. If the optimal strategy is finite, one could then set m large enough and use
the ES to find the optimal levels. However, this approach requires the evaluation of Vπ
for several bands and as explained in Section 8.1 below, this is not efficient. Hence, a
more efficient approach is instead to consecutively compute the the best 1-band, 2-band,
3-band, etc. strategies until collapsing of the levels is observed and then verify, by means
of the HJB equation, that the proposed solution is in fact the optimal band strategy.
Finally, efficiency is improved by skipping the search for the optimal 1-band strategy and
set b0 := sup {x ≥ 0 | W ′

δ(x) = infy≥0W
′
δ(y)} in all searches.

8. Numerical results

We evaluate the performance of the procedures shown in the two previous sections by
finding optimal band strategies for three study cases: claims distributed as a mixture
of Erlang distributions, the case for a pure (shifted) Pareto distribution and a mixture
between Erlang and Pareto distributions. The mixture of Erlang distributions is chosen
because there are already explicit results available (see [6, 8]) so that we can benchmark
our algorithms. Given that no explicit expressions exist for the scale function when the
claims follow a Pareto distribution, the second case was chosen to test the algorithms in
a purely numerical situation (and in the case of a Pareto distribution, it is known that
the optimal strategy is a barrier strategy, see [20]). Finally, the mixture of Erlang and
Pareto distributions was carried out to study the problem in a new context.

8.1. Objective function evaluation. In the case where fY comes from a mixture of

Erlang distributions, the Laplace transform Ŵδ of the scale function is given in terms of
a rational function, so explicit expressions in terms of the roots of the Lundberg equation
can be found for Wδ and fD. These expressions are then used for computing the value of
Vπ.
In the other two cases, numerical inversion of Ŵδ and (7) have to be carried out to find the
values of fD. Since the evaluation of this function is needed at several points, we opted
for using a piece-wise linear approximation for Wδ, W

′
δ, fD0 and its partial derivatives.

The approximation was carried out in the following way: from the remarks of Section
7, it can easily be seen that in the case where the optimal band strategy is finite, it is
enough to restrict the domain of fD and Wδ to [0, pλ/(δ(λ + δ))]3 and [0, pλ/(δ(λ + δ))]
respectively in order to find the optimal band levels. Hence, the approximation was
done by evaluating 10,000 equidistant points in the interval [0, pλ/(δ(λ+ δ))] (including
boundaries) and linear interpolation in between. The functions fD0 and fD were then
computed using Equations (7) and (9).
The integrals appearing in (5), (12), (13) and (14) were mainly evaluated through numer-
ical methods by using the numpy, scipy and mpmath libraries for Python 3. Exceptions to
this were the Erlang distributions appearing in example (a) in Case I, where the equations
were simple enough to be computed explicitly, and examples (b) and (c) of the same case
for the evaluation of the ES. The reason for doing this only for the ES instead of for both
methods was in part due to the poor convergence rate of the ES when evaluating the
integrals numerically, and the computational effort that was necessary to obtain explicit
forms for equations (12), (13) and (14), necessary for solving the gradient (see Section
8.2 for further explanation into this issue).
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Equations (15) and (16) were solved by means of the MINPACK’s hybrd and hybrj algo-
rithms implemented in the scipy library through the fsolve function. Although there
are no explicit results supporting the fact, the examples found in the literature indicate
that the values for the different band values b1, b2, . . . are close to local minima of W ′

δ

found after the optimal b0. This fact helped providing starting points for both algorithms.
Finally, we would like to comment on our selection of µES and λES. While the choice of
these parameters was mainly heuristic, the following two points served as a rule of thumb
for our choices:

• In our experiments, a small or a very large value of µES provided slower con-
vergence, since in the first case the mutation step was based on very few cases,
entailing little diversity in the offspring; while in the second case the outcome of
the recombination step was negatively affected by the worst outcomes. For most
of our trials, we assigned small multiples of 10 to µES and just kept the first one
that produced suitable results.
• Most of the steps in the algorithm can be implemented in a vectorized way, which

justifies our selection of the numpy and scipy libraries for developing the tasks.
However, since the band levels needed to be individually ordered in the offspring
to be able to evaluate the value function, one cannot avoid an implicit for-loop
in Lines 16 and 17 of Algorithm 4, which impedes vectorization of this step and
significantly increases the complexity. Since, on the other hand, a large value of
λES improves diversity in each generation and decreases the possibility of reaching
local extrema, one faces a trade-off in terms of performance when choosing its
value. In our experiments, we took λES to be of an order similar to µES, which
produced satisfactory results.

