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Abstract 

 

Pathogen inactivation technologies are known to alter in vitro phenotype and functional properties of platelets. 

Because pathogen inactivation generates reactive oxygen species, oxidative stress is considered as one of 

the plausible cause at the origin of the platelet storage lesion acceleration after treatment. To date proteomics 

has been used to document the protein variations to picture out the impact. Here, platelet concentrates were 

prepared from buffy-coats in Intersol additive solution, leukoreduced and pathogen inactivated using a 

riboflavin/UVB treatment. At day 2 of storage the platelet proteomes of control (untreated) and treated platelet 

concentrates were investigated against the site specific oxidation by liquid chromatography coupled to tandem 

mass spectrometry in a shotgun experiment. The shotgun approach detected 9350 peptides (and 2534 

proteins) of which 1714 were oxidized. Eighteen peptides were found exclusively oxidized in treated platelets 

whereas 3 peptides were only found oxidized in control. The present data evidenced an interference with 

several proteins involved in platelet aggregation and platelet shape change (such as talin and vinculin). 
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Résumé 
Les traitements d’inactivation des pathogènes sont connus pour induire, in vitro, des modifications au niveau 

du phénotype et des fonctionnalités plaquettaires. De par le caractère oxydatif de ces traitements 
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photochimiques, la génération d’espèces réactives de l’oxygène est l’une des causes possibles du 

vieillissement accéléré des concentrés plaquettaires inactivés. Les analyses protéomiques ont montré jusqu’à 

présent les variations de certaines protéines suite à ces traitements. Dans la présente étude, des concentrés 

plaquettaires ont été préparés à partir de buffy-coat en solution Intersol, leucoréduits et traités pour 

l’inactivation des pathogènes à base de riboflavine/UVB. Deux jours après le don, des oxydations spécifiques 

du protéome des plaquettes traitées et non-traitées (contrôle) ont été étudiés par chromatographie liquide 

couplée à la spectrométrie de masse. L’approche « shotgun » utilisée a détecté 9350 peptides (pour 2534 

protéines) dont 1714 étaient oxydés. Dix-huit d’entre eux ont été détectés exclusivement dans les plaquettes 

traitées et 3 exclusivement dans le contrôle. Ces données montrent l’impact de ces oxydations de protéines 

impliquées dans des processus d’agrégation plaquettaire et de changement de forme (telles la talin et la 

vinculin). 

 

Mots clés : Concentré plaquettaire, Espères réactives de l’oxygène, Inactivation des pathogènes, Oxydation, 

Protéomique, Riboflavine, Shotgun 
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1 Introduction 

Pathogen inactivation technologies (PITs) provide a higher level of safety in transfusion medicine but impact 

the quality of blood products [1]. They reduce platelets in vitro functionality [2-6], suggesting that in addition to 

early platelet storage lesions [7] there is an endogenous factor affecting their effectiveness. PITs enhance 

storage lesions and correlate with platelet aging and pre-activation [8, 9]. Hypotonic shock response 

highlighted lower deformability and flow cytometry evidenced increased pre-apoptotic markers, degranulation 

and integrins activation [3, 10]. In addition, glycolytic metabolism is accelerated resulting in medium 

acidification [6]. Despite these considerations, in vitro functionality tests are difficult to be translated in vivo 

and have not a clear clinical relevance to date [11-13].  

PI produces ROS that can damage other molecules than DNA/RNA , such as peptides and proteins 

[14, 15]. For instance, ROS imbalance enhances protein carbonylation, a hallmark of oxidation, as recently 

shown in Mirasol-treated platelet concentrates (PCs). The production of hydrogen peroxide on days 5 and 7 

was also significantly higher in treated samples, suggesting a decreased antioxidant cell defense and/or 

enhanced activation pathways due to second messengers. This was also evidenced in Intercept-treated 

platelets where antioxidant power was decreased [16] and where ROS-induced urate conversion into allantoin 

was observed [17]. At the protein level, the impact should mainly be post-translational such as oxidations [14, 

15], since PI-platelets are able to synthesize proteins [18]. 

