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Abstract

As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene
trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of
the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for
understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from
pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity
among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous
genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three
lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly
suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately
reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heteroge-
neous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombina-
tion rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.
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Introduction

Reconstructing the evolutionary history of major adaptations
across the Tree of Life is a central goal in evolutionary biology.
Comparative methods used to examine the evolution of com-
plex traits rely on a phylogenetic tree, either to pinpoint tran-
sitions in certain clades or to identify essential preadaptations.
Nowadays, next-generation sequencing provides an enor-
mous wealth of molecular markers for building well-resolved
phylogenetic trees. However, despite this unprecedented
amount of data, some nodes in the Tree of Life remain con-
troversial, largely due to conflicting phylogenetic signals
among loci (Gatesy and Springer 2014; Liu et al. 2015).

One particularly controversial phylogeny is that of the
corbiculate bees, an ecologically and economically important
group of bees that is also important for understanding social
evolution. Corbiculate bees include the only bees exhibiting
complex eusociality, which is characterized by large colonies, a
perennial colony cycle, and morphologically and behaviorally
specialized queen and worker castes. The corbiculate bees
consist of four monophyletic tribes: the solitary orchid bees
(Euglossini; hereafter E), the bumble bees (Bombini; hereafter
B), which exhibit simple eusociality, and the complex eusocial
honey bees (Apini; hereafter A), and stingless bees
(Meliponini; hereafter M). Knowing the phylogenetic

relationships among these four tribes is important for deter-
mining the number of origins of eusociality within this group
and for evaluating the possibility of reversal from social to
solitary life styles (Cardinal and Danforth 2011). Although the
monophyly of each of the four tribes is well established
(Cameron 1993; Koulianos et al. 1999; Mardulyn and
Cameron 1999; Ascher et al. 2001; Cameron and Mardulyn
2001; Lockhart and Cameron 2001; Cameron and Mardulyn
2003; Michener 2007; Kawakita et al. 2008; Whitfield et al.
2008; Cardinal et al. 2010; Woodard et al. 2011; Hedtke et al.
2013), the phylogenetic relationships among tribes have re-
mained controversial. For example, of the 15 possible
unrooted phylogenies, nine have been supported by at least
one study (reviewed in Cardinal and Packer 2007; Almeida
and Porto 2014).

All molecular studies to date support a close phylogenetic
relationship between Bombini and Meliponini but conflicts
surround the position of Apini and Euglossini, reducing the
conflicting topologies from nine to three (reviewed in
Danforth et al. [2013]; table 1). One topology groups the
three eusocial clades together (Apini, Bombini, and
Meliponini), with the solitary Euglossini as the basal clade
(hereafter the ABM topology, blue in fig. 1), whereas the al-
ternative two topologies group the solitary clade (Euglossini)
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Table 1. Summary of Previous Phylogenetic Studies of Corbiculate Relationships.

Study Loci Number of Most Supported Clade Support Values
Aligned Sites (bp) Topology BM AE ABM EBM
Cameron (1993) 16S 536 EBM 98% (MP) — — 60% (MP)
Koulianos et al. Cytb 520 AE* 91% (MP)  53% (MP) — —
(1999)
Mardulyn and LW-Rhodopsin 502 EBM® 71% (ML) — — 83% (ML)
Cameron (1999)
Cameron and 16S, 28S, LW-Rhodopsin, 2,360 AE 99% (MP) 55% (MP) — —
Mardulyn (2001) Cytb
Ascher et al. (2001) LW-Rhodopsin 495 NA® — — — —
Kawakita et al. (2008) 12 nuclear genes 6,018 AE 100% (ML)  88% (ML) — —
Cardinal et al. (2010) 7 nuclear genes 5,844 AE 100% (ML)  77% (ML) — —
Hedtke et al. (2013) up to 20 genes up to 17,000 ABM 100% (ML) — 74% (ML) —
Woodard et al. (2011) 717 nuclear genes 69,461 ABM; AEC 1.0 1.0¢ 1.0 —

Note.—Support values indicate bootstrap support values in parsimony (MP) or maximum-likelihood (ML) analyses (when both types of analyses were conducted, values reported
here refer to ML analyses) or posterior probability values in Bayesian analyses.