We now apply both numerical procedures introduced in this paper to the concrete exam-
ples. Below, the reporting times mean the clock time used to produce the results and do
not include the time used for verification of the solution in an interval through the HJB
equation, which is the same for both procedures.

8.2. Case I: Erlang mixture claims. The following three examples are considered (for
which we know the explicit result already from [6] and [8] for the first two):

(a) An Erlang(2, 1) distribution with parameters λ = 10, δ = 0.1 and η = 0.07.
(b) A mixture of the distributions Erlang(2, 10), Erlang(3, 1) and Erlang(4, 0.1) with

weights 0.025, 0.225 and 0.75 respectively, and parameters λ = 1, δ = 0.1 and
η = 0.405.

(c) A mixture of the distributions Erlang(2, 10), Erlang(3, 1.06775), Erlang(4, 0.2325)
and Erlang(5, 0.05) with weights 0.005, 0.045, 0.225 and 0.725 respectively, and
parameters λ = 1, δ = 0.1 and η = 0.4.

For the first two distributions, a (30/30 + 60)-ES was used in both cases, with bound
on the variance equal to 0.01. For reasons that will be explained later, a combination
of two ES’s (a (30/30 + 60)-ES and a (1/1 + 1)-ES) was used for the third distribution,
with same bound in the variance. The number of iterations vary from distribution to
distribution.
For the Erlang(2,1) distribution, Table 1 shows that we indeed find the optimal two-band
strategy established in [6].
One can observe that the gradient-based approach is very fast, while the ES algorithm
takes considerably longer time, but also arrives at the correct solution.
Table 2 shows the results for the first mixture of distributions, where a 3-band strategy
is optimal.
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Time Iterations b0 a1 b1

Evolutionary Strategy ∼ 1000s 1000 0 1.8064 10.2158
Gradient-Based < 1s – 0 1.8030 10.2161

Table 1. Results for the Erlang(2, 1) distribution.

Time Iterations b0 a1 b1 a2 b2

Evolutionary Strategy ∼ 1h 5000 0.2617 0.4668 3.5249 25.7390 34.7857
Gradient ∼ 1h – 0.2615 1.5230 3.5246 25.5763 34.7696

Table 2. Results for the first mixture of Erlang distributions.

Several remarks for this example are in order. First, there is a clear discrepancy
between the a1-values obtained by the two methods. Comparing the value functions of
both strategies shows that the strategy found by the ES provides higher values. However,
the difference between the value functions is of the order of 10−4 while the norm of the
gradient at that point is of the order 10−5 and the iterations do not reduce this value
significantly, which shows why the gradient method has an early stop. Note that for this
example, Berdel [8] already studied the optimal dividend strategy, and her results are
very similar to the ones in Table 2, with only the values of a1 and a2 differing. The ES
parameters above provide a larger value function, but again the difference is only of order
10−4. The explanation is that the step size in [8] for solving the inf and sup in Lines 7
and 8 in Algorithm 1 was set to be 10−4, whereas a smaller step size would have been
needed to arrive at the above result.
As stated before, for the evolutionary strategy, the integrals in equations (5), (12), (13)
and (14) were not evaluated numerically but instead were computed exactly, by means
of symbolical calculus in Mathematica1. Now, for k = 2, and u ≥ b2, (5) can be more
explicitly written as

Vπ(u) = u− b2 +
Wδ(h2)

W ′
δ(h2)

+

∫ b0

0

fD(a2 − y, h2, h2)
Wδ(y)

W ′
δ(b0)

dy

+

∫ a1

b0

fD(a2 − y, h2, h2)

(
y − b0 +

Wδ(b0)

W ′
δ(b0)

)
dy

+

∫ b1

a1

fD(a2 − y, h2, h2)
Wδ(y − a1)

W ′
δ(h1)

dy

+

∫ b1

a1

fD(a2 − y, h2, h2)

∫ b0

0

fD(a1 − z, y − a1, h1)
Wδ(z)

W ′
δ(b0)

dz dy

+

∫ b1

a1

fD(a2 − y, h2, h2)