Considering that (i) proteomic data have reported protein damages [19], (ii) post-translational 

analyses are missing and (iii) functional properties (linked to protein functions) are altered (eg reduced 

response to hypothonic shock and increase adhesion to fibrinogen, Figure 1) [3], mass spectrometry (MS)-

based proteomics were applied to look at oxidative damages. Although literature reports a relatively mild 

impact of PITs on platelet proteome [2, 7-9, 19-21], several protein-based pathways were found to be affected 

by PITs [19, 20, 22, 23]. In the present study, the impact of riboflavin/UVB on platelet proteome was 

investigated by a shotgun approach with a focus on irreversible oxidations. 

 

2 Methods 

2.1 Platelet concentrates 

The experiments were composed by three biological replicates prepard as follows. Buffy coat-derived and 

leukoreduced PCs were prepared and treated as previously described in Intersol [3]. Then three ABO-

matched PCs were pooled together in a 2L-Plasma bag, agitated for 5 min and split in three identical PCs: 

one control bag (untreated PC) was supplemented with 17.5 mL of Intersol, and one treated bag was 

completed with 17.5 mL of riboflavin and treated in home-made illuminator (addition of riboflavin followed by a 

UVB treatment at 5J/cm2 applied in 20 min) [3]. PCs were stored overnight in a storage bag (1300 mL, 

PL2410 plastic) under agitation at 22°C, and sampling were done at day 2 post-donation. The third bag was 

not employed here.  
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2.2 Proteomics 

Five µL aliquots of Prostaglandin E1 (PGE1) (> 98%, HPLC grade) from Sigma Aldrich (Steinheim, Germany) 

were diluted in 495 µL of Tyrode’s buffer. Four mL of PCs were sampled in plastic tubes through sterile 

connection at day 2 and transferred to a 15-mL tube containing 40 µL of PGE1 1%. PCs were incubated 

during 5 min at 37 °C under gentle rotation and followed by 10 min of centrifuge at 1’000g at room 

temperature (RT). The supernatant was carefully removed and the pellet was washed several times. Platelets 

were resuspended in 1 mL of Tyrode’s buffer + 10 µL PGE1 and samples were aliquoted at 50 µg. Aliquots 

were centrifuged (1’000g) at RT during 10 min and pellets were frozen at -80°C. 150 µL Laemmli 2x were 

added to the pellet for proteomics. 

Proteins (8 µg) were separated on a 12% mini polyacrylamide gel (BioRad), excised in 6 gel bands 

(Supplementary Fig. S1) and digested with sequencing-grade Trypsin/LysC (Promega) [24]. Extracted 

peptides were vacuum-dried and resuspended in 0.05% trifluoroacetic acid, 2% (v/v) acetonitrile for LC-

MS/MS analyses on a Dionex RSLC 3000 nanoHPLC system (Dionex, Sunnyvale, CA, USA) interfaced via a 

nanospray source to a high resolution mass spectrometer QExactive Plus (Thermo Fisher, Bremen, Germany) 

(see Supplementary Material for details).  

2.3 Data analysis 

Protein identification from MS raw files and label-free quantitation with MaxQuant version 1.5.3.30 [25] were 

realized as previously described [26], using the set of Homo sapiens proteome sequences downloaded from 

UniProt database (UP000005640_9606.fasta, December 2015 version, 21’026 sequences). Trypsin was used 

as the enzyme definition, allowing 2 missed cleavages. Database searches were carried out with a parent ion 

tolerance of 5 ppm after recalibration, and a fragment ion mass tolerance of 20 ppm. Variable modifications 

were specified as follows: N-terminal acetylation of protein, iodoacetamide derivative of cysteine, dioxidation 

and trioxidation of cysteine, oxidation and dioxidation of methionine and tryptophan, tryptophan oxidation to 

kynurenin. Both peptide and protein FDR rates were set at 1% as calculated against a decoy sequence 

database and the match between runs function was activated. 

 Protein pathways were analyzed on string-db.org (version 10.0, access on May 2016). 