*Analyses of amino acid sequence recovered EBM topology.

®Corbiculate monophyly was not recovered.

°AE recovered in analyses of third codon positions.
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Fic. 1. Support values for the position of Apini according to GC3-heterogeneity derived from (A) homogeneous (GTR) and (B) nonhomogeneous
(GG98) models of sequence evolution. Each bar represents a supermatrix of 100 genes grouped according to their GC3-heterogeneity. The color of the
bars corresponds to the topology of the most supported tree (blue for ABM, red for EBM, and green for AE), the heights correspond to the node
bootstrap value of the Apini position (node with a black dot on the corresponding topology). Clades with a eusocial lifestyle are surrounded by gray
squares.
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as the sister clade to either the eusocial Apini or the eusocial
Bombini + Meliponini clade (respectively, the AE and the
EBM topology; green and red in fig. 1). These conflicting to-
pologies have different implications for eusocial evolution.
The ABM topology suggests a single origin of eusociality
from a solitary common ancestor, whereas the AE and EBM
topologies suggest either two independent origins of eusoci-
ality from a solitary ancestor or a single origin of eusociality in
the common ancestor, followed by a loss of eusociality in
Euglossini. The AE topology has been favored in the literature
recently and has been used as the true species tree in several
comparative studies (Cardinal and Danforth 2011; Woodard
et al. 2011; Kocher and Paxton 2014; Kapheim et al. 2015).

Discrepancies among species trees (table 1) stem from
conflicting gene trees, with each gene representing its own
evolutionary history, which may or may not correspond to
the history of species (e.g, through incomplete lineage sorting,
Pamilo and Nei 1988; Degnan and Rosenberg 2009). Given
these discrepancies, it is important to identify which genes are
reliable phylogenetic markers and which genes should be
avoided for phylogenetic inference. Recently, it has been
shown that GC-rich genes may produce false and inconsistent
topologies in mammals (Romiguier et al. 2013). This so-called
“GC effect” is thought to be due to genome-wide variations in
recombination rate. Recombination is known to drive mam-
malian nucleotidic composition through GC-biased gene con-
version, a DNA repair bias favoring GC alleles during meiotic
recombination (Eyre-Walker 1993; Galtier et al. 2007;
Romiguier et al. 2010). Consequently, recombination hotspots
lead to increased GC content, elevated polymorphism, fast
evolutionary rates, and, importantly, heterogeneity of base
composition among taxa, which can bias phylogenetic recon-
structions through incomplete lineage sorting (Hobolth et al.
2011), long-branch attraction (Bergsten 2005), or substitution
model misspecifications (Boussau and Gouy 2006; Nabholz
et al. 2017; Betancur et al. 2013). For all of these reasons, GC-
rich genes with high GC heterogeneity among taxa have been
avoided to resolve the trickiest nodes of the phylogeny of
mammals (Romiguier et al. 2013) and birds (Jarvis et al.
2014), two taxa known to feature GC-biased gene conversion
and heterogeneous GC content (Figuet et al. 2014).

GC biases may similarly affect phylogenetic reconstruc-
tions in insects, including the corbiculate bees. In particular,
genomes of eusocial Hymenoptera feature both the highest
recombination rates recorded in multicellular eukaryotes
(Beye et al. 2006; Wilfert et al. 2007; Ross et al. 2015) and
extremely heterogeneous GC contents (Jorgensen et al.
2007; Suen et al. 2011). Furthermore, the western honeybee
(Apis mellifera) is the only known invertebrate where GC-
biased gene conversion has been demonstrated (Kent et al.
2012), with fixation biases toward GC estimated to be up to
50 times stronger than in mammals (Wallberg et al. 2015).

Genome-wide gene sequence alignments of nine bee spe-
cies (including two species per each corbiculate bee tribe,
Woodard et al. 2011) provide an opportunity to test the
influence of GC content on the honeybee phylogenetic po-
sition. Originally used to identify genes involved in conver-
gent evolution of simple and complex eusocial bee lineages,
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these sequence alignments retrieved two conflicting topol-
ogies (ABM and AE; supplementary fig. S1in Woodard et al.
2011). Based on phylogenetic studies including a high
number of species but few genes (Kawakita et al. 2008;
Cardinal et al. 2010), Woodard et al. (2011) favored the AE
topology for their analyses, as has been the case in other
recent comparative studies (Cardinal and Danforth 20171;
Kocher and Paxton 2014; Kapheim et al. 2015). In this phy-
logenomic study, we examined how GC content impacts
phylogeny reconstruction to specifically resolve the contro-
versial relationships among honey bees, bumble bees, sting-
less bees, and orchid bees. Contrary to the prevalent
hypothesis (AE topology), we found that the topology sup-
porting a single origin of eusocial behavior with no reversal
to solitary lifestyle (ABM topology) is the most likely.