∫ b0

0

fD(a1 − z, y − a1, h1)

(
y − b0 +

Wδ(b0)

W ′
δ(b0)

)
dz dy

+

∫ a2

b1

fD(a2 − y, h2, h2) (y − b1 + Vπ1(b1)) dy

1The reason for using Mathematica for this situation was the easiness with which symbolic expressions
can be handled in the Wolfram Language. While existing libraries in Python such as SymPy can perform
similar tasks, the performance of Mathematica in effecting this particular set of calculations outweighed
the potential advantage of using the same programming language throughout.
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where hi = bi − ai and Vπ1 is the 2-band strategy obtained after deleting the last band
from Vπ. For mixtures of Erlang distributions, the scale function can be written as a
linear combination of complex exponential functions with as many terms as roots of the
Lundberg equation, assuming all of them are different. For the present case, there are
10 different roots. By means of formula (6), it follows that fD(y, u, b) can be written
as a sum of approximately 90 different terms involving y with coefficients dependent on
u and b. Following this line of thought, the single integrals from the paragraph above
have, in rough terms, 900 terms, while the first double integral has around 810,000 (in
theory, further reductions that decrease these numbers considerably could in principle be
possible, but the amount of terms implies that the human or computational effort for
carrying out such operations is beyond reason). The computational effort for explicitly
computing the integrals above was of around 1 hour, which implies that the total time
for the ES was of around 2 hours, which doubled the computational time of the gradient
method, but provided a slightly more accurate result. Although this procedure could also
be carried out to test the computational time of the gradient method (which by virtue
of the other cases would be expected to be smaller), we observe that the computational
time in for obtaining explicit expressions for (12) and (13) would be at least doubled,
matching the current time of the ES.

Finally, using the intuition that the number of bands in the optimal strategy is related
to the number of modes of the claim distribution, we were interested to establish a case
where a 4-band strategy is optimal, and the second mixture of Erlang distributions indeed
leads to such an optimal 4-band strategy. The resulting optimal bands are given in Table
3.

Time Iterations b0 a1 b1 a2 b2 a3 b3

∼ 3h 6000 0.2562, 1.0543 3.1988 10.6647 19.5499 127.9288 171.6044

Table 3. Results for the second mixture of Erlang distributions.

These values were computed using only the ES technique. As before, the procedure
was carried out in two steps, first using a (30/30 + 60)-ES for computing the values of
the first three bands and consecutively using these values to reduce the problem to a
two-dimensional optimization exercise, where a (1/1 + 1)-ES was used for computing the
final two values. The reported time is for the combination of both procedures. The
reason for proceeding in a two-step fashion was due to the observation that, as shown by
these examples, the optimal values of of the bi’s are usually located in the vicinity of the
local minima of W ′

δ. The three smallest local minima are found in the interval (0, 20),
which does not present any numerical complication. However, the last one is found at
172.7545, which due to the nature of the scale function, produces exponentials with very
large exponents at the moment of evaluating the value function, creating considerable
numerical instabilities. To solve this issue, the value function and evolutionary strategy
were re-implemented using arbitrary-precision floating-point-arithmetic, which decreased
the speed at the moment of evaluating the value function. Since the (1/1 + 1)-ES is the
strategy that requires the least evaluations of the objective function, it was chosen for
obtaining the final values of a3 and b3. Figure 3 illustrates that this 4-band strategy is
indeed the optimal strategy. Concretely, Figures 3a,3b and 3c show that none of the first
three strategies (with 1, 2 or 3 bands) is optimal, as the HJB equation attains positive
values. Figure 3d shows that this does not happen for the 4-band strategy and, moreover,
Figure 3e reveals that whenever the derivative exists, it is at least 1, so the solution is
optimal.
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(a) HJB equation for the 1-band strategy (b) HJB equation for the 2-band strategy

(c) HJB equation for the 3-band strategy (d) HJB equation for the 4-band strategy

(e) Derivative of the value function

Figure 3. Plots of the l.h.s. of the HJB equation for the strategy with 1,
2, 3, and 4 bands based on the ai’s and bi’s from Table 3 as well as the
derivative of the value function in the points where it exists.