2.4 Statistical analysis  

Oxidation levels were compared by combining moderated t-test (limma) with rank products on well-defined 

null hypothesis. A p-value < 0.05 is considered as significant. 

 

3 Results 

First of all, 2D gel-based proteomics was carried out as for Intercept-treated PCs [9]. It revealed a low impact 

on the proteome (in particular the overexpression of glyoxalase domain-containing protein 4 in treated 

samples) and identified proteins were not confirmed by western blot (see supplementary material). 

Label free shotgun analysis of the samples at day 2 was carried out. A total of 2534 proteins (3700 

are reported to date [27]) with a minimum of two peptides were detected (see Supplementary Table 1). 
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Although a considerable absolute number of oxidized peptides (1714) was detected, in general, identified 

proteins and relative peptides showed mitigate matching with our peptide-based oxidation database [14] and 

mainly contained methionine oxidation. Particularly, 18 peptides belonging to 17 proteins were found to be 

only oxidized in treated samples, while 3 proteins were only oxidized in control ones (Table 1, upper part). 

Protein-protein interactions analysis identified that the platelet aggregation was particularly affected by 

oxidation (unique biological process with a false discovery < 0.05, Table 2 and Supplementary Fig. S4). 

Comparison of oxidation levels between treated and untreated PCs did not present differences, after 

classic statistical correction (i.e. Benjamini-Hochberg). However, treated samples displayed an oxidative 

tendency suggesting slight irreversible oxidation induced by PITs. Without the correction, several oxidized 

peptides (45) displayed higher intensity in treated samples and 8 oxidized peptides were more intense in 

control samples (p-value < 0.01). Therefore, to fully explored the dataset and to further gain statistical 

significance (considering the list of oxidized peptides > 1’000 rows and the presence of missing values [not all 

the peptides were detected in all samples]), moderated t-test (limma) with rank products on well-defined null 

hypothesis were combined according to Schwämmle et al. [28]. Hence, an increased significance for 18 

peptides (allowing a maximum of two modifications per peptide) was obtained. Surprisingly, the majority of the 

significantly oxidized peptides (i.e. 11 peptides) belong to control PCs (Table 1, lower part). 

 

4 Discussion 

The present identification number of 2534 proteins is high which make difficult to explore all the potential 

modifications. Therefore, and this is one limitation of our approach, we have tp target on specific amino acids 

in order to find statistical variation. Therefore, three amino acids were preferentially selected. Methionine and 

cysteine are well known protein antioxidant and stabilize the protein structure [29]. In addition, they are 

involved to numerous biological processes as redox system. The choice of the third amino acid tryptophan 

was based on a previous study on PI-treated model peptides because of its high sensitivity to ROS [14]. 

Although a considerable absolute number of oxidized peptides were detected (1714 over 9350 

detected peptides), only 18 and 3 oxidized peptides were found in treated and untreated samples, 

respectively (while the unmodified peptides were present in all replicates of both conditions) (Table 1, upper 

part). Such findings make us plaid for a slight increase of irreversible oxidation in riboflavin/UVB-treated 

platelet proteome. However, while in control PCs no significant enrichment was observed, at least 4 impacted 

proteins of treated PCs belong to the same biological process that is the aggregation. In addition, several 

proteins overlap cytoskeleton, focal adhesion and degranulation platelet apparatus. Of interest, talin and 

vinculin, involved in platelet shape change, were already reported to be affected by riboflavin/UVB treatment 

[19, 22] which might explain the decreased in platelet integrity as shown by hypotonic shock response (see 

Figure 1a) [3]. 