Results

Higher Probability of Conflicting Gene Trees among
GC-Rich and GC-Heterogeneous Genes

To test the impact of base composition on tree inference,
we ranked 3,600 gene fragments examined in Woodard et al.
(2011) according to their average GC content at the third
codon position (hereafter, “average GC3”) as well as their
GC3% variance across species (hereafter, “GC3-heterogene-
ity”), then divided this ranked gene list into 36 groups of 100
genes. There was a strong correlation (R=0.85,
P value < 0.0001; fig. 2A) between the average GC3 of a
gene group and the within-group topological conflict
among gene trees (i.e, average quartet distance of gene
trees compared to their group consensus tree, a supertree
summarizing the mutual agreement of the 100 gene trees;
see Material and Methods). Similarly, there was a strong
positive correlation between interspecific GC3 heterogene-
ity and within-group topological conflict (R=0.92, P
value < 0.0001; fig. 2B).

GC-rich and GC-heterogeneous genes were also less
likely than GC-poor and GC-homogeneous genes to
group pairs of species of the same tribe as sister species
(ie, Apini: A. mellifera + Apis florea; Bombini: Bombus
terrestris + Bombus  impatiens;  Meliponini: ~ Melipona
quadrifasciata + Frieseomelitta ~ varia; and  Euglossini:
Eulaema nigrita + Euglossa cordata; hereafter, the intratribe
nodes). Across the 36 gene groups and their corresponding
supertrees, the average support for intratribe nodes was
negatively correlated with both average GC3 (R =—0.70,
P value<0.0001; fig 2C) and GC3 heterogeneity
(R=—0.93, P value < 0.0007; fig. 2D). The most striking ex-
ample was for the monophyly of Meliponini, which was
supported by 94 of the 100 most GC-homogeneous genes
but only 60 of the 100 most GC-heterogeneous genes (data
not shown). In summary, gene groups with low average GC3
and low GC3-heterogeneity resulted in lower topological
incongruence and higher support for tribal monophyly, sug-
gesting that these genes are more reliable for phylogenetic
inference than genes with high average GC3 and high GC3-
heterogeneity. Interestingly, the same correlations were ob-
served when gene trees were inferred from amino
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Fic. 2. GC effect on topological incongruence. Each dot represents one of the 36 groups of 100 genes (in total 3,600 alignments), ranked according to
their average GC3 (A and C) or GC3-heterogeneity among species (B and D). Within-group topological conflict (used in A and B) measures gene tree
incongruence in each gene group and is the average proportion of false quartets (quartet distance) of the 100 gene trees versus their own consensus tree
(a supertree summarizing the 100 topologies). Support for consensual nodes (used in C and D) is the average support of a supertree for the
uncontroversial nodes defining the monophyly of the four tribes of corbiculates bees (Apini, Bombini, Meliponini, and Euglossini).

acid sequences (supplementary fig. S1, Supplementary
Material online), indicating that the GC effect could not
be removed by translating the nucleotide data set into
amino acids.

There was a high correlation between average GC3 and
GC3-heterogeneity across the 36 gene groups (R=0.85, P
value < 0.0001, supplementary fig. S2, Supplementary
Material online), as typically is the case in species exhibiting
biased gene conversion (mammals and birds, Romiguier et al.
2010; Romiguier et al. 2013; Weber et al. 2014). Because GC3-
heterogeneity was more highly correlated than average GC3
with both topological incongruence and support for tribe
monopbhylies (fig. 2B and D vs. fig. 2A and C), we used GC3-
heterogeneity (average for each group of genes) in further
analyses investigating the role of GC content on phylogenetic
reconstructions.