8.3. Case II: Pure Pareto claims. Following [20], the optimal strategy will be a barrier
strategy when claims have a shifted Pareto distribution with density function

fY (y) = αx−1
0 (1 + x−1

0 y)−α−1, y > 0,

and Laplace transform

f̂Y (s) = αxα0 s
αesx0Γ(−α, sx0), s > 0,
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with Γ the upper incomplete Gamma function and α, x0 > 0. For the case at hand,
we considered x0 = 1 and α = 1.5, so that the claims have finite expectation and infi-
nite variance. Moreover, the parameters of the Cramér-Lundberg process were taken to
be λ = 10, δ = 0.1 and η = 0.1. The derivatives of the scale function were computed
through their Laplace transforms and all of these were inverted using the de Hoog, Knight
and Stones algorithm implemented in the library mpmath. The results are given in Table 4.

Time Iterations b0

Evolutionary Strategy ∼ 1000s 100 2.71036
Gradient-Based < 1s - 2.71036

Table 4. Results for the Pareto distribution.

Indeed, one arrives at an optimal barrier strategy, where for the evolutionary algorithm
we only used 100 iterations to arrive at a running time that is comparable to the ones of
the Erlang case, and the result is already well-aligned with the one of the gradient-based
method.

8.4. Case III: Erlang and Pareto mixture claims. Finally, let us consider a mixture
of an Erlang(2, 1) distribution and a shifted Pareto distribution (α = 1.5, x0 = 1) with
weights 0.8 and 0.2 respectively. The parameters of the Pareto distribution were chosen
to match the mean of the Erlang component, while the weights were chosen to avoid a
monotonicity of W ′

δ. The other parameters are again λ = 1, δ = 0.1 and η = 0.1. A
(150/150+100)-ES was used and a 2-band strategy was found to be optimal. The results
are shown in Table 5.

Time Iterations b0 a1 b1

Evolutionary Strategy ∼ 8h 1000 0 0.1524 3.5115
Gradient-Based ∼ 1h - 0 0.0053 3.8877

Table 5. Results for a mixture of an Erlang and a Pareto distribution.

In this case, the discrepancy between the results is more significant than in the other
cases, with the gradient method providing a better solution. Due to the time it took for
each evaluation, the ES was stopped after 1000 iterations, which meant that convergence
was not fully achieved. The results from the gradient method also help to explain the
poor performance of the ES: observe that the value of a1 is rather close to zero, with an
order of magnitude of 10−3. At the initialization of the algorithm, there is no knowledge
of what the final order of magnitude will be, and during this experiment the initial values
for the exogenous parameters were set to be 1, so, due to the projection into the zero
for negative values, it takes many evaluations before the desired order of magnitude is
achieved. While experiments with the other cases showed that the performance of the ES
in this case could have probably been improved by, for example, reducing the values of
µES and λES, we preferred to not investigate further into this, since the evaluation time
was high and the gradient method had already provided satisfactory results.

9. Conclusions

In this paper we added two numerical alternatives to identify optimal dividend bands in
the classical optimal dividend problem of risk theory. We illustrate that both of them are
efficient, and their scope and applicability goes beyond the one of the previously discussed
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methods in the literature. The gradient-based method can be particularly efficient. The
second algorithm based on evolutionary strategies is satisfactory as well, and whereas
in terms of computation times it can not compete with the gradient-based method for
the complexity of this concrete problem, its range of applicability is even wider. In fact,
ES algorithms can be an interesting competitor whenever an objective function can be
efficiently evaluated, and it is known to work particularly well for higher-dimensional
optimization problems, in which case the gradient alternative can be hard to explicitly
compute or implement. We rederived optimal bands for some known cases, established
new ones and also derived results for cases that were beyond the scope of previously
available methods.
The focus of this paper was on optimal dividend strategies in the Cramér-Lundberg
model. However, since the equations used to derive the necessary functions for these
two algorithms were obtained by means of Gerber-Shiu functions, one can in principle
easily extend the range of applications to the case where a diffusion is added to the sur-
plus process or even to the case where the surplus process is modelled by a generally
spectrally-negative Lévy process satisfying the safety loading condition. Since evolution-
ary algorithms can be applied in rather general settings, it will also be interesting to see
in future research other applications of this method in risk theory, particularly also in
optimization problems with constraints, which may be handled with an introduction of
a penalty term in the objective function (see e.g. [15]).
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