Looking for the oxidation of peptides present in both conditions, the analysis showed increased 

oxidation in control peptides (11 peptides versus 7). An intriguing subset of proteins is composed by 14-3-3Z 

and GPIbα. Following the binding of vWF to GPIb-IX-V, 14-3-3Z directly interacts with GPIb-IX-V cytoplasmic 

domain [30], which also showed an increased oxidation in treated samples. GPIb-IX-V is involved in platelet 

primary function by binding vWF. Protein oxidation could impair the response to vWF. Fibrinogen gamma 
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chain (FGG) was also up-oxidized in treated samples. FGG is secreted from platelets through alpha granules 

and carries the main binding site for αIIbβ3. In addition, it has to be taken into account that FGG is present in 

plasma, and oxidized FGG can originate from the plasma contamination. FGG in plasma is probably more 

exposed to the oxidative stress generated during the PI than the one present in the platelet cytoplasm 

(indeed, endogenous ROS are clearly attenuated when plasma concentration increase, data not shown). By 

the same way, myosin contains two different up-oxidized peptides in treated PCs. Interestingly, myosin tightly 

interacts with actin, which in turn is significantly down-oxidized. Indeed actin cluster is present with two 

different oxidized peptides. Actin oxidation is part of a complex system regulating the dynamic of F-actin 

assembly and disassembly. Actin irreversible oxidation is known to disassemble and inhibit the formation of 

new F-actin, favoring crosslinks, aggregates and disordered structures in different cells [31]. Inversely, actin 

reversible oxidation of cysteines (e.g. Cys272 and Cys374) constitutes an important oxidative stress sensor 

for apoptosis signaling inside cells and directly participate to F-actin elongation [32]. Here, by untargeted 

experiment, Cys217 was more oxidized in control PCs forming a sulfinic acid (R-SO2H). This cysteine seems 

to participate in a lesser extent to F-actin formation, even though it was already detected in reversible oxidized 

form [33]. PF4 peptide AGPHCPTAQLIATLK is present in two different oxidized cysteine forms: R-SO2H and 

R-SO3H. Interestingly such irreversible oxidation disrupts disulfide bond between Cys41 and Cys67. PF4 

protein is released during aggregation and inhibits anticoagulant heparin effect. Here again it is surprising to 

find higher oxidation in untreated samples. Another intriguing case is GAPDH methionine carbonylation that 

could impair glycolysis even though direct conclusions are not feasible since the glycolysis is accelerated after 

PI [3, 6].  

The impact of PI on platelet proteome was reported to be moderate [19] and the current data are in 

agreement with recently published analyses on Mirasol-treated PCs [34] and fill in previous data [19]. These 

irreversible protein oxidations cannot explain by themselves the cellular and functional lesions observed 

despite the focus on aggregation pathways (i.e. GPIb) and platelet shape change. Redox protein activities are 

known to be regulated via ROS. Indeed, reversible oxidations represent subtle changes that should be studied 

in details by proteomics [35], as in the case of the redox sensitive cysteines that can transiently be oxidized by 

second messengers during platelet signaling [36]. 

 

5 Conclusions 

In vitro functional properties of platelets have been reported to be altered by riboflavin/UVB treatment, which 

migh be explained by protein modifications. The present shotgun experiment detected a low number of 

irreversibly oxidized proteins after riboflavin/UVB treatment. It evidenced an interference with several proteins 

involved in platelet aggregation and platelet shape change. The protein oxidations and modifications are part 

of the factors governing treatment-dependent PCs in vitro functionality and further in-depth investigations will 

be required such as redox signaling [35]. 

 

6 Acknowledgements 

6 
 



Page 7 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

GS and DC ran the experiments. GS and MP designed the experiments, analyzed the data wrote the article. 

All the authors reviewed the data and the manuscript. 

The authors thank the PAF UNIL members that ran shotgun analyses and the research committee of 

« Transfusion SRC Switzerland » for the grant entitled « Comprehensive study of the impact of pathogen 

inactivation on platelet proteome and function » for financial supports. 

 

7 Disclosure of interest 

The authors declare that the research was conducted in the absence of any commercial or financial 

relationships that could be construed as a potential conflict of interest. 

7 
 



Page 8 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

 

8 References 

 
1 Schubert P, Johnson L, Marks DC, et al.: UV-based pathogen inactivation systems: 

Untangling the molecular targets activated in platelets. Frontiers in medicine 2018; 5: 129. 
2 Hechler B, Ohlmann P, Chafey P, et al.: Preserved functional and biochemical characteristics 

of platelet components prepared with amotosalen and ultraviolet A for pathogen 
inactivation. Transfusion 2013; 53: 1187-200. 