GC3-Homogenous Genes Support a Single Origin of
Eusociality

Because GC3-heterogeneous genes were less reliable than
GC3-homogeneous genes in retrieving consistent phyloge-
nies, we investigated whether differences among GC-hetero-
geneity may be responsible for the conflicting topologies of
corbiculate bees (table 1). We used the 36 groups of 100 genes
ranked by GC3-heterogeneity (fig. 2B and D) to produce
36 supermatrices and performed maximum-likelihood analy-
ses on each (RAXML, GTR + GAMMA model). In line with
recent molecular studies (table 1), only three different topol-
ogies were retrieved from the resulting 36 trees: ABM, EBM,
and AE (fig. 1). Overall, the EBM and ABM topologies (red and
blue, fig. 1A) were the most supported across trees (respec-
tively, 17/36 and 13/36 trees), whereas the AE topology
(green, fig. 1A) was the least supported (6/36 trees).
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Support for AE essentially came from the least reliable genes
(or, most GC3-heterogeneous). In contrast, the five superma-
trices containing the most reliable genes (most GC3-homo-
geneous) all supported the ABM topology (fig. 1A). Overall,
the bootstrap support for ABM was negatively correlated
with supermatrix GC3-heterogeneity (R=—0.34,
P value = 0.04). GC3-heterogeneous supermatrices also pro-
duced the longest tree branches (positive correlation between
log-transformed GC3-variance and branch length, R =0.95,
P value < 0.0001, supplementary fig. S3, Supplementary
Material online), which can favor long-branch attraction
artifacts.

To confirm the effect of GC3-heterogeneity on topol-
ogy, we conducted another analysis where we concate-
nated the 3,600 genes into two large supermatrices (1,800
genes each) with low and high GC3-heterogeneity and
repeated the maximum-likelihood analyses (RAxML,
GTR + GAMMA model). Results of this analysis were con-
sistent with our previous results, as the supermatrix com-
prising the more reliable genes (low GC3-heterogeneity)
retrieved high bootstrap support for ABM (99%, fig. 3),
whereas the supermatrix encompassing the less reliable
genes (high GC3-heterogeneity) retrieved the AE topology
with a middling bootstrap support (75%, fig. 3).

Nonhomogeneous Models of GC Evolution Strongly
Support a Single Origin of Eusociality

Because our analyses showed a strong effect of GC3-hetero-
geneity on the inferred corbiculate bee phylogeny, we used a
nonhomogeneous, nonstationary model of sequence evolu-
tion to reanalyze the data (GG98, Galtier and Gouy 1998;
implemented in nhPhyml, Boussau and Gouy 2006). This
nonhomogeneous model allows equilibrium base content
to vary among lineages and should consequently provide
more consistent topologies than the standard homogeneous
model (GTR) used in the previous section.

The use of a nonhomogeneous model substantially in-
creased the average bootstrap values of the inferred trees
(79.1% vs. 65.25% in the previous analysis). Most super-
matrices of 100 genes (32/36) supported the ABM topol-
ogy (blue, fig. 1B), the topology also supported by the
most GC3-homogeneous supermatrices in the previous
analysis (fig. 1A). Three of the four remaining superma-
trices recovered the EBM topology, whereas only one re-
trieved the AE topology (red and green, fig. 1B). Overall,
the bootstrap support for ABM was negatively correlated
with the GC3-heterogeneity of the supermatrices
(R=—0.39, P value =0.018).

To confirm these results, we reanalyzed the two large
supermatrices previously created (each containing 1,800
genes with high or low GC3-heterogeneity) using two differ-
ent nonhomogeneous models: the GG98 model in nhPhyml
and the NCDH model implemented in P4 (Foster 2004). With
the GC98 model, the supermatrix grouping the most GC3-
homogeneous genes again retrieved the ABM topology with
maximal bootstrap support (100%, fig. 3); the supermatrix
containing the most GC3-heterogeneous genes also retrieved
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the ABM topology (bootstrap support of 59%, fig. 3), in con-
trast to the analyses done with a standard GTR homogeneous
model (see previous section and fig. 3). With the NCDH
model in P4, we used Bayes factors to compare the three
alternate topologies (ABM, EBM, and AE) for these two super-
matrices of 1,800 genes (see supplementary materials,
Supplementary Material online, for details). In both cases,
the ABM topology fit the data significantly better than
either alternate topology (Bayes factors 164.39 and 102.36
for ABM over EBM and AE, respectively, for the 1,800 most
GC3 homogenous genes; and 601.40 and 9.08 for the 1,800
most GC3 heterogeneous genes).

Discussion

Comparison with Previous Studies

In line with all previously published phylogenetic studies
based on molecular data (table 1, see also Lockhart and
Cameron [2001]), our analyses grouped bumble bees
(Bombini) and stingless bees (Meliponini) as sister clades.
This node was recovered in all supermatrix analyses with
maximal bootstrap support for all models. Therefore, the
clade grouping Bombini and Meliponini (hereafter; BM) ap-
pears to be unambiguous.

The relationship between the Bombini + Meliponini clade
(BM) and the two other tribes (Apini and Euglossini) was less
stable, with three different topologies: Apini as closest relative
to BM and Euglossini in basal position (ABM topology),
Euglossini as closest relative of BM and Apini in basal position
(EBM topology), and Apini + Euglossini as sister to BM (AE
topology) (fig. 1). Each of these topologies had been previ-
ously suggested in phylogenetic studies based on molecular
data (table 1), although the AE topology is currently favored
in the literature (Cardinal and Danforth 2011; Woodard et al.
2011; Almeida and Porto 2014; Kocher and Paxton 2014;
Kapheim et al. 2015) mainly based on recent analyses
(Kawakita et al. 2008; Cardinal et al. 2010). However, our
study shows that the AE topology is only supported by the
most GC3-heterogeneous genes, which have shown to be
unreliable for phylogenetic inference (figs. 1A and 3), whereas
the ABM topology is strongly supported when using more
reliable GC3-homogeneous genes or nonhomogeneous
models of sequence evolution (figs. 1A, 1B, and 3).

To test whether GC3-heterogeneity can also explain the
topological discrepancies found in previous studies, we rea-
nalyzed the data of two studies often cited as references to
favor the AE topology (Kawakita et al. 2008; Cardinal et al.
2010). Both studies included relatively few loci (12 and 7,
respectively) but greater taxon sampling in the corbiculates
(11 and 26 species, respectively) than our data set. We found
that several genetic markers in both studies (4 of 12 markers
in Kawakita et al. 2008, and two of seven markers in Cardinal
et al. 2010; supplementary table S1, Supplementary Material
online) had significantly heterogeneous base composition at
third codon positions across the included species (see sup-
plementary material, Supplementary Material online, for de-
tails). The removal of these GC3-heterogenous genes from the
data set for each study resulted in the ABM topology instead
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Fic. 3. Phylogenetic tree of the 10 species. The topology (ABM) is supported by the most GC-homogeneous genes. The bootstrap values of the position
of Apini are displayed for maximum-likelihood analyses (GTR + gamma model using RAXML and nonhomogeneous GG98 model using nhPhyml) of
two different supermatrices of equal size: 1) the group of 1,800 genes with the lowest GC3-heterogeneity and 2) the group of 1,800 genes with the
highest GC3-heterogeneity. Blue bootstrap values are for the ABM topology (displayed on the tree) and green bootstrap values for the AE topology. The
bootstrap values of all the other nodes are equal to 100 (all supermatrices, all models). Branch lengths correspond to the RAXML tree based on the 50%
most GC3-homogeneous supermatrix. E stands for Euglossini (orchid bees), A for Apini (honeybees), B for Bombini (bumblebees), and M for Meliponini

(stingless bees).

of AE (supplementary figs. S4 and S5, Supplementary Material
online), although bootstrap support for ABM was weak
(<50% in Kawakita et al. 2008 and 51% in Cardinal et al.
2010).

GC Effect on Tree Reconstruction

In line with what has been recently shown in mammals
(Romiguier et al. 2013), GC-rich and GC-heterogeneous
genes also appear to be unreliable genetic markers for
phylogenetic inference in the corbiculate bees. Compared
to GC-homogeneous genes, gene trees produced by GC3-
heterogeneous genes presented a higher level of topological
incongruence and were less likely to retrieve monophyly of
corbiculate tribes, a clear effect supported by extremely
significant and strong correlations (fig. 2). Interestingly, this
effect is still very strong after an amino acid translation (sup-
plementary fig. S1, Supplementary Material online), indicating
that protein data are not immune to GC-biases.