3 Abonnenc M, Sonego G, Crettaz D, et al.: In vitro study of platelet function confirms the 
contribution of the ultraviolet B (UVB) radiation in the lesions observed in riboflavin/UVB-
treated platelet concentrates. Transfusion 2015; 55: 2219-30. 

4 Goodrich RP, Li JZ, Pieters H, et al.: Correlation of in vitro platelet quality measurements 
with in vivo platelet viability in human subjects. Vox Sang 2006; 90: 279-85. 

5 Perez-Pujol S, Tonda R, Lozano M, et al.: Effects of a new pathogen-reduction technology 
(Mirasol PRT) on functional aspects of platelet concentrates. Transfusion 2005; 45: 911-9. 

6 Picker SM, Tauszig ME, Gathof BS: Cell quality of apheresis-derived platelets treated with 
riboflavin-ultraviolet light after resuspension in platelet additive solution. Transfusion 2012; 
52: 510-6. 

7 Thiele T, Iuga C, Janetzky S, et al.: Early storage lesions in apheresis platelets are induced by 
the activation of the integrin alphaIIbbeta(3) and focal adhesion signaling pathways. J 
Proteomics 2012; 76 Spec No.: 297-315. 

8 Marrocco C, D'Alessandro A, Girelli G, et al.: Proteomic analysis of platelets treated with 
gamma irradiation versus a commercial photochemical pathogen reduction technology. 
Transfusion 2013; doi: 10.1111/trf.12060. 

9 Prudent M, Crettaz D, Delobel J, et al.: Proteomic analysis of Intercept-treated platelets. J 
Proteomics 2012; 76: 316-28. 

10 Calderara DB, Crettaz D, Aliotta A, et al.: Generation of procoagulant COAT platelets in 
platelet concentrates derived from buffy-coat: the role of processing, pathogen inactivation 
and storage. Transfusion 2018; early view. 

11 Cazenave JP, Follea G, Bardiaux L, et al.: A randomized controlled clinical trial evaluating the 
performance and safety of platelets treated with MIRASOL pathogen reduction technology. 
Transfusion 2010; 50: 2362-75. 

12 Lozano M, Knutson F, Tardivel R, et al.: A multi-centre study of therapeutic efficacy and 
safety of platelet components treated with amotosalen and ultraviolet A pathogen 
inactivation stored for 6 or 7 d prior to transfusion. Br J Haematol 2011; 153: 393-401. 

13 Marks DC, Faddy HM, Johnson L: Pathogen reduction technologies. ISBT Sci Ser 2014; 2014: 
44-50. 

14 Prudent M, Sonego G, Abonnenc M, et al.: LC-MS/MS Analysis and Comparison of Oxidative 
Damages on Peptides Induced by Pathogen Reduction Technologies for Platelets. Journal of 
the American Society for Mass Spectrometry 2014; 25: 651-61. 

15 Johnson L, Marks D: Treatment of Platelet Concentrates with the Mirasol Pathogen 
Inactivation System Modulates Platelet Oxidative Stress and NF-kappa B Activation. Transfus 
Med Hemother 2015; 42: 169-75. 

16 Abonnenc M, Crettaz D, Tacchini P, et al.: Antioxidant power as a quality control marker for 
completeness of amotosalen and ultraviolet A photochemical treatments in platelet 
concentrates and plasma units. Transfusion 2016; 56: 1819-27. 

8 
 



Page 9 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

17 Abonnenc M, Crettaz D, Marvin L, et al.: Metabolomic profiling highlights oxidative damages 
in platelet concentrates treated for pathogen inactivation and shows protective role of 
urate. Metabolomics 2016; 12: 188. 

18 Schubert P, Culibrk B, Karwal S, et al.: Protein translation occurs in platelet concentrates 
despite riboflavin/UV light pathogen inactivation treatment. Proteomics Clinical applications 
2016; 10: 839-50. 

19 Prudent M, D'Alessandro A, Cazenave J-P, et al.: Proteome Changes in Platelets After 
Pathogen Inactivation-An Interlaboratory Consensus. Transf Med Rev 2014; 28: 72-83. 