Three nonmutually exclusive hypotheses can explain the
origin of such a dramatic GC effect on phylogenetic recon-
structions. First, GC-rich regions are characterized by high
recombination rates (Duret and Arndt 2008; Kent et al.
2012), which can increase incomplete lineage sorting by in-
creasing local levels of polymorphism (Hobolth et al. 2011).

Second, standard models of sequence evolution assume a
homogeneous nucleotidic composition among species, which
is violated in our ten bee species: GC3% average of the 3,600
genes ranged from 21% (A. mellifera) to 33% (Exoneura
robusta). Using nonhomogeneous models of sequence evolu-
tion allowed us to retrieve a consistent topology and the
highest bootstrap supports (figs. 1 and 3). It is worth noting
that GC biases can also bias amino acid composition (Foster
and Hickey 1999; Singer and Hickey 2000), which means that

protein sequences are also vulnerable to this weakness of
homogeneous models.

Third, biased gene conversion can favor homoplasy. Biased
gene conversion is a bias that occurs in the process of DNA
repair during meiotic recombination, promoting the fixation
of G+ C substitutions (Galtier et al. 2001). It has been re-
ported that biased gene conversion can counteract natural
selection by promoting the fixation of deleterious mutations
toward GC (Galtier and Duret 2007; Necsulea et al. 2011),
suggesting that GC deleterious substitutions are likely to be
followed by AT compensatory substitutions to restore the
protein function (Galtier et al. 2009). Such multiple substitu-
tions at the same site are difficult to detect by substitution
models, leading to homoplasy and long-branch attraction
artifacts (Romiguier et al. 2013), which are well known to
bias phylogenetic reconstructions (Bergsten 2005). This phe-
nomenon could be particularly dramatic in bees because GC-
biased gene conversion is estimated to be 50 times more
important than in humans (Wallberg et al. 2015) and because
the honeybee genome is characterized by an exceptional mu-
tational bias toward AT (Kent et al. 2012; Wallberg et al. 2015).
In line with previous studies linking biased gene conversion
with accelerated evolution (Montoya-Burgos et al. 2003;
Galtier and Duret 2007; Kostka et al. 2011; Kent et al. 2012),
our analyses showed that the most GC3-heterogeneous genes
are the fastest evolving (supplementary fig. S3, Supplementary
Material online). Fast-evolving genes are predicted to be par-
ticularly prone to long-branch attraction artifacts, and con-
sistent with this prediction, GC3-heterogeneous genes
supported the topology grouping the two long branches of
Apini and Euglossini (AE topology, figs. 1A and 3). Of note, the
topology favored by GC-rich genes in mammals was also the
topology grouping two long branches (Atlantogenata and
Xenarthra, Romiguier et al. 2013), suggesting that GC-rich
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markers are particularly prone to grouping distant taxa
through long-branch attraction artifacts.

It is worth noting that incomplete lineage sorting, substi-
tution model misspecification, and homoplasy are not mu-
tually exclusive hypotheses and probably all contribute to the
decreased phylogenetic reliability of GC-rich and GC-hetero-
geneous genes. Using nonhomogeneous models can solve the
model misspecification issue, but these models do not correct
for incomplete lineage sorting and homoplasy. Both incom-
plete lineage sorting and homoplasy can explain why, in spite
of the use of nonhomogenous models, the most GC-hetero-
geneous genes retrieve the eusocial clade (ABM) with rela-
tively low statistical support (59% bootstrap support, fig. 3;
Bayes factor 9.08; see above and supplementary materials,
Supplementary Material online).

Because GC-rich and GC-heterogeneous genes are fast
evolving, their spurious phylogenetic signal can overcome
the reliable signal of slow-evolving, GC-poor, and GC-homo-
geneous genes, which calls for gene filtering and the use of
nonhomogeneous models in future phylogenomic studies.

Conclusion

Our analyses strongly suggest that the honey bees (Apini) are
the closest relatives of the bumblebee + stingless bee clade.
Given that these three lineages are all eusocial, this result
supports a single origin of eusociality within the corbiculate
bees, with no reversal to a solitary lifestyle. This finding has
important implications for comparative genomic studies fo-
cusing on the evolution of social behavior (Woodard et al.
20117; Roux et al. 2014; Barribeau et al. 2015; Kapheim et al.
2015; Sadd et al. 2015; see Kent and Zayed 2015 for a review).