20 Schubert P, Coupland D, Culibrk B, et al.: Riboflavin and ultraviolet light treatment of 
platelets triggers p38MAPK signaling: inhibition significantly improves in vitro platelet 
quality after pathogen reduction treatment. Transfusion 2013; 53: 3164-73. 

21 Thiele T, Sablewski A, Iuga C, et al.: Profiling alterations in platelets induced by 
Amotosalen/UVA pathogen reduction and gamma irradiation - a LC-ESI-MS/MS-based 
proteomics approach. Blood Transf 2012; 10: S63-S70. 

22 Schubert P, Culibrk B, Coupland D, et al.: Riboflavin and ultraviolet light treatment 
potentiates vasodilator-stimulated phosphoprotein Ser-239 phosphorylation in platelet 
concentrates during storage. Transfusion 2012; 52: 397-408. 

23 Stivala S, Gobbato S, Infanti L, et al.: Amotosalen/ultraviolet A pathogen inactivation 
technology reduces platelet activatability, induces apoptosis and accelerates clearance. 
Haematologica 2017; 102: 1650-60. 

24 Shevchenko A, Wilm M, Vorm O, et al.: A strategy for identifying gel-separated proteins in 
sequence databases by MS alone. Biochem Soc Trans 1996; 24: 893-6. 

25 Cox J, Neuhauser N, Michalski A, et al.: Andromeda: A Peptide Search Engine Integrated into 
the MaxQuant Environment. J Proteome Res 2011; 10: 1794-805. 

26 Cox J, Hein MY, Luber CA, et al.: Accurate proteome-wide label-free quantification by 
delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell 
Proteomics 2014; 13: 2513-26. 

27 Burkhart JM, Vaudel M, Gambaryan S, et al.: The first comprehensive and quantitative 
analysis of human platelet protein composition allows the comparative analysis of structural 
and functional pathways. Blood 2012; 120: E73-E82. 

28 Schwammle V, Leon IR, Jensen ON: Assessment and improvement of statistical tools for 
comparative proteomics analysis of sparse data sets with few experimental replicates. J 
Proteome Res 2013; 12: 3874-83. 

29 Kim G, Weiss SJ, Levine RL: Methionine oxidation and reduction in proteins. Biochim Biophys 
Acta 2014; 1840: 901-5. 

30 Mangin PH, Receveur N, Wurtz V, et al.: Identification of five novel 14-3-3 isoforms 
interacting with the GPIb-IX complex in platelets. Journal of thrombosis and haemostasis : 
JTH 2009; 7: 1550-5. 

31 Farah ME, Sirotkin V, Haarer B, et al.: Diverse protective roles of the actin cytoskeleton 
during oxidative stress. Cytoskeleton (Hoboken, NJ) 2011; 68: 340-54. 

32 Fiaschi T, Cozzi G, Raugei G, et al.: Redox regulation of beta-actin during integrin-mediated 
cell adhesion. The Journal of biological chemistry 2006; 281: 22983-91. 

33 Go YM, Chandler JD, Jones DP: The cysteine proteome. Free radical biology & medicine 
2015; 84: 227-45. 

34 Salunkhe V, De Cuyper IM, Papadopoulos P, et al.: A comprehensive proteomics study on 
platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction 
technology. Platelets 2018: 1-12. 

9 
 



Page 10 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

35 Sonego G, Abonnenc M, Tissot J-D, et al.: Redox proteomics and platelet activation: 
understanding the redox proteome to improve platelet quality for transfusion. Int J Mol Sci 
2017; 18: 1-22. 

36 Jang JY, Min JH, Chae YH, et al.: Reactive Oxygen Species Play a Critical Role in Collagen-
Induced Platelet Activation via SHP-2 Oxidation. Antioxid Redox Signal 2014; 20: 2528-40. 

 
 

10 
 



Page 11 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Figure 1 caption 

 

Fig. 1. Functional properties of riboflavin/UVB treated platelet compared to untreated platelets. (a) Hypotonic 

shock response is statistically decreased after treatment. (b) Static adhesion to fibrinogen is higher after 

treatment. * p-value < 0.05; *** p-value < 0.001. These data extracted from ref [3] were obtained with the 

same riboflavin/UVB procedure. 