More broadly, our analyses reveal that the spurious
phylogenetic signal of GC-rich and GC-heterogeneous
genes are not restricted to mammals or birds but appears
to be an important source of gene-tree conflicts across a
wide variety of taxa. GC-rich gene tree conflicts can affect
all taxa with GC-biased gene conversion, a mechanism
known to be widespread across eukaryotes (Pessia et al.
2012) and are potentially one of the principal biases
clouding the resolution of some of the more controversial
nodes of the Tree of Life.

Materials and Methods

Alignments

We used the transcriptome data set from Woodard et al.
(2011). This data set consists of highly curated alignments
of fragments of coding sequence from 3,647 genes for ten
species: two Apini (A. mellifera and A. florea), two Bombini
(B. impatiens and B. terrestris, two Meliponini (F. varia and
M. quadrifasciata), two Euglossini (E. nigrita and Eug. cordata),
and the noncorbiculate species Exoneura robusta and
Megachile rotundata. Details on the assembly and orthology
prediction are given in Woodard et al. (2011).

Topology Incongruence in Gene Tree Groups

We divided the 3,647 genes into 36 ranked groups according
to their average GC3-content (i.e, G+ C content of third
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codon position) or their GC3-heterogeneity (i.e, variance in
G + C at third codon position among species). To ensure that
each group contained exactly 100 genes, we removed the 47
genes with GC3-mean or GC3-variance values closest to the
median value.

Trees were inferred for each gene from both nucleotide
and amino acid sequences using RAXML (Stamatakis 2006)
with a GTR + GAMMA or LG + GAMMA model. For each of
the 36 groups of 100 genes, we computed a supertree of the
100 gene trees using SuperTriplet (Ranwez et al. 2010). Then,
we computed the average topological distance (quartet dis-
tance, Bansal et al. 2009) of the 100 gene trees versus their
own supertree. This average quartet error was used as a mea-
sure of the topological incongruence of a gene tree set. For
each supertree, we also computed the average support values
for consensual nodes of the corbiculate bees (i.e, nodes de-
fining the monophyly of the four tribes, Apini, Bombini,
Meliponini, and Euglossini).

Supermatrices Topology Comparison

We concatenated the sequence of the genes in each of the 36
gene groups to generate 36 supermatrices of 100 genes and
performed maximum-likelihood analyses on each of them,
using RAXML (Stamatakis 2006) with a GTR + GAMMA
model and 100 bootstrap replications. To control for hetero-
geneous base composition, we performed similar analyses
using nhPhyml (Boussau and Gouy 2006). This software
uses the nonstationary, nonhomogenous  model
GaltierGouy98 (GG98, Galtier and Gouy 1998) and takes
into account heterogeneity in base composition when model-
ling the sequence evolution process. To avoid convergence
problems arising when trying to optimize the G + C equilib-
rium frequency for each branch, we used the option eqfreq set
to lim and the option numegfreq set to 5, which means that
each branch was limited by five different sets of G + C equi-
librium frequencies. To be as conservative as possible, we used
the topology the most supported in the literature and by
GC3-heterogeneous genes (AE) as the starting tree. Because
nhPhyml does not enable default bootstrap functionality, we
sampled sites using a de novo script to perform 100 bootstrap
replications for each supermatrix. Because the GG98 model is
based on a T92 substitution model, while our homogenous
analyses implemented a GTR model, we repeated the RAXML
analyses with a HKY85 model (the T92 is not available in
RAXML) to ensure that the differences were not due to the
distinct substitution model. Results obtained with the HKY85
model (not shown) were virtually identical to those obtained
with the GTR.

We also divided the 3,600 genes into two groups of 1,800
(high and low GC3-heterogeneity) based on GC3-heteroge-
neity rank. We concatenated the sequences of genes in each
group into supermatrices and performed the same maxi-
mum-likelihood analyses described above. We applied a strin-
gent cleaning on these large supermatrices, removing
all positions with at least one gap or one ambiguous
nucleotide.
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Supplementary Material

Supplementary figures S1-S5 and tables S1 and S2 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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