 

 

. 
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Table 1: List of oxidized peptides in riboflavin/UVB-treated and untreated PCs at day 2. 1st part: oxidation 
observed only in one condition. 2nd part: differences in expression. The mean intensity differences are 
represented as “treated – control”.  
 
Presence only in one condition 

 Accession number Protein Name Sequence Modification MS/MS 
count Mean 

C
on

tro
l 

P62820;Q9H0U4;Q
92928 

Ras-related protein Rab-1A;Ras-related 
protein Rab-1B;Putative Ras-related protein 
Rab-1C 

QWLQEIDR Kynurenin 2 na 

Q13418 Integrin-linked protein kinase FALDMAR Oxidation (M) 1 na 

P68032;P68133 Actin, alpha cardiac muscle 1;Actin, alpha 
skeletal muscle 

YPIEHGIITNWDDMEKIWHHTFYN
ELR 2 Oxidation (W) 1 na 

Tr
ea

te
d 

Q9Y490 Talin-1 LHTDDELNWLDHGR Dioxidation (MW) 4 na 

P23229 Integrin alpha-6 LNYLDILMR Oxidation (M) 4 na 

P60174 Triosephosphate isomerase FFVGGNWK Oxidation (W) 3 na 

Q86UX7 Fermitin family homolog 3 FIQAWQSLPDFGISYVMVR Oxidation (W) 3 na 

Q00610 Clathrin heavy chain 1 LLEMNLMHAPQVADAILGNQMFT
HYDR Dioxidation (MW) 3 na 

P46109 Crk-like protein YPSPPMGSVSAPNLPTAEDNLEY
VR Oxidation (M) 3 na 

Q13011 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, 
mitochondrial 

DHSVAESLNYVASWNMSMLQTQ
DLVK 2 Oxidation (M) 2 na 

O00429 Dynamin-1-like protein LDLMDAGTDAMDVLMGR Oxidation (M) 2 na 

Q9Y490 Talin-1 LHTDDELNWLDHGR Kynurenin 2 na 

P14625 Endoplasmin EAVEKEFEPLLNWMK Oxidation (M) 1 na 

Q9Y696 Chloride intracellular channel protein 4 EMTGIWR Oxidation (M) 1 na 

P50416 Carnitine O-palmitoyltransferase 1, liver 
isoform 

GPLMVNSNYYAMDLLYILPTHIQA
AR Oxidation (M) 1 na 

P46459 Vesicle-fusing ATPase GSMAGSTGVHDTVVNQLLSK Oxidation (M) 1 na 

P18206 Vinculin LANVMMGPYRQDLLAK Oxidation (M) 1 na 

Q13418 Integrin-linked protein kinase LNENHSGELWK Oxidation (W) 1 na 

P54819 Adenylate kinase 2, mitochondrial LVSDEMVVELIEK Oxidation (M) 1 na 

P0DMV9;P0DMV8 Heat shock 70 kDa protein 1B;Heat shock 70 
kDa protein 1A 

MKEIAEAYLGYPVTNAVITVPAYF
NDSQR Oxidation (M) 1 na 

Q8WUM4 Programmed cell death 6-interacting protein TMQGSEVVNVLK Oxidation (M) 1 na 

Difference in expression 

 Accession number Protein Name Sequence Modification MS/MS 
count Mean 

C
on

tro
l 

Q9P1F3 Costars family protein MNVDHEVNLLVEEIHR Acetyl (Protein N-
term);Oxidation (M) 4 -

1.412 

Q13418 Integrin-linked protein kinase MYAPAWVAPEALQK Oxidation (M) 15 -
1.487 

P10720;P02776 

Platelet factor 4 variant;Platelet factor 4 
variant(4-74);Platelet factor 4 variant(5-
74);Platelet factor 4 variant(6-74);Platelet 
factor 4;Platelet factor 4, short form 

AGPHCPTAQLIATLK Trioxidation (C) 7 -
1.501 

P10720;P02776 Platelet factor 4 variant AGPHCPTAQLIATLK Dioxidation (C) 4 -
1.660 

P37802 Transgelin-2 YGINTTDIFQTVDLWEGK Kynurenin (W) 6 -
1.737 

Q96BM9;Q9NVJ2 ADP-ribosylation factor-like protein 8A;ADP-
ribosylation factor-like protein 8B EKDNIDITLQWLIQHSK Dioxidation (MW) 1 -

1.808 

P04406 Glyceraldehyde-3-phosphate dehydrogenase VVDLMAHMASK Oxidation (M) 14 -
2.025 

P12814 Alpha-actinin-1 QFGAQANVIGPWIQTK Dioxidation (MW) 3 -
2.170 

P27105* Erythrocyte band 7 integral membrane protein VIAAEGEMNASR Oxidation (M) 13 -
2.519 

P63261 Actin, cytoplasmic 2 EKLCYVALDFEQEMATAASSSSLE
K Dioxidation (C) 2 -

3.143 

P18206 Vinculin LANVMMGPYR 2 Oxidation (M) 1 -
4.265 

e a t  P07359 Platelet glycoprotein Ib alpha chain AMTSNVASVQCDNSDKFPVYK Carbamidomethyl 
(C);Oxidation (M) 11 1.982 
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P19105;P24844;O1
4950 

Myosin regulatory light chain 12A;Myosin 
regulatory light polypeptide 9;Myosin 
regulatory light chain 12B 

DGFIDKEDLHDMLASLGK Dioxidation (MW) 5 2.058 

P02679 Fibrinogen gamma chain MLEEIMK Oxidation (M) 13 2.146 

P23284 Peptidyl-prolyl cis-trans isomerase B VIKDFMIQGGDFTR Dioxidation (MW) 1 2.218 

P19105;P24844;O1
4950 

Myosin regulatory light chain 12A;Myosin 
regulatory light polypeptide 9;Myosin 
regulatory light chain 12B 

ELLTTMGDR Dioxidation (MW) 2 2.839 

P68032;P63267;P6
2736;P68133 

Actin, alpha cardiac muscle 1;Actin, gamma-
enteric smooth muscle;Actin, aortic smooth 
muscle;Actin, alpha skeletal muscle 

YPIEHGIITNWDDMEK Kynurenin 8 3.278 

P31946 14-3-3 protein beta/alpha;14-3-3 protein 
beta/alpha, N-terminally processed 

TAFDEAIAELDTLNEESYKDSTLIM
QLLR Oxidation (M) 3 4.970 

* Probable contamination from residual red blood cells. 
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Table 2: Protein-protein interactions analysis of the 17 proteins containing 18 oxidized peptides in 
riboflavin/UVB-treated PCs at day 2. Platelet aggregation was the only biological process with a false 
discovery < 0.05. 
Biological Process 

#pathway ID pathway description count in gene set false discovery rate 

GO.0070527 platelet aggregation 4 2.98E-04 

Cellular component 

#pathway ID pathway description count in gene set false discovery rate 

GO.0005925 focal adhesion 7 1.09E-05 

GO.0030055 cell-substrate junction 6 1.52E-04 

GO.0030054 cell junction 8 3.07E-04 

GO.0070062 extracellular exosome 11 3.58E-04 

GO.0044421 extracellular region part 12 5.48E-04 

GO.0044430 cytoskeletal part 8 6.61E-04 

GO.0005829 cytosol 11 9.65E-04 

GO.0031988 membrane-bounded vesicle 11 1.96E-03 

GO.0005576 extracellular region 12 2.23E-03 

GO.0042995 cell projection 8 0.00223 

GO.0005856 cytoskeleton 8 0.00546 

GO.0042470 melanosome 3 6.96E-03 

GO.0043034 costamere 2 9.66E-03 

GO.0005911 cell-cell junction 4 0.0124 

GO.0015629 actin cytoskeleton 4 2.16E-02 

GO.0043198 dendritic shaft 2 3.09E-02 